Электрическая турбина для автомобиля: Что такое электротурбина | Новости автомира

Содержание

Что такое турбина — принцип работы в авто

Первый турбонагнетатель был установлен на мотор биплана Lepere. Запатентовать идею использования энергии выхлопных газов для раскручивания крыльчатки и подачи увеличенного количества сжатого воздуха в цилиндры получилось у швейцарца Бюши в 1905 году. С тех пор автомобильные инженеры-конструкторы постоянно пытаются повысить мощность ДВС за счет турбин.

Сейчас же турбокомпрессорами оснащены уже практически все моторы. Даже агрегаты с небольшими объемами получаются мощными и экономными. Однако из-за некачественного масла, а также несвоевременного обслуживания система наддува может быстро выходить из строя, провоцируя поломки смежных узлов. Разберемся, как работает турбина, из каких комплектующих она состоит и как самостоятельно проверить ее на предмет поломок.

Что такое турбина

Современный турбокомпрессор – это такое устройство, которое способно сделать мотор более мощным. При этом увеличения габаритов самого силового агрегата не требуются.

Турбина позволяет повысить мощностные характеристики двигателя в среднем на 40 %.

Мощность увеличивается за счет сгорания большего количества бензина или дизтоплива. Но подача горючего должна быть грамотной. Без дополнительной порции воздуха процесс горения не состоится. Недогоревшие излишки топлива будут накапливаться, провоцируя образование повышенной дымности, перегрев двигателя и прочие неполадки. Структура оптимальной топливно-воздушной смеси состоит из 1 части горючего и 14,7 частей воздуха, зависит от типа мотора, а также режима работы.

До эпохи турбин, американцы пытались повысить мощность за счет увеличения объема цилиндров, чтобы в двигатель могло затягиваться из атмосферы большее количество воздуха. Их силовые агрегаты имели огромные размеры и недопустимый расход топлива.

Двигатель Chrysler Hemi V8, объем 5,4 л. / 1952 г.

В 1885 году Готтлиб Вильгельм Даймлер придумал первый нагнетатель, принудительно загоняющий воздух в цилиндры. Это был компрессор (в виде вентилятора), привод которого осуществлялся от вала двигателя. Бюши в 1905 году качественно переработал конструкцию, что позволило уменьшить размеры и вес дизельных двигателей. В качестве движителя энергии стал использоваться выхлоп. В общем, так был придуман турбонаддув и турбина.

Альфред Бюши запатентовал первый турбокомпрессор в 1905 г.

Из чего состоит автомобильная турбина

Сейчас выпускается несколько типов турбин для авто. Они различаются комплектующими, типом управления и прочими характеристиками. Рассмотрим составные части классической модели исполнения турбины.

Структура турбины:

  • Общий корпус – деталь должна быть изготовлена из жаропрочной стали. По своей форме она напоминает улитку с 2-мя патрубками, направленными в разные стороны. Крепление в системе принудительного наддува осуществляется посредством фланцев.
  • Турбинное колесо
    – производится из железоникелевых сплавов и других жаропрочных материалов. Сами крыльчатки турбины зафиксированы на валу. Раскручиваясь они преобразовывают энергию выхлопных газов во вращение оси. Количество лопастей бывает от 9-12 шт.
  • Компрессорное колесо – чаще всего эту комплектующую изготавливают из алюминия. Материал выбран не случайно, он помогает снижать потери энергии полученные от колеса турбины. Во время своего вращения компрессорное колесо нагнетает сжатый воздух в цилиндры дизеля или бензинового двигателя.
  • Вал турбины – металлическая ось, с одной стороны которой расположено турбинное колесо, с другой – компрессорное.
  • Шарикоподшипники (подшипники скольжения) – в зависимости от модели турбины в конструкции может быть 1-2 таких подшипников. Они используются для фиксации вала внутри корпуса турбокомпрессора. Смазка деталей обеспечивается общей системой смазки силового агрегата.
  • Перепускной клапан – с помощью узла производят управление мощностью турбонаддува. Клапан имеет пневматический привод и регулируется посредством системы ЭБУ мотора.

Это стандартная структура турбины. Бывают также модели с изменяемой геометрией. Отличаются они механизмом управления и приводом. Лопатки в таких системах поворотные – позволяют регулировать проходное сечение для потока выхлопа под особенности работы двигателя.

Клапан управления или актуатор турбины бывает вакуумным или электронным. Кроме того, некоторые турбокомпрессоры оснащены интеркулером, который охлаждает сжатый воздух перед подачей в цилиндры.

Несмотря на конструктивные отличия, все турбины выполняют одну и ту же задачу – повышают мощность мотора.

Где расположена турбина в авто

В машине турбина стоит в непосредственной близости к мотору. Но место расположения турбины зависит от двигателя и типа турбокомпрессора: одинарные, двойные и т. д.

Одинарная классическая турбина обычно устанавливается на силовые устройства с рядным размещением цилиндров. Где происходит использование энергии отработанных газов абсолютно от всех цилиндров мотора. Воздух подается во все цилиндры сразу.

На двигатели с цилиндрами, размещенными V-образным образом, обычно ставят двойные турбины. Когда два турбокомпрессора, увеличить мощность силового агрегата легче. В таких моделях турбин может быть установлен перекрестный выпускной коллектор. В нем аккумулируются выхлопные газы из всех цилиндров, что дает возможность повысить мощность энергии выхлопа. В результате газы быстрее раскручивают крыльчатку турбины и увеличивают давление в ней.

Двигатель с турбиной VW (с разных сторон)

В общем, в автомобиле турбокомпрессор размещают между впускным и выпускным коллекторами. У переднеприводных машин турбина будет расположена слева от двигателя, заднеприводных – справа

.

Турбокомпрессор с изменяемой геометрией работает по особой технологии. Она дает возможность создать мощные воздухопотоки уже на низах и перенаправить геометрию сопла турбины. Место расположения турбины, как и у классических вариантов, зависит от привода авто.

Какие бывают виды турбин

Существует несколько типов турбокомпрессоров. Условно их можно разделить на три группы: электрические, механические или компрессор, а также турбины, работающие от выхлопных газов. Они отличаются материалами изготовления, мощностью и другими параметрами.

Кроме того, выпускается большое количество подтипов турбин, например, с изменяемой геометрией, последовательная Twin Turbo и прочие. Работает каждая модель турбины по своему особому алгоритму. Пройдемся по конструкции основных групп.

Механические компрессоры
Механический компрессор

Нагнетатель компрессорного типа подключают непосредственно к двигателю через ременную передачу – соединяют вал компрессора и вращающий коленчатый вал. Работает агрегат, только когда запущен мотор автомобиля. Диапазон оборотов в минуту от 18-20000.

Во время функционирования механического вида нет запредельных температур и не появляется эффект турбоямы. Такое оборудование требует минимум ухода и имеет довольно надежную конструкцию. Однако мощность компрессор способен повысить всего на 5-10 %. Да и найти такой агрегат в продаже сейчас довольно сложно. Турбины практически вытеснили конструкцию из обихода.

Стандартные турбины
Турбокомпрессор

Приводом для турбины являются отработанные газы. Они раскручивают крыльчатки с валом до 200000 об/мин. В общем, улитка нужна, чтоб нагнетать большое количество воздуха в цилиндры для обогащения топливно-воздушной смеси. На сегодняшний день это самый производительный вариант системы наддува, он способен повысить мощность силового агрегата до 30-50%.

Турбокомпрессор работает с сильно нагретыми выхлопными газами, температура может доходить вплоть до 950 °C. Эта особенность отражается на ресурсе устройства. Бывает, что уже через 20-50 тыс. км. пробега свистит турбина или появляются другие признаки поломок. Но при своевременном обслуживании таких неприятностей можно избежать и ТКР будет служить столько же, как и двигатель.

К слабым сторонам классических турбин можно отнести требовательность к качеству топлива, возможность возникновения эффекта «турбоямы» и масложор, появляющийся в результате неправильной эксплуатации. Производительность у агрегатов большая, но они требуют бережного отношения к себе.

Автоконцерны пытаются продлить ресурс систем турбонаддува, постоянно модернизируя турбины. Возможно, уже скоро появятся модели, которые будут служить значительно дольше.

Электрический тип турбин
Электрическая турбина

Электротурбины сочетают в себе свойства классических улиток и механических компрессоров. Разработкой гибридных устройств сейчас занимается большое количество компаний. Например, Garett делает свои турбины с небольшим электродвигателем. Он принудительно подкручивает колесо, если есть вероятность возникновения турбоямы. Обычно такое случается на низких оборотах.

Сама технология электрических турбин разрабатывается уже давно. В Garrett продвигают турбину, которая совмещена с электродвигателем. Именно такими системами надува хотят оснастить свои автомобили Mercedes-Benz. Электрический двигатель тут может функционировать в качестве генератора, и как мотор. VAG же, наоборот, разрабатывает агрегаты с раздельным электрокомпрессором и турбиной. Под зарядку АКБ схема не подходит.

К достоинствам электрических турбин относят мгновенное раскручивание, отличную производительность и долгий ресурс. Однако есть и недостаток – нужно много энергии.

Когда включается турбина на дизельном и бензиновом двигателе

С экономической точки зрения турбины очень выгодно устанавливать на автомобили. Это проще, чем повысить объем цилиндров или увеличить их количество. Поэтому уже половина выпускаемых моделей авто оснащены турбокомпрессорами: 20% бензиновые агрегаты, 80% — дизельные двигатели.

В работу турбина включается после запуска турбомотора. Даже на холостом ходу отработанные газы потихоньку раскручивают лопасти турбины. Когда обороты повышаются, производительность системы наддува увеличивается.

Показатель номинального давления турбины зависит от типа машины: спортивные варианты в пределах 3,4 бар, обычные легковые – от 1,4-2,5 бар. Если при проверке манометром, включенным в цепь управления ТНВД, полученные значения выше или ниже допустимых, значит, имеют место поломки системы турбонаддува. Проблемы могут крыться в ограничивающем клапане или засоренном воздушном фильтре, а возможно пора уже почистить геометрию турбины. При наличии отклонений нужна качественная диагностика турбокомпрессора.

Максимальная эффективность наддува дизелями доступна при 1800-4000 оборотах коленчатого вала. В это время турбинное колесо раскручивается до 150000 об/мин. Самая верхняя точка производительности достигается на 3000-4000 об/мин. Все что выше может спровоцировать перегрузку, поэтому в конструкции системы наддува имеется перепускной клапан, сбрасывающий лишнее давление.

Что дает турбина автомобилю и насколько она повышает мощность

Турбину устанавливают, чтобы повысить мощность на высоких и средних оборотах – до 30-50 %, в зависимости от модели двигателя. На скорость автомобиля она не влияет, но динамику разгона улучшает прилично.

Итак, что же дает турбина:

  • Экономию топлива — чтобы разогнать атмосферник до таких показателей потребуется на 30-40 % больше горючего.
  • Турбина позволяет добиться высоких показателей мощности без увеличения размеров мотора.
  • Турбина уменьшает количество вредных веществ в выхлопе.
  • Работает тише атмосферных двигателей без турбины.
  • Турбина оптимизирует свойства автомобиля: исключает вероятность переключения передач во время движения в пробках, улучшает крутящий момент.
  • Турбина делает машину более безопасной, так как воздушно-топливная смесь сгорает полностью.

Топливо турбина экономит, а вот расход масла увеличивает. Все дело в том, что турбокомпрессор требует качественной смазки и низкосортное масло тут применять нельзя.

В среднем ресурс турбины на дизеле составляет 250 000 км, на бензиновом моторе немного меньше – до 150000 км. Но срок «жизни» системы напрямую зависит от особенностей езды и обслуживания.

Как работает турбина на автомобиле

Турбина в автомобиле находится в непосредственной близости к двигателю, но жесткой связи с коленвалом силового агрегата она не имеет. Эффективность работы системы и скорость вращения крыльчаток турбины зависит от числа оборотов мотора.

Принцип работы турбокомпрессора

Работает турбокомпрессор от энергии выхлопных газов. Когда в моторе сгорает топливно-воздушная смесь образуются отработанные газы, которые выходят через выхлопную трубу. В выпускном коллекторе размещена крыльчатка, соединенная валом с другой крыльчаткой, установленной во впускном коллекторе.

Принцип работ турбокомпрессора

Выходящий выхлоп раскручивает колесо турбины, приводящее в движение вал ротора с компрессорным колесом. А уже компрессорное колесо сжимает воздушный поток, направляет его в интеркулер (если он есть) и далее в цилиндры. Так в турбомотор попадает больше воздуха и больше топлива. Такая топливно-воздушная смесь лучше сгорает, увеличивая мощность силового агрегата.

От количества выхлопных газов, попадающих в турбину, зависит скорость вращения крыльчаток. Чем их больше, тем больше воздуха будет попадать в цилиндры. Но сами по себе отработанные газы очень горячие, они способны перегревать турбокомпрессор и чрезмерно нагревают воздух. Поэтому во многих моделях в конструкцию турбонаддува включен интеркулер – радиатор охлаждения. Попадая внутрь этого радиатора воздушный поток остывает до нужной температуры и только тогда направляется в цилиндры. Это значительно повышает КПД и дает возможность минимизировать риск закипания двигателя.

В общем, турбина позволяет снять даже с малого рабочего объема приличную мощность. При этом нет необходимости увеличивать вес двигателя. Потери на трение также минимальны. Эти преимущества делают турбомоторы очень востребованными. Они более экономны, если сравнивать с атмосферниками такой же мощности.

Технологии Twin-turbo и Biturbo

Классические турбины не лишены и недостатков. Их крыльчатка способна разогнаться до 200000 об/мин. Большая инерционность агрегата способствует образованию «турбоямы» — задержка увеличения мощности мотора, появляющаяся при резком нажатии на педаль газа. А после выхода из «турбоямы» имеет место чрезмерное увеличение давления наддува, так называемый турбоподхват.

Чтобы уменьшить инерционность и избежать негативных последствий турбокомпрессоров были разработаны новые технологии для создания турбин — «Битурбо», а также «Твинтурбо». И в первом, и во втором варианте используется две небольшие турбины. Особых отличий в конструкциях устройств нет. Производители просто по-разному называют сдвоенную турбину.

Технология Twin-turbo Технология Biturbo

Двойные турбины позволяют избежать «турбоямы». Помогают снизить расход топлива и увеличить мощность мотора. Различаются комбинированные турбокомпрессоры схемами подключения.

Вариации подключения наддува:

  • Параллельная схема – обе турбины работают параллельно друг другу. Воздушный поток сначала нагнетается во впускной коллектор, смешивается с горючим, а после подается в камеру сгорания и цилиндры. Схема используется для дизелей.
  • Последовательно-параллельная схема – одна турбина все время функционирует, вторая включается только при увеличении нагрузки. За управление и переключение режимов отвечает специальный клапан, работу которого контролирует ЭБУ мотора. Такая схема обеспечивает плавный разгон, хороший подхват без задержек, что исключает вероятность возникновения «турбоямы».
  • Ступенчатая схема – установлены турбины разного размера. Они имеют последовательное соединение с выпускным, а также впускным коллекторами. Внутри каналов расположены перепускные клапаны, регулирующие поток отработанных газов и воздуха. Работает система в 3 режимах. При небольшой нагрузке клапаны закрыты и выхлоп проходит по каналам обеих турбин, но лопасти большого компрессора практически не вращаются. С ростом оборотов турбомотора открывается один клапан, и большая улитка начинает активно вращаться, сжимая воздух и передавая его на малое колесо. На максимальных оборотах происходит 100 % открытие обоих клапанов. Выхлопные газы попадают сразу же в большую турбину, а далее нагнетаются в цилиндры. Ступенчатый тип идеален для дизельных двигателей.

Турбины Twin-turbo или Biturbo устанавливаются на дизели, а также бензиновые моторы. В бензиновых агрегатах системы более требовательны к заливаемому топливу. Использовать стоит бензин с высоким октановым числом, иначе появится детонация, а также нестабильная работа турбомотора.

К достоинствам технологий «Битурбо», а также «Твинтурбо» следует отнести отсутствие явления «турбоямы», отличную динамику, более экологичный выхлоп и существенную прибавку мощности. Недостатков у турбин не так много, но они есть: сложная конструкция, стоят дороже классических турбин, относительно дорогой ремонт.

Как проверить работает ли турбина на автомобиле

Зачем нужно периодически проверять исправна ли турбина? Потому что агрегат сам по себе не ломается. Если наблюдаются изменения в работе агрегата, то в большинстве случаев это результат выхода из строя соседних узлов. Хотя внутренние детали турбокомпрессора тоже могут изнашиваться и требовать замены.

Невозможно не заметить сбои в работе турбины. Сразу же меняются ходовые качества — куда бы вы не поехали автомобиль нормально разогнать не получается. Особенно ухудшение динамики наблюдается при движении на подъем. Мотор очень плохо набирает обороты. Появляются и другие неприятные признаки выхода из строя системы турбонаддува: выхлоп меняет цвет, масложор и т. д.

Точную диагностику неисправностей турбины делают в сервисе на специальном оборудовании. Чтобы выполнить такую проверку турбокомпрессор нужно демонтировать, что не всегда удобно. Однако есть способы, помогающие проверить турбонагнетатель без снятия с мотора.

Самостоятельная диагностика турбины:

  1. Послушайте, как работает турбина на холодном двигателе – скрежет, звук разбитого подшипника, свист или даже громкая работа свидетельствуют о поломках.
  2. Проверьте динамику авто на прогретом двигателе – медленный набор скорости и «провалы» тяги также являются признаками неисправностей.
  3. Проверьте масло – открутите крышку заливной горловины, если она черная и вся в саже, пора в ремонт.
  4. Обратите внимание на расход масла – в норме до 1 л на 3-4 тыс. км.

Кроме того, при поломках турбины на панели приборов загорается значок «Check engine».

Проверить турбину на дизеле можно и с помощью патрубка, соединяющего улитку и впускной коллектор. Для проведения диагностики понадобится помощник. Следует запустить двигатель, пережать этот патрубок и отпустить его. Второму человеку нужно погазовать около 3-х секунд. В исправном турбокомпрессоре патрубок раздуется под действием давления.

При осмотре узлов системы турбонаддува следуете помнить, что крыльчатки турбины должны быть без зазубрин и прочих повреждений. Если имеет место дефект лопаток, нужно решать, как лучше поступить: ремонтировать или купить новую турбину.

Некоторые поломки невозможно обнаружить без снятия турбокомпрессора. После демонтажа турбины проверяют наличие люфта: радиального и осевого. В первом варианте допускается не более 1 мм, осевой люфт – 0,05 мм.

Тщательно обследовать следует и корпус турбины, а также проверить на герметичность все патрубки. Если в системе имеется интеркулер, его также необходимо осмотреть. Внутри радиатора не должно быть масла (допускается до 30 мл).

Чтобы турбина долго не ломалась и смогла отработать заявленный производителями ресурс нужно вовремя ее обслуживать. На срок службы влияет и манера вождения.

Как правильно ездить на дизеле с турбиной

Слишком активная езда без охлаждения может быстро вывести турбину из строя. Поэтому после интенсивных «покатушек» нужно постоять несколько минут на холостых и только потом глушить мотор. За это время циркулирующее масло охладит конструкцию турбины до нормальной температуры.

Чтобы долго не ждать остывания турбомотора, рекомендуется перед парковкой ехать в спокойном режиме. А если надолго попали в пробку, то не стоит резко ускоряться. Иначе можно спровоцировать критический перегрев, ведь двигатель с турбиной и так будут слишком нагреты от длительного простоя без движения.

Турбина постоянно подвергается высоким нагрузкам. В процессе езды лучше придерживаться средних оборотов. Иногда необходимо разгонять двигатель до очень высоких оборотов, чтобы в системе турбонаддува активировался естественный процесс очистки.

В зимнее время нужно мотору и турбине дать немного прогреться и только потом трогаться. Нельзя допускать перегазовок. Особое внимание должно уделяться качеству масла и горючего. Вовремя нужно менять моторное масло и фильтры.

Ну и, конечно же, следует часто проверять уровень моторного масла, а не только перед дальней поездкой. Если уровень падает, подшипники недополучают необходимого количества смазки. Это приводит к быстрому износу деталей турбины. Тут уже нужно разбираться, куда уходит масло. Возможно сломался масляный насос или масляная система разгерметизировалась.

Бережная езда и своевременное обслуживание уберегут турбину от выхода из строя. При своевременном обнаружении поломок возможен ремонт турбины своими руками. Иногда достаточно лишь подтянуть хомуты или заменить ремкомплект.

Плюсы и минусы турбонаддува

Неоспоримым достоинством двигателей с турбиной является повышенная мощность. С таким же объемом цилиндров атмосферник будет слабее на 30-50 %, зависит от модели. Однако в автомобилях с турбонаддувом есть и слабые стороны. Разберемся с преимуществами и возможными недостатками подробнее.

Преимущества турбины:

  • Небольшие размеры двигателя – турбина дает возможность повысить мощность без увеличения габаритов силового агрегата. К примеру, 2-3-цилиндровый турбодвигатель по мощности сопоставим 4-цилиндровому атмосфернику.
  • Экономия топлива – благодаря оптимизации структуры топливно-воздушной смеси и более эффективному процессу горения снижается расход горючего, если сравнивать с обеспечением таких же лошадиных сил на атмосферном моторе.
  • Экологичность – в выхлопе машин с турбинами меньше вредных веществ, поскольку в цилиндрах происходит практически 100 % сгорание смеси. С утверждением новых Евро норм выпуск автомобилей с бензиновыми турбодвигателями увеличился на 25 %.
  • Низкий уровень шума – во время движения автомобиля нет никаких вибраций. Исправная турбина работает очень тихо.

Недостатки турбины:

  • Уменьшение ресурса двигателя – работа в режиме форсирования и повышенного давления провоцирует более быстрый износ деталей и узлов силовой установки.
  • Чувствительность к топливу – бензиновые турбодвигатели требуют горючего с высоким октановым числом. Если заливать АИ-92, мотор быстро выйдет из строя.
  • Турбины требуют частой замены масла – в смазке нуждается не только двигатель, но и узлы турбины. Поэтому масло быстрее израсходуется и загрязняется. К тому же, использовать нужно только дорогую качественную синтетику. Нарушение регламента замены смазочных материалов приводит к быстрой поломке турбокомпрессора.
  • Дорогой ремонт – капремонт мотора необходим на пробеге от 200 тыс. км. Качественно починить двигатель с турбиной смогут не в каждой автомастерской. Чтобы проводить такой ремонт требуются вложения в специализированное оборудование, потому цена не может быть низкой.
  • Заморочки с эксплуатацией – нужно правильно заводить авто, нельзя сразу глушить мотор после остановки и т. д.
  • Эффект «турбоямы» — при резком нажатии на педаль газа автомобиль слабо реагирует, случаются так называемые провалы. То есть на низких оборотах машине с турбиной резко тронуться проблематично.

Турбины имеют много достоинств, но и минусов предостаточно. Хотя при правильной эксплуатации растраты на ремонт системы наддува будут минимальными. А от эффекта «турбоямы» помогают избавиться турбокомпрессоры с изменяемой геометрией и модели Biturbo/Twin-turbo.

Электрическая турбина — история и перспективы, механизм, плюсы и минусы

Турбокомпрессоры навсегда положительно зарекомендовали себя в автомобильном мире и уже не являются чем-то экстраординарным. Однако производители двигателей ищут все более эффективные способы повышения КПД агрегатов, одновременно пытаясь снизить расход топлива. Технологическая гонка продолжается, и конструкторы находят более передовые решения и смелые идеи для разработки автомобильных компонентов. Некоторые из инноваций постепенно становятся частью реальности. К ним относятся электрические турбины, которые являются совершенно новым элементом в автомобиле. Какие преимущества заставляют термин «е-турбо» стать повседневно употребляемым понятием?

История создания

Одной из первых компаний, начавших разработку электрической турбины, стала Controlled Power Technologies.  Работы велись на протяжении последнего десятилетия. Результатом стало появление электротурбины, способной питаться от бортовой сети и требующей напряжения в 12 вольт. Особенностью разработки является применение регенеративной энергии. Сила обратного давления в данной конструкции направлена на вращение лопастей маховика. В результате вырабатывается электроэнергия, и заряжается аккумулятор.

Другая подобная информация об электрическом турбокомпрессоре появилась в середине 2014 года, когда стало известно о работе инженеров BMW над таким же проектом. Конструкторы Audi не захотели отставать и тоже включились в гонку за этим типом решений. Еще один концерн, заинтересованный в производстве электронных турбокомпрессоров, – Volkswagen представил трехцилиндровый двигатель с таким нагнетателем мощностью 272 л.с. Конкуренция и реальные преимущества е-турбо продвигают технологию на рынок, где она уже востребована автовладельцами.

Отличие е-турбо от турбокомпрессора

Чтобы объяснить, как действует система электронного турбонаддува, необходимо вспомнить, как работает обычный турбокомпрессор. Он состоит из двух основных частей: ротора (или лопаток) и компрессора. Ротор, в который попадают выхлопные газы двигателя, приводит в действие компрессор. Последний, в свою очередь, нагнетает воздух в камеру сгорания. В результате весь процесс сгорания более эффективен, двигатель получает большую мощность и крутящий момент и, естественно, производительность улучшается. Скорость ротора зависит от частоты вращения двигателя. Преимущество электрической турбины заключается в том, что она не зависит от скорости с которой работает двигатель.

Конструкция и принцип работы

Электрический турбокомпрессор на самом деле является своего рода гибридом –комбинацией стандартного способа работы турбины и электродвигателя. В отличие от классического турбонагнетателя, механизм начинает работать с самых низких оборотов. Это связано с тем, что электродвигатель запускает роторы достаточно быстро. Как это работает? Валы турбины и компрессора соединены муфтами с валом электродвигателя, который также является генератором переменного тока. Когда водитель нажимает на газ, турбина отключается и включается электродвигатель, который дает компрессору высокие обороты. Как только турбина наберет достаточную скорость, муфта снова подключает ее к компрессору. Тот же усилитель тока будет тормозить лопасти, если они начнут вращаться слишком быстро.

Преимущества электротурбины

Как и все новшества в автомобилестроении е-турбо ориентирована на улучшение эксплуатационных свойств машины. Перечислим основные плюсы, к которым приводит монтаж изделия в двигатель авто.

К основным достоинствам относят:
  1. Экологические преференции. В эпоху ужесточения требований к выбросам производители должны повышать эффективность двигателей внутреннего сгорания. Это означает, что силовые агрегаты выделяют в атмосферу все меньше и меньше вредных веществ, сохраняя при этом надлежащую производительность. Что делает электрический турбонагнетатель? Прежде всего, он создает давление во впускной системе независимо от частоты вращения двигателя. В результате топливная смесь сгорает более полно даже при медленной езде, и выбросы минимизируются.
  2. Эффективность работы. Электрический турбокомпрессор достигает полной эффективности уже при 1200 об / мин. Требуется буквально сотые доли секунды, чтобы он начал работать. Кроме того, скорость вращения составляет до 70000. оборотов в минуту. Расход электричества на питание восстанавливается во время торможения и замедления благодаря системе рекуперации. Электропривод позволяет более точно контролировать скорость вращения лопастей. 
  3. Отсутствие эффекта турбо-ямы. У многих турбодизелей не происходит мгновенного ускорения при нажатии акселератора.  Электрический привод гарантирует более быструю реакцию на нажатие педали газа и отсутствие данного недостатка. 
  4. Мощность. Практически с момента включения, двигатель не испытывает недостатка в мощности. Водитель получает необходимую мощность агрегата на низких оборотах, что минимизирует расход топлива на 10 %.
  5. Непрерывность процесса. Нагнетание воздуха происходит постоянно. Этому не мешают запуск двигателя, прогрев или переключение скоростей. Автомобиль непрерывно получает дополнительную энергию для движения и ускорения.
  6. Производительность. Показатели производительности увеличиваются на 12 % по сравнению с традиционной турбиной. Поэтому классические варианты остаются в прошлом.

Среди недостатков агрегата можно выделить его «прожорливость». Но это легко устраняется установкой дополнительного оборудования.

Самодельный вариант – есть ли смысл?

Некоторые отечественные умельцы теоретически могут установить е-турбо, собранный по собственной конструкторской схеме.  Перед началом подобного эксперимента стоит оценить материальные затраты на проект и техническую подготовленность в плане осуществления задуманного.

При этом необходимо придерживаться определенных принципов:
  1. Устанавливать можно только мощный агрегат. В противном случае добавление мощности не покроет затрат.
  2. Требуется просчитать возможную экономию топлива, в случае монтажа агрегата. Может быть для данной модели машины это экономически не выгодно.
  3. Подбор качественных элементов. Запасные части от элитных производителей стоят недешево.
  4. Понадобится модернизация системы подачи топлива и электросистемы авто.

Как показывает практика и отзывы автовладельцев на форумах, существенной материальной экономии самостоятельный вариант не принесет.

Первые сообщения об электрических турбокомпрессорах появились примерно в 2015 году. Система появилась на рынке довольно быстро, но на начальном этапе она использовалась в основном для автомобилей класса люкс, таких как топ-модели Audi, BMW или Mercedes. Есть ли у него шанс на дальнейшую популяризацию? Все указывает на то, что есть. Тем более, что с учетом более строгих стандартов выбросов выхлопных газов, производители должны повышать эффективность двигателей внутреннего сгорания. Кроме того, приводные устройства становятся все более инновационными и создают благоприятное поле для реализации таких решений. Показатели мощности и производительности делают данный товар востребованным среди современных автовладельцев.

 

 

 Вернутся к списку «Статьи и новости»

Турбина на ваз электрическая


Электротурбина — Лада 2114, 1.5 л., 2004 года на DRIVE2

Вид товара: Тюнинг Для продвижения продукта электрический турбины воздушного потока и увеличить двигателя дыхание, Улучшить компрессии двигателя, Скорость двигателя до сгорания эффективность и снизить выбросы выхлопных газов загрязнения. A: нагрузка двигателя; 12-14 В 12а 168 Вт 15000 об./мин. воздушного потока и тяги; 215CFM/м3/мин (Ветер тяги; 0.4 кг) B; Нагрузка двигателя; 12-14 В 14а 196 Вт 17000 об./мин. воздушного потока и тяги; 245CFM/минуту 7м3/минуту (Ветер тяги; 0.45 кг) C; Нагрузка двигателя; 12-14 В 16А 225 Вт 19000 об./мин. воздушного потока и тяги; 275CFM/minute7.6m3/минуту (Ветер тяги; 0.5 кг) Все это пишет производитель на деле, как всегда неизвестно. Ездил на ней около месяца. Без торга.

Page 2

Вид товара: Тюнинг Для продвижения продукта электрический турбины воздушного потока и увеличить двигателя дыхание, Улучшить компрессии двигателя, Скорость двигателя до сгорания эффективность и снизить выбросы выхлопных газов загрязнения. A: нагрузка двигателя; 12-14 В 12а 168 Вт 15000 об./мин. воздушного потока и тяги; 215CFM/м3/мин (Ветер тяги; 0.4 кг) B; Нагрузка двигателя; 12-14 В 14а 196 Вт 17000 об./мин. воздушного потока и тяги; 245CFM/минуту 7м3/минуту (Ветер тяги; 0.45 кг) C; Нагрузка двигателя; 12-14 В 16А 225 Вт 19000 об./мин. воздушного потока и тяги; 275CFM/minute7.6m3/минуту (Ветер тяги; 0.5 кг) Все это пишет производитель на деле, как всегда неизвестно. Ездил на ней около месяца. Без торга.

Электротурбина! — DRIVE2

ОБЫЧНЫЕ ТУРБО-СИСТЕМЫ ПОЛУЧИЛИ АЛЬТЕРНАТИВУ

Покупая автомобиль, Вы прежде всего обращаете внимание на безопасность и надежность, красоту и функциональность, а также на мощность и крутящий момент. Максимальные скоростные характеристики, полученные при использовании дополнительной аэродинамики, не могут помочь в получении качественного ускорения на многих автомобилях. Классический способ улучшить скорость и ускорение состоит в том, чтобы использовать двигатель большего объема, что в свою очередь увеличивает потребление топлива и количество отработанных газов

После многих лет научных исследований, специалисты из Германии разработали признанную во всей Европе и доступную идею нагнетания воздуха с минимальными затратами. Новый, и существенно лучший способ улучшить нагнетание воздуха в двигатель, предлагает компания KAMANN&AUTOSPORT с использованием их мини-турбины, установленной в воздухозаборнике. Изобретенный в Германии ЭЛЕКТРИЧЕСКИЙ ТУРБО-НАГНЕТАТЕЛЬ является мини-турбиной, электрической системой нагнетания воздуха в подкапотном пространстве. Такая система значительно улучшает эффективность при движении автомобиля, которая в свою очередь, способствует уменьшению расхода топлива, улучшает качество выхлопных газов, снижая показатели CО и значительно продлевая срок службы катализаторов, и увеличивает крутящий момент двигателя

БОЛЬШЕ МОЩНОСТИ, МЕНЬШЕ ОТРАБОТАННЫХ ГАЗОВ

Большинство обычных двигателей внутреннего сгорания, оснащенных турбинами для получения большей мощности и хорошего ускорения, потребляют меньше топлива и порождают меньшее количество выхлопных газов и СО при увеличенной производительности по сравнению с аналогичным двигателем без нагнетателя или компрессора. Все это хорошо производит впечатление в теории, на практике же, складывается другая ситуация. Высокий крутящий момент часто имеется в распоряжении только в относительно узком диапазоне числа оборотов. В частности, у некоторых турбо-дизельных двигателей наблюдается очень плохой показатель ускорения, когда в ответ на изменение положения педали газа двигателю необходимо какое-то время, чтобы поднять мощность и ускориться. Такое явление получило название «турбо-яма»

БЫСТРЫЙ ОТВЕТ И ЭКОНОМИЯ

Проанализировав рынок современных автомобилей, KAMANN утверждает, что к 2010 году доля автомобилей, оснащенных турбо-нагнетателями, будет составлять 60-70 % от общего количества проданных авто. Тщательно рассмотрев все существующие турбо-системы, специалисты KAMANN взялись разработать систему, которая быстро реагирует на изменение положения педали газа и в то же самое время экономична. Эти требования пока не могут быть реализованы в двигателе, оснащенном обычной турбо-системой. Двигатели с механической турбо-системой от выхлопных газов эффективны только в пределах определенного диапазона оборотов двигателя. Неоспоримым преимуществом электрических турбо-систем является эффективность нагнетания воздуха во всем диапазоне оборотов двигателя, даже когда двигатель только запустился — нагнетаемый воздух уже присутствует во впускном коллекторе. Нагнетая воздух при запуске двигателя, ЭЛЕКТРИЧЕСКИЙ ТУРБО-НАГНЕТАТЕЛЬ дает мнгновенный ответ на нажатие педали газа, даже на небольшой скорости. Плюс, нагнетая воздух во время переключения передач, когда обороты сбрасываются и выжимается сцепление, Вы все равно непрерывно получаете дополнительную энергию для движения и ускорения. Благодаря этому Вы получайте Энергию и Экономию топлива!

ТУРБО-НАГНЕТАТЕЛЬ ДОПОЛНЯЕТ ТУРБО-СИСТЕМЫ

Так как Электрический Турбо-Нагнетатель от KAMANN способен дополнить уже существующие системы подачи воздуха в бензиновых/дизельных турбо-двигателях, скорость и ускорение такого автомобиля только возрастет. Большинство турбин начинает эффективно работать только свыше 2000-2500 об/мин, что означает — мощность двигателя (крутящий момент) ниже этого значения не увеличивается, что делает Ваш автомобиль не динамичным, а двигатель — слабым. Такая особенность работы двигателей с классической турбо-системой уходит в прошлое. С установкой ЭЛЕКТРИЧЕСКОГО ТУРБО-НАГНЕТАТЕЛЯ уже при 1000-1200 об/мин и спустя 1 секунду после нажатия на педаль акселератора, Ваш двигатель получает в распоряжение больше чистого воздуха, не затрачивая при этом ценную энергию. Крутящий момент увеличивается при этом на 10-12% по сравнению с классическим способом всасывания воздуха двигателем!

УВЕЛИЧИВАЕМ МОЩНОСТЬ — И ЭКОНОМИМ

Главное преимущество после установки ЭЛЕКТРИЧЕСКОГО ТУРБО-НАГНЕТАТЕЛЯ — получение для двигателя непрерывного крутящего момента и быстрое ускорение автомобиля. KAMANN AUTOSPORT сравнил автомобиль с бензиновым двигателем 1,4, но с установленным ЭЛЕКТРИЧЕСКИМ ТУРБО-НАГНЕТАТЕЛЕМ, и автомобиль той же марки с бензиновым двигателем 1,6 и без нагнетателя, и получил результат: у обоих автомобилей примерно одна и та же мощность и крутящий момент (динамика разгона), и это при почти неизменном потреблении топлива! Значит, двигатель 1,4 имеет ту же мощность, что и двигатель 1,6, но при этом потребляет столько же топлива. Владелец такого автомобиля экономит при движении до 10% топлива! Теперь у Вас действительно будут Мощность и Экономия топлива в одном!

ПРЕИМУЩЕСТВА:

Увеличение крутящего момента и лучшее ускорение автомобиля в целом

Нагнетание воздуха — 5000 литров в минуту (для нагнетателя типа NORMAL) и 15000 литров в минуту (для нагнетателя типа SUPER

Комплект годен к установке на практически все автомобили с объемом двигателя до 7,5 литров

При одновременном использовании качественного фильтра нулевого сопротивления и сертифицированного ЧИП-ТЮНИНГА от ATLAS-TUNING — эффект превосходит все ожидания!

Установка возможна как до, так и после оригинального воздушного фильтра, а также после фильтра нулевого сопротивления (рекомендуемое условие — установка до датчика расхода воздуха и до патрубка выхода картерных газов)

Для установки на двигатели с заводской турбо-системой и VW VR6-двигатели действуют отдельные условия

Корпус, стойкий к воздействию воды и коррозии

Больше воздуха во всем диапазоне оборотов работы двигателя (избирательно для разных объемов двигателей)

Легкая и быстрая установка на любой автомобиль (приблизительно 30-90 минут в зависимости от сложности конструкции)

Эффективное сгорание топлива

Понижает потребление топлива до 10 % (только при сохранении стиля езды)

Отсутствие избыточного давления даже при использовании PTU (устройства повышения бортового напряжения автомобиля до 18,5 В)

Не ограничивает поток воздуха в двигатель, даже когда не работает, благодаря специально сконструированной конфигурации крыльчаток

Имеет собственный защитный предохранитель

Запатентованная Технология, способная реконструировать автомобильную промышленность, предлагая увеличение мощности любому двигателю; в то же самое время фактически экономя топливо

Изготовленный в Германии в соответствии с Высокими Стандартами TUV

ЭЛЕКТРО ТУРБОНАГНЕТАТЕЛЬ от KAMANN — это самый эффективный и самый малозатратный тюнинг-прибор

Турбина для ВСЕХ типов транспортных средств

Крайне выгодная цена

ВЕРНУТЬСЯ НА ГЛАВНУЮ СТРАНИЦУ

Открыть больше изображений

{ 54 Комментариев }

2. ТУРБОНАГНЕТАТЕЛЬ KAMANN (super power booster)ATLAS TUNING 29.06.2008 в 22:22

Всем интересующимся сообщаем, что в постоянном наличии появился нагнетатель класса SUPER, отличительными чертами которого являются:

1. объем нагнетаемого воздуха 15 000 литров в минуту (без возможности использования блока увеличения напряжения PTU)

2. давление наддува до 0,1 бара

3. размеры и подключение аналогично NORMAL POWER BOOSTER (электрический турбонагнетатель класса N)

4. полное описание и преимущества аналогичны NORMAL POWER BOOSTER и ознакомиться с подробной информацией можно здесь

5. возможность установки — ТОЛЬКО на двигатели объемом более 1,8 бензин и 1,6 дизель; при этом установка нагнетателя на двигателях объемом свыше 2,0-2,2 литра возможна за датчиком расхода воздуха

6. увеличение воздушного потока и давления достигнуто благодаря использованию нового мощного электродвигателя с измененной конфигурацией крыльчатки

7. Запатентованное немецкое качество и сертификация TUV

Page 2

ОБЫЧНЫЕ ТУРБО-СИСТЕМЫ ПОЛУЧИЛИ АЛЬТЕРНАТИВУ

Покупая автомобиль, Вы прежде всего обращаете внимание на безопасность и надежность, красоту и функциональность, а также на мощность и крутящий момент. Максимальные скоростные характеристики, полученные при использовании дополнительной аэродинамики, не могут помочь в получении качественного ускорения на многих автомобилях. Классический способ улучшить скорость и ускорение состоит в том, чтобы использовать двигатель большего объема, что в свою очередь увеличивает потребление топлива и количество отработанных газов

После многих лет научных исследований, специалисты из Германии разработали признанную во всей Европе и доступную идею нагнетания воздуха с минимальными затратами. Новый, и существенно лучший способ улучшить нагнетание воздуха в двигатель, предлагает компания KAMANN&AUTOSPORT с использованием их мини-турбины, установленной в воздухозаборнике. Изобретенный в Германии ЭЛЕКТРИЧЕСКИЙ ТУРБО-НАГНЕТАТЕЛЬ является мини-турбиной, электрической системой нагнетания воздуха в подкапотном пространстве. Такая система значительно улучшает эффективность при движении автомобиля, которая в свою очередь, способствует уменьшению расхода топлива, улучшает качество выхлопных газов, снижая показатели CО и значительно продлевая срок службы катализаторов, и увеличивает крутящий момент двигателя

БОЛЬШЕ МОЩНОСТИ, МЕНЬШЕ ОТРАБОТАННЫХ ГАЗОВ

Большинство обычных двигателей внутреннего сгорания, оснащенных турбинами для получения большей мощности и хорошего ускорения, потребляют меньше топлива и порождают меньшее количество выхлопных газов и СО при увеличенной производительности по сравнению с аналогичным двигателем без нагнетателя или компрессора. Все это хорошо производит впечатление в теории, на практике же, складывается другая ситуация. Высокий крутящий момент часто имеется в распоряжении только в относительно узком диапазоне числа оборотов. В частности, у некоторых турбо-дизельных двигателей наблюдается очень плохой показатель ускорения, когда в ответ на изменение положения педали газа двигателю необходимо какое-то время, чтобы поднять мощность и ускориться. Такое явление получило название «турбо-яма»

БЫСТРЫЙ ОТВЕТ И ЭКОНОМИЯ

Проанализировав рынок современных автомобилей, KAMANN утверждает, что к 2010 году доля автомобилей, оснащенных турбо-нагнетателями, будет составлять 60-70 % от общего количества проданных авто. Тщательно рассмотрев все существующие турбо-системы, специалисты KAMANN взялись разработать систему, которая быстро реагирует на изменение положения педали газа и в то же самое время экономична. Эти требования пока не могут быть реализованы в двигателе, оснащенном обычной турбо-системой. Двигатели с механической турбо-системой от выхлопных газов эффективны только в пределах определенного диапазона оборотов двигателя. Неоспоримым преимуществом электрических турбо-систем является эффективность нагнетания воздуха во всем диапазоне оборотов двигателя, даже когда двигатель только запустился — нагнетаемый воздух уже присутствует во впускном коллекторе. Нагнетая воздух при запуске двигателя, ЭЛЕКТРИЧЕСКИЙ ТУРБО-НАГНЕТАТЕЛЬ дает мнгновенный ответ на нажатие педали газа, даже на небольшой скорости. Плюс, нагнетая воздух во время переключения передач, когда обороты сбрасываются и выжимается сцепление, Вы все равно непрерывно получаете дополнительную энергию для движения и ускорения. Благодаря этому Вы получайте Энергию и Экономию топлива!

ТУРБО-НАГНЕТАТЕЛЬ ДОПОЛНЯЕТ ТУРБО-СИСТЕМЫ

Так как Электрический Турбо-Нагнетатель от KAMANN способен дополнить уже существующие системы подачи воздуха в бензиновых/дизельных турбо-двигателях, скорость и ускорение такого автомобиля только возрастет. Большинство турбин начинает эффективно работать только свыше 2000-2500 об/мин, что означает — мощность двигателя (крутящий момент) ниже этого значения не увеличивается, что делает Ваш автомобиль не динамичным, а двигатель — слабым. Такая особенность работы двигателей с классической турбо-системой уходит в прошлое. С установкой ЭЛЕКТРИЧЕСКОГО ТУРБО-НАГНЕТАТЕЛЯ уже при 1000-1200 об/мин и спустя 1 секунду после нажатия на педаль акселератора, Ваш двигатель получает в распоряжение больше чистого воздуха, не затрачивая при этом ценную энергию. Крутящий момент увеличивается при этом на 10-12% по сравнению с классическим способом всасывания воздуха двигателем!

УВЕЛИЧИВАЕМ МОЩНОСТЬ — И ЭКОНОМИМ

Главное преимущество после установки ЭЛЕКТРИЧЕСКОГО ТУРБО-НАГНЕТАТЕЛЯ — получение для двигателя непрерывного крутящего момента и быстрое ускорение автомобиля. KAMANN AUTOSPORT сравнил автомобиль с бензиновым двигателем 1,4, но с установленным ЭЛЕКТРИЧЕСКИМ ТУРБО-НАГНЕТАТЕЛЕМ, и автомобиль той же марки с бензиновым двигателем 1,6 и без нагнетателя, и получил результат: у обоих автомобилей примерно одна и та же мощность и крутящий момент (динамика разгона), и это при почти неизменном потреблении топлива! Значит, двигатель 1,4 имеет ту же мощность, что и двигатель 1,6, но при этом потребляет столько же топлива. Владелец такого автомобиля экономит при движении до 10% топлива! Теперь у Вас действительно будут Мощность и Экономия топлива в одном!

ПРЕИМУЩЕСТВА:

Увеличение крутящего момента и лучшее ускорение автомобиля в целом

Нагнетание воздуха — 5000 литров в минуту (для нагнетателя типа NORMAL) и 15000 литров в минуту (для нагнетателя типа SUPER

Комплект годен к установке на практически все автомобили с объемом двигателя до 7,5 литров

При одновременном использовании качественного фильтра нулевого сопротивления и сертифицированного ЧИП-ТЮНИНГА от ATLAS-TUNING — эффект превосходит все ожидания!

Установка возможна как до, так и после оригинального воздушного фильтра, а также после фильтра нулевого сопротивления (рекомендуемое условие — установка до датчика расхода воздуха и до патрубка выхода картерных газов)

Для установки на двигатели с заводской турбо-системой и VW VR6-двигатели действуют отдельные условия

Корпус, стойкий к воздействию воды и коррозии

Больше воздуха во всем диапазоне оборотов работы двигателя (избирательно для разных объемов двигателей)

Легкая и быстрая установка на любой автомобиль (приблизительно 30-90 минут в зависимости от сложности конструкции)

Эффективное сгорание топлива

Понижает потребление топлива до 10 % (только при сохранении стиля езды)

Отсутствие избыточного давления даже при использовании PTU (устройства повышения бортового напряжения автомобиля до 18,5 В)

Не ограничивает поток воздуха в двигатель, даже когда не работает, благодаря специально сконструированной конфигурации крыльчаток

Имеет собственный защитный предохранитель

Запатентованная Технология, способная реконструировать автомобильную промышленность, предлагая увеличение мощности любому двигателю; в то же самое время фактически экономя топливо

Изготовленный в Германии в соответствии с Высокими Стандартами TUV

ЭЛЕКТРО ТУРБОНАГНЕТАТЕЛЬ от KAMANN — это самый эффективный и самый малозатратный тюнинг-прибор

Турбина для ВСЕХ типов транспортных средств

Крайне выгодная цена

ВЕРНУТЬСЯ НА ГЛАВНУЮ СТРАНИЦУ

Открыть больше изображений

{ 54 Комментариев }

2. ТУРБОНАГНЕТАТЕЛЬ KAMANN (super power booster)ATLAS TUNING 29.06.2008 в 22:22

Всем интересующимся сообщаем, что в постоянном наличии появился нагнетатель класса SUPER, отличительными чертами которого являются:

1. объем нагнетаемого воздуха 15 000 литров в минуту (без возможности использования блока увеличения напряжения PTU)

2. давление наддува до 0,1 бара

3. размеры и подключение аналогично NORMAL POWER BOOSTER (электрический турбонагнетатель класса N)

4. полное описание и преимущества аналогичны NORMAL POWER BOOSTER и ознакомиться с подробной информацией можно здесь

5. возможность установки — ТОЛЬКО на двигатели объемом более 1,8 бензин и 1,6 дизель; при этом установка нагнетателя на двигателях объемом свыше 2,0-2,2 литра возможна за датчиком расхода воздуха

6. увеличение воздушного потока и давления достигнуто благодаря использованию нового мощного электродвигателя с измененной конфигурацией крыльчатки

7. Запатентованное немецкое качество и сертификация TUV

Самодельный приводной нагнетатель на ВАЗ своими руками

Одной из возможностей продлить жизнь старому автомобилю, например любому ВАЗ 2107, 2106, 2114, 2112, является его тюнинг. Конечно, речь в данном случае идет не об установке новых дисков и чехлов, а в первую очередь о повышении мощности двигателя. И один из самых простых и вполне доступных вариантов обеспечения этого – установить на мотор механический нагнетатель своими силами.

Механический нагнетатель на ВАЗ – за и против

Чем больше мотор и чем больше в нем цилиндров – тем выше его мощность. Таков самый первый вывод при наблюдении за моторами и машинами. Но это не всегда именно так. Чем больше топлива сгорает в цилиндрах двигателя, тем большую мощность он способен показать. Но объем цилиндров конечен, а мощность хочется иметь повышенную. Вот в этих случаях на помощь приходит механический нагнетатель воздуха.

Принцип его действия чрезвычайно прост и работает на любых автомобилях, в том числе семейства ВАЗ 2107, 2106, 2114, 2112 – он обеспечивает подачу дополнительного воздуха в мотор, в результате чего:

  • увеличивается продувка цилиндров, и они лучше освобождаются от остатков сгоревшего топлива;
  • в цилиндры мотора попадает больше топлива, что обеспечивает получение большей мощности;
  • повышается степень сжатия, что также дает прирост мощности.

Такой подход практически похож на режим турбо, применяемый на дизелях. Только там для этих целей используется турбонагнетатель, приводимый в действие выхлопными газами, а в этом случае – механический нагнетатель воздуха, который ремнем связан с коленвалом двигателя. Такой подход гораздо проще, подача воздуха зависит от оборотов двигателя, чем они выше, тем его поступает больше; а также не требует обеспечения режимов работы турбины и может быть выполнен своими руками на любом автомобиле ВАЗ.

Стоит учесть, что если механический нагнетатель ставится на инжекторную машину ВАЗ, то потребуется изменение прошивки. Однако подобную доработку можно сделать и для карбюраторного авто, только в этом случае, скорее всего, придется менять жиклеры в карбюраторе и регулировать угол опережения зажигания.

Не стоит забывать, что вами производится форсирование двигателя ВАЗ, будь то любая его модель 2107, 2106, 2114, 2112, работа должна выполняться комплексно, и только тогда возможно получение ожидаемого результата. Однако это не такая уж и большая плата за прирост мощности.

Как установить воздушный нагнетатель своими руками

Существует несколько подходов, позволяющих установить механический нагнетатель воздуха на автомобили семейства ВАЗ своими руками. Это изготовление самим такого устройства, обеспечивающего режим турбо или форсирование двигателя, или использование готового КИТ-набора.

Самодельный нагнетатель на ВАЗ

При таком подходе определяющим будет механический нагнетатель воздуха. Именно от него зависит вся будущая конструкция. Главное – найти соответствующий требованиям воздушный нагнетатель от импортного автомобиля, или придется использовать самодельный. Возможно и такое, причем в этом случае применяются подходящие детали и узлы от совершенно неожиданных устройств, например, пылесоса.

Изготавливая подобный самодельный воздушный нагнетатель, необходимо учитывать буквально все – габариты, вес, размещение в подкапотном пространстве, как и где будет располагаться приводной шкив и ремень, производительность этого устройства, режимы работы (кратковременный или продолжительный), возможность смазки и многое, многое другое. После того, как появится ясность с компрессором, необходимо рассчитать реализацию турбо режима для двигателя.

Здесь надо учесть, каким образом будет изменена топливная и охлаждающая система автомобиля, какие изменения необходимо внести в его управление и как это осуществить, какое давление окажется допустимым для безопасной работы мотора, при реализации с помощью подобного устройства режима турбо.

Даже приведенный далеко не полный перечень вопросов показывает, что изготовить самодельный воздушный нагнетатель на ВАЗ любого семейства, хоть 2107,2106, хоть 2114, 2112, достаточно сложно, но возможно. Примером может послужить фото, показывающее, что такая работа успешно выполнена. Правда, это не ВАЗ, но важен сам факт – изготовить самодельный воздушный компрессор, в котором его приводной узел подсоединен к коленвалу двигателя, – возможно.

Приводной нагнетатель своими руками – из КИТ-набора

Да, есть в продаже такие комплекты, позволяющие своими руками реализовать режим турбо в автомобилях ВАЗ 2107, 2106, 2114, 2112. Как правило, он включает в себя все нужное для сборки и установки подобного устройства на автомобиль – сам компрессор, ремни, приводной узел, кронштейны и воздуховоды. Что собой представляет подобный комплект, позволяет понять приведенное фото.

Главное достоинство подобного подхода по реализации режима турбо на своей машине – простота и полная адаптация технических решений под конкретный вариант – 2107, 2106, 2114, 2112. Как правило, изготовителями КИТ-наборов являются китайские производители, что обеспечивает их достаточно приемлемую цену.

В качестве достоинств реализации режима турбо таким образом, стоит отметить его заточенность именно на автомобили ВАЗ той или иной модели (2107, 2106, 2114, 2112). К преимуществам подобного подхода следует также отнести то, что при некоторых условиях, когда уровень создаваемого дополнительного давления не больше половины бара, не требуется вмешательства в топливную систему автомобиля.

Расписывать порядок реализации режима турбо из подобного набора нецелесообразно, в каждом из них есть своя инструкция по сборке. К недостаткам можно отнести страну-изготовителя, но здесь уж как повезет. Как выглядит автомобиль после доработки и как ее выполнить, дополнительно поможет понять видео Один из доступных автолюбителям способов форсировать мотор старого автомобиля и придать ему новую жизнь – поставить нагнетатель воздуха. Эту работу можно выполнить и своими руками, если использовать имеющиеся в продаже КИТ-наборы на автомобили ВАЗ.

Электротурбина

Создаем рабочую электротурбину, которая обладает не высокой стоимостью и достаточно проста в установке.

Наиболее действенным способом увеличения мощности двигателя автомобиля является турбина. Однако она имеет ряд существенных недостатков таких как: наличие турбоямы, оптимальная работа в небольшом диапазоне оборотов двигателя, невысокий ресурс, сложность установки в неподготовленный для этого двигатель. Многие из этих проблем способна решить электротурбина. С электротурбиной необходимое давление наддува можно создать в любой момент и можно сбавлять обороты не боясь, что давление понизится. В электротурбине нет горячей части разогреваемой до тысячи градусов. Это положительно сказывается на её ресурсе, цене и простоте установки. Данная статья будет посвящена нашей разработке в этом направлении.

Разработка и конструктивные особенности

На данный момент в Китае можно купить множество электротурбин, которые ставятся прямо на вход перед воздушным фильтром. Однако они оказываются на 100% бесполезны. Для обеспечения необходимого давления и большого объема подаваемого воздуха мощность электродвигателя должна составлять около 4КВт. У китайских турбин от силы несколько сот ватт. Для данной задачи нами специально был разработан бесколлекторный электромотор способный выдать до 5КВт мощности и который может раскрутить турбину до 50000RPM. Мотор был специально спроектирован так, чтобы на полной мощности он давал своё максимальное КПД в 93%, тогда он будет выделять 350Вт тепла, которые вполне реально отводить и в теории наш мотор может выдавать полный наддув постоянно.  Для питания данного мотора нами было решено использовать два автомобильных аккумулятора. Это сильно упростит процесс эксплуатации и цену установки. Один аккумулятор используется штатный, второй подключается к нему последовательно. Для подзарядки второго аккумулятора, он переподключается к первому через высокоточные реле контакторы. Литиевые аккумуляторы стоили бы на порядок дороже, при этом для них понадобилась бы специальная зарядка и очень бережная эксплуатация с соблюдением правильного температурного режима. Однако у данного решения есть и минус. Для питания мотора на полной мощности нужен ток в районе 250А, свинцовые аккумуляторы способны выдать такой, но не продолжительно(секунд на 10-30). Затем аккумуляторам нужно будет немного “отдохнуть”. Однако нам кажется этого вполне достаточно, редко от двигателя требуется полная мощность на более длительный срок. Мы удалили из неё всё лишнее и расточили под крепление мотора. Все подшипники находятся непосредственно в моторе и крыльчатка одевается на его вал, что автоматически даёт соосность вала мотора и крыльчатки. Поскольку турбина будет вращаться на очень больших оборотах мы подобрали в мотор высокоскоростные подшипники SKF итальянского производства.  Для работы бесколлекторного мотора нужен контроллер и на такой большой ток он достаточно дорогой. Однако мы специально подбирали токи и напряжения так, чтобы для этой задачи подошёл наиболее мощный из дешевых контроллер стоимостью 1500р. Данного контроллера хватает на грани на полную мощность и ему при этом требуется обеспечить очень хорошее охлаждение. Более мощные контроллеры стоят уже дороже 10000р.

Результат

Замеры нашего мотора на мощности до 1000Вт показали, что характеристики нашего мотора (потребление, обороты, Kv) достаточно близки к рассчитанным при моделировании. Большой объем статора и медной проволоки смогли обеспечить высокий КПД и низкий нагрев. При должном питании турбина с ним разгоняется до нужных оборотов. Но к сожалению мы пока не смогли провести полноценные испытания на полной мощности. При питании от двух аккумуляторов, через 2 секунды после набора полных оборотов контроллер сгорел, из-за отсутствия должного охлаждения. Мы заказали новый контроллер и планируем поместить его в ёмкость с трансформаторным маслом, что должно обеспечить его наилучшим охлаждением. 

 

Видео тестов работы турбины с питанием 600 и 1000 ватт

Вывод В итоге нам удалось создать рабочую электротурбину, которая обладает не высокой стоимостью и достаточно проста в установке. Далее будут проходить испытания уже на реальном автомобиле.

Примерная стоимость необходимых компонентов:

 
  • Мотор -17000р
  • Турбина -20000р
  • Аккумулятор -3000р
  • 4 реле -3000р
  • Дополнительная электроника, пайпы, воздуховоды -5000р

Итого стоимость комплекта турбины выйдет в районе 50000р. опубликовано econet.ru 

P.S. И помните, всего лишь изменяя свое потребление — мы вместе изменяем мир! © econet

Понравилась статья? Тогда поддержи нас, жми:

электрическая турбина,турбонадув,система турбины

Электрическая турбина преимущества.

Электрическая турбина запатентована компанией BMW . Достоинство этой конструкции в отсутствии инерционности, являющейся основным недостатком классической турбины.  Электрическая турбина позволяет не ждать снижения оборотов турбины на холостом ходу, необходимое для предотвращения повреждения классической турбины.

При использовании электротурбокомпрессора нет потери времени на её разгон и нет необходимости выжидать время на её остановку, перед тем как заглушить двигатель. Кроме того, она может быть использована как дополнительный источник энергии для заряда аккумулятора или питания бортовых потребителей электроэнергии, в момент превышения числа оборотов вала турбины. Для предотвращения этого сейчас используются дополнительные приспособления, которые сами затрачивают энергию для снижения оборотов.
ействия и устройство.

Принцип работы турбокомпрессора с электрическим приводом довольно прост и отличается от классической конструкции конструкцией оси соединяющей крыльчатки. В данном случае она состоит из трёх частей, соединённых между собой по средствам одноходовых муфт. То есть все части вращаются не зависимо друг от друга в одну сторону. В другую сторону всё вращается совместно.

Средняя часть имеет привод от электромотора, управление которым осуществляет электронный микроконтроллер. При нажатии на педаль акселератора, контроллер включает электродвигатель, и он мгновенно раскручивает среднюю часть оси турбины, которая в свою очередь передаёт крутящий момент через муфту, на крыльчатку подающую воздух во впускной коллектор.

Крыльчатка, находящаяся в выпускном коллекторе, имеет несколько меньшую скорость в первый момент и благодаря муфте вращается не зависимо от средней части. Но как только её скорость превысит скорость средней части, муфта придёт в зацепление и крутящий момент между крыльчатками начнёт передаваться как в классической турбине. Электродвигатель в этот момент отключается.

Когда обороты турбины достигнут максимально допустимые, контроллер подключит электродвигатель в режиме генератора, предотвратив тем самым превышение максимально допустимых оборотов.

При резком снижении оборотов двигателя муфтовые соединения позволят крыльчаткам вращаться не зависимо друг от друга, что снижает нагрузку на них подшипники. Электрическая турбина не имеет недостатков простой турбины и позволяет уменьшить её размеры.

Как работает электрический турбонаддув?

Электротурбонаддув приходит на смену классической автомобильной турбине

Для того чтобы выжать все возможное из автомобиля, автопроизводители прибегают к турбонаддувам двигателя, но на пути новый вид турбокомпрессора, который может изменить игру.

Уменьшение размеров двигателя автомобиля является одним из ключевых решений, используемых автопроизводителями, чтобы уменьшить расход топлива транспортным средством (вот пример от компании Audi). Тем не менее, чтобы сокращенный в размерах двигатель обладал высокой производительностью, автокомпании, как правило, используют турбонаддув, который приводится в движение с помощью выхлопных газов (подробнее о работе турбонаддува, читайте здесь). У классической схемы работы турбонаддува имеется одна острая проблем, она приводит к задержке ответа наддува. Это явление широко известно, как турболаг. Чтобы было понятно, объясним проще, вы следуете на обгон, жмете педаль газа в пол, включается турбонаддув, но рывок автомобиля происходит лишь через пару секунд из-за так называемого турболага.

Эта медленная реакция преследует автомобили с турбонаддувами уже многие годы и является распространенной жалобой. Такие вещи, как турбонаддув с двойной улиткой или небольшие турбины, часто используются как средство борьбы с этим отставанием, но и они не совершенны. Попытки обуздать этот недостаток при помощи, так называемой технологии турбо-соединения, о которой мы писали ранее, также, к сожалению ни к чему и не привели, не выдержав испытаний на практике. Проще говоря, очень сложно сделать двигатель с турбонаддувом с немедленной реакцией.

Принцип работы электрического турбонаддува

Все останется на своих местах, пока мы не начнем использовать электрические компоненты. В то время как автопроизводители со всех сторон исследовали все плюсы и минусы полностью электрических силовых установок, они пришли к выводу, что когда дело касается элеткродвигателей, то в них ответная реакция возникает моментально. Взять к примеру классический Toyota Prius, более быстрой реакции на ускорение вы не найдете ни в одном сходном по параметрам автомобиле. Конечно, электрические транспортные средства дорогие из-за размера их двигателей и батарей, и они не совсем практичны, из-за ограниченного диапазона движения. Но, невзирая на это, автопроизводители могут использовать небольшие электромоторы и компоненты в своих целях. Одним из таких случаев является питание турбокомпрессора, который ускоряет двигатель автомобиля, не полагаясь на выхлопные газы.

Электрический двигатель реагирует мгновенно, в течение 250 миллисекунд. Используя такой механизм, можно снизить расход топлива на 10 процентов. Так как подобного рода турбокомпрессор не использует выхлопные газы, то технически он является просто нагнетателем. Для того, чтобы потребителям была ясна концепция данного механизма, его часто называют электрическим турбонаддувом.

Компания Volkswagen и связанные с ней автомобильные бренды активно инвестируют в эту электрическую турбо технологию.

Компания Audi демонстрирует E-Turbo

Недавно компания Audi представила свои последние разработки в мире электрических турбонаддувов вместе с концепт-каром Clubsport TT Turbo Concept, который предоставляет владельцу 600 лошадиных сил мощности и 479 Нм крутящего момента благодаря оборудованному турбонаддувами 2,5-литровому пятицилиндровому двигателю. Один турбонаддув является традиционным и приводится в движение выхлопными газами, второй турбонаддув работает с электрическим блоком.

Компания создала концепт для демонстрации потенциала электрических турбокомпрессоров, сказав тем самым, что технология готова к использованию в серийных автомобилях. 48-вольтная электрическая подсистема, которая питает электротурбонаддув,  расположена в багажнике автомобиля и по первой необходимости дает двигателю ускорение, не заставляет его ждать, как традиционный турбонаддув.

«Турбокомпрессор с электрическим приводом обеспечивает значительные преимущества», сказал представитель компании Audi. «Он быстро и равномерно увеличивает скорость двигателя до максимального количества оборотов, без каких-либо существенных задержек».

Такой принцип работы позволяет проектировать обычный турбонаддув конкретно для двигателей высоких мощностей – e-turbo обеспечивает мгновенный отклик и мощный спринт на низких оборотах двигателя.

Это не первый раз, когда компания Audi показала свою заинтересованность в электрическом турбонаддуве. В прошлом году немецкий автопроизводитель добавил электротурбонаддув в 3,0-литровый дизельный двигатель V-6 твин-турбо и засунул всю эту смесь в RS5. Результатом стал вызывающе быстрый автомобиль в кузове купе, который набирает скорость от 0 до 100 км/ч всего за 4 секунды. Это делает его быстрее, чем обычный RS5 и в два раза сокращает расход топлива.

Когда нам ожидать электрические турбонаддувы в серийных автомобилях?

При всех положительных отзывах, которые получает данная технология, компания Audi, по всей видимости, будет в числе первых автопроизводителей, которые используют электротурбонаддув в серийных автомобилях, но до сих пор компания не распространяется о том, когда мы сможем увидеть такие автомобили у официальных дилеров.

Как работает турбонагнетатель воздуха в автомобиле, плюсы и минусы

Статья о работе автомобильного турбо нагнетателя: общая теория, принцип функционирования, плюсы и минусы. В конце статьи — видео о том, как дешево увеличить мощность машины.Статья о работе автомобильного турбонагнетателя: общая теория, принцип функционирования, плюсы и минусы. В конце статьи — видео о том, как дешево увеличить мощность машины.

Содержание статьи:


С момента разработки двигателя внутреннего сгорания перед инженерами встала задача повысить его мощностные характеристики. Решение данной задачи путём установки большего количества цилиндров влечёт за собой ряд таких проблем, как увеличение размеров и веса двигателя, поэтому не является оптимальным.

Ещё на заре автомобилестроения, в 1905 году, было предложено принципиально иное решение: увеличить мощность двигателя за счёт нагнетания в него дополнительного воздуха. Один из вариантов этого решения – турбонагнетатель.

Немного истории и общей теории о турбине


На фото турбонагнетатель воздуха

Для понимания роли турбонагнетателя воздуха достаточно вспомнить, что скорость до 200 км/ч, автомобили, оборудованные двигателем внутреннего сгорания, могли развивать уже в 1909 году.

Число выглядит фантастическим ровно до того момента, пока рядом с ним не встаёт рядом другое число: объём двигателя, обеспечившего автомобилю эту скорость, составлял… 28 литров! Естественно, ни о каком массовом производстве подобных монстров не могло быть и речи: они просто не могли обслуживаться без специального габаритного оборудования.

А для того, чтобы транспортное средство стало доступно широким массам потребителям, а не превратилось в аналог паровоза, объём двигателя следовало уменьшить, при этом по возможности выжав из него максимальную мощность.

Идея нагнетателя дополнительного воздушного потока позволила увеличить мощность мотора на пятьдесят процентов. Понять основные моменты, определяющие действие технического узла, несложно, если знать принципы функционирования автомобильного мотора на основе ДВС.

Для эффективного функционирования работы двигателя внутреннего сгорания важен процент соотношения воздуха и топлива в камере внутреннего сгорания. Естественным ограничением объёма смеси топлива и воздуха является объём камеры, куда эта смесь попадает благодаря перепаду давления на такте впуска топлива и где происходит её воспламенение.

Если увеличить количество топливной смеси в камере, при её сгорании будет получена большая мощность, что позволит увеличить возможности автомобиля. Подача смеси в камеру под давлением (компрессия) позволяет этого добиться.

Способы компрессии

За историю автомобилестроения конструкторы создавали различные устройства компрессии воздуха. Что-то осталось на страницах истории, что-то прошло через горнило усовершенствования и дожило до наших дней. Сейчас существуют четыре основных способа нагнетания воздуха в камеру внутреннего сгорания:

  • механический наддув – производится за счёт работы коленвала и является прародителем всех остальных инженерно-технических решений;
  • турбонагнетатель – нагнетатель воздушной смеси, который функционирует за счёт разницы давления компрессора и выхлопных газов;
  • электрический турбонаддув – способ нагнетания воздуха электрическим компрессором;
  • комбинированный наддув – устройство, совмещающее работу механического и турбо наддува.

Принципы работы автомобильного турбонагнетателя воздуха


На фото схема работы турбонагнетателя воздуха

Между объёмом воздуха в цилиндрах двигателя и объёмом сжигаемого в камере внутреннего сгорания топлива существует прямая связь. При этом чем больше энергии имеют выхлопные газы, тем больший вращательный момент получают турбинные колёса и, соответственно, сам компрессор.

Особой проблемой при разработке турбонагнетателя является подбор материала, из которого он изготовлен. Турбинные лопасти вращаются со скоростью более десяти тысяч оборотов в минуту и могут разогреваться до тысячи градусов. Вопрос охлаждения отчасти решается за счёт поступления дополнительного воздушного потока.

Как правило, турбонагнетатель воздуха оснащён специальным лопастным кольцом, которое не только в состоянии сохранять фиксированное давление в массе отработанных газов, но и регулировать состояние этого потока. Иными словами, в настоящее время турбонагнетатели имеют функцию изменения внутренней геометрии турбины.


Объясним подробнее. Когда скорость вращения двигателя невелика и поток отработанных выхлопных газов низкий, турбина за счёт уменьшения своего поперечного внутреннего сечения повышает скорость потока отработанных газов, идущих на колесо. Если же обороты двигателя высокие, пропускная способность турбины увеличивается за счёт роста поперечного внутреннего сечения, и, следовательно, плотность потока пропускаемых через неё отработанных газов снижается.

При таком «разумном» управлении диапазон, в котором работа турбо нагнетателя является эффективной, существенно расширяется. Более того, вредные выбросы в атмосферу сокращаются, потребление топлива падает.

Плюсы и минусы турбонагнетателя воздуха в автомобиле

В чём достоинства турбонагнетателей

В отличие от ранних моделей механических наддувов, которые работали от коленвала и, следовательно, использовали часть мощности двигателя, работа турбонагнетателей использует по сути «дарёную» энергию выхлопных газов.

По этой причине турбо нагнетатели, безусловно, являются более эффективным инженерно-техническим решением.

Кроме этого, турбонагнетатель отличается более высокими мощностными характеристиками. С одного литра двигателя он может «выжать» до трёхсот лошадиных сил.


Если двигатель оборудован турбонагнетателем, к его мощности прибавляется до 40 процентов. При этом налицо существенная экономия топлива.

Если же говорить о коэффициенте полезного действия, то и тут работа турбо наддува идёт «в плюс»: с увеличением размера двигателя его КПД снижается из-за потерь на трение и понижением тепловой эффективности; следовательно, чем меньше размер двигателя (что как раз и даёт наличие турбо наддува), тем выше его КПД.

Недостатки турбонагнетателей

Недостатки у дано конструкции также присутствуют, и автовладельцу следует их знать.

  1. На малых оборотах мотора турбо нагнетатель не слишком эффективен. Это естественно – низкое давление выхлопных газов не в состоянии «загнать» в камеру нужный объём воздуха.

    Данная проблема отчасти успешно решается за счёт функции изменения геометрии турбины в зависимости от интенсивности работы двигателя и плотности потока выхлопных газов.

  2. Ещё один существенный «минус» — так называемый «эффект турбоямы», когда водитель газует, но в первый момент автомобиль на это как бы не реагирует. Читайте подробно, что такое турбояма и почему она возникает.

    Эффект вызван тем, что без жёсткой механической связи между мотором и компрессором неизбежно возникает несоответствие между эффектом работы компрессора и необходимой мощностью, которая задаётся водителем при нажатии педали газа. Инерция турбины вызывает «провал» оборотов двигателя.

    Специалисты борются с данным нежелательным эффектом, настраивая двигатель, используя дополнительный электрический наддув или установку второго турбонагнетателя.

  3. После отключения турбины она не должна сразу останавливаться. Высокая скорость оборотов крыльчатки требует, чтобы после остановки автомобиля турбина проработала какое-то время на «холостых» оборотах и остыла. В противном случае устройство очень быстро приходит в негодность.

    Для того, чтобы этого избежать, турбонагнетатель снабжается турботаймером, который программируется на определённое время работы турбины вхолостую после остановки транспортного средства.

    Если же автомобиль «доведён» кустарным способом и оснащён турбиной без турботаймера, о её корректном охлаждении и остановке после того, как работа двигателя прекращена, придётся позаботиться самому автомобилисту.

  4. Наконец, турбо нагнетатели – не самый дешёвый технический узел в автомобиле, поскольку требует большой точности работы и обладает такой функцией, как изменение геометрии турбины в зависимости от плотности потока отработанных газов.

Особенности работы на бензиновых двигателях

Турбонагнетатель для бензиновых двигателей эффективен на двигателях впрыскового типа. Если возникает желание установить этот узел на карбюраторный мотор, это потребует целого ряда доработок — от корректировки уровня поплавковой камеры до замены жиклеров на большее сечения.

Если же устройство ставится на инжекторный двигатель, работы ограничатся просто новой прошивкой.


Турбонагнетатели доказали свою эффективность. Не зря ими оснащается большинство автомобилей спортивного класса. Данный технический узел применяют как на этапе производства автомобилей, так и в ситуации, когда автовладелец желает выполнить тюнинг авто. Высокий уровень КПД и ряд решений, найденных для устранения эффекта турбоямы, делают применение турбо нагнетателя наиболее эффективным на уровне остальных способов повышения давления в камере внутреннего сгорания.

Видео о том, как дешево увеличить мощность автомобиля:

Porsche Taycan Turbo S — Porsche Россия

Улучшенный 2-зонный климат-контроль с раздельными настройками температуры и скорости потока воздуха для водителя и переднего пассажира, автоматический режим рециркуляции, включая датчик качества воздуха
Контроль направления воздушным потоком осуществляется с помощью Porsche Communication Management (PCM)
Удаленное управление микроклиматом, включая предохлаждение аккумулятора
Стекла с термоизоляцией
Встроенный фильтр с активированным углем
Электрический тепловой насос
18-позиционные адаптивные спортивные сиденья с электрорегулировкой, функцией памяти, включая регулировку рулевой колонки по высоте и вылету
Интегрированные подголовники спереди, логотип «turbo S» на подголовниках передних и задних сидений
Два задних сидения с откидывающимся центральным подлокотником и асимметричным складыванием спинок в пропорции 60:40
Подогрев передних и задних сидений
16,8-дюймовый изогнутый дисплей
Центральная консоль с непосредственным сенсорным управлением
Двухцветный cалон с отделкой материалом Race-Tex
Эмблема ‘Taycan’ на центральной консоли
Пакет отделки декоративных элементов салона темного цвета (Darksilver)
Пакет отделки декоративных элементов салона карбоном
Обивка потолка Race-Tex
Многофункциональное спортивное рулевое колесо GT c отделкой Race-Tex
Напольные коврики
Солнцезащитные козырьки для водителя и переднего пассажира
Подлокотник на центральной консоли спереди со встроенным отсеком для хранения
Накладки на педали, выполненные из нержавеющей стали
Рулевое колесо с подогревом
Багажное отделение спереди и сзади
Электропривод багажной двери
Кнопка багажной двери
Отсеки для хранения: перчаточный ящик, отсек для хранения в центральной консоли спереди, отсек для хранения между задними сиденьями, отсеки для хранения в дверях спереди и сзади, отсеки для хранения по краям багажного отделения, а также ниша под полом багажного отсека
12-вольтовая розетка в отсеке для хранения на центральной консоли
12-вольтовая розетка в отсеке для хранения сзади
Два встроенных подстаканника спереди и сзади
Крючки для одежды на стойках B с водительской и пассажирской стороны
Система «Активного крепления капота»
Элементы защиты от бокового удара в каждой двери
Система бамперов, включающая в себя высокопрочные балки, два деформируемых элемента, каждый из которых с двумя отверстиями с резьбой для установки буксировочных проушин (входят в аварийный комплект)
Полноразмерные подушки безопасности для водителя и переднего пассажира
Коленные подушки безопасности для водителя и переднего пассажира
Боковые подушки безопасности спереди
Подушки безопасности занавесочного типа, закрывающие потолок и всю боковую часть от стойки А до стойки С
Пассивная система защиты при опрокидывании, включающая подушки безопасности занавесочного типа и преднатяжители ремней безопасности
Трехточечные инерционные ремни безопасности. С преднатяжителями для водителя и крайних пассажиров, с ограничителями усилия для ремней безопасности передних сидений
Ручная регулировка ремней безопасности по высоте для водителя и переднего пассажира
Система напоминания о пристегивании ремнями безопасности для передних и задних сидений
Электронный иммобилайзер с ключом-транспондером. Сигнализация, система контроля пространства салона с ультразвуковыми датчиками
Крепления стандарта ISOFIX для установки детского сидения на боковых задних сиденьях
Система экстренного вызова (ЭРА-ГЛОНАСС)

Гибридный электрический спортивный автомобиль с увеличенным запасом хода с микротурбиной

Хотели бы вы иметь полноприводный электромобиль, который разгоняется до 60 миль в час за 2,4 секунды, до 100 миль в час всего за 3,8 секунды и имеет максимальную скорость 160 миль в час? Если ответ «да», вам придется подождать до 2020 года, когда полноразмерная версия поступит в производство. Сейчас он находится только на стадии прототипа. Кроме того, вам придется поехать в Сомерсет, Англия, чтобы забрать один из Ariel Motor Company. Другое дело: Ariel будет использовать микротурбинный генератор для подзарядки аккумулятора и увеличения запаса хода автомобиля.

Компания обнародовала некоторые подробности о своем совершенно новом сверхмощном электрическом спортивном автомобиле с увеличенным запасом хода, который в настоящее время называется HIPERCAR (аббревиатура от HIgh PERformance CArbon Reduction). Компания еще не определилась с названием для автомобиля. Директор Ariel Саймон Сондерс говорит: «Это первый настоящий электрический суперкар, который будет пересекать континенты, ездить по городу и проезжать по гоночной трассе».

HIPERCAR будет доступен в виде полноприводного полноприводного полноприводного полноприводного автомобиля с полным или полным приводом, окончательный внешний вид которого будет опубликован позднее.Основанная на алюминиевом легком шасси с полной защитой от опрокидывания, конструкция имеет алюминиевые передний и задний подрамники с алюминиевыми поперечными рычагами и регулируемой внешней подвеской. Подвеска HIPERCAR будет оснащена двойными поперечными рычагами на всех четырех углах с амортизаторами производства Bilstein. Ariel разрабатывает систему рулевого управления с усилителем, чтобы обеспечить максимальную обратную связь с водителем. Кованые или карбоновые колеса с шинами 265/35/R20 спереди и 325/30/R21 сзади.

HIPERCAR будет доступен в виде полноприводного полноприводного полноприводного автомобиля с полным или полным приводом, окончательный внешний вид которого будет опубликован позднее. На фотографиях выше показан прототип.

 

Два двигателя, по одному на каждое заднее колесо для заднего привода, или четыре электродвигателя, по одному на каждое колесо для полного привода. Приводные колеса приводятся в движение внутренними двигателями через встроенные односкоростные понижающие коробки передач непосредственно на ведущие колеса, при этом каждый отдельный двигатель развивает мощность 220 кВт (295 л.-lb) крутящего момента. Весь двигатель, редуктор и инвертор в сборе весят всего 126 фунтов. В таблице ниже указаны крутящий момент и мощность для полного и двухколесного привода.

 

   Суммарный крутящий момент и мощность двигателей и колес

Электрическая архитектура автомобиля состоит из высоковольтных и низковольтных систем, связанных несколькими сетями CAN, что позволяет контроллеру трансмиссии, интерфейсу динамического управления транспортным средством и контроллеру аккумуляторной батареи обмениваться данными и взаимодействовать с системами безопасности 12 В.

Этот гибридный электромобиль оснащен литий-ионной аккумуляторной батареей мощностью 750 В, 42 кВтч или 56 кВтч с охлаждением и подогревом, которую при необходимости можно заряжать с помощью микротурбинного расширителя запаса хода мощностью 35 кВт, что означает, что автомобиль может работать на доступном топливе. на местной заправке. Это устраняет любые проблемы с запасом хода и делает автомобиль независимым от любой зарядной инфраструктуры.

Расширитель диапазона

MITER (микротурбинный расширитель диапазона) от Delta Motorsport будет использоваться HIPERCAR.Преимущества MITRE заключаются в том, что он намного легче, меньше и эффективнее, чем обычные бензиновые двигатели в автомобилях, хотя они, как правило, производят выхлопные газы с очень высокой температурой, с которыми может быть трудно справиться.

Прототип системы MITRE имеет две мощности: 23 л.с. и 47 л.с., он примерно на 40 % меньше и при массе 50 кг примерно на 50 % легче, чем эквивалентный поршневой двигатель. Более мощный агрегат также имеет тепловой КПД около 30%, что соответствует лучшим поршневым двигателям, и обе версии имеют очень низкий уровень выбросов.В Delta говорят, что добавление более крупного теплообменника может повысить тепловую эффективность агрегата до 35%, что ставит его в один ряд с высокопроизводительными гоночными двигателями.

Прототип системы MITRE выпускается с двумя выходными мощностями: 23 л.с. и 47 л.с., он примерно на 40 % меньше и при весе 50 кг примерно на 50 % легче, чем эквивалентный поршневой двигатель.

 

Технический директор Delta

Ник Карпентер считает, что газотурбинные двигатели являются наиболее эффективным ответом на увеличение запаса хода электромобилей. «Были различные попытки внедрить газотурбинные двигатели в легковые автомобили, но эти двигатели приводили в движение непосредственно колеса», — говорит он.«Продажи электромобилей сейчас набирают обороты, но людям, которые путешествуют на большие расстояния, по-прежнему нужен больший запас хода, и здесь увеличение запаса хода по-прежнему дает лучший ответ»,

Карпентер сказал, что добавление большего количества аккумуляторов в автомобиль для увеличения его запаса хода имеет свои ограничения из-за веса аккумуляторных элементов, но расширитель диапазона турбины может резко увеличить запас хода электромобиля при незначительном возмещении выбросов.

Чтобы снизить затраты, Delta избегает использования экзотических материалов. «На ранних этапах программы было принято много фундаментальных решений, которые позволили нам снизить производственные затраты», — говорит Карпентер.«Около 90% стоимости приходится на производство, поэтому есть много возможностей снизить цену, как только производство наладится».

Карпентер сказал, что производство составляет 10% стоимости батареи, а это означает, что физические материалы составляют 90% стоимости. Именно по этой причине он считает, что расширители диапазона на данный момент являются экономически эффективным решением. «Я думаю, что всегда найдется место для расширителей диапазона», — говорит Карпентер. «Даже если технология наберет обороты и у нас будут аккумуляторы, способные проехать 150 миль по автомагистралям, их все равно будет недостаточно для водителей-дальнобойщиков.

Карпентер считает, что основные производители не спешат переходить на электромобили, а производители полностью электрических автомобилей, такие как Tesla, ограничили свой рынок людьми, которые могут управлять электромобилями. Однако он говорит, что расширители диапазона — это лучшее из обоих миров.

Выше изображение возможного полноразмерного HIPERCAR.

 

Турбинная технология была создана в рамках совместного научно-исследовательского проекта стоимостью 3,1 миллиона фунтов стерлингов, который финансируется совместно Управлением транспортных средств с низким уровнем выбросов Великобритании (OLEV) и Innovate UK.

Остается один вопрос: будет ли серийная версия в 2020 году иметь те же характеристики, что и нынешний прототип?

Расширение линейки электромобилей — турбина

Концепция использования газовых турбин для питания автомобиля не нова. Фактически, в течение многих десятилетий различные производители автомобилей экспериментировали с идеей использования осевых или радиальных газовых турбин в качестве основного двигателя концептуальных автомобилей . В 50-х и 60-х годах такие концепт-кары представили Fiat и Chrysler.В этих случаях газовая турбина непосредственно приводила в движение колеса. Тойота придерживалась той же концепции в 80-х годах (рис. 1) [2]. В их концептуальном автомобиле использовалась радиальная турбина для приведения в движение автомобиля с помощью усовершенствованной системы трансмиссии с электронным управлением.

Рисунок 1: Двигатель Toyota GTV [3]. Главное преимущество газотурбинного двигателя по сравнению с обычными поршневыми (или даже роторными) автомобильными двигателями заключается в том, что он имеет намного более высокую удельную мощность .Это означает, что при том же весе двигателя газовая турбина способна обеспечить гораздо более высокую выходную мощность. Вот почему авиация была одним из крупнейших пользователей этой технологии.

В последние годы как традиционные, так и новые производители автомобилей проявляют значительный интерес к исследованию, опять же, использования микротурбин в автомобилях . На этот раз не как единственное средство движения, а скорее как источник энергии для расширения диапазона их преимущественно электрических силовых агрегатов.Электрификация автомобилей решает некоторые ключевые проблемы, связанные с внедрением турбин в качестве источника энергии на таких автомобилях . Основные причины, по которым прежние попытки не зарекомендовали себя на рынке, были связаны со стоимостью и удобством использования решения. Турбины тогда были намного дороже, однако, в современную эпоху 3D-печати и передовых материалов, турбины имеют очень многообещающие преимущества, особенно если учесть тот факт, что мы можем легко спроектировать их для работы с широким спектром «чистых». топлива , в отличие от традиционных двигателей внутреннего сгорания.С другой стороны, удобству использования сильно мешал тот факт, что газовые турбины не могут регулировать свою выходную мощность так же быстро, как типичный поршневой двигатель. Следовательно, при непосредственном соединении с трансмиссией, несмотря на какие-либо передовые системы трансмиссии, водитель не мог получить тот немедленный отклик, к которому привыкли обычные автомобильные двигатели.

Рис. 2: Платформа AxSTREAM™ для проектирования радиальных турбин.

Электрификация автомобильных двигателей решает эту проблему, выступая в качестве «буфера» между потребностью в мощности от водителя и подачей энергии от силовой установки.Кроме того, теперь производители могут оптимизировать свои газовые турбины для работы в «оптимальных» условиях при зарядке аккумуляторной батареи или подаче дополнительной мощности на электрическую силовую передачу. Инженеры должны подумать, как спроектировать турбину, которая будет создавать оптимальное количество энергии для рабочих диапазонов . Для целей высокой эффективности требуются надлежащий опыт и ресурсы для создания высокоэффективных турбин, которые могут достичь этих целей (см. рис. 2).Турбинный двигатель вместо того, чтобы работать в качестве основного двигателя, теперь будет работать только в наиболее эффективном режиме выходной мощности и работать, просто пропуская электричество через генератор, перезаряжая аккумуляторы автомобиля. Выступая в качестве изолированной термомеханической системы, микротурбинный расширитель диапазона может быть спроектирован и оптимизирован, не беспокоясь о различных рабочих циклах и холостом ходу , присущих трансмиссии транспортного средства. Термодинамическая модель типичного расширителя диапазона микротурбин изображена на рисунке 3.

Рисунок 3: Термодинамическая формулировка модели удлинителя запаса хода с микротурбиной в AxCYCLE™Рисунок 4: Hybrid Kinetic Гибридная трансмиссия с микротурбиной [1]. микротурбина, интегрированная в гибридную трансмиссию, которая отличается высокой производительностью, экономичностью и экологичностью. Другой компанией, которая в настоящее время разрабатывает такой автомобиль, является Hybrid Kinetic (рис. 4). Они также работают над силовым агрегатом, в котором используется микротурбина размером в несколько раз меньше, чем у типичного автомобильного двигателя, которая способна обеспечить впечатляющую дальность полета при минимальном воздействии на окружающую среду .Рисунок 5. Jaguar C-X75 использует микротурбину для увеличения запаса хода [4]. Хотите узнать, как AxCYCLE™ и AxSTREAM®  могут помочь увеличить запас хода и эффективность эксплуатации вашего электромобиля? Свяжитесь с нами, чтобы запланировать демонстрацию!

Каталожные номера :

Что такое электрические нагнетатели и действительно ли они работают?

Нагнетатели

существуют уже несколько десятилетий и представляют собой достойную альтернативу турбонаддуву. Вместо обычного механического турбонагнетателя предпочтительнее иметь принудительную индукцию с электронным управлением?

Ничто так не сравнится с воем нагнетателя.Этот пронзительный визг сетки с ременным приводом, сжимающей воздух в цилиндры, — один из самых любимых звуков наших автолюбителей. Некоторые из величайших силовых агрегатов, которые когда-либо производились, были почти «на болтах» с наддувом, будь то V8 Jaguar, 5,4-литровый двигатель от Mustang GT500 или двигатель мощностью 638 л.с. от Corvette ZR1. Несмотря на то, что Формула-1 использовала электродвигатели для турбонаддува, электрические нагнетатели также циркулировали в Интернете в качестве возможной модификации в последние несколько лет.Так как же они работают?

Существует два типа электрического нагнетателя. Первый больше вентилятор, чем конкретно нагнетатель. Цилиндрический компонент, прикрепленный непосредственно к впускному коллектору, действует как настольный вентилятор, всасывая воздух во впускное отверстие, а затем нагнетая его в цилиндры. Вы можете найти множество таких приспособлений в Интернете, но по сути это большая афера. Эти «нагнетатели» на самом деле представляют собой всего лишь трюмные насосы, предназначенные для откачки нежелательной воды с палубы небольшой лодки.

Не подходите близко ни к одному из этих компонентов с болтовым креплением.

Из-за маленьких ребер и относительно низкой скорости этих насосов они с трудом создают какую-либо реальную форму сжатия. Это отсутствие сжатия означает, что впускной воздух практически не получает давления, и поэтому воздух, поступающий в цилиндры, практически не получает никакой энергии, что не приводит к реальному увеличению мощности.

Второй тип электрического нагнетателя использует донорский турбонагнетатель с прикрепленным электродвигателем, также известный как E-нагнетатель. Электроэнергия преобразуется в крутящий момент от электродвигателя к вращающемуся рабочему колесу внутри турбокомпрессора, которое будет вынуждено раскручиваться по мере увеличения электрического тока, протекающего через него. Благодаря специально сконструированным ребрам внутри турбокомпрессора поступающий воздух будет сжиматься до уровня, при котором давление воздуха, подаваемого в цилиндры, будет достаточным для реального прироста мощности.

Это реальная сделка. К нему также прикреплен мотор приличного размера, который всегда помогает.

Электроника представляет собой электродвигатель, подключенный к дроссельной заслонке либо на корпусе дроссельной заслонки в моторном отсеке, либо на педали дроссельной заслонки.Это позволяет электродвигателю вращать вентилятор со скоростью, пропорциональной величине применяемого дросселя, имитируя действие обычного механического нагнетателя с ременным приводом. Этот двигатель питается от аккумуляторной батареи автомобиля, что создает неотъемлемую проблему с электрическим наддувом.

Сжатие воздуха требует большого количества энергии; около 6-7 л.с. на каждый фунт на квадратный дюйм наддува потребляется от двигателя для привода механического нагнетателя. Применяя это к электронике, 12-вольтовая батарея вряд ли сможет обеспечить энергию, необходимую для работы, близкой к тем же возможностям, что и заводная рукоятка двигателя.Таким образом, комплекты электронных нагнетателей с eBay или любого другого веб-сайта, как правило, практически не обеспечивают увеличения мощности и могут даже вызвать чистое снижение мощности за счет истощения заряда батареи. Несмотря на то, что E-нагнетатель может создать требуемый наддув, ему по-прежнему требуется большое количество электроэнергии, чтобы полностью раскрыть свой потенциал.

Аккумулятор 12 В действительно будет изо всех сил пытаться не отставать от E-Supercharger после работы с этой партией.

Таким образом, для питания всего электрооборудования автомобиля, а также дополнительного электронного нагнетателя действительно потребуется 48-вольтовая батарея.Хотя, учитывая огромное количество электрических технологий в автомобилях в наши дни, вероятно, не пройдет много времени, прежде чем 48-вольтовый блок станет стандартным.

Преимущества электрического нагнетателя заключаются в минимальном времени запаздывания и высокой скорости вращения. В то время как турбонагнетатели могут раскручиваться за пару секунд, а механические нагнетатели все еще имеют некоторую задержку, электрический нагнетатель может полностью раскрутиться всего за 0,5 секунды благодаря прямому соединению с дроссельной заслонкой, обеспечивая практически мгновенный максимальный наддув.Механические нагнетатели развивают максимальную скорость около 60 000 об/мин, тогда как электрический эквивалент может развивать скорость до 120 000 об/мин, что даже выше, чем у большинства турбокомпрессоров.

Надлежащий E-Supercharger с электродвигателем в сочетании с корпусом турбокомпрессора.

Если бы электрические нагнетатели могли быть полностью спроектированы и объединены с соответствующим источником питания, они могли бы начать новую мини-революцию в рамках нынешней навязчивой идеи сокращения размеров.Поскольку производителям приходится полностью решать проблемы с турбонаддувом, поскольку они создают все больше и больше двигателей с принудительной индукцией, электрический наддув может стать мгновенным решением при массовом производстве. Однако из-за затрат, связанных с исследованием и разработкой такого компонента, а также предстоящих изменений в источнике питания, которые потребуются для обеспечения его эффективной работы, вероятно, пройдет некоторое время, прежде чем мы увидим, как электрический наддув начинает работать должным образом.

Механический наддув, с другой стороны, уходит в прошлое из-за своей энергоемкости и чистого тепла, создаваемого такими системами.Однако, поскольку электроника начинает доминировать почти во всех аспектах автомобилестроения, вполне возможно, что наддув скоро вернется. RIP естественная аспирация…

Новый электродвигатель может повысить эффективность электромобилей, скутеров и ветряных турбин

«Ни в одной другой отрасли не происходит таких быстрых технологических изменений, как в автомобильной», — говорит Зоран Филипи, заведующий кафедрой автомобильной инженерии Международного центра исследований при Университете Клемсона. Автомобильные исследования.«Это обусловлено необходимостью соблюдения надвигающихся, все более строгих правил CO 2 и критериев выбросов, при этом поддерживая беспрецедентный темп прогресса в развитии автоматизации и информационно-развлекательных систем, а также оправдывая ожидания клиентов в отношении производительности, комфорта и полезности».

В ближайшие годы произойдут еще большие изменения, поскольку все больше автопроизводителей обязуются отказаться от своих автомобилей с двигателями внутреннего сгорания (ДВС) для достижения глобальных целей в области изменения климата, заменив их электромобилями (EV), которые в конечном итоге будут способны автономная работа.

Прошедшее десятилетие разработки автомобилей с ДВС свидетельствует о быстром прогрессе, которого они добились, а также о том, куда они движутся.

Диаграмма: Марк Монтгомери

«Когда-то программное обеспечение было частью автомобиля. Теперь стоимость автомобиля определяет программное обеспечение», — отмечает Манфред Брой, почетный профессор информатики Технического университета Мюнхена и ведущий специалист по программному обеспечению в автомобилях. «Успех автомобиля зависит от его программного обеспечения гораздо больше, чем от механической части.«Почти все автомобильные инновации автопроизводителей или производителей оригинального оборудования (OEM), как их называют инсайдеры отрасли, теперь связаны с программным обеспечением, — говорит он.

Десять лет назад только автомобили премиум-класса содержали 100 микропроцессорных электронных блоков управления (ЭБУ), объединенных в сеть по всему корпусу автомобиля и выполняющих 100 миллионов строк кода или более. Сегодня автомобили высокого класса, такие как BMW 7-й серии, с передовыми технологиями, такими как передовые системы помощи водителю (ADAS), могут содержать 150 ЭБУ и более, в то время как пикапы, такие как Ford F-150, имеют 150 миллионов строк кода.Даже недорогие автомобили быстро приближаются к 100 ECU и 100 миллионам строк кода, поскольку все больше функций, которые когда-то считались роскошными опциями, таких как адаптивный круиз-контроль и автоматическое экстренное торможение, становятся стандартными.

Дополнительные функции безопасности, которые являются обязательными с 2010 года, такие как электронный контроль устойчивости, камеры заднего вида и автоматический экстренный вызов (eCall) в ЕС, а также более строгие стандарты выбросов, которым автомобили с ДВС могут соответствовать только с использованием еще более инновационной электроники и программного обеспечения. , привели к дальнейшему распространению ECU и программного обеспечения.

По оценкам консалтинговой фирмы Deloitte Touche Tohmatsu Limited, по состоянию на 2017 год около 40% стоимости нового автомобиля приходится на электронные системы на основе полупроводников, что вдвое больше, чем в 2007 году. По оценкам, к 2030 году эта сумма приблизится к 50%. Компания также прогнозирует, что каждый новый автомобиль сегодня содержит полупроводники на сумму около 600 долларов, состоящие из до 3000 чипов всех типов.

Суммарное количество ЭБУ и строк программного обеспечения лишь намекает на сложную электронную оркестровку и хореографию программного обеспечения, присутствующую в современных автомобилях.Наблюдая за тем, как они работают вместе, начинает проявляться необычайная сложность, которая должна быть невидимой с точки зрения водителя. Новые функции безопасности, комфорта, производительности и развлечений, коммерческий императив предлагать покупателям множество вариантов, что приводит к множеству вариантов для каждой марки и модели, а также переход от бензиновых двигателей и водителей-людей к электрическим и водителям с искусственным интеллектом и сотням миллионы строк нового кода, которые нужно будет написать, проверить, отладить и защитить от хакеров, превращают автомобили в суперкомпьютеры на колесах и заставляют автомобильную промышленность адаптироваться.Но может ли?

Функции и варианты Сложность привода

В течение последних двух десятилетий стремление обеспечить больше функций безопасности и развлечений превратило автомобили из простых транспортных средств в мобильные вычислительные центры. Вместо стоек серверов и высокоскоростных оптических соединений ЭБУ и жгуты проводов передают данные по всему автомобилю и за его пределы. А еще есть десятки миллионов строк кода, которые запускаются каждый раз, когда вы идете в продуктовый магазин.

Вард Антинян, эксперт по качеству программного обеспечения в Volvo Cars, который много писал о сложности программного обеспечения и систем, объясняет, что по состоянию на 2020 год «Volvo имеет расширенный набор из примерно 120 ECU, из которых она выбирает для создания системной архитектуры, присутствующей в каждом Volvo. средство передвижения.В общей сложности они содержат в общей сложности 100 миллионов строк исходного кода». Этот исходный код, по словам Антиняна, «содержит 10 миллионов условных операторов, а также 3 миллиона функций, которые вызываются примерно в 30 миллионах мест в исходном коде».

Объем и типы программного обеспечения, размещенного в каждом ЭБУ, сильно различаются в зависимости, среди прочего, от вычислительных возможностей ЭБУ, функций, которыми управляет ЭБУ, внутренней и внешней информации и сообщений, которые необходимо обрабатывать, и от того, являются ли они запускаются событием или временем, наряду с обязательными требованиями безопасности и другими нормативными требованиями.За последнее десятилетие все больше программного обеспечения ЭБУ было посвящено обеспечению эксплуатационного качества, надежности, безопасности и защищенности.

«Количество программного обеспечения, написанного для обнаружения неправомерных действий с целью обеспечения качества и безопасности, растет», — говорит Нико Хартманн, вице-президент ZF Software Solutions & Global Software Center в ZF Friedrichshafen AG, одном из крупнейших в мире поставщиков автомобильных компонентов. По словам Хартманна, если десять лет назад, возможно, треть программного обеспечения ЭБУ была предназначена для обеспечения качественной работы, то сейчас часто больше половины или даже больше, особенно в системах, критически важных для безопасности.

Какие ЭБУ и связанное с ними программное обеспечение в конечном итоге будут устанавливаться на автомобили Volvo, такие как роскошный внедорожник XC90, который имеет примерно 110 ЭБУ, зависит от нескольких факторов. У Volvo, как и у всех производителей автомобилей, есть варианты каждой модели, предлагаемые для продажи, предназначенные для разных сегментов рынка. Как отмечает Антинян, «человек, покупающий точно такую ​​же модель Volvo в Швеции, может отличаться от той, что продается в США». Существуют не только региональные нормативные режимы, которым должен соответствовать каждый автомобиль, но и каждый отдельный владелец может выбирать между несколькими дополнительными функциями двигателя, привода, безопасности или другими функциями, которые предлагает Volvo.Какая бы конфигурация стандартного, дополнительного и требуемого по закону оборудования не была выбрана, будет определяться точное количество и типы ЭБУ, программного обеспечения и соответствующей электроники, которые должны быть встроены в автомобиль, и все они должны быть в состоянии работать вместе без проблем.

«Управление вариантами транспортных средств очень сложно для автопроизводителя, — говорит Антинян, — потому что оно касается всех». Например, существует естественная напряженность между отделом маркетинга, который хочет, чтобы различные типы транспортных средств обладали множеством функций для различных сегментов клиентов, и отделами проектирования и проектирования, которые хотели бы иметь меньше вариантов, чтобы поддерживать системную интеграцию, тестирование, проверку. и усилия по проверке управляемы.Каждое расширение функциональности подразумевает дополнительные датчики, приводы, ЭБУ и сопутствующее программное обеспечение и, следовательно, дополнительные усилия по интеграции для обеспечения их правильной работы.

По оценкам Deloitte, 40% или более бюджета на разработку автомобиля с начала его разработки до начала производства приходится на системную интеграцию, тестирование, проверку и валидацию. Отслеживание всей текущей, а также устаревшей электроники и программного обеспечения в каждой произведенной и проданной модели может оказаться геркулесовой задачей.Неудивительно, что эффективное управление сложностью вариантов является серьезной проблемой в автомобильной промышленности.

Также неудивительно, что подключение и питание всех блоков управления двигателем, датчиков и других электронных устройств требует большого количества проводов и ручных усилий, чтобы пропустить их через автомобиль. Тысячи вариантов жгутов проводов поддерживают индивидуальные настройки автомобиля и несколько физических сетевых шин для управления потоком сигнала через автомобиль.

Физическая электронная архитектура транспортного средства налагает больше ограничений на проектирование сети, с которыми необходимо бороться.Многие ЭБУ должны находиться рядом с датчиками и исполнительными механизмами, с которыми они взаимодействуют, например, ЭБУ для тормозных систем или управления двигателем. В результате жгут автомобильной сети, к которому можно присоединить тысячи компонентов, может содержать более 1500 проводов общей длиной 5000 метров и весом более 68 кг. Уменьшение веса и сложности жгутов проводов стало основной задачей автопроизводителей по мере роста количества ЭБУ, датчиков и связанных с ними электронных устройств.

Проблемы тестирования

Даже при значительных усилиях, времени и деньгах, затрачиваемых на обеспечение совместной работы всего разнообразного электронного оборудования, не каждая возможная комбинация сборки ЭБУ может быть тщательно протестирована до начала производства.В то время как содержание безопасности транспортного средства, как правило, в основном фиксировано, сложность сборки ECU больше связана с дополнительным комфортом и удобством для потребителя или функциями производительности. В некоторых случаях из-за определенного сочетания дополнительных функций и функций «автомобиль, сходящий с конвейера, будет первым, когда будет протестирована конкретная конфигурация», — говорит Энди Уайделл, вице-президент ZF по планированию продуктов для автомобильных систем.

Диаграмма: Марк Монтгомери; Источник: Deloitte Touche Tohmatsu Limited

Некоторые автопроизводители имеют сотни тысяч потенциальных комбинаций сборки отдельной модели автомобиля, если не больше.Чтобы протестировать вживую каждую комбинацию электроники, возможную в некоторых моделях автомобилей, «потребуется миллиард тестовых установок», — говорит он. Однако, как утверждает Уайделл, несколько комбинаций сборки ECU могут быть протестированы в лаборатории с использованием «макетных плат» OEM-производителями во время разработки автомобиля, без необходимости создавать уникальный автомобиль для каждого случая.

Даже для популярных популярных моделей программные ошибки обычно обнаруживаются и исправляются после их продажи. Иногда коррекция нуждается в исправлении, что произошло с General Motors в связи с отзывом ее самого продаваемого автомобиля Chevy Silverado 2019 года, а также легких грузовиков GMC Sierra и Cadillac CT6.

Управление вариантами, отмечает Уайделл, усложняется тем, что «почти весь дизайн ЭБУ и программное обеспечение передаются поставщикам на аутсорсинг, а OEM-производители интегрируют ЭБУ» для создания единой системы с желаемой настраиваемой функциональностью. Whydell говорит, что отдельные поставщики часто не имеют четкого представления о том, как OEM-производители интегрируют ECU вместе. Точно так же OEM-производители имеют ограниченное представление о программном обеспечении, находящемся в ЭБУ, которые часто приобретаются как «черный ящик» для поддержки одной из нескольких функций, таких как информационно-развлекательная система, контроль кузова и соответствия, телематика, силовая передача или автоматизированные системы помощи водителю.

То, как мало программного обеспечения разрабатывается автопроизводителями, иллюстрируется комментариями, сделанными в 2020 году Гербертом Диссом, тогдашним генеральным директором Volkswagen Group, а ныне его председателем, когда он признал, что «едва ли строчка программного кода исходит от нас». По оценкам VW, только 10% программного обеспечения в его автомобилях разрабатывается собственными силами. Остальные 90% вносят десятки поставщиков, а у некоторых OEM-производителей это число, как сообщается, достигает более 50.

Так много поставщиков программного обеспечения, каждый со своим собственным подходом к разработке, использующих свои собственные операционные системы и языки, очевидно, добавляет еще один уровень сложности, особенно при выполнении проверки и валидации.Это подтверждается недавним опросом разработчиков программного обеспечения по всей цепочке поставок автомобилей, проведенным Strategy Analytics и Aurora Labs. Они задались вопросом, насколько сложно было узнать, когда изменение кода в одном ECU влияет на другой. Около 37% опрошенных указали, что это было сложно, 31% указали, что это было очень сложно, 7% указали, что это чертовски близко к невозможности, а 16% указали, что это невозможно.

Автомобильные компании и их поставщики понимают, что они должны больше сотрудничать, чтобы лучше контролировать управление конфигурацией данных, чтобы предотвратить непредвиденные последствия из-за непредвиденных изменений кода ECU.Но оба признают, что есть еще путь.

Повышение безопасности

Конечно, автопроизводители должны гарантировать, что программное обеспечение не только безопасно и надежно, но и защищено. Дистанционный захват Jeep Cherokee 2014 года выпуска в 2015 году исследователями безопасности стал тревожным сигналом для отрасли. Каждый поставщик и OEM-производитель теперь осознают угрозу слабой кибербезопасности; Сообщается, что 90 инженеров GM работают полный рабочий день над разработкой мер противодействия кибербезопасности.

Однако десять лет назад «автомобильное программное обеспечение было разработано в первую очередь для обеспечения безопасности.Безопасность была на втором месте», — говорит Машрур Чоудхури, эксперт по кибербезопасности транспортных средств и директор Центра подключенной мультимодальной мобильности Министерства транспорта США в Университете Клемсона. Это следует отметить, поскольку большая часть программного обеспечения, разработанного десять или более лет назад, когда безопасность не была приоритетом, как сейчас, до сих пор используется в ЭБУ.

«Потенциальные поверхности для атак увеличиваются практически ежедневно».

Кроме того, за последнее десятилетие произошел взрывной рост внутренней и внешней связи транспортных средств.В 2008 году между электронными блоками управления роскошного автомобиля было обменено около 2500 сигналов данных. Антинян из Volvo говорит, что сегодня более 7000 внешних сигналов соединяют 120 ЭБУ автомобилей Volvo, а количество внутренних сигналов, которыми обмениваются автомобили, на два порядка больше. По оценкам консалтинговой фирмы McKinsey & Company, эта информация может легко превысить 25 гигабайт данных в час.

С бурным развитием мобильных приложений и облачных сервисов за последние десять лет, не говоря уже о все большем количестве сложной электроники, встроенной в сами автомобили, «потенциальные поверхности для атак увеличиваются практически ежедневно», — говорит Чоудхури.

Правительства также приняли это к сведению и возложили на автопроизводителей ряд обязательств по кибербезопасности. К ним относится наличие сертифицированной системы управления кибербезопасностью (CSMS), которая требует от каждого производителя «демонстрировать структуру управления на основе рисков для обнаружения, анализа и защиты от соответствующих угроз, уязвимостей и кибератак».

Кроме того, OEM-производителям потребуется система управления обновлениями программного обеспечения, чтобы обеспечить безопасное управление беспроводными обновлениями программного обеспечения.Автопроизводителям также рекомендуется «вести базу данных операционных компонентов программного обеспечения, используемых в каждом автомобильном ECU, каждом собранном автомобиле, а также журнал истории обновлений версий, применяемых на протяжении всего срока службы автомобиля». Этот список материалов программного обеспечения может помочь автопроизводителям быстро определить, какие ЭБУ и конкретные автомобили будут затронуты данной киберуязвимостью.

The Soft Mechanic

Большинство водителей не обращают особого внимания на окружающие их электронные блоки, если только они не раздражают или не перестают работать.С ростом количества электронного контента за последнее десятилетие у водителей появилось множество возможностей обратить внимание на электронику своего автомобиля.

Согласно Отчету о дефектах и ​​отзывах автомобилей за 2020 год, составленному финансовой консалтинговой фирмой Stout Risius Ross, 2019 год стал рекордным: 15 миллионов автомобилей были отозваны из-за дефектов электронных компонентов. Половина отзывов была связана с дефектами программного обеспечения, это самый высокий показатель, зарегистрированный Stout с 2009 года.

Диаграмма: Марк Монтгомери; Источник: Стаут Рисиус Росс

Почти 30% дефектов были связаны с интеграцией программного обеспечения, когда отказ возникает из-за взаимодействия программного обеспечения с другими электронными компонентами или системами в автомобиле.Mitsubishi Motors отозвала 60 000 внедорожников, потому что программная ошибка в их блоке управления гидравлическим блоком мешала работе нескольких систем безопасности.

Наконец, более 50 % дефектов связаны с отказом, который явно не был вызван дефектом программного обеспечения, но исправленным средством было обновление программного обеспечения. Ford Motor Company отозвала некоторые модели своих автомобилей Fusion и Escape, поскольку охлаждающая жидкость могла попасть в отверстия цилиндров их двигателей, что могло привести к необратимому повреждению их двигателей. Решение Форда заключалось в перепрограммировании программного обеспечения управления силовой передачей транспортных средств, чтобы уменьшить вероятность попадания охлаждающей жидкости в цилиндры двигателя.Данные Стаута показывают, что за последние пять лет количество случаев использования программного обеспечения для устранения проблем с аппаратным обеспечением автомобилей неуклонно росло.

«Средние объемы отзыва снижаются, как и средний возраст автомобилей, — говорит Нил Стейнкамп, управляющий директор Stout. «Производители используют технологии, чтобы быстрее обнаруживать дефекты», особенно те, которые связаны с электроникой. Дефекты, связанные с программным обеспечением, как правило, обнаруживаются в новых автомобилях, в то время как дефекты ЭБУ и других электронных компонентов, как правило, проявляются только по прошествии некоторого времени с момента появления автомобиля на рынке.

Stout Директор Роберт Левин отмечает, что в последнее время наблюдается рост дефектов компонентов, связанных с электроникой автомобиля, «переход от удобства владельца к компонентам, критически важным для безопасности». Например, в США была волна отзывов камер заднего вида, поскольку все автомобили, произведенные после 1 мая 2018 года, должны были обеспечивать водителей видимой зоной размером 3 x 6 метров непосредственно позади автомобиля. Многие OEM-производители обнаруживают, что интеграция более сложного программного обеспечения камеры с другими системами безопасности транспортных средств оказывается сложной задачей.

Работа других новых систем безопасности автомобилей также не была гладкой. Исследование, проведенное Американской автомобильной ассоциацией (AAA) передовых систем помощи при вождении, которые могут помочь водителю либо с рулевым управлением, либо с торможением/ускорением, показало, что эти системы часто отключаются без предупреждения, мгновенно возвращая управление водителю. Его тесты показали, что какие-то проблемы возникали в среднем каждые 13 км, в том числе трудности с удержанием автомобиля на своей полосе или слишком близкое приближение к другим автомобилям или ограждениям.

Повышение стоимости ремонта

Многие автовладельцы осознают возрастающую сложность своих автомобилей, когда им приходится платить за ремонт. Почти 60% затрат на оплату труда при устранении последствий аварии с участием автомобиля с расширенными функциями безопасности приходится на электронику автомобиля. Даже незначительное повреждение, скажем, треснутое лобовое стекло, которое раньше стоило от 210 до 220 долларов, выросло до 1650 долларов, если автомобиль оснащен установленной на лобовом стекле камерой для автоматического экстренного торможения, адаптивным круиз-контролем и системами предупреждения о выходе из полосы движения, 2018 Исследование ААА показывает.Расходы на калибровку всех этих систем, которая обычно выполняется вручную, являются основным фактором затрат.

Поскольку даже небольшая ошибка калибровки датчиков может резко снизить эффективность этих функций безопасности, «поставщики разработали системы автоматического выравнивания и автоматической калибровки, которые могут исключить или упростить ручной процесс», — говорит Уайделл из ZF, помогая повысить точность калибровки во время вождения. снижение затрат на ремонт.

Whydell также сообщает, что поставщики и OEM-производители ищут способы размещения датчиков, которые, как правило, устанавливаются по периметру автомобиля в местах, которые с меньшей вероятностью будут повреждены в случае аварии.AAA сообщает, что стоимость ремонта только ультразвуковой системы, расположенной в заднем бампере, которая обеспечивает помощь при парковке, составляет около 1300 долларов; если задние радарные датчики, используемые для мониторинга слепых зон и предупреждения о перекрестном движении, также будут повреждены, еще 2050 долларов США могут быть понесены в виде дополнительных расходов в связи с повреждением задней части.

Поскольку стоимость ремонта растет из-за электроники, она достигла точки, когда для страховой компании становится менее затратным объявить транспортное средство полной гибелью. В недавнем отчете компании по управлению претензиями Mitchell International говорится, что ее данные показывают, что средний возраст транспортных средств, объявленных общими потерями, снижается из-за стоимости ремонта автомобильной электроники.Ожидается, что эта тенденция сохранится, поскольку «усложнение транспортных средств возрастает», говорится в отчете.

EV + AI = неуправляемая сложность

Автопроизводители попали в своеобразную головоломку. Согласно последнему исследованию надежности транспортных средств США, проведенному J.D. Power, сегодня автомобили с двигателем внутреннего сгорания являются самыми надежными за последние 32 года. Они также более удобны, безопасны и меньше загрязняют окружающую среду. Тем не менее, чтобы удовлетворить растущую озабоченность правительства и общественности по поводу изменения климата во всем мире, производители вынуждены отказаться от своих сложных автомобилей с ДВС в пользу электромобилей, которые когда-нибудь должны быть способны к автономному вождению. в будущем.

Еще больше усложняет их дилемму то, что для разработки электромобилей производители должны прыгнуть через пропасть программного обеспечения.

В современных автомобилях «программное обеспечение, использующее современные архитектуры, становится неуправляемым», — отмечает Энди Уайделл из ZF. Другие также разделяют это убеждение. По данным консалтинговой фирмы McKinsey & Company, сложность программного обеспечения в автомобилях быстро превышает возможности его разработки и обслуживания. Сложность программного обеспечения выросла в четыре раза за последнее десятилетие, но производительность программного обеспечения поставщиков и OEM-производителей практически не выросла за то же время.Кроме того, в следующем десятилетии сложность программного обеспечения, вероятно, возрастет еще в три раза. Как производители автомобилей, так и поставщики изо всех сил пытаются сократить «разрыв между развитием и производительностью».

«Когда-то программное обеспечение было частью автомобиля. Теперь программное обеспечение определяет стоимость автомобиля».

Частично проблема заключается в поддержке неуклонно растущей кодовой базы. Один из лидеров автомобильной компании сказал McKinsey, что при нынешних темпах поддержка программного обеспечения существующей кодовой базы будет потреблять все его ресурсы НИОКР, если разрыв не будет ликвидирован.Фактически, Уайделл отмечает, что «в некоторых случаях автомобильная промышленность больше не рассматривает общее количество строк кода как меру сложности, а количество персонала, занимающегося программным обеспечением, которое OEM или поставщик нанимает для удовлетворения текущих и будущих потребностей».

Сокращение разрыва между разработкой и производительностью выглядит особенно устрашающе, если, как говорит председатель Volkswagen Герберт Дайс, «на программное обеспечение будет приходиться 90% будущих инноваций в автомобиле». Владение необходимыми знаниями программного обеспечения будет основным ключом к успеху.Как сформулировал McKinsey: «Хотя автомобильные организации должны преуспевать на многих уровнях, чтобы выиграть игру программного обеспечения, привлечение и удержание лучших специалистов, вероятно, является наиболее важным аспектом». Неудивительно, что правильное использование программного обеспечения является «одной из вещей, которые не дают мне спать по ночам», — признается Уайделл из ZF. Это также не дает спать всем другим поставщикам и OEM-менеджерам.

OEM-производители с опозданием осознали, во многом благодаря концепции автомобиля Илона Маска с программным управлением в форме Tesla, что их нынешние подходы к аутсорсингу необходимого программного обеспечения и электроники поставщикам, а затем их интеграция в автомобили с ДВС не работают для электромобили.

Функциональность и сложность децентрализованных архитектур ЭБУ, используемых в автомобилях с ДВС, «достигли своего предела», — цитирует Wards Auto слова Тамары Сноу, руководителя отдела исследований и передовых разработок поставщика автомобилей уровня 1 Continental AG. Это особенно верно, если для полного автономного вождения требуется примерно 500 миллионов или более строк кода.

«В некоторых случаях автомобильная промышленность больше не рассматривает общее количество строк кода как меру сложности, а количество сотрудников, занимающихся программным обеспечением, которых OEM-производитель или поставщик нанимает для удовлетворения текущих и будущих потребностей.”

Новое программное обеспечение для транспортных средств и физическая архитектура потребуются для управления банками аккумуляторов вместо двигателя внутреннего сгорания и связанной с ним трансмиссии. Архитектура будет содержать всего несколько мощных, чрезвычайно быстрых компьютерных процессоров, выполняющих код, управляемый микросервисами, и будет осуществлять внутреннюю связь с большим количеством датчиков по более легким жгутам проводов или даже по беспроводной сети, просто для начала. Внешняя коммуникация также будет в разы больше.И эти новые архитектуры, отмечает Хартманн из ZF, должны быть разработаны с низкими затратами и при постоянном сокращении временных циклов командами разработчиков программного обеспечения в OEM-производителях и поставщиках, которые будут изучать новые методы разработки программного обеспечения и систем.

Вероятно, самая большая проблема заключается в недостаточном опыте работы с программным обеспечением в управленческих пакетах, чтобы понять необходимость трансформации, утверждает Манфред Брой. Хотя сложность аппаратного обеспечения является наиболее заметным аспектом транспортного средства, Брой отмечает: «Что я считаю более важным, так это сложность программного обеспечения (которая в решающей степени зависит от выбора аппаратного обеспечения) и, в частности, стоимость программного обеспечения, которая совершенно неясна для понимания. OEM-производители и более важны из-за его долгосрочной эволюции.Он говорит, что офисы руководителей автомобильных компаний заполнены «людьми вчерашнего дня, но они по-прежнему у руля».

Зоран Филипи из Clemson поясняет: «Более ста лет OEM-производители концентрировались на совершенствовании двигателей внутреннего сгорания, передаче остальных своих транспортных средств поставщикам, а затем интеграции всех компонентов воедино. Тот же подход применялся, когда электроника и программное обеспечение начали использоваться в транспортных средствах — они были просто еще одним «черным ящиком», который нужно было интегрировать в транспортное средство.«Теперь, — говорит он, — OEM-производители и их поставщики должны перейти от подхода, ориентированного на аппаратное обеспечение, к менталитету, ориентированному на программное обеспечение, при этом продолжая поддерживать и улучшать автомобили с ДВС, используя существующие подходы, по крайней мере, еще одно десятилетие».

Петер Мертенс, бывший глава отдела исследований и разработок Audi AG и член совета директоров, заявил в недавнем интервью CleanTechnica: «Немецкая автомобильная промышленность предоставляет свои самые важные новые продукты, которые определят, выживут ли они как компании в своей существующей структуре, для ответственность менеджеров, которые имеют наименьший опыт и знания о своей наиболее важной части, программном обеспечении.

Далее Мертенс говорит, что необходим способ отсеять руководителей, которые не подходят для их должности. «Проведите завтра оценку работы со всеми топ-менеджерами VW, Audi, Porsche, BMW и Daimler и попросите их написать небольшую игру или простой, но работающий вирус», — говорит он. «Если они не могут этого сделать, немедленно уволите их, потому что они не подходят для этой работы». Сколько останется, спрашивает Мертенс? Кровь, оставшаяся на полу, будет подсказкой.

(PDF) Выработка электроэнергии ветряной турбиной для зарядки движущихся электромобилей

Ссылки

Александр, Д.(2008), «Регион может производить детали для ветряных турбин», http://blog.mlive.com/

Chronicle/2008/01/region_can_produce_wind_turbine.html, Мичиган, дата обращения: 15 февраля 2012 г.

Altaf, H. (2010), «Запчасти для электромобилей — каковы основные части систем управления электромобилем

?», http://gotocld.com/ru/?Electric-Car-Parts—What-Are-the-Main-Parts -of-Electric-Car-Driving-

Systems?&id=3728017, дата обращения: 20 февраля 2013 г.

Anon.(2006 г.), «Типы ветряных турбин», www.teachergeek.org, дата обращения: 18 декабря 2012 г.

Анон, (2007 г.), «Математические расчеты энергии ветра» http://www.mmpa.org/Uploaded_Files/ 2c/2c48c69c-303d-

4fc7-8d88-2153190d1fcc.pdf, дата обращения: 8 марта 2013 г., стр. 1–5.

Анон. (2010), Руководство по внедрению инфраструктуры зарядки электромобилей, Transport for Landon,

Первое издание, стр. 1-80.

Anon, (2011), «Путеводитель по электромобилям для потребителей», m.green.autoblog.com/2011/05/09/epri-publisher-

basic-consumer-guide-for-electrified-vehicles/, дата обращения: 10 мая 2012 г.

Anon, (2012), «Cardboard Savonius Wind Turbine”http://cleangreenenergyzone.com/cardbo ard-savonius-wind-

турбина/, БЛОГ Green Energy, дата обращения: 20 февраля 2013 г.

Anon, (2013a), «The History of Electric Cars», avt .inel.gov/pdf/fsev/history.pdf, дата обращения: 20 февраля 2013 г.

Анон, (2013b), «Электрический автомобильный двигатель (BLT18KW)», http://szunitemotor.en.made-in-

china.com/productimage/SeWmhbdEEpcv-2f0j00SeoTbCdErpcs/China-Electrical-Car-Motor-BLT18KW-.html,

Дата обращения: 20 февраля 2013 г.

Анон, (2014c), «LiFePO Аккумуляторный блок 24В 300Ач для электромобиля (24В 300Ач)»,

300AH-.html, дата обращения: 20 февраля 2013 г.

Anon, (2013d), «Soliton Jr.Контроллер (600 А) — Контроллер электромобиля — Контроллер электромобиля»,

http://www.ebay.com/itm/Soliton-Jr-Controller-600-Amps-EV-Controller-Electric-Car-Controller-

/170752116989, дата обращения: 20 февраля 2013 г.

Anon, (2013e), «Основные компоненты ветряной турбины»,

2013.

Anon, (2013f), «Каталог сферических роликоподшипников Timken», http://www.kingsbury.com/pdf/catalog-eqh.pdf,

Дата обращения: 23 февраля 2013 г., 12 стр.

Будинас, Р. Г. и Нисбетт, Дж. К. (2011), Проект машиностроения Шигли, McGraw-Hill Publishers,

Нью-Йорк, стр. 1-1059.

Hu, X. and Wong, E.T.T. (2011), «Численное исследование заднего спойлера пассажирского автомобиля», World Academy

of Science, Engineering and Technology, 637 стр.

Philips, D.G. (2006), An Исследование конструкции ветряной турбины с диффузором, неопубликованная диссертация доктора философии

, Оклендский университет, стр.1-334.

Юдзи, О. и Такаши, К. (2010), «Закрытая ветряная турбина, генерирующая высокую выходную мощность с помощью технологии ветровой линзы

», Energies, стр. 635-648.

Почему чистота электромобилей зависит от их источника питания | Электрические, гибридные автомобили и автомобили с низким уровнем выбросов

Хорхе Круз только что закончил свою ночную смену, складывая полки в магазине Whole Foods в Лос-Альтосе, Калифорния, и ждет на автобусной остановке снаружи. Как и в большей части Силиконовой долины, здесь регулярно проезжает поток электромобилей Tesla, BMW, Nissan и Google, которые проезжают мимо их близлежащей штаб-квартиры, и Круз их очень любит.

«Я действительно был бы не прочь иметь электромобиль», — говорит он, хотя его первый выбор, вероятно, Honda или Acura. Несмотря ни на что, пока он ездит на автобусе. «Мне нужно накопить на машину», — объясняет он.

Пока Круз ждет, мимо проносится недавно купленная Тесла с надписью «НУЛЕВЫЕ ВЫБРОСЫ» на номерном знаке.

Электрические автомобили никогда не были ближе к мейнстриму, рынок подталкивают субсидии Калифорнии для покупателей электромобилей и широкий спектр новых моделей от известных автомобильных фирм, таких как Toyota и Chevy.Акцент Tesla на роскошных, высокопроизводительных автомобилях также расширил их привлекательность; электромобили больше не являются чисто экологическим заявлением, но также являются символом технического статуса.

Тем не менее заявление о «нулевых выбросах» вызывает раздражение у некоторых экспертов, которые продолжают спорить о том, действительно ли электромобили более экологичны, чем пожиратели бензина, если принять во внимание производственный процесс для транспортных средств и их аккумуляторов.

Электромобили полагаются на регулярную зарядку от местной электросети.Электростанции, обеспечивающие эту энергию, не являются безотходными; даже в Калифорнии в 2015 году 60 % электроэнергии приходилось на сжигание ископаемого топлива, тогда как на солнечную и ветровую энергию вместе приходилось менее 14 %.

«Я не мог вынести того, что они еще раз произносят слова «автомобиль с нулевым уровнем выбросов», — говорит Джошуа Графф Зивин, который консультировал одну из трех основных коммунальных служб Калифорнии, San Diego Gas & Electric, по вопросам электромобилей. Графф Зивин — профессор экономики и государственной политики Калифорнийского университета в Сан-Диего.

«То, как вы стимулируете их заряжать, может иметь большое значение», — говорит Зивин о владельцах электромобилей. «Коммунальные службы не продумали это».

Одна треть электроэнергии в США вырабатывается за счет угля

По оценкам межправительственной группы Международного энергетического агентства, в 2015 году было продано более 1,2 млн электромобилей, а организация Transport & Environment ожидает, что к концу года на дорогах будет 2 млн электромобилей. на 2016 год. Крупнейшими мировыми рынками для электромобилей являются США и Китай, хотя электромобили занимают большую долю рынка в некоторых европейских странах, таких как Нидерланды и Норвегия.

Электромобили в Калифорнии могут подключаться к более экологичной сети, чем в большинстве регионов мира, особенно в Китае, где по данным Международного энергетического агентства (МЭА) в 2014 году уголь производил 72% всей электроэнергии . По данным МЭА, США получают около трети своей электроэнергии за счет сжигания угля, а более 40% всей электроэнергии в мире приходится на сжигание угля.

Акцент Tesla на роскошных, высокопроизводительных автомобилях расширил их привлекательность. Фотография: Джастин Салливан/Getty Images

В США Союз обеспокоенных ученых, работающий над повышением осведомленности об изменении климата, считает, что, несмотря на энергосистему, зависящую от ископаемого топлива, электрические автомобили в целом лучше для окружающей среды.

«Нет областей в стране, где электромобили имеют более высокие выбросы глобального потепления, чем средний новый бензиновый автомобиль», — утверждает группа кампании в своей статье State of Charge, в которой рассчитывается эквивалент выбросов электромобиля с использованием макияжа. местного энергоснабжения. Используя формулу UCS, Tesla Model X, заряжаемая в гараже Los Altos Whole Foods, достигает эффективности использования топлива, эквивалентной 81 миле на галлон, что намного выше, чем у автомобиля с газовым двигателем.

Однако не все ученые согласны с таким подходом.«Все действия происходят ежечасно», — говорит Графф Зивин. Имеет значение не только регион, в котором подключается электромобиль. Не менее важен час дня. «Самая дешевая энергия — не самая экологичная».

В Калифорнии самая дешевая электроэнергия производится ночью, в основном из природного газа, гидроэлектростанций и ядерных электростанций. Ночью многие люди будут заряжать свои электромобили. Однако самая экологически чистая энергия вырабатывается днем, когда солнечная энергия может питать сеть; солнечная энергия не работает в темноте, ветряные мельницы перестают вращаться, если нет ветра, а в сегодняшней энергосистеме почти нет возможности хранить солнечную и ветровую электроэнергию для последующего использования.Сетевое хранилище медленно расширяется, но большую часть электроэнергии приходится использовать по мере ее производства.

Единицы электроэнергии также не могут быть помечены в зависимости от того, где и как они были произведены, поэтому никто не может проверить, получено ли электричество, которое они используют, из устойчивого источника, если только они не подключаются непосредственно к своей собственной солнечной панели или ветряной мельнице.

Использование электромобилей улучшает качество воздуха в городах

Графф Зивин вместе с исследователями-экономистами Мэтью Котчен и Эрин Мансур зашли на эту спорную территорию в статье 2014 года.Зивин пришел к выводу, что электромобиль с подключаемым модулем, такой как Nissan Leaf, всегда производит меньше выбросов углекислого газа, чем гибридный автомобиль, работающий на электричестве и газе, но только в отдельных регионах, которые используют меньше угля, таких как запад США и США. Техас. Зарядка от угольной сети в верхней части Среднего Запада США в ночное время может привести к большему количеству выбросов, чем средний бензиновый автомобиль. А в некоторых регионах США подключение к сети в разное время суток может даже удвоить воздействие на выбросы электромобиля.

Для зарядки электромобиля на расстояние 100 миль потребуется около 30 кВтч — примерно столько же энергии потребляет средний дом в США чуть более чем за день.

«С тех пор, как мы написали эту статью, мы стали свидетелями того, как все больше и больше угля выходит [из употребления]», — говорит Зивин. Электростанции, работающие на природном газе, выделяют меньше парниковых газов на единицу произведенной энергии, чем электростанции, работающие на угле. Поскольку все больше угольных электростанций законсервировано — отчасти из-за более низких цен на природный газ — электромобили выбрасывают меньше углекислого газа.«Но противоречием этому является то, что из-за стандартов кафе [Барака] Обамы у нас теперь гораздо более чистые бензиновые автомобили».

Никто не знает, что будет делать избранный президент Дональд Трамп с Cafe, корпоративными стандартами средней экономии топлива, которые регулируют экономию топлива и выбросы новых автомобилей в США. Тем не менее, что бы ни случилось в США, вероятно, это не помешает распространению электромобилей во всем мире, потому что, помимо ограничения выбросов углекислого газа, электромобили также могут улучшить качество местного воздуха в городах, перемещая выбросы от автомобилей на электростанции.

Помимо ограничения выбросов углекислого газа, электромобили также могут улучшить качество воздуха в городах, перемещая выбросы от автомобилей на электростанции. Фотография: Imaginechina/Rex/Shutterstock

«Даже консервативные люди в Лос-Анджелесе интересуются качеством воздуха, — говорит Томас Террентайн, директор Исследовательского центра подключаемых гибридов и электромобилей Калифорнийского университета в Дэвисе. Он опросил владельцев электромобилей по всему миру о том, почему им нравятся их электромобили.«Изменение климата не стояло на первом месте в списке».

Хотя двуокись углерода является парниковым газом, она не токсична для здоровья человека и не способствует задымлению неба. Однако бензиновые и дизельные автомобили также выделяют соединения азота и серы, которые способствуют кислотным дождям и образуют мельчайшие частицы в воздухе, которые ухудшают качество воздуха и способствуют возникновению инсультов, сердечных заболеваний, рака легких и респираторных заболеваний, включая астму. По данным Всемирной организации здравоохранения, загрязнение воздуха является одной из самых неотложных экологических опасностей в мире, ежегодно приводя к преждевременной смерти более 3 миллионов человек.Китайское правительство неоднократно заявляло о своей приверженности развитию электромобилей, отчасти из-за проблем с загрязнением воздуха.

Правительства стимулируют внедрение

Вдохновленная скандалом с выбросами Volkswagen в 2015 году, когда компания фальсифицировала уровни выбросов дизельных двигателей во время испытаний, Германия в октябре приняла резолюцию, запрещающую автомобили с двигателями внутреннего сгорания к 2030 году. Это в значительной степени символическое постановление, призванное стимулировать действия в Европейском Союзе, но Нидерланды и Норвегия также обсуждают запреты, а 20% продаж новых автомобилей в Норвегии уже электрические.

Однако для некоторых людей отказ от бензина будет тяжелым испытанием. «Если бы весь мир перешел на электромобили, а спрос на бензин существенно упал, цены на нефть резко упали бы», — говорит Северин Боренштейн, профессор делового администрирования и государственной политики в Школе бизнеса Хааса Калифорнийского университета. Беркли. По словам Боренштейна, если спрос на нефть упадет на 10–20%, цена «почти наверняка упадет» до 20 долларов за баррель или ниже или до 1 доллара за галлон бензина до вычета налогов.«Это сделало бы использование электромобилей гораздо менее экономичным — именно здесь мы действительно сталкиваемся с реальным вопросом: готовы ли мы придерживаться этого?»

Загрязнение воздуха является одной из самых неотложных экологических опасностей в мире, ежегодно приводя к преждевременной смерти более 3 миллионов человек. Фотография: Бен Смит/The Guardian

Еще одна проблема – это материал, используемый в литиевых батареях электромобилей. «Положительная сторона заключается в том, что они не особенно токсичны», — объясняет Террентайн, в отличие от батарей на основе свинца или никеля, но их все еще сложно перерабатывать.В батареях также могут использоваться редкие элементы, такие как кобальт, добыча которого вызывает серьезные экологические и этические проблемы в таких странах, как Демократическая Республика Конго. Террентин считает, что аккумуляторная технология может стать менее зависимой от таких элементов, хотя до этого еще далеко.

Но в Калифорнии правительство продвигает революцию в области электромобилей. Потребителям были предложены щедрые льготы на чистый воздух в размере до 2500 долларов за автомобиль, а правительство США также предлагает налоговый кредит в размере 7500 долларов на электромобили.

В то время как технологические компании Силиконовой долины разрабатывают электромобили в рамках своего видения беспилотных автомобилей, Калифорнийская энергетическая комиссия выделила гранты в размере 150 миллионов долларов на создание инфраструктуры для зарядки электромобилей, а еще один грант в размере 10 миллионов долларов был выделен Tesla на ее разработку. модели X.

Вернувшись в Whole Foods, где заряжается Tesla стоимостью 88 000 долларов, даже зарядные станции были оплачены из государственных денег. Когда Круз слышит это, его энтузиазм по поводу будущего электромобилей несколько снижается.

«Если бы я знал это, ну, что я получу?» он говорит. «Я бы предпочел использовать деньги для тех, кто ездит отсюда туда на автобусе».

  • В эту статью были внесены поправки 9 декабря 2016 года, чтобы уточнить, что практически нет возможности хранить солнечную и ветровую электроэнергию для последующего использования.

Jaguar строит двухтурбинный электрический суперкар, которого у вас не будет

ПАРИЖ — Одной из радостей современного автосалона является полет фантазии, известный как концепт-кар.В интересах создания ажиотажа и игры мышц автопроизводители выставляют невероятно красивые дизайны и инженерные разработки, которые не имеют надежды на серийное производство, машины, которые никогда не увидят выставочный зал или не покатятся по дорогам общего пользования своим ходом. В этом году на автосалоне в Париже компания Jaguar представила C-X75, двухтурбинный, электрический, полноприводный автомобиль со скоростью 205 миль в час, который вы никогда не сможете купить.

Простите, если кривые кажутся знакомыми. C-X75 был создан, чтобы отпраздновать 75-летие Jaguar, и поэтому он намеренно напоминает культовые скоростные снегоходы, такие как XJ13 1960-х годов и XJ220 1990-х годов.

Роскошные линии C-X75 скрывают гибридную трансмиссию, увеличивающую запас хода, аналогичную той, что используется в Chevrolet Volt; четыре 195-сильных электродвигателя, по одному на каждое колесо, в паре с двумя бензиновыми турбинами на 80 000 об / мин, которые находятся под задней крышкой Jag. Jaguar утверждает, что каждый двигатель весит всего 50 кг, а в целом автомобиль способен развивать мощность 780 л.с. и 1180 фунт-фут крутящего момента. Энергия накапливается в литий-ионном аккумуляторе мощностью 19 кВтч и весом 330 фунтов, который может обеспечить до 68 миль вождения только на электричестве.62 мили в час достигаются всего за 3,4 секунды.

Как и большинство концептов суперкаров, Jag может похвастаться множеством невероятно дорогих, радующих глаз функций. Турбины, микроагрегаты с осевым потоком, которые были разработаны совместно с Bladon Jets, являются результатом совместного проекта с Советом по технологической стратегии, спонсируемым британским правительством. Салон автомобиля представляет собой массу TFT-экранов, полированного металла и натянутой кожи. В алюминиевом кузове находится выхлопная система с регулируемыми лопатками — в конце концов, эти турбины должны дышать — и задний диффузор, обшитый углеродным волокном, который выглядит как рабочая часть Трансформера в жару.

Короче говоря, C-X75 непрактичен. Во многом это оторвано от реальности. Вероятно, он стоит больше сотни государственных туалетов и имеет столько же шансов оказаться на нашей подъездной дорожке, как и Эйфелева башня. И, что особенно важно, он затрагивает несколько сердечных струн, проверяя историю и автомобили, которые мы любили, когда были маленькими.

Другими словами, это именно то, ради чего мы ходим на автосалоны.

ОБНОВЛЕНО 17:00: добавлено еще несколько фотографий, любезно предоставленных Jaguar.

Добавить комментарий

Ваш адрес email не будет опубликован.