Для чего служит кшм двигателя: Кривошипно-шатунный Механизм Двигателя, Назначение, Принцип Действия и Характеристика КШМ, Диагностика и Ремонт Неисправностей, Конструкция с Чертежами и Схемами

Содержание

Как устроен и для чего служит кривошипно-шатунный механизм? 7 основных неисправностей, которые могут возникнуть в его работе

Если у вас есть автомобиль, то с вероятностью 99.99%, в нём есть кривошипно-шатунный механизм (КШМ). Его нет только в «чистых» электромобилях, а также автомобилях с роторно-поршневым двигателем, а также в газотурбинных двигателях. Все остальные автомобильные двигатели внутреннего сгорания построены именно на базе КШМ, и неважно, дизельные они или бензиновые. Данная система передаёт энергию горения рабочей смеси через коленчатый вал и далее трансмиссию на колёса автомобиля, преобразуя возвратно-поступательное (туда и обратно) движение поршней в цилиндрах мотора во вращательное движение коленчатого вала.

Содержание статьи

Устройство механизма

Классический кривошипно-шатунный механизм был известен ещё в Древнем Риме. Использовался похожий принцип в Римской пилораме, только там вращение, под воздействием течения реки, водяного колеса превращалось в возвратно-поступательное движение пилы.

В паровых машинах также использовался КШМ, похожий на использующийся сейчас в автомобильных двигателях внутреннего сгорания (ДВС). Только в нём поршень был соединён с шатуном через шток и цилиндр низкого давления. Схожая конструкция используется иногда в ДВС и по сей день.

В так называемых крейцкопфных двигателях поршень жёстко соединён с крейцкопфом – деталью, движущейся по неподвижным направляющим в одном измерении, как и поршень, через шток, а далее по привычной схеме – шатун с коленвалом. Это позволяет увеличить рабочий ход поршня, а иногда делает цилиндр двусторонним, в таких конструкциях добавлена ещё одна камера сгорания. Такой тип КШМ применяется чаще всего в судовых дизелях и другой крупной технике.

Кривошипно-шатунный механизм состоит из двух основных групп деталей – подвижных и неподвижных:

  1. К подвижным частям КШМ относятся следующие детали: поршни, которые вместе с кольцами и пальцами объединены в поршневую группу, шатуны, коленчатый вал (в просторечном сокращении — коленвал), подшипники коленвала и маховик.
  2. Неподвижные – это картер, объединённый с блоком цилиндров, гильзы цилиндров, головка блока цилиндров. Также к ним относятся поддон (нижний картер), полукольца коленвала, картер маховика и сцепления, а также кронштейны и детали крепежа.

Иногда выделяют и цилиндропоршневую группу, в которую входит поршневая и гильза цилиндра.

Блок цилиндров

Блок цилиндров сейчас неотделим от картера блока. Так, кстати, было не всегда – на старых двигателях (у «Запорожца», например) они могли быть изготовлены раздельно. Именно картер вместе с блоком цилиндров – основной узел конструкции двигателя автомобиля.

Внутри блока и происходит вся полезная работа двигателя. К блоку цилиндров крепятся внизу — нижний картер (поддон), сверху — головка блока, сзади — картер маховика, топливная, выпускная системы и другие детали двигателя. Сам блок прикреплён к шасси автомобиля через специальные «подушки».

Материал, из которого изготовлена эта важная часть двигателя – чаще всего либо алюминий, либо чугун. На спортивных автомобилях могут применяться и композитные материалы. В блок запрессованы съёмные гильзы, которые облегчают ход поршней и ремонтопригодность блока – то есть его расточку под «ремонтные» поршни и кольца. Гильзы делают из чугуна, стали или композитных сплавов. Существует два вида гильз:

  • «сухие» — когда внешняя поверхность гильз не омывается охлаждающей жидкостью;
  • «мокрые» — когда гильзу снаружи охлаждает поток жидкости.

Каждый вариант имеет свои достоинства и недостатки.

Поршни

Поршень – это металлическая деталь, которая имеет форму стакана, и в некоторых автопредприятиях водители и автослесари со стажем старые поршни, очищенные от нагара, в качестве стаканов и использовали. Однако основное его предназначение, естественно, не в этом, а для того, чтобы преобразовывать потенциальную энергию давления и термическую энергию температуры газов в кинетическую энергию вращения коленчатого вала в момент рабочего хода.

Во время тактов впуска он служит в качестве насоса, затягивающего воздух или горючую смесь, в ходе такта сжатия сжимает её, а в ходе такта выпуска — помогает удалению отработанных газов. Во время рабочего хода (точнее, чуть раньше) смесь воспламеняется (или форсунка впрыскивает топливо на дизельных двигателях), и горящие газы давят на поршень, заставляя его выполнять работу по преобразованию термической энергии в кинетическую.

Поршень современного автомобильного двигателя выполнен чаще всего из сплавов на основе алюминия. Они обеспечивают хороший отвод лишнего тепла, к тому же довольно лёгкие.

Составные части поршня автомобильного двигателя – это днище, уплотняющяя часть и юбка. Поршень соединяется с шатуном при помощи находящегося в юбке пальца. Для обеспечения плотности соединения поршня со стенкой цилиндра применяются поршневые кольца.

Поршневые кольца

Это плоские незамкнутые (с разъёмом в несколько десятых долей миллиметра) стальные или чугунные кольца, надеваемые в специальные канавки на уплотнительную часть поршня. Они служат для нескольких целей:

  1. Уплотнение. Качественные, неизношенные кольца повышают компрессию (давление в цилиндре).
  2. Теплопередача. Компрессионные кольца передают лишнее тепло гильзе цилиндра, предотвращая перегрев двигателя.
  3. Не пропускают моторное масло из картера в камеру сгорания, но оставляют на стенках гильзы небольшой слой масла для смазки цилиндра. Самое нижнее кольцо называется маслосъёмным. Его конструкция специально разработана под эту задачу.

Поршневые пальцы

Поршневой палец нужен для того, чтобы связать поршень с шатуном. Он находится во внутренней части юбки поршня и представляет собой металлический цилиндр, отдалённо похожий на палец (отсюда и название). Шатун не крепится жёстко на пальце, ведь надо обеспечивать максимально ровную передачу крутящего момента от поршня к шатуну и далее. Выполнены пальцы обычно из легированной стали.

Пальцы делятся на фиксированные и плавающие. Фиксированный жёстко прикреплён к юбке поршня, и двигается на нём только шатун, а плавающий палец как в поршневой юбке, и на шатуне может крутиться. Сейчас в конструкциях автомоторов преобладают плавающие пальцы, обеспечивающие более полную и плавную передачу крутящего момента и снижающие нагрузку на детали КШМ.

Шатун

Для того, чтоб передать крутящий момент с поршня на коленвал, служит шатун, соединяющий две этих важных детали. Для того, чтобы ремонт шатуна не вызывал особых трудностей, в нём применяются специальные вкладыши, фактически разборный подшипник скольжения, хотя в некоторых двигателях с малой скоростью вращения коленвала по-прежнему применяются баббитовые вкладки, а в быстроходных моторах в обеих головках шатуна (как нижней, так и верхней) установлены подшипники качения. По форме шатун похож на рычаг или гаечный ключ с двутавровым сечением. Его верхняя, обычно неразъёмная головка соединяет его с пальцем поршня, а нижняя, разъёмная соединяет шатун с коленчатым валом. Делают шатуны чаще всего из легированной, иногда из углеродистой стали.

Коленчатый вал

Коленчатый вал, или сокращённо коленвал – одна из важнейших деталей мотора, впрочем, лишних деталей не бывает. Он имеет форму вала с «искривлениями» в сторону, к которой через оси прикреплены шатуны двигателя. Он состоит из следующих деталей:

  1. Шейки. Они нужны для того, чтобы закрепить коленвал на картере и шатуны на нём. Подразделяются на коренные и шатунные. На коренных крепится к картеру сам коленчатый вал, на шатунных шейках к коленвалу крепятся шатуны.
  2. Щёки – они и являются своего рода «коленями» коленчатого вала, именно они крутятся вокруг оси коленчатого вала. Щёки коленвала соединяют коренные и шатунные шейки.
  3. Передняя выходная часть вала. К ней присоединены шкивы отбора мощности для привода через ремень, цепь или шестерни распредвала, системы охлаждения генератора и других агрегатов.
  4. Задняя выходная часть вала. Она соединена с маховиком и служит для отбора мощности для «основного предназначения» автомобиля – для движения.

В конструкции коленчатого вала также предусмотрены дополнительные детали, например, противовесы, предназначенные для компенсации вибраций вала, возникающих при ударных нагрузках.

Коленчатые валы чаще всего изготавливаются либо из стали, либо из высококачественного лёгкого чугуна. Чугунные коленвалы изготавливаются при помощи литья, стальные – при помощи штамповки.

Картер двигателя

Картер, отливаемый вместе с блоком цилиндров – основная деталь двигателя автомобиля, можно сказать, что рама двигателя. Именно на картере закреплены основные части двигателя, в нём крутится коленчатый вал, в цилиндрах двигаются поршни и происходит непосредственный процесс превращения энергии сгорания топлива в энергию вращения колёс вашего автомобиля.

Ещё картер является основным местом для размещения моторного масла, которое смазывает двигатель. Для хранения масла также предназначен поддон – нижняя часть картера.

Принцип работы кривошипно-шатунного механизма

Во время основного такта работы автомобильного двигателя – рабочего хода (расширения), горящие газы давят на поршень, а тот двигается вниз — от верхней мёртвой точки к нижней, тем самым передавая энергию посредством пальца и шатуна на коленчатый вал. Шатун может ограниченно поворачиваться и вокруг оси пальца поршня, и вокруг шатунной шейки коленвала, и таким образом поступательное движение поршня превращается во вращательное.

Стоит заметить, что при остальных тактах коленчатый вал через шатун, наоборот, сообщает возвратно-поступательное движение поршню. Где он его берёт? Из «рабочих» цилиндров, энергии коленвала и маховика, а при запуске – стартера.

Неисправности, возникающие при работе КШМ и их причины

Неполадки и поломки в кривошипно-шатунном механизме могут произойти в самых разных его узлах. Чтобы свести риск возникновения этих неприятностей до минимума, необходимо знать, отчего они происходят. Чаще всего это нагар на деталях и их износ. Наиболее часто происходят поломки КШМ от использования некачественного автомобильного топлива и масла. Особенно это чревато для дизелей, которые требовательны к качеству горюче-смазочных материалов, что может вывести из строя не только КШМ. Редкая смена масла, несвоевременная замена топливных, воздушных и масляных фильтров – всё это также несёт потенциальную угрозу поломок. Может послужить причиной неисправности перегрев двигателя, а также утечка и снижение уровня моторного масла в двигателе.

Перегрев двигателя может привести даже к заклиниванию. Чтобы этого не случилось, заливайте качественную охлаждающую жидкость и следите за состоянием системы охлаждения.

Бывает, что проблема в системе питания или в зажигании. Тогда смесь сгорает не полностью или неравномерно.

Ещё одна распространённая причина поломок – это использование некачественных запчастей. Не покупайте фейк и пользуйтесь услугами проверенных автосервисов.

Перечень неисправностей КШМ

Главные неприятности, которые могут случится с кривошипно-шатунным механизмом:

  1. Как шатунные, так и коренные шейки коленчатого вала подвержены износу и механическим повреждениям.
  2. Износ, механические повреждения и даже расплавление могут угрожать и вкладышам (подшипникам) шеек коленвала.
  3. «Болезни» поршневых колец – это закоксовывание не до конца сгоревшими продуктами горения (углеводороды окисляются только до углерода), их залегание и даже поломки, что может привести к фатальным последствиям.
  4. Цилиндропоршневая группа также подвержена износу. В современных «движках» это не так заметно, всё-таки они созданы по последнему слову техники, но у каждой детали имеется конечный ресурс.
  5. На днище поршня может отложиться нагар.
  6. В деталях могут появиться трещины, они могут прогореть, обломиться и даже расплавиться.
  7. Двигатель может даже заклинить.

Признаки наличия неисправностей в работе КШМ

Могут насторожить посторонние стуки в двигателе. Возможно, это связано с детонацией или вам попалось не слишком качественное топливо. Последствия как детонации, так и некачественного топлива могут быть печальными. Звук при детонации более звонкий, а вот глухой звук может свидетельствовать о том, что износились шейки коленвала. Если же он совсем звонкий и происходит не только при резком увеличении оборотов (например, если вы быстро тронулись с места), то вполне возможно, что вкладыши шейки коленвала начинают плавиться. Возможно, причиной масляное голодание, но так или иначе – в сервис.

Также многое может сказать дым из двигателя. Если он сизый, то значит, что в камеру сгорания попадает масло. Возможно, виной тому маслосъёмные колпачки ГРМ, а возможно, проблема в поршневых кольцах. Накопление нагара на поршнях и цилиндрах приводит к увеличению трения и повышенному износу деталей. Если проблема в кольцах, то будет снижена компрессия, хотя понижение компрессии может быть связано и с другими причинами.

Обслуживание КШМ

Прежде всего, общие советы: «машина любит ласку, чистоту и смазку». Следует вовремя проверять уровень масла, не допускать перегрева двигателя и заправляться только качественным горючим. Серьёзные проблемы с КШМ решаются только в автосервисе. Разумеется, есть автолюбители, которые самостоятельно могут расточить цилиндр до ремонтного размера, но это всё же характерно для не самых новых автомобилей.

В «закоксованных» двигателях можно провести раскоксовку, которая делается как с разбором двигателя, так и при помощи специальных средств – без такового. Однако, подобные манипуляции лучше доверить профессионалам. Соблюдайте сроки ТО.

Заключение

Кривошипно-шатунный механизм – это важнейший агрегат в автомобиле. От его функционирования зависит состояние всего автомобиля и настроение его владельца. Следите за его технической исправностью, и двигатель будет работать долго, радуя вас мощностью и экономичностью.

ОГПОБУ «Политехнический техникум», г. Биробиджан

«Экскурс в историю»
16.03.22 18:10

14 марта в рамках рабочей поездки в ЕАО состоялась встреча заместителя председателя Комитета СФ по обороне и безопасности,

Читать полностью
 
Книга — твой друг, без нее как без рук
02.02.22 17:30

Книга учит мыслить,
Книга учит говорить,
Книга учит понимать людей.

Читать полностью
 
Призер в первенстве России по тхэквондо
07.12.21 12:23

С 24 по 28 ноября 2021 года в Казани прошли чемпионат и первенство России по тхэквондо, в которых приняли участие 2000 спортсменов из 61 региона России.

Читать полностью
 
В рамках проекта «Билет в будущее»
29.11.21 13:25

29 ноября для 17 ребят 9 класса МБОУ СОШ № 5 г. Биробиджана проведены профессиональные пробы по профессии «Сварочные технологии».

Читать полностью
 
В рамках проекта «Билет в будущее»
24.11.21 13:23

Продолжает свою работу Всероссийский проект «Билет в будущее». 22 ноября в ОГПОБУ «Политехнический техникум» прошел третий день профессиональных проб для школьников 9 классов МБОУ СОШ №5.

Читать полностью
 
В рамках проекта «Билет в будущее»
19.11.21 13:12

17 ноября на базе ОГПОБУ «Политехнический техникум» в рамках проекта по ранней профессиональной ориентации учащихся 6-11-х классов

Читать полностью
 
Проект «Билет в будущее»
07.10.21 15:30

Школьники г. Биробиджана Еврейской автономной области присоединились к проекту «Билет в будущее», который стартовал в регионе

Читать полностью
 
Эстафеты к Дню Защитника Отечества 23 февраля
28.02.22 21:14

В канун всероссийского праздника — Дня защитника Отечества в ОГПОБУ «Политехнический техникум» состоялись спортивные и военно-прикладные эстафеты « Сильные, ловкие, быстрые».

Читать полностью
 
V Открытый региональный чемпионат «Молодые профессионалы» (WorldSkills Russia) пройдет в ЕАО с 01.02.2022 по 04.02.2022
31.01.22 18:25

Торжественная церемония открытия пятого, юбилейного регионального чемпионата «Молодые профессионалы» (WorldSkills Russia) Еврейской автономной области пройдет в Биробиджанской областной филармонии 1 февраля 2022 г.

Читать полностью
 
Всероссийский конкурс научно-технологических проектов
01.12.21 14:28

Всероссийский конкурс научно-технологических проектов – это масштабное мероприятие для старшеклассников и студентов, которые занимаются научной или исследовательской деятельностью.

Читать полностью
 
Семейно-демографический проект «На защите семьи и детства»
24.11.21 18:08

С 1 июля Ассоциация организаций по защите семьи приступила к реализации проекта «На защите семьи и детства»,

Читать полностью
 
В рамках проекта «Билет в будущее»
20.11.21 13:15

18 ноября на базе ОГПОБУ «Политехнический техникум» в рамках проекта по ранней профессиональной ориентации учащихся 6-11-х классов

Читать полностью
 
В Еврейской автономной области стартует отборочный этап VII Национального чемпионата «Абилимпикс»
13.10.21 14:21

13 и 14 октября в Еврейской автономной области в очно-дистанционном формате пройдет отборочный этап VII Национального чемпионата по профессиональному мастерству среди инвалидов и лиц с ограниченными возможностями здоровья «Абилимпикс» – одного из проектов президентской платформы «Россия – страна возможностей».

Читать полностью
 
Завершился III Региональный чемпионат по профессиональному мастерству среди инвалидов и лиц с ограниченными возможностями здоровья «Абилимпикс» Еврейской автономной области
01.10.21 13:22

В Еврейской автономной области 29 сентября 2021 года завершился III Региональный чемпионат по профессиональному мастерству среди инвалидов и лиц с ограниченными возможностями здоровья «Абилимпикс», в котором участвовали 57 конкурсантов в категориях школьники, студенты и специалисты.

Читать полностью
 

Устройство и принцип действия кривошипно-шатунного механизма.

Кривошипно шатунный механизм состоит из поршневой группы ( поршней с поршневыми кольцами и поршневыми пальцами), шатунов, коленчатого вала и маховика.

Цилиндры. Цилиндр вместе с поршнем и головкой цилиндров образует замкнутый объем, в котором совершается рабочий цикл двигателя. Внутренняя поверхность стенок цилиндров служит направляющей при движении поршня. Внутренняя поверхность цилиндров называется зеркалом, и изготавливается с высокой точностью ( овальность и конусность должна быть не больше 0,02 мм). Цилиндры могут быть выполнены в расточке блока цилиндров, либо в виде отдельных вставных гильз. Гильзы бывают двух видов: сухие и мокрые. Сухие гильзы не контактируют с охлаждающей жидкостью, непосредственно запрессовываются в расточку блока цилиндров. Мокрые гильзы с наружной поверхности омываются охлаждающей жидкостью. Такие гильзы устанавливаются в блок цилиндров, опираясь на упорный буртик в верхней части гильзы, на соответствующую расточку блока цилиндров. Для обеспечения герметичности под упорный буртик укладывается медное уплотнительное кольцо. Для разделения водяной рубашки и масляной ванны, в нижней части гильзы устанавливается резиновое уплотнительное кольцо.

Поршень является одной из самых напряженных, в тепловом отношении, деталей двигателя. Поршень служит для восприятия давления газов и предачи его на поршневой палец, шатун и коленвал. Представляет собой металлический стакан в конструкции которого различают три части: верхняя часть – днище, часть поршня от верхней кромки верхнего поршневого кольца до нижней кромки нижнего поршневого кольца является уплотнительной частью и называется головкой поршня, третья часть поршня – направляющая часть, называются юбка поршня или тронк.


Поршни бывают цельной отливки и с отъемной головкой. Отъемные головки применяются на двигателях большой мощности. Для предупреждения стуков и перекосов поршней, изготовленных из алюминиевых сплавов, на поршне делаются компенсационные или вставки. Компенсационные вставки уменьшают тепловое расширение юбки поршня, что в значительной мере снижает износ непрогретых поршней.

Поршневой палец служит для шарнирного соединения поршня с шатуном. Поршневые пальцы имеют самые разнообразные конструктивные формы. Наиболее распространенный тип поршневого пальца редставляет собой цилиндр из легированной стали, который для уменьшения массы обычно изготавливается полым. Пальцы бывают трубчатой формы, и с коническими трубчатыми поверхностями.

Поршневые кольца бывают двух видов: компрессионные, предназначенные для уплотнения подвижного соединения поршень – цилиндр. Кольца прижимаются к стенкам цилиндров под действием сил упругости и давления газов, и создают при этом лабиринт, в местах прохода газов из надпоршневого пространства в картер. Число компрессионных колец зависит от быстроходности и мощности двигателя. Для различных двигателей число колец может изменяться от 2 до 7.

Маслосъемные кольца предназначены для снятия излишков масла со стенок цилиндра. Количество маслосъемных колец может изменяться от 1 до 3.

Шатуны: служат для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Соединяя поршень с коленчатым валом, шатун передает на него усилие, при этом подвергается действию переменной нагрузки, от действия давления и сил инерции. Шатуны изготавливают из углеродистой, или легированной стали, с последующей термической и механической обработкой. Шатун однорядного двигателя состоит из верхней головки, стержня, нижней головки, шатунных болтов и вкладышей.

Разъёмные подшипники скольжения. Предназначены для снижения износа шеек коленчатого вала. Различают коренные и шатунные разъёмные подшипники скольжения.

Коленчатый вал служит для восприятия усилия передаваемого от поршней и преобразования его в крутящий момент.

В конструкции коленчатого вала различают коренные и шатунные шейки. Шейки соединяются между собой щеками. На переднем конце коленчатого вала закрепляются распределительные шестерни, маслоотражательные кольца и храповик. Задний конец коленчатого вала несет на себе фланец для крепления маховика.

Маховик служит для вывода поршней из мертвых точек, а также для выравнивания скорости вращения коленчатого вала. Представляет собой массивный цилиндр изготавливаемый из чугуна или стали, на наружной поверхности которого напрессовывается зубчатый венец, служащий для привода маховика в движение от электростартера или пускового двигателя. Основную массу металла маховика располагают ближе к его ободу, для увеличения момента инерции маховика. Маховик закрепляется на фланце коленчатого вала при помощи болтов. Для предотвращения смещения маховика, относительно центра вращения используют центровочные пальцы. Коленчатый вал с маховиком в сборе подвергают статической и динамической балансировке.

Принцип действия кривошипно-шатунного механизма.

Газы, образовавшиеся при сгорании топлива в цилиндре, воздействуют на днище поршня. Под действием этого давления на поршне возникает усилие, которое перемещает поршень в цилиндре к нижней мертвой точке. Движение поршня через поршневой палец передается на шатун. Шатун при этом совершает сложное движение: верхняя головка шатуна перемещается возвратно поступательно вместе с поршнем, нижняя головка шатуна совершает вращательное движение. Усилие, передаваемое на шатун от поршня, передается на шатунную шейку коленчатого вала. Благодаря этому на коленчатом валу развивается крутящий момент пропорциональный усилию, действующему на поршень и радиусу кривошипа. Под действием этого крутящего момента коленчатый вал и маховик приходят во вращение. Движение деталей кривошипно-шатунного механизма в такте впуск, сжатие и выпуск происходит благодаря инерции, накопленной на маховике.

Техническое обслуживание кривошипно-шатунного механизма.

ЕО — постоянный контроль за работой двигателя. При появлении посторонних шумов и стуков двигатель должен быть остановлен для выявления причин появления посторонних шумов.

ТО-1.

1 проверка компрессии. Проводится на холодном двигателе. Производится при помощи компрессиметра. Коленчатый вал прокручивают при помощи электростартера, при нулевой подаче топлива. Наконечник компрессиметра, поочередно прикладывают к отверстиям каждого из цилиндров. Компрессия считается нормальной, если на различных цилиндрах нет разницы в показаниях компрессиметра более чем 0,1 МПа.

2 прослушивание двигателя при помощи стетоскопа.

Прослушивание проводят при прогретом двигателе, путем прикладывания наконечника стетоскопа к различным частям блока-картера и головки цилиндров. Стук поршневого пальца, прослушивают путем прикладывания наконечника стетоскопа к верхней половине цилиндра, и через головку блока цилиндров. Стук пальца отчетливый, резкий, металлический, усиливающийся с повышением частоты вращения и пропадающий при выключении цилиндра из работы.

Стук поршневых колец звонкий, но слабый. Прослушивается в средней части цилиндра. При изменении частоты вращения, звук практически не меняется, при выключении цилиндра из работы не пропадает.

При увеличении зазора в подшипниках коленчатого вала возникает глухой звук низкого тона, звук хорошо слышен при резком изменении частоты вращения, прослушивается в нижней половине блока.

Стук поршня слабый металлический. Хорошо прослушивается на блоке цилиндров в зонах соответствующих верхней и нижней мертвым точкам.

Если стуки двигателя слышны без стетоскопа, то двигатель следует немедленно остановить для ремонта.

ТО-2 операций не добавляется.

СО очистка деталей цилиндропоршневой группы от нагара.

Основные неисправности.

неисправность причина Способ устранения
1) Падение компрессии. 1) закоксовывание или поломка компрессионных колец. Слить масло, в цилиндр залить раскоксовывающую жидкость, выдержать 2-3 часа, произвести повторное измерение компрессии если компрессия не возросла, произвести разборку двигателя, заменить компрессионные кольца.
2) чрезмерный износ деталей цилиндропоршневой группы. Цилиндры расточить под следующий ремонтный размер, поршни и кольца заменить.
2) Увеличение компрессии. Чрезмерный износ или поломка маслосъемных колец. Замена изношенных деталей.  
3) Детонационное сгорание или преждевременные вспышки топлива. 1) Повышенное нагароотложение на стенках цилиндра и поршнях. Очистить детали цилиндропоршневой группы от нагара.
2) кавитационный износ поршней и цилиндров. Замена поврежденных деталей.
4) Падение мощности двигателя или двигатель не развивает обороты. Чрезмерный износ деталей цилиндропоршневой группы Замена изношенных деталей. Или применить метод ремонтных размеров.
5) Падение давления масла. Износ разъёмных подшипников скольжения (вкладышей) Если шейки коленчатого вала достигли предельного состояния -применить метод ремонтных размеров: шейки коленчатого вала расточить, вкладыши заменить. Если нет то только заменить вкладыши.
6) Утечка охлаждающей жидкости в картер. Разрушение резиновых уплотнений на гильзах. Замена изношенных деталей.
Разрушение прокладки головки блока цилиндров. Замена поврежденных деталей.
7) Прорыв газов между блоком и головкой цилиндров. 1) Разрушение прокладки головки блока цилиндров. Замена изношенных деталей. При повреждении шлифованных поверхностей блока или головки восстановить плоскость разъёма шлифовкой.
2) Деформация головки цилиндров.  
8) Прорыв газов в картер. Чрезмерный износ поршневых колец. Замена изношенных деталей.
9) Повышенный расход масла. Разбиты канавки поршневых колец. Подобрать кольца соответствующего размера, либо заменить поршни с кольцами.

Контрольные вопросы:

1 для чего предназначен кривошипно-шатунный механизм?

2 перечислите детали кшм.

3 каково назначение цилиндров.

4 чем отличается мокрая гильза от сухой.

5 перечислите составные части поршня.

6 какими способами поршневой палец может соединяться с поршнем и шатуном.

7 каково назначение разъёмных подшипников скольжения.

8 из каких частей состоит коленчатый вал.

9 каково назначение маховика.

10 как часто следует проверять компрессию в цилиндрах.

11 каким образом проводится прослушивание двигателя.

§16 Механизм газораспределения.

Предназначен: для открытия и закрытия впускных и выпускных отверстий в головке цилиндров, благодаря чему осуществляется заполнение цилиндров свежим зарядом воздуха, или горючей смеси и отведение отработавших газов.

Существуют клапанные, золотниковые и комбинированные механизмы газораспределения. Механизм клапанного распределения может быть с верхним или нижним расположением распределительного вала. По расположению клапанов различают механизмы с подвесными клапанами и с боковыми клапанами. По количеству клапанов в одном цилиндре различают 2, 3, 4 клапанные механизмы.

Устройство.

Механизм газораспределения состоит из:

1 распределительный вал.

Представляет собой металлический стальной стержень с кулачками и опорными шейками. Служит для управления движением клапанов.

2 толкатели. Предназначены для передачи движения от кулачка распределительного вала на штангу, коромысло, клапанный рычаг или клапан, в зависимости от конструкции механизма газораспределения. Толкатели бывают трех типов: цилиндрические, грибовидные и роликовые.

Толкатели могут изготавливаться с гидрокомпенсаторами или без них.

3 штанги. Предназначены для передачи движения от толкателя к коромыслу. Представляет собой стальной стержень с термообработанными наконечниками.

4 коромысло. Предназначено для передачи движения от штанги к клапану. Представляет собой двуплечий рычаг установленный на оси. Длинное плечо коромысла подвергается термической обработке, и называется боек. Короткое плечо коромысла изготавливается с резьбовым отверстием, в которое устанавливается регулировочный винт.

 

5 клапан служит для открытия и закрытия отверстия в цилиндре.

6 седло клапана служит для обеспечения герметичности внутренней полости камеры сгорания при закрытом клапане.

7 направляющая втулка служит для обеспечения правильной посадки клапана в седле.

8 клапанная пружина служит для обеспечения возврата деталей МГР в исходное положение по окончании действия кулачков распределительного вала.

9 тарелка клапанной пружины служит для удержания клапанной пружины в сжатом состоянии.

10 траверса обеспечивает синхронное открытие клапанов одного цилиндра.

Принцип действия.

При вращении коленчатого вала, движение через распределительные шестерни передается на распределительный вал. Передаточное отношение шестерён 1/2 . вместо распределительных шестерен могут использоваться цепные или ременные передачи. При вращении, рапределительный вал своими кулачками воздействует на толкатели. Через толкатели это воздействие передается на штанги и далее на коромысла. Коромысло поворачиваясь на своей оси передает движение на клапан. Клапан утапливается внутрь цилиндра и открывает отверстие в головке цилиндров. По окончании воздействия кулачков распределительного вала на толкатель клапан под действием клапанной пружины прижимается к своему седлу и закрывает отверстие в головке цилиндров.

Техническое обслуживание.

ЕО – постоянный контроль за работой двигателя. При появлении посторонних стуков и шумов, либо выстрелов в глушитель или впускной коллектор двигатель должен быть остановлен для диагностики и устранения неисправностей.

ТО-1

1 проверить и при необходимости отрегулировать осевое биение распределительного вала.

2 проверить и при необходимости отрегулировать тепловой зазор между бойком коромысла и клапаном. (Не выполняется в двигателях с гидрокомпенсаторами). Проверка осуществляется на холодном двигателе. Величина теплового зазора определяется в руководстве по эксплуатации. Поршень первого цилиндра устанавливается в верхнюю мертвую точку в конце такта «сжатие». Это определяется по моменту впрыска топлива на дизелях или по искре на двигателях с принудительным воспламенением. При помощи плоского щупа необходимой толщины, проверяется величина зазора. Щуп должен проходить между бойком коромысла и клапаном с небольшим усилием. Регулировка зазора производится при помощи винта. При выворачивании винта зазор увеличивается, при завинчивании – уменьшается. Следует помнить, что при затягивании контргайки, зазор несколько увеличивается, поэтому при регулировке, следует добиться небольшого закусывания щупа. После регулировки зазора на клапанах первого цилиндра, проворачивают коленчатый вал на необходимый угол, и переходят к регулировке зазора на следующем цилиндре по порядку работы.

2.1 по показаниям измерения компрессии произвести притирку клапанов. Приготавливается притирочный состав 1 часть порошка М14 или М16, 1,5 части дизельного топлива, 2 части моторного масла. Притирочный состав наносится на седло клапана, сам клапан при помощи коловорота с присосом, прижатый к седлу с усилием 20 кг проворачивается на 2/3 оборота, после чего клапан возвращается на 1/3 оборота без усилия, и далее вновь с усилием проворачивается на 2/3 оборота. Такими последовательными движениями клапан притирается до появления сплошной матовой полоски на тарелке клапана толщиной 1,5-2 мм. По окончании притирки всех клапанов производится проверка их герметичности.

ТО-2 проверка упругости клапанных пружин.

СО

1 после очистки деталей цилиндропоршневой группы от нагара притереть клапана.

2 проверить состояние направляющих втулок клапанов.

Основные неисправности механизма газораспределения.

неисправность причина Способ устранения
Двигатель не развивает полной мощности. Клапаны неплотно прилегают к седлам Проверить упругость клапанных пружин; при несоответствии заменить; если пружины в порядке провести притирку клапанов.
Уменьшенный тепловой зазор между бойком коромысла и клапаном. Отрегулировать тепловой зазор.
Стук при работе двигателя. Увеличенный зазор между бойком коромысла и клапаном. Отрегулировать тепловой зазор.
Выстрелы в карбюратор или глушитель. Уменьшенный тепловой зазор между бойком коромысла и клапаном. Отрегулировать тепловой зазор.
Невозможность установки теплового зазора. Погнуты штанги или клапаны Заменить поврежденные детали.
Увеличенное осевое перемещение распределительного вала Отрегулировать осевое перемещение.
Повышенный расход масла. Износ направляющих втулок или маслосъемных колпаков Заменить изношенные детали.
Перегрев двигателя, двигатель не развивает мощности. Сбиты фазы газораспределения. Отрегулировать положение распределительного вала.

 

§17 Система питания. Карбюратортый двигатель.

Система питания предназначена для очистки топлива и воздуха, приготовления топливо-воздушной смеси требуемого состава, и отведения отработавших газов.

Из топливного бака 1 через систему фильтрации 4 топливо попадает в подкачивающий насос 5. Насос перекачивает топливо в поплавковую камеру карбюратора 7. В карбюраторе топливо смешивается с воздухом, образуя смесь требуемого состава. Топливовоздушная смесь попадает в цилиндр, где сгорая превращается в отработавшие газы. Отведение газов осуществляется через глушитель 13 и искрогаситель. Иногда система выпуска дополняется нейтрализатором отработавших газов.

Топливный бак. Служит для хранения запаса топлива. Представляет собой емкость произвольной формы, изготавливаемую из штампованных стальных листов. В верхней части топливного бака устраивается отверстие, закрываемое пробкой – заправочная горловина. Для первичной очистки топлива к заправочной горловине припаивается металлическая сетка. В пробке заливной горловины устраивается отверстие, через которое топливный бак сообщается с атмосферой. Для предотвращения попадания пыли из окружающей среды в топливо в отверстие устанавливается войлочный фильтр. В нижней части топливного бака монтируется топливопровод, соединяющий бак с фильтром грубой очистки. Для возможности удаления отстоя в нижней части топливного бака устраивается резьбовое отверстие, закрываемое пробкой, или краном. Внутри топливного бака располагается датчик уровня топлива.

Фильтр грубой очистки. Служит для очистки топлива от воды и механических примесей. Представляет собой фильтр-отстойник. Топливо попадающее внутрь фильтра, задерживается в нем на некоторое время, вода и механические примеси тонут и оседают на дне фильтра, а топливо очищенное таким образом отправляется дальше по системе. В нижней части фильтра устраивается резьбовое отверстие, закрываемое пробкой или краном. Через это отверстие сливается отстой.

Фильтр тонкой очистки. Служит для окончательной очистки топлива от механических примесей. Представляет собой фильтр с фильтрующим элементом. В фильтрах такого типа используются бумажно картонные, сетчатые фильтрующие элементы, также встречаются элементы из прессованной керамики.

Топливный насос. На карбюраторных двигателях преимущественно применяются диафрагменные насосы. В некоторых случаях используются насосы центробежного типа.

Рабочим элементом диафрагменного насоса является упруго-демпфирующий элемент – диафрагма, которая разделяет внутреннюю полость насоса на две части. В верхнюю часть насоса подводится топливо. Там врезаются всасывающий и нагнетательный патрубки, снабженные обратными клапанами. В нижней части насоса располагается его привод. Насос приводится в движение кулачковым механизмом, чаще всего эксцентрик привода насоса располагается на распределительном валу. При вращении эксцентрика, движение через толкатель и пружину передаётся на диафрагму. Двигаясь в насосе вверх мембрана выжимает топливо в нагнетательный топливопровод. Совершая обратное движение мембрана создает в топливной полости разрежение, под действием которого нагнетательный клапан насоса закрывается, а всасывающий клапан открывается, и топливо заполняет внутреннюю полость насоса. При заполнении поплавковой камеры карбюратора, отток топлива из насоса прекращается, и насос переходит в режим холостого хода. Толкатель при своем движении сжимает пружину, мембрана при этом не перемещается.

Карбюратор.

Карбюратор предназначен для приготовления топливовоздушной смеси, требуемого состава, на всех режимах работы двигателя.

1 – поплавковая камера, 2 – поплавок, 3 – отверстие поплавковой камеры, 4 – игольчатый клапан, 5 – топливопровод, 6 – топливный бак, 7 – впускной коллектор, 8 – впускной клапан, 9 – цилиндр, 10 – дроссельная заслонка, 11 – смесительная камера, 12 – диффузор, 13 – воздушный фильтр, 14 – воздушная заслонка, 15 – впускной трубопровод, 16 – распылитель, 17 – топливный жиклер

Топливо от насоса попадает в попадает в поплавковую камеру 1 и заполняет её. Поплавок 2 в камере поднимается вверх и воздействует на игольчатый клапан 4. При достижении заданного уровня топлива, игольчатый клапан прижимается к своему седлу, и подача топлива прекращается. По мере расхода топлива поплавок 2 опускается вниз, игольчатый клапан 4 отходит от седла и подача топлива возобновляется. Таким образом поддерживаеся постоянный уровень топлива в поплавковой камере 1. Уровень устанавливается таким, что-бы при неработающем двигателе топливо не вытекало из распылителя 16, а находилось на 1,5-2 мм ниже его среза. При работе двигателя в смесительной камере 11 создается разрежение, которое вызывает подъём уровня топлива в распылителе. Топливо фонтаном выбрасывается в смесительную камеру, где подхватывается потоком воздуха. Воздух, двигающийся со скоростью 20-25 м/с, разбивает топливо на мельчайшие капли, превращая смесь в туманообразное состояние. Это состояние называется карбюрация. Количество топливовоздушной смеси подаваемой в цилиндры регулируется дроссельной заслонкой 10. Качественный состав смеси регулируется воздушной заслонкой 14. Для обеспечения работы двигателя в различных режимах, карбюратор снабжается следующими системами:

система пуска обеспечивает обогащение топливовоздушной смеси в режиме пуска;

система холостого хода – обеспечивает образование топливовоздушной смеси при закрытой дроссельной заслонке;

главная дозирующая система – обеспечивает обеднение рабочей смеси в режиме средних нагрузок;

экономайзер – обеспечивает обогащение рабочей смеси в режиме максимальных нагрузок;

ускорительный насос – улучшает приемистость двигателя.

 

Воздушный фильтр.

Очистка воздуха в этих фильтрах осуществляется в три ступени: первая ступень центробежная очистка. Воздух попадая в фильтр направляется на лопатки завихрителя. Двигаясь в верхней части фильтра по спирали, воздух освобождается от большей части механических примесей. Частицы пыли под действием центробежных сил отбрасываются к периферии фильтра и оседают в отстойнике. Очищенный таким образом воздух засасывается в нижнюю часть фильтра, где соприкасается с маслом. Оставшиеся частицы пыли улавливаются маслом, а воздух пройдя через фильтрующие элементы попадает в воздуховод, а далее в карбюратор.

Глушитель служит для снижения уровня шума двигателя.

Искрогаситель служит для улавливания частиц сажи, вылетающих из цилиндра.

Техническое обслуживание системы питания.

ЕО

1 перед началом работы проверить систему на отсутствие утечек топлива.

2 закачать поплавковую камеру карбюратора насосом ручной подкачки.

Во время работы, при появлении запаха топлива, двигатель остановить, найти причину появления запаха и устранить.

По окончании работы слить отстой из фильтра отстойника. Топливные баки полностью заправить.

ТО-1 проверить состояние и крепление всех элементов системы питания; отрегулировать длину тяг дроссельной заслонки; оценить состояние, при необходимости заменить фильтр тонкой очистки.

ТО-2 проверить давление развиваемое насосом (0,01-0,015 МПа).

Карбюратор снять, разобрать, каналы карбюратора продуть сжатым воздухом, поплавок проверить на герметичность (проверка осуществляется путем погружения поплавка в нагретую воду), проверить пропускную способность жиклеров на стенде, жиклеры с несоответствующей пропускной способностью заменить, проверить герметичность клапанов (игольчатого и экономайзера), клапан не должен пропускать более четырех капель воды в минуту. Карбюратор собрать. Проверить уровень топлива в поплавковой камере, при необходимости отрегулировать. Отрегулировать карбюратор на малую частоту вращения холостого хода. Такой регулировкой карбюратора стараются достичь минимального расхода топлива на холостом ходу. Регулировку осуществляют винтом состава смеси и винтом ограничивающим закрытие дроссельной заслонки. Перед началом регулировки необходимо убедиться в исправности системы зажигания. Двигатель должен быть прогрет до температуры 75-80 С. В результате регулировки двигатель должен устойчиво работать при скорости вращения коленчатого вала400-450 об/мин, а при резком открытии и закрытии дроссельной заслонки не должен глохнуть. Последовательность регулировки: заворачивают винт холостого хода до упора, а затем отворачивают его на 2-3 оборота. Устанавливают упорный винт дроссельной заслонки в положение, в котором достигается минимальная устойчивая частота вращения коленчатого вала. Далее не меняя положения винта заслонки, вращают винт регулировки состава смеси, добиваясь при этом наибольшей частоты вращения коленчатого вала. Затем вновь уменьшают частоту вращения до минимально устойчивой, вращением упорного винта дроссельной заслонки. Эти операции повторяются до тех пор, пока винт регулировки состава смеси не приведет к увеличению оборотов коленчатого вала.

СО — промыть топливный бак. Отрегулировать датчик уровня топлива.

Основные неисправности.

неисправность причина Способ устранения
Двигатель не запускается Отсутствует топливо дозаправить
Засорено отверстие пробки топливного бака прочистить
Загрязнение фильтра тонкой очистки замена
Повреждение топливного насоса замена
Залегание иглы в положении заперто замена
Неустойчивая работа двигателя, из выхлопной трубы идет дым черного цвета Карбюратор приготавливает обогащенную или богатую смесь: поврежден поплавок, засорен воздушный жиклер, поврежден клапан экономайзера, повреждение вакуумного клапана, залегание иглы в положении открыто, чрезмерное засорение воздушного фильтра.  
Неустойчивая работа двигателя, сопровождаемая вспышками в карбюратор Система приготавливает обедненную или бедную смесь.  

 

§18 Система питания дизелей.

Система питания предназначена для очистки топлива и воздуха, раздельной подачи их в цилиндры в требуемом соотношении и отведения отработавших газов.

Топливный тракт. Из топливного бака по топливопроводу низкого давления топливо попадает в фильтр грубой очистки, пройдя первичную очистку в ФГО, топливо попадает в топливный насос низкого давления (ТННД). ТННД перекачивает топливо через фильтр тонкой очистки в топливный насос высокого давления (ТНВД). ТНВД отправляет топливо к форсункам под высоким давлением. Форсунки распыляют топливо в цилиндрах.

Воздушный тракт. В цилиндр воздух попадает пройдя через воздушный фильтр и компрессор. Компрессор может приводиться в действие турбиной (турбокомпрессор) или отдельным гидро- или электродвигателем.

Выпускной тракт. Отработавшие газы из цилиндра выходят в атмосферу, пройдя через турбину, глушитель и искрогаситель. Нередко выпускной тракт дополнительно оснащается нейтрализатором отработавших газов.

Современные двигатели оснащаются перепускными клапанами, которые соединяют впускной и выпускной коллекторы в случае превышения температуры горения в цилиндре. При этом во впускной коллектор подмешиваются отработавшие газы, и температура горения в цилиндре снижается. Это позволяет снизить токсичность выхлопных газов.

Топливный бак. Предназначен для хранения запаса топлива. Представляет собой емкость изготавливаемую из штампованных стальных листов. В верхней части бака находится горловина с сетчатым фильтром.В нижней части топливного бака монтируется сливной кран, Внутри топливного бака устанавливается датчик уровня топлива.

Фильтр грубой очистки. Предназначен для очистки топлива от воды и механических примесей. Представляет собой фильтр отстойник. Топливо попадая внутрь этого фильтра, некоторое время в нем находится. Поскольку вода и механические примеси тяжелее топлива, они оседают на дно этого фильтра. В нижней части фильтра отстойника имеется резьбовое отверстие, закрываемое пробкой. Через это отверстие сливается отстой.

Топливопрокачивающий насос (ТННД). Предназначен для прокачивания топлива через фильтр тонкой очистки, и подачи его во впускной коллектор ТНВД. На дизелях применяются топливопрокачивающие насосы плунжерного типа.

Плунжер насоса приводится в движение от эксцентрика кулачкового вала ТНВД, и совершает внутри гильзы возвратно поступательные движения. Двигаясь внутрь гильзы, плунжер создает избыточное давление, при этом всасывающий клапан прижимается к своему седлу, а нагнетательный клапан открывается, и топливо отправляется, в подплунжерную полость насоса. Обратное движение плунжера, осуществляемое за счет возвратной пружины, вызывает появление разрежения внутри гильзы. При этом нагнетательный клапан закрывается, а всасывающий открывается, и топливо заполняет внутреннюю полость насоса. Топливо из подплунжерной полости выжимается через фильтр тонкой очистки во впускной коллектор ТНВД

Топливопрокачивающий насос включает в себя насос ручной подкачки топлива. Ручной насос это насос поршневого типа, принцип действия которого аналогичен вышерассмотренному.

Фильтр тонкой очистки предназначен для окончательной очистки топлива, подаваемого к топливному насосу высокого давления. Представляет собой фильтр с фильтрующим элементом. Фильтрующие элементы изготавливаются бумажно-картонные, пластинчато-щелевые, прессованные керамические. Фильтрующий элемент этого фильтра улавливает механические примеси размером 1 мкм и более.

Топливный насос высокого давления предназначен для подачи топлива к форсункам под высоким давлением. ТНВД обеспечивает подачу равных, дозированных порций топлива в строго определенные моменты времени, к каждому цилиндру, в соответствии с диаграммой работы двигателя.

 

Принцип действия ТНВД.

От коленчатого вала двигателя, через распределительные шестерни и муфту опережения впрыска приводится во вращение кулачковый вал ТНВД. Вал своими кулачками воздействует на толкатели и приводит в движение плунжеры. Плунжеры совершают возвратно – поступательное движение внутри гильз. При движении плунжера 2 вниз, в надплунжерной полости создается разрежение. Как только верхняя кромка плунжера 2 откроет впускное отверстие 11, топливо заполнит внутреннюю полость гильзы. При движении плунжера 2 вверх, на начальном этапе, топливо выдавливается во впускное отверстие 11. Когда верхняя кромка плунжера 2 закроет верхний край впускного отверстия 11, в надплунжерной полости резко возрастет давление. Открывается нагнетательный клапан 6, и топливо под высоким давлением поступит к форсунке. Как только винтовая отсечная кромка пересечет нижний край перепускного отверстия 4, давление в надплунжерной полости резко упадет. Топливо будет перепускаться по образовавшемуся каналу в перепускное отверстие. Подача топлива к форсунке прекратится, так как закроется нагнетательный клапан. Этот момент времени называется моментом отсечки подачи топлива. В этот момент заканчивается активный ход плунжера, и дальнейшее его движение вверх осуществляется вхолостую, без подачи топлива. Количество подаваемого топлива регулируется изменением положения плунжера в гильзе. При повороте плунжера вокруг своей оси изменяется момент прохождения винтовой отсечной кромкой плунжера нижнего края перепускного отверстия. Топливные насосы высокого давления снабжаются регулятором оборотов дизеля. Это устройство поддерживает постоянные обороты двигателя при изменении нагрузки.

Назначение и принцип действия форсунки.

Форсунка предназначена для мелкого распыливания топлива подаваемого в цилиндр. Из топливопровода высокого давления топливо попадает в канал корпуса форсунки и далее в канал распылителя. Во время активного хода плунжера ТНВД давление в подъигольной полости распылителя становится достаточным для преодоления сопротивления пружины, которая прижимает иглу к своему седлу. Игла поднимается вверх и отверстия распылителя открываются. Через эти отверстия топливо под высоким давлением впрыскивается в цилиндр. Высокая скорость движения впрыскиваемого топлива, разбивает струю на мельчайшие капли. В цилиндре образуется топливовоздушная смесь в туманообразном состоянии. Капли топлива очень быстро испаряются, образуя рабочую смесь, которая воспламеняется и сгорает. По окончании активного хода плунжера давление в топливопроводе высокого давления падает, игла вновь прижимается к своему седлу, и происходит отсечка подачи топлива.

Турбонаддув.

Служит для подачи воздуха в цилиндр под избыточным давлением. Это позволяет увеличить мощность двигателя, при тех же массогабаритных показателях на 30-40%. Улучшаются условия сгорания топлива, увеличивается коэффициент полезного действия двигателя.

Турбонаддув приводится в движение отработавшими газами двигателя, которые попадают на крыльчатку турбины и приводят её во вращение, вместе с турбиной начинает вращаться крыльчатка компрессора, которая засасывает воздух от воздушного фильтра, и нагнетает воздух во впускной коллектор.

Техническое обслуживание системы питания.

ЕО

1 перед началом работы проверить систему на отсутствие утечек топлива.

2 прокачать систему питания насосом ручной подкачки.

Кривошипно-шатунный механизм двигателя трактора

Основное свойство деталей механизма — устойчивость к высокому давлению. Второе важное качество — способность переносить температуру от 350С. Такие особенности обусловлены элементами состава. Детали изготовлены из высококачественных сплавов и прочных металлов. Кроме того, все запчасти из чугуна и стали подвергаются закалке или цементации.

Состав механизма:

  • цилиндр;
  • шатун;
  • поршневый палец;
  • поршень с кольцами;
  • вал коленчатый с противовесами;
  • маховик.

Устройство отдельных деталей механизма

Перечень деталей, из которых состоит двигатель:

  • головки цилиндров;
  • блок-картеры;
  • цилиндр;
  • прокладки;
  • картер;
  • гильза;
  • поршень;
  • стопорное кольцо;
  • поддон;
  • крышка шатуна;
  • коренной подшипник;
  • поршневой палец;
  • вкладыши;
  • болт;
  • шплинт;
  • шатун;
  • втулка.

Цилиндр двигателя

Ключевая деталь двигателя — цилиндр. Элемент представляет собой отливку, зафиксированную на коробке из чугуна. Именно там происходит процесс сгорания топлива. Второй вариант цилиндра — сменная гильза, которую нужно поместить в блок цилиндров.

Цилиндр изготавливают исключительно из чугуна. Внутреннюю поверхность детали обязательно полируют и шлифуют.

В двигателе может быть 1, 2, 3, 4, 6 гильз или цилидров. Некоторые модели предполагают наличие большего числа элементов. Детали могут быть расположены в один или два ряда строго под углом в 90 градусов. Снизу блоки закрыты поддоном и укреплены прокладками.

Поршень

Внутри цилиндра устанавливается поршень из алюминиевого сплава. На боковых стенках детали располагаются бобышки с отверстиями для размещения поршневого пальца. В днище поршня имеется камера для перемешивания воздуха и топлива. Функции поршня — сжатие поступающего воздуха и передача давления на коленчатый вал.

Чтобы поршень не заклинило в цилиндре, деталь делают меньшего диаметра. Зазор между цилиндром и поршнем — 0,25-0,40 мм.

Поршневые кольца

Пружинные кольца из чугуна предназначены для предотвращения попадания смазки в камеру сжатия. Элементы расположены в специальных канавках на поверхности поршня. Для удобной фиксации на кольцах сделаны вырезы.

Типы колец по назначению:

  • компрессионные. Предназначены для восприятия силы давления газа. Наибольшая нагрузка приходится на первое кольцо. Чтобы оно медленнее изнашивалось, его поверхность покрывают хромом. Другие кольца оставляют без специальной обработки;
  • маслосъемные. Элементы в виде коробчатого сечения с отверстиями. Они предназначены для отвода масла, стекающего со стенок цилиндра. Чтобы повысить показатель упругости детали, между кольцом и канавкой фиксируют расширитель.

Шатуны

Шатун предназначен для соединения поршня с коленчатым валом. Деталь состоит из стержня и головок. Верхняя служит для фиксации поршневого пальца. Нижняя головка представляет собой разъемную конструкцию с крышкой, элементы которой соединяются с помощью шатунных болтов. Для уменьшения трения в нижнюю головку вставляют специальные вкладыши.

Поршневой палец

Этот элемент предназначен для соединения поршня с шатуном. Деталь изготавливают из прочной стали и подвергают термической обработке.

Палец может перемещаться, поэтому его называют плавающим. Чтобы элемент не царапал зеркало цилиндра, его движения ограничивают стопорными пружинными кольцами.

Вал коленчатый

Вал — деталь, преобразующая силу расширяющихся газов во вращательное усилие. Элемент запускает трансмиссию и другие узлы двигателя.

Вал изготавливают из стали или чугуна. Некоторые элементы узла подвергают закалке. Составляющие детали: подшипники, шатунные, опорные и коренные шейки, щеки, фланец,

Маховик

Маховик — чугунный диск, зафиксированный на фланце задней части коленчатого вала. Функции детали: накопление кинетической энергии, облегчение работы двигателя, выведение поршней из мертвых точек, выравнивание частоты вращения вала. Такие свойства обусловлены наличием зубчатого венца, расположенного на маховике.

Где купить запчасти для кривошипно-шатунного механизма двигателя трактора

Если какой-то элемент механизма выходит из строя, нарушается работа техники. Чтобы вернуть трактор в режим эксплуатации, необходимо заменить детали. На нашем сайте можно купить запчасти отличного качества.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм состоит из четырех звеньев: стойки, кривошипа, шатуна и поршня. Если ведущим звеном является поршень, то в криво-шипно-шатунном механизме происходит преобразование возвратно-поступательного движения во вращательное. Если же ведущим звеном является кривошип, то механизм преобразует вращательное движение кривошипа в возвратно-поступательное движение поршня (например, механизм поршневого насоса и т. п.).

На изучаемых автомобилях устанавливают V-образные, четырехтактные двигатели с жидкостным охлаждением. Двигатели 3M3-53-11 и ЗИЛ-130 (карбюраторные и газовые) с внешним смесеобразованием и принудительным воспламенением от электрической искры. Двигатель ЗИЛ-645 — дизельный, с внутренним смесеобразованием И’воспламенением от соприкосновения с нагретым в результате сильного сжатия воздухом.

Двигатели состоят из кривошипно-шатунного и газораспределительного механизмов и систем охлаждения, смазочной, питания, пуска и зажигания (у карбюраторных двигателей).

Кривошипно-шатунный механизм состоит из неподвижных (блока цилиндров, головки цилиндров, картера, поддона картера) и подвижных (поршней с пальцами и кольцами, шатунов, коленчатого вала с подшипниками, маховика) деталей.

Неподвижные детали. Блок цилиндров (рис. 1) является базовой деталью двигателя и представляет собой общую отливку с картером. В верхней части блока имеются отверстия для установки гильз цилиндров, расположенных в блоке в 2 ряда с углом развала 90°, что позволяет на одной шейке коленчатого вала устанавливать по 2 шатуна. Блок цилиндров двигателя 3M3-53-11 отливают из алюминиевого сплава, а двигателей ЗИЛ-130 и -645 — из серого чугуна. Нижняя часть отливки блока цилиндров является картером, в котором имеются постели для установки коленчатого вала и отверстия для распределительного вала.

Гильзы цилиндров, устанавливаемые на изучаемых двигателях,— мокрого типа (омываемые водой), изготавливают из серого легированного чугуна. Уплотнение гильз в нижней части осуществляется медным кольцом (у двигателя 3M3-53-11) или кольцами из маслобензостойкой резины (у двигателя ЭИЛ-130 кольца, у двигателя ЗИЛ-645 — 3: верхнее кольцо с конической наружной поверхность), нижние — круглого сечения). Для герметизации полостей цилиндров и жидкостной рубашки охлаждения кромки гильз выступают над верхней плоскостью блока на 0,02… 0,09 мм, что обеспечивает необходимое обжатие прокладки головки цилиндров по контурам гильз.

Рис. 1. Блок цилиндров V-образного двигателя: а — вид сверху; б — разрез; 1 —блок цилиндров; 2 — гильза цилиндра; 3 — рубашка охлаждения; 4— головка цилиндров; 5 — клапан; 6 — свеча зажигания; 7 — штанга толкателя; 8 — поршень; 9 — шатун; 10 — коленчатый вал

Головки цилиндров выполнены из алюминиевого сплава (у двигателей 3M3-53-11 и ЗИЛ-130) или чугуна (у двигателей ЗИЛ-645) по одной на каждый ряд цилиндров с вставными седлами и направляющими клапанор. Охлаждение головки цилиндров осуществляется жидкостью, циркулирующей во внутренней полости головки, которая вместе с внутренними полостями блока цилиндров составляет рубашку охлаждения 3 двигателя. Крепление каждой головки цилиндров к блоку у двигателя 3M3-53-11 осуществляется на шпильках 18-ю гайками (по 6 на каждый цилиндр), у двигателя ЗИЛ-130 — 17-ю болтами (по 5 на каждый цилиндр), у ЗИЛ-645 — 22-я болтами (по 7 на каждый цилиндр). Сверху головка цилиндров закрывается через прокладку крышкой. На правой крышКе двигателя ЗИЛ-645 имеется маслозаливная горловина.

Подвижные детали. Поршни имеют головку, бобышки для установки поршневого пальца и направляющую часть (юбку). На поршне делают кольцевые канавки для установки поршневых колец (рис. 2).

Рис. 2. Детали шатунио-поршневой группы двигателя ЗИЛ-130: 1 — маслосъемные кольца; 2 и 3 — осевой и радиальный расширители; 4 — чугунная вставка; 5 — компрессионные кольца; 6 — стопорное кольцо; 7— поршневой палец; 8 — поршень; 9 — шатун; 10— втулка; 11 — метка; 12 — шатунные вкладыши; 13 — крышка нижней головки шатуна

Поршни отливают из алюминиевого сплава. Направляющая часть поршней — разрезная. При сборке двигателей 3M3-53-11 и ЗИЛ-130 поршень устанавливают разрезом юбки в левую (по ходу автомобиля) сторону. На днище поршней двигателя ЗИЛ-645 имеется стрелка, которая при сборке с шатуном должна быть направлена в сторону, противоположную бобышке на поршневой головке шатуна, а при установке на двигатель должна быть направлена к развалу блока цилиндров.

Поршневые кольца изготовляют из серого чугуна (компрессионные) или стали (маслосъемные). Компрессионные кольца имеют разрезы (замки). На поршнях устанавливаются (у двигателей 3M3-53-11 и ЗИЛ-645) или (у двигателя ЗИЛ-130) компрессионных кольца и одно маслосъемное. Маслосъемные кольца изготовляют составными с пружинными расширителями: у двигателя ЗИЛ-130 маслосъемное кольцо состоит из двух стальных колец и имеет 2 расширителя — радиальный и осевой, у двигателя ЗИЛ-645 один расширитель — радиальный. Рабочая поверхность колец имеет хромовое покрытие.

Поршневые пальцы выполняют пустотелыми из стали и закрепляют в бобышках поршней при помощи стопорных колец. Этот способ крепления позволяет поршневому пальцу поворачиваться в головке шатуна и в бобышках поршня (плавающий палец).

Шатуны изготовляют из стали. Состоит шатун из стержня двутаврового сечения, верхней неразъемной и нижней разъемной головок. В верхнюю головку запрессовывают втулку. Крышка нижней головки шатуна крепится к нему двумя болтами. Переставлять крышки с одного шатуна на другой нельзя, так как шатуны с крышками обрабатывают совместно.

Коленчатый вал (рис. 3) имеет коренных и шатунных шейки, противовесы, фланец для крепления маховика. Осевая фиксация коленчатых валов обеспечивается упорными подшипниками. Противовесы служат для разгрузки коренных подшипников от действия центробежных сил. Для подвода смазки от коренных шеек к шатунным просверлены каналы. На носке вала крепится шестерня привода распределительного вала.

На каждой из четырех шатунных шеек, расположенных под углом 90°, устанавливают по 2 шатуна: один — левого, а другой — правого ряда цилиндров, номера которых указаны на схеме. Вкладыши подшипников коренных шеек изготавливают из стальной ленты, внутреннюю (рабочую) поверхность которой покрывают тонким слоем антифрикционного сплава. У двигателей 3M3-53-11 и ЗИЛ-130 внутренняя поверхность вкладышей изготовлена из высокооловянистого алюминия. Вкладыши двигателя ЗИЛ-645 — трехслойные, с внутренней поверхностью из свинцовистой бронзы.

Рис. 3. Кривошипно-шатунный механизм: а — детали: б — схема расположения шатунов; 1 — болт; 2— шайба; 3 — шкив; 4 — пылеотражатель; 5 — кольцо манжеты; 6 — маслоотражатель; 7 — распределительная шестерня; 8— шестерня привода масляного насоса; 9 — коленчатый вал; 10 и 29 — вкладыши подшипников нижней головки шатуна; 11— шатунный болт; 12 — шатун; 13 — поршневой палец; 14 — стопорное кольцо; 15 — поршень; 16 — маслосъемное кольцо; 17 — компрессионные кольца; 18 и 26 — подшипники коленчатого вала; 19 и 24 — упорные подшипники коленчатого вала; 20 — болт крепления маховика; 21 — штифт; 22 — маховик; 23 — фланец крепления маховика; 25 — коренные шейки; 27—шатунная шейка; 28—противовесы; 30 — крышка шатуна; 31 — шайба; 32 — гайка

Маховик отливают из чугуна и напрессовывают на него стальной зубчатый венец для пуска двигателя стартером. Маховик одновременно служит ведущим диском сцепления.

Крепление двигателя к раме. Двигатель 3M3-53-11 крепится к раме автомобиля в четырех точках на упругих опорах. Две передние опоры состоят из кронштейнов, привернутых к картеру двигателя, двух резиновых подушек и двух кронштейнов, укрепленных на раме. Задние опоры расположены под приливами картера сцепления на поперечине рамы и состоят из двух резиновых подушек, заключенных в металлические чашки и стянутых болтом.

Двигатели ЗИЛ-130 и -645 крепятся к раме автомобиля в трех точках. Передней опорой является кронштейн, установленный под крышкой распределительных шестерен и крепящийся через резиновые подушки к передней поперечине рамы. Задними опорами являются приливы на картере сцепления (у двигателя ЗИЛ-130) или кронштейны (у двигателя ЗИЛ-645), которые также через резиновые подушки крепятся к кронштейнам рамы.

Рис. 4. Крепление двигателей 3M3-53-1

Кривошипно-шатунный механизм служит для преобразования возвратно-поступательного движения поршней во вращательное движение коленчатого вала и передачи крутящего момента на трансмиссию. Он состоит из неподвижных (блока цилиндров, головки цилиндров, картера, поддона картера) и подвижных (поршней с пальцами и кольцами, шатунов, коленчатого вала с подшипниками, маховика) деталей.

Неподвижные детали. Блок цилиндров является базовой деталью двигателя и представляет собой общую отливку с картером. В верхней части блока имеются отверстия для установки гильз цилиндров. Цилиндры могут располагаться в блоке в один ряд вертикально (двигатель ГАЗ-24) или в два ряда V-образно под углом 90° (двигатели 3M3-53, ЗИЛ-130, КамАЗ). V-образное расположение цилиндров позволяет на одной шатунной шейке коленчатого вала укреплять по два шатуна. Блоки цилиндров двигателей отливают из серого чугуна (ЗИЛ-130, КамАЗ) или алюминиевого сплава (3M3-53, ГАЗ-24).

Рис. 5. Блок цилиндров и схематический разрез V-образного двигателя

Гильзы цилиндров, устанавливаемые в изучаемых двигателях,— мокрого типа (обмываемые водой), изготовляются из чугуна с кислотоупорными чугунными вставками в верхней части для снижения износа. Уплотнение гильз в нижней части осуществляется двумя резиновыми (ЗИЛ-130) или медными (ГАЗ-53, ГАЗ-24) кольцами, а в верхней части — прокладкой головки цилиндров.

Нижняя часть отливки блока цилиндров является картером, в котором имеются постели для установки коленчатого вала и отверстия — для распределительного.

Головки цилиндров отливают из алюминиевого сплава. Они крепятся с помощью болтов и шпилек к блоку цилиндров. Для уплотнения между головкой и блоком цилиндров ставят сталеасбестовую прокладку. Как блок цилиндров, так и его головки имеют двойные стенки, образующие рубашку, в которой циркулирует охлаждающая жидкость.

В рядных двигателях (ГАЗ-24) головка цилиндров одна, а у V-образных (ЗИЛ-130 и 3M3-53) —две, по одной взаимозаменяемой головке на каждый ряд цилиндров. В двигателе КамАЗ-740 каждый цилиндр имеет свою головку.

Подвижные детали. Поршни служат для восприятия при рабочем ходе силы давления газов и ее передачи через поршневой палец и шатун на коленчатый вал. Поршень имеет головку, две бобышки и направляющую часть (юбку). Верхняя часть головки поршня называется днищем. Вследствие неодинакового нагрева головки и юбки поршня (головка больше нагревается, а поэтому и больше расширяется) диаметр головки выполняют меньше диаметра юбки. С внешней стороны головки поршня делают кольцевые канавки для установки поршневых колец.

Поршни отливают из алюминиевого сплава. Направляющая часть поршней (юбка) разрезная. Она имеет овальную форму с увеличенным диаметром в плоскости, перпендикулярной оси поршневого пальца. При сборке двигателя поршень разрезом юбки устанавливают в левую (по ходу автомобиля) сторону.

В головки поршней двигателей ЗИЛ-130 и КамАЗ залита чугунная вставка, в которой проточена канавка для установки верхнего компрессионного кольца.

Поршневые кольца служат для уменьшения утечки газов из цилиндра в картер (компрессионные), а также для удаления излишнего масла со стенок цилиндра (маслосъемные). Кольца изготовляются из серого чугуна (для маслосъемных колец иногда применяется сталь) и имеют разрезы (замки). На поршнях устанавливается по два (двигатели ГАЗ-24, 3M3-53, КамАЗ-740) или три (ЗИЛ-130) компрессионых кольца и одно маслосъемное. Маслосъемное кольцо двигателей ЗИЛ-130 и ГАЗ-24 состоит из двух стальных колец и двух расширителей — осевого ( и радиального. На двигателе КамАЗ-740 маслосъемное кольцо с одним расширителем — радиальным.

Рис. 6. Детали шатунно-поршневой группы:
1 и 5— маслосъемное и компрессионные кольца, 2 и 3 — осевой и радиальный расширители, 4 — чугунная вставка, 6 — стопорное кольцо, 7 — поршневый палец, 8 — поршень, 9 — шатун, 10 — втулка, 11 — метка, 12— шатунные вкладыши, 13— крышка нижней головки шатуна

Поршневой палец служит для подвижного соединения поршня с шатуном. Его изготовляют пустотелым из стали с поверхностной закалкой токами высокой частоты и закрепляют в бобышках поршня с помощью двух стопорных колец. Этот способ крепления позволяет поршневому пальцу поворачиваться в головке шатуна и в бобышках поршня (такой палец называется плавающим).

Шатун служит для передачи силы давления газов от поршня на коленчатый вал при рабочем ходе, а при вспомогательных тактах — от коленчатого вала к поршню. Изготовляется шатун из стали и состоит из стержня двутаврового сечения, верхней неразъемной и нижней разъемной головок. В верхнюю головку запрессовывают бронзовую втулку, а в нижнюю устанавливают шатунные вкладыши.

У V-образных двигателей на одной шатунной шейке устанавливают два шатуна так, чтобы у правого ряда цилиндров номер на шатуне был обращен назад, а у левого — вперед, т. е. должен совпадать с надписью на поршне «вперед».

Коленчатый вал воспринимает силу давления газов от поршней через шатуны и передает крутящий момент на трасмис-сию автомобиля. Он имеет коренные и шатунные шейки, щеки, противовесы, фланец для крепления маховика и носок с внутренней резьбой для ввертывания храповика. Изготовляется коленчатый вал из стали (ЗИЛ-130, КамАЗ-740) или высокопрочного чугуна (3M3-53, ГАЗ-24).

Рис. 7. Коленчатые валы:
а — восьмицилиндрового V-образного двигателя, б — четырехцилиндрового рядного двигателя; 1 и 3— коренные и шатунные шейки, 2 — противовесы, 4 — пробка, 5 — грязеуловитель, 6 — маховик с зубчатым венцом

Противовесы служат для разгрузки коренных подшипников от вредного действия центробежных сил. Для подвода смазки от коренных шеек к шатунным просверлены каналы. Коренными шейками коленчатый вал устанавливается в постели картера и крепится крышками.

У коленчатых валов 8-цилиндровых V-образных двигателей на каждой из четырех шатунных шеек, расположенных под углом 90 устанавливают по два шатуна: один — левого, а другой — правого ряда цилиндров, номера которых указаны на схеме. У двигателей ГАЗ-24 на шатунных шейках, расположенных попарно под углом 180 устанавливают по одному шатуну.

Вкладыши шатунных и коренных шеек коленчатого вала изготовляют из стальной ленты, внутреннюю (рабочую) поверхность которой покрывают тонким слоем антифрикционного сплава. У двигателей 3M3-53, ЗИЛ-130 и ГАЗ-24 рабочая поверхность вкладышей — из высокооловянистого алюминия. Вкладыши шатунов двигателя КамАЗ-740 — трехслойные, с рабочим слоем из свинцовистой бронзы.

Маховик отливают из чугуна. Он служит для вывода поршней из мертвых точек, осуществления вспомогательных тактов, равномерного вращения коленчатого вала, а также пуска двигателя стартером, для чего на обод маховика напрессован стальной зубчатый венец. Кроме того, маховик служит ведущим диском сцепления.

Кривошипно-шатунный механизм (КШМ): назначение, устройство, принцип работы


Основной задачей двигателей внутреннего сгорания, использующиеся на всевозможной технике, является преобразование энергии, которая выделяется при сжигании определенных веществ, в случае с ДВС – это топливо на основе нефтепродуктов или спиртов и воздуха, необходимого для горения.

Преобразование энергии производится в механическое действие – вращение вала. Далее уже это вращение передается дальше, для выполнения полезного действия.

Однако реализация всего этого процесса не такая уж и простая. Нужно организовать правильно преобразование выделяемой энергии, обеспечить подачу топлива в камеры, где производиться сжигание топливной смеси для выделения энергии, отвод продуктов горения. И это не считая того, что тепло, выделяемое при сгорании нужно куда-то отводить, нужно убрать трение между подвижными элементами. В общем, процесс преобразования энергии сложен.

Поэтому ДВС – устройство довольно сложное, состоящее из значительного количества механизмов, выполняющих определенные функции. Что же касается преобразования энергии, то выполняет его механизм, называющийся кривошипно-шатунным. В целом, все остальные составные части силовой установки лишь обеспечивают условия для преобразования и обеспечивают максимально возможный выход КПД.

Что такое КШМ и для чего он нужен?

Двигатель в процессе работы должен давать какое-то постоянное движение, и удобней всего, чтобы это было равномерное вращение. Однако силовая часть (цилиндро-поршневая группа, ЦПГ) вырабатывает поступательное движение. Значит, нужно сделать так, чтобы один тип движения преобразовался в другой, причем с наименьшими потерями. Вот для этого и был создан кривошипно-шатунный механизм. По сути, КШМ – это устройство для получения и преобразования энергии и передачи ее дальше, другим узлам, которые уже эту энергию используют.

Поршневые пальцы

Осуществляют кинематическую связь поршня и шатуна. Изделие закреплено в поршневой юбке и служит осью подшипника скольжения. Детали выдерживают высокие динамические нагрузки во время рабочего хода, а также смены такта и обращения направления движения. Вытачивают их из высоколегированных термостойких сплавов.

Различают следующие типы конструкции пальцев:

  • Фиксированные. Неподвижно крепятся в юбке, вращается только обойма верхней части шатуна.
  • Плавающие. Могут проворачиваться в своих креплениях.

Плавающая конструкция применяется в современных моторах, она снижает удельные нагрузки на компоненты кривошипно- шатунной группы и увеличивает их ресурс.

Устройство КШМ

Строго говоря, КШМ автомобиля состоит из самого кривошипа, шатунов и поршней. Однако говорить о части, не рассказав о целостной конструкции, было бы в корне неправильно. Поэтому схема и назначение КШП и смежных элементов будет рассматриваться в комплексе.


Устройство КШМ: (1 — коренной подшипник на коренной шейке; 2 — шатунный подшипник на шатунной шейке; 3 — шатун; 4 — поршневой палец; 5 — поршневые кольца; 6 — поршень; 7 — цилиндр; 8 — маховик; 9 — противовес; 10 — коленчатый вал.)

  1. Блок цилиндров – это начало всего движения в моторе. Его составляющие – поршни, цилиндры и гильзы цилиндров, в которых эти поршни движутся;
  2. Шатуны – это соединительные элементы между поршнями и коленвалом. По сути, шатун представляет собой прочную металлическую перемычку, которая одной стороной крепится к поршню с помощью шатунного пальца, а другой фиксируется на шейке коленвала. Благодаря пальцевому соединению поршень может двигаться относительно цилиндра в одной плоскости. Точно так же шатун охватывает посадочное место коленвала – шатунную шейку, и это крепление позволяет ему двигаться в той же плоскости, что и соединение с поршнем;
  3. Коленвал – коленчатый вал вращения, ось которого проходит через носок вала, коренные (опорные) шейки и фланец маховика. А вот шатунные шейки выходят за ось вала, и благодаря этому при его вращении описывают окружность;
  4. Маховик – обязательный элемент механизма, накапливающий инерцию вращения, благодаря которой двигатель работает ровней и не останавливается в “мертвой точке”.

Эти и другие элементы КШМ можно условно разделить на подвижные, те, что выполняют непосредственную работу, и неподвижные вспомогательные элементы.

Подвижная (рабочая) группа КШМ

Как понятно из названия, к подвижной группе относятся элементы, которые активно задействованы в работе двигателя.

  1. Поршень. При работе двигателя поршень перемещается в гильзе цилиндра под действием выталкивающей силы при сгорании топлива – с одной стороны, и поворотом коленвала – с другой. Для уплотнения зазора между ним и цилиндром на боковой поверхности поршня находятся поршневые кольца (компрессионные и маслосъемные), которые герметизируют промежуток и препятствуют потере мощности во время сгорания топлива.


    Устройство поршневой группы: (1 — масляно-охлаждающий канал; 2 — камера сгорания в днище поршня; 3 — днище поршня; 4 — канавка первого компрессионного кольца; 5 — первое (верхнее) компрессионное кольцо; 6 — второе (нижнее) компрессионное кольцо; 7 — маслосъемное кольцо; 8 — масляная форсунка; 9 — отверстие в головке шатуна для подвода масла к поршневому пальцу; 10 — шатун; 11 — поршневой палец; 12 — стопорное кольцо поршневого пальца; 13 и 14 — перегородки поршневых колец; 15 — жаровой пояс.)

  2. Шатун. Это соединительный элемент между поршнем и коленвалом. Верхней головкой шатун крепится к поршню с помощью пальца. Нижняя головка имеет съемную часть, так что шатун можно надеть на шейку коленвала. Для уменьшения трения между шейкой коленвала и головкой шатуна ставятся шатунные вкладыши – подшипники скольжения в виде двух пластин, изогнутых полукругом.


    Устройство шатуна

  3. Коленвал. Это центральная часть двигателя, без которой сложно представить себе его принцип работы. Основной его частью является ось вращения, которая одновременно служит опорой для коленвала в блоке цилиндров. Выступающие за ось вращения элементы предназначены для присоединения к шатунам: когда шатун движется вниз, коленвал позволяет ему описать нижней частью окружность одновременно с движением поршня. Так же, как и в случае с шатунами, опорные шейки коленвала лежат на подшипниках скольжения – вкладышах.


    Устройство коленвала

  4. Маховик. Он крепится к фланцу на торцевой части коленвала. Маховик вращается вместе с валом двигателя и частично демпфирует неизбежные в любом ДВС рывковые нагрузки. Но основная задача маховика – раскручивать коленвал (а с ним и цилиндро-поршневую группу), чтобы поршни не замерли в “мертвой точке”. Таким образом, часть мощности двигателя расходуется на поддержку вращения маховика.


Устройство маховика

Неподвижная группа КШМ

Неподвижной группой можно назвать внешнюю часть двигателя, в которой находится КШП.

  1. Блок цилиндров. По сути, это корпус, в котором располагаются непосредственно цилиндры, каналы системы охлаждения, посадочные места распредвала, коленвала и т.д. Он может выполняться из чугуна или алюминиевого сплава, и сегодня производители всё чаще используют алюминий, чтобы облегчить конструкцию. Для этой же цели вместо сплошного литья используются ребра жесткости, которые облегчают конструкцию без потери прочности. На боковых сторонах блока цилиндров располагаются посадочные места для вспомогательных механизмов двигателя.


    Блок цилиндров

  2. Головка блока цилиндров (ГБЦ). Устанавливается на блок цилиндров и закрывает его сверху. В ГБЦ предусмотрены отверстия для клапанов, впускного и выпускного коллекторов, крепления распредвала (одного или больше), крепления для других элементов двигателя. К ГБЦ, снизу, крепится прокладка (1) — пластина, которая герметизирует стык между блоком цилиндров и ГБЦ. В ней предусмотрены отверстия для цилиндров и крепежных болтов. А сверху — клапанная крышка (5), — ею закрывается ГБЦ сверху, когда двигатель собран и готов к запуску. Прокладка клапанной крышки. Это тонкая пластина, которая укладывается по периметру ГБЦ и герметизирует стык.


Устройство ГБЦ: (1 — прокладка ГБЦ; 2 — ГБЦ; 3 — сальник; 4 — прокладка крышки ГБЦ; 5 — крышка клапанная; 6- прижимная пластина; 7 — пробка маслозаливной горловины; 8 — прокладка пробки; 9 — направляющая втулка клапана; 10 — установочная втулка; 11 — болт крепления головки блока.)

Гильза

Съёмная гильза

Гильзы существуют двух типов – сделанные непосредственно в блоке и являющиеся их частью, и съемные. Что касается выполненных в блоке, то представляют они собой цилиндрические углубления в нем нужной высоты и диаметра.

Съемные же имеют тоже цилиндрическую форму, но с торцов они открыты. Зачастую для надежной посадки в свое посадочное место в блоке, в верхней части ее имеется небольшой отлив, обеспечивающий это. В нижней же части для плотности используются резиновые кольца, установленные в проточные канавки на гильзе.

Внутренняя поверхность гильзы называется зеркалом, потому что она имеет высокую степень обработки, чтобы обеспечить минимально возможное трение между поршнем и зеркалом.

В двухтактных двигателях в гильзе проделываются на определенном уровне несколько отверстий, которые называются окнами. В классической схеме ДВС используется три окна – для впуска, выпуска и перепуска топливной смеси и отработанных продуктов. В оппозитных же установках типа ОРОС, которые тоже являются двухтактными, надобности в перепускном окне нет.

Принцип работы КШМ

Работа механизма двигателя основана на энергии расширения при сгорании топливно-воздушной смеси. Именно эти “микровзрывы” являются движущей силой, которую кривошипно-шатунный механизм переводит в удобную форму. На видео, ниже, подробно описанный принцип работы КШМ в 3Д анимайии.

Принцип работы КШМ:

  1. В цилиндрах двигателя сгорает распыленное и смешанное с воздухом топливо. Такая дисперсия предполагает не медленное горение, а мгновенное, благодаря чему воздух в цилиндре резко расширяется.
  2. Поршень, который в момент начала горения топлива находится в верхней точке, резко опускается вниз. Это прямолинейное движение поршня в цилиндре.
  3. Шатун соединен с поршнем и коленвалом так, что может двигаться (отклоняться) в одной плоскости. Поршень толкает шатун, который надет на шейку коленвала. Благодаря подвижному соединению, импульс от поршня через шатун передается на коленвал по касательной, то есть вал делает поворот.
  4. Поскольку все поршни по очереди толкают коленвал по тому же принципу, их возвратно-поступательное движение переходит во вращение коленвала.
  5. Маховик добавляет импульс вращения, когда поршень находится в «мертвых» точках.

Интересно, что для старта двигателя нужно сначала раскрутить маховик. Для этой цели нужен стартер, который сцепляется с зубчатым венцом маховика и раскручивает его, пока мотор не заведется. Закон сохранения энергии в действии.

Остальные элементы двигателя: клапаны, распредвалы, толкатели, система охлаждения, система смазки, ГРМ и прочие – необходимые детали и узлы для обеспечения работы КШМ.

Шатун

Итак, состоит он из шатуна, коленчатого вала, посадочных мест этого вала в блоке и крышек крепления, вкладышей, втулки, полуколец.

Шатун – это стержень с отверстием в верхней части под поршневой палец. Нижняя часть его сделана в виде полукольца, которым он садится на шейку кривошипа, вокруг шейки он фиксируется крышкой, внутренняя поверхность ее тоже выполнена в виде полукольца, вместе с шатуном они и формируют жесткое, но подвижное соединение с шейкой – шатун может вращаться вокруг ее. Соединяется шатун со своей крышкой посредством болтовых соединений.

Чтобы снизить трение между пальцем и отверстием шатуна применяется медная или латунная втулка.

По всей длине внутри шатун имеет отверстие, через которое масло подается для смазки соединения шатуна и пальца.

Основные неисправности

Учитывая нагрузки, как механические, так и химические, и температурные, кривошипно-шатунный механизм подвержен различным проблемам. Избежать неприятностей с КШП (а значит, и с двигателем) помогает грамотное обслуживание, но всё равно от поломок никто не застрахован.

Стук в двигателе

Один из самых страшных звуков, когда в моторе вдруг появляется странный стук и прочие посторонние шумы. Это всегда признак проблем: если что-то начало стучать, значит, с ним проблема. Поскольку в двигателе элементы подогнаны с микронной точностью, стук свидетельствует об износе. Придется разбирать двигатель, смотреть, что стучало, и менять изношенную деталь.

Основной причиной износа чаще всего становится некачественное ТО двигателя. Моторное масло имеет свой ресурс, и его регулярная замена архиважна. То же относится и к фильтрам. Твердые частички, даже мельчайшие, постепенно изнашивают тонко пригнанные детали, образуют задиры и выработку.

Стук может говорить и об износе подшипников (вкладышей). Они также страдают от недостатка смазки, поскольку именно на вкладыши приходится огромная нагрузка.

Снижение мощности

Потеря мощности двигателя может говорить о залегании поршневых колец. В этом случае кольца не выполняют свою функцию, в камере сгорания остается моторное масло, а продукты сгорания прорываются в двигатель. Прорыв газов говорит и о пустой растрате энергии, и это чувствует автовладелец как снижение динамических характеристик. Продолжительная работа в такой ситуации может только ухудшить состояние двигателя и довести стандартную, в общем-то, проблему до капремонта двигателя.

Проверить состояние мотора можно самостоятельно, измерив компрессию в цилиндрах. Если она ниже нормативной для данной модификации двигателя, значит, предстоит ремонт двигателя.

Повышенный расход масла

Если двигатель начал “жрать” масло, это явный признак залегания поршневых колец или других проблем с цилиндро-поршневой группой. Масло сгорает вместе с топливом, из выхлопной трубы идет черный дым, температура в камере сгорания превышает расчетную, и это не добавляет двигателю здоровья. В некоторых случаях может помочь очистка без демонтажа двигателя, но в большинстве случаев предстоит разборка и дефектовка двигателя.

Нагар

Отложения на поршнях, клапанах и свечах зажигания говорят о том, что с двигателем есть проблема. Если топливо не сгорает полностью, нужно искать причину неисправности и устранять ее. В противном случае мотору грозит перегрев из-за ухудшения теплопроводности поверхностей со слоем нагара.

Белый дым из выхлопной трубы

Появляется, когда в камеру сгорания попадает антифриз. Причиной чаще всего бывает износ прокладки ГБЦ или микротрещины в рубашке охлаждения двигателя, и для устранения проблемы необходима ее замена.

Медлить в этой ситуации нежелательно: маленькая протечка может обернуться гидроударом. Камера сгорания наполняется жидкостью, поршень движется вверх, но жидкость, в отличие от воздуха, не сжимается, и получается эффект удара о твёрдую поверхность. Последствия такой катастрофы могут быть любые, вплоть до “кулака дружбы” и продажи машины на запчасти.

Поршневые кольца

Назначение и устройство поршневых колец обуславливается их ролью в работе кривошипных- устройств. Кольца выполняются плоскими, они имеют разрез шириной в несколько десятых частей миллиметра. Их вставляют в проточенные для них кольцевые углубления на уплотнении.

Кольца выполняют следующие функции:

  • Уплотняют зазор между гильзой и стенками поршня.
  • Обеспечивают направление движения поршня.
  • Охлаждают. Касаясь гильзы, компрессионные кольца отводят избыточное тепло от поршня, оберегая его от перегрева.
  • Изолируют рабочую камеру от смазочных материалов в картере. С одной стороны, кольца задерживают капельки масла, разбрызгиваемые в картере ударами противовесов щек коленвала, с другой, пропускают небольшое его количество для смазки стенок цилиндра. За это отвечает нижнее, маслосъемное кольцо.

Смазывать необходимо и соединение поршня с шатуном.

Отсутствие смазки в течение нескольких минут приводит детали цилиндра в негодность. Трущиеся части перегреваются и начинают разрушаться либо заклиниваются. Ремонт в этом случае предстоит сложный и дорогостоящий.

Вкладыши

Чтобы уменьшить трение и износ шеек коленчатого вала, в современных двигателях применяются тонкостенные вкладыши, изготовляемые из стальной ленты толщиной 1—2 мм, залитой тонким (0,1—0,5 мм) слоем антифрикционного сплава (баббита, свинцовистой бронзы). Так как усадка сплава ничтожна, то шатунные подшипники с тонкостенными вкладышами не нуждаются в подтяжке и не имеют регулировочных прокладок.

Чтобы исключить проворачивание и сдвиг, вкладыши фиксируются специальными усиками, входящими в пазы головок шатунов. Для прохода смазки в подшипнике имеются отверстия и канавки. В нижней головке шатуна у большинства двигателей имеется отверстие для разбрызгивания масла.

Картер двигателя

Служит конструктивной основой всего двигателя, к нему крепятся все остальные детали. От него отходят внешние кронштейны, на них весь агрегат прикреплен к кузову. К картеру крепится трансмиссия, передающая от двигателя к колесам крутящий момент. В современных конструкциях картер исполняется единой деталью с блоком цилиндров. В его пространственных рамках и происходит основная работа узлов, механизмов и деталей мотора. Снизу к картеру крепится поддон для хранения масла для смазки подвижных частей.

Маховик

Маховик представляет собой чугунный диск, торцовая поверхность которого используется в качестве ведущего диска сцепления.

Маховик способствует более равномерному вращению коленчатого вала двигателя. Кроме того, вследствие запаса энергии, полученной при вращении, маховик помогает двигателю преодолевать перегрузку в момент трогания автомобиля с места.

На обод маховика напрессовывается зубчатый венец для запуска двигателя электрическим стартером и наносится метка для определения верхней мертвой точки поршня первого цилиндра.

Вопрос №1. Кривошипно-шатунный механизм двигателя. Назначение и устройство неподвижных и подвижных частей.

КШМ предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленвала.

КШМ состоит из:

— картер;

— блок цилиндров;

— коленчатый вал;

— маховика и шатунно-поршневой группы.

Кривошипно-шатунный механизм можно разделить на две группы деталей: подвижные и неподвижные.

Неподвижные детали образуют основу несущей конструкции, своеобразным скелетом которой являются силовые шпильки ци­линдров и перегородки картера.

К неподвижным деталямотно­сятся: картер, два блока цилиндров, головки блоков, коренные подшипники, детали крепления и уплотнения, гильзы цилиндров.

К подвижным деталям относятся коленчатый вал, маховик и шатунно-поршневая группа.

Картерслужит основанием для монтажа всех деталей и агрегатов двигателя, а так же самого двигателя в машине. Он состоит из двух половин: верхней и нижней. Обе половины соединяются шпильками.

Верхняя половина предназначена для восприятия усилий возникающих от давления газов в блоках цилиндров, и сил инерции от КШМ.

Верхняя половина картера отлита из алюминиевого сплава и имеет три обработанные плоскости.

На средней плоскости крепятся топливный насос НК-10 и воздухопуск, Другие две плоскости расположены под углом 120 град. одна по отношению к другой и служат для установки блоков цилиндров. В каждой наклонной плоскости расточено по 6 отверстий, в которые входят выступающие из нижней части гильз. Между 1-2-5-6 отверстиями для гильз попарно запрессованы цилиндрические штифты, фиксирующие блоки цилиндров относительно картера.

Внизу верхней половины картера имеется 7 поперечных перегородок, которые увеличивают жесткость картера и служат опорами для коренных подшипников колен вала. В поперечные перегородки сверху ввертывают силовые шпильки, которые крепят блоки цилиндров к картеру. Снизу силовые шпильки крепят подвеску коренных подшипников.

Верхняя половина картера имеет:

— штифты, фиксирующие блоки цилиндров относительно картера,

— гнездо для установки стакана верхнего вертикального валика,

— гнезда для установки стаканов наклонных валиков, передающих вращение к распределительным валам,

— гнезда для установки валика привод генератора, кронштейны для установки масляного фильтра.

— лапы для установки генератора,

— лапы для крепления двигателя к раме.

Нижняя половина картера закрывает КШМ снизу и служит маслосборником. Впереди снаружи нижней половины картера расположены приводы к водяному насосу и топливоподкачивающей помпе.

Внутри на дне картера имеется продольная впадина, куда стекается масло. Впадина с обеих сторон заканчивается углублениями, называемыми задними и передними маслоотстойниками. Из маслоотстойника масло насосами откачивается в масляный бак.

Внутри картера вмонтированы маслоуспокоитель, щиток и трубки для отсасывания масла из заднего и переднего маслоотстойников.

Блок цилиндров состоит из рубашки цилиндров и гильз. Рубашка отливается из алюминиевого сплава. Внутри рубашки имеется 6 гнезд для установки гильз. В каждом гнезде имеется кольцевая выточка, которая служит для установки фланца гильзы. В перегородках рубашки расположены каналы для сообщения водяных рубашек гильз, 14 отверстий под силовые шпильки и 24 отверстия для прохода воды из рубашки цилиндров в головку блоков.

В каждое отверстие для прохода воды устанавливается перепускная трубка с уплотняющим кольцом из маслостойкой резины. Для обеспечения герметичности вокруг каждого отверстия выполнено по 2 концентрические канавки.

На наружной боковой стенке рубашки цилиндров расположены площадки для крепления фланцев водопроводящей трубы.

В нижней части боковой поверхности рубашки против каждой полости силовых шпилек выполнены контрольные отверстия, соединяющие полость с атмосферой. Просачивание воды между отверстиями сигнализирует о неисправности уплотнения рубашки с головкой блоков.

В нижней полости рубашки цилиндров просверлены 4 глубоких отверстия для установки штифтов, фиксирующих рубашки относительно верхней половины картера. На верхней плоскости рубашки установлены 4 штифта для фиксирования алюминиевой прокладки и головки блока цилиндров.

Головка блока цилиндров служит крышкой цилиндров. Она отлита из алюминиевого сплава. В нижней плоскости головки расточено 6 углублений с плоским дном. Углубления образуют с входящими в них поршнями камеры сгорания.

Дно камеры сгорания соединено 4 отв. С выпускными и впускными каналами: 2 впускных и 2 выпускных расположенные на разных сторонах

В отв. соединяющих камеру с впускным и выпускными каналами расточены конусные гнезда, в которые запрессованы стальные седла клапанов : 2 седла большего диаметра для впускных и 2 меньшего диаметра для выпускных клапанов.

Прокладка головки блока служит для предотвращения прорыва газов из камеры сгорания. Изготавливается из сплошного сплава.

Коленчатый вал формирует крутящий момент, преобразуя сложное движение шатунов во вращательное и суммируя крутя­щие моменты отдельных цилиндров. Вал — полноопорный штам­пованный из низкоуглеродистой высококачественной легированной стали 18ХНВА. Основными элементами коленчатого вала явля­ются коренные и шатунные шейки, щеки, носок и хвостовик. Кри­вошипы вала расположены под углом 120° попарно. Шатунные и коренные шейки полые. В щеках, соединяющих шатунные и ко­ренные шейки, выполнены радиальные отверстия, через которые сообщаются внутренние полосы шеек. В шейках просверлены от­верстия, через которые масло подается к шатунным и коренным подшипникам.

Внутренняя полость вала используется для подачи масла к шатунным и коренным подшипникам, в вал масло подается через полый хвостовик. Наиболее неблагоприятны условия для смазки подшипников, расположенных со стороны маховика. Внутренние полости шатунных шеек используются для дополнительной цент­робежной очистки масла. Отложения со стенок шеек снимаются при ремонте, для чего снимаются торцевые заглушки. На шлицах хвостовика коленчатого вала установлена кониче­ская шестерня привода механизма передач. Между седьмой и восьмой коренными шейками устанавливается шариковый упор­ный подшипник, который воспринимает осевые нагрузки, возни­кающие на хвостовике от конической шестерни. Носок коленчато­го вала уплотняется посредством установки маслосбрасывающих кольца и лабиринтного уплотнения.

 

 

 

Маховик улучшает равномерность хода двигателя. Он крепит­ся на шлицах носка коленчатого вала. Точное положение махо­вика на носке обеспечивается совмещением радиальных отверстий на ступице и носке. На ободе маховика нанесены градуировка и метки положения поршней в верхней мертвой точке. На ободе маховика имеется зубчатый венец для привода стартером при пуске.

В щатунно-поршневую группу входят шатуны, поршни, поршневые пальцы, порш­невые кольца и заглушки.

Поршень обеспечивает процессы газообмена и воспринимает силу давления газов, передавая ее на палец и шатун во время рабочего хода. Он изготовлен методом горячей штамповки из дюр­алюминиевого сплава основными элементами поршня являются днище, головка (уплотняющая часть) и юбка (направляющая часть).

На наружной стороне днища поршня выполнен выступ торои­дальной формы. Это способствует образованию воздушного вихря при сжатии воздуха в целях улучшения смесеобразования. На го­ловке проточены четыре канавки для поршневых колец. На на­правляющей части выполнены бобышки, в которые устанавлива­ется поршневой палец, ниже бобышек, проточена канавка для ниж­него маслосъемного кольца.

Поршневой палец передает усилия от поршня на шатун. Па­лец — стальной, пустотелый, устанавливается в бобышках на пла­вающей посадке (при работающем двигателе) и с натягом (при холодном двигателе). Это позволяет избежать стуков вследствие большой разницы расширения бобышек и пальца, кроме того, пла­вающее положение способствует равномерному износу в сопря­жении палец — бобышки. От осевых смеще­ний палец удерживается заглушками, запрессованными в бо­бышки.

Поршневые кольца по назначению делятся на компрессионные (два верхних) и маслосъемные (остальные). Два верхних коль­ца цилиндрические (прямоугольного сечения), по наружной поверхности покрыты пористым хромом, что улучшает приработку к зеркалу цилиндра. Верхнее кольцо испытывает наибольшую механическую и термическую нагрузки, поэтому оно изготовля­ется из стали, а остальные кольца из легированного чугуна. Ма­слосъемные кольца снимают излишки масла с зеркала цилиндра при ходе поршня от ВМТ к НМТ и регулируют толщину масля­ного слоя при обратном ходе. Они имеют форму усеченного кону­са. Необходимо помнить, что цилиндрические кольца склонны к. залеганию при длительной работе на малых нагрузках. Залега­ние колец может привести к поломке дизеля, в том числе к за­клиниванию поршня в цилиндре.

В шатунную группу входят главный и прицепной шатуны, ша­тунные подшипники и детали крепления.

Шатуны осуществляют кинематическую и динамическую связь между поршнем и коленчатым валом. Они делятся на главные и прицепные. Главный шатун состоит из верхней головки, стерж­ня и нижней головки. Верхняя головка имеет отверстие, в кото­рое запрессована бронзовая втулка, являющаяся подшипником для поршневого пальца. В головке имеется пять отверстий для смазки и одно для стопорения бронзовой втулки. Стержень ша­туна двутаврового сечения, такой профиль наиболее успешно работает на растяжение, сжатие и изгиб. Нижняя головка глав­ного шатуна разъемная, соединение крышки с верхней частью головки осуществляется посредством гребенки и двух самотормо­зящихся штифтов. Такое соединение сложно по исполнению, но имеет высокую надежность. Нижняя головка главного шатуна имеет две проушины, к которым посредством пальца крепится неразъемная нижняя головка прицепного шатуна. Верхняя голов­ка прицепного шатуна аналогично верхней головке главного ша­туна.

 

1 Главный шатун 2 Прицепной шатун 3. Втулка 6. Палец 7. Ступенчатая трубка 8. Штифт вкладыша 11. Стопорный штифт 12. Вкладыш нижний 13. Соединительный штифт 14. Вкладыш верхний 15. Стопор

Что такое Картер? (с картинками)

Неотъемлемый компонент двигателя внутреннего сгорания, картер представляет собой перфорированную металлическую раму, в которой находятся несколько частей, в частности коленчатый вал. Его основная универсальная функция – защита коленчатого вала и шатунов от мусора. В простых двухтактных двигателях картер выполняет несколько функций и используется как камера наддува топливно-воздушной смеси. В более сложных четырехтактных конструкциях он изолирован от этой смеси поршнями и вместо этого работает в основном для хранения и циркуляции масла.В четырехтактном двигателе он расположен ниже блока цилиндров и в обоих типах представляет собой самую большую физическую полость двигателя.

Большинство современных картеров изготавливаются из алюминия, что обеспечивает легкую, но прочную конструкцию, способную выдерживать давление, оказываемое при нормальной работе двигателя.В четырехтактных двигателях без наддува, т. е. двигателях без турбонагнетателя , желателен небольшой уровень давления в картере, чтобы не допустить проникновения пыли и других потенциально вредных частиц, сохраняя при этом правильное расположение масла. Все двигатели в рамках своей нормальной работы допускают выход небольшого количества несгоревшего топлива и выхлопных газов в картер. Этот коллективный материал известен как прорыв .

Клапан принудительной вентиляции картера или клапан PCV обычно используется как часть общей системы контроля давления для регулирования количества картерных газов, выбрасываемых из картера.Проходя через клапан PCV, выброшенные газы возвращаются через систему обратно в часть, известную как впускной коллектор , где они повторно используются в процессе сгорания. Эта конструкция была принята частично по инициативе законодательства, потому что более ранние конструкции не были закрытыми и позволяли прорывам газов выходить прямо из двигателя, нанося значительный ущерб окружающей среде. Системы PCV не используются в двухтактных двигателях, так как все картерные газы сгорают в обычном потоке воздуха и топлива.

Надлежащий уход за картером и его внутренними компонентами необходим для бесперебойной работы двигателя.Поддержание надлежащего количества чистого масла имеет решающее значение, и его можно измерить с помощью простого инструмента, известного как щуп , простой металлический отрезок, который визуально показывает уровень масла. Хотя регулярная проверка покажет, сколько масла присутствует, несгоревшее топливо, которое скапливается в картере, может негативно повлиять на смазочные качества масла, поэтому регулярная замена масла имеет жизненно важное значение. Кроме того, неправильно обкатанный двигатель или двигатель с сухими, треснутыми уплотнениями поршня может позволить слишком большому количеству газа просачиваться через поршни в картер, создавая опасно высокие уровни давления, которые могут привести к повреждению и отказу двигателя.Ранние симптомы выхода из строя уплотнений включают утечку масла из клапана PCV или через щуп.

Картер двигателя

В течение сорока лет после первый полет братьев Райт, самолеты использовались двигатель внутреннего сгорания превратить пропеллеры генерировать толкать.Сегодня большинство самолетов авиации общего назначения или частных самолетов по-прежнему приводимый в движение пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель. Мы обсудим основы двигатель внутреннего сгорания, использующий Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера. Дизайн братьев очень прост по сегодняшним меркам, так что это хороший двигатель для студентов, чтобы учиться и изучать основы двигателей и их операция. На этой странице мы представляем компьютерный чертеж картера Райта Авиадвигатель братьев 1903 года.

Картер — это «тело», в котором находятся все остальные детали двигателя вместе. Это самая большая часть двигателя, но она должна быть рассчитана на быть одновременно сильным и легким. Чтобы снизить вес, братья использовали алюминий для изготовления картера. Картер был отлит на литейном заводе в г. Дейтон. В этом процессе изготавливается форма картера (с использованием песка или другого материала). материалы), а горячий жидкий алюминий заливают в форму и дают ему остыть, превращая его в твердую формованную деталь. Вы можете видеть, что произведение было довольно сложным, с рядом отверстий и паутин.В картер по углам отлиты четыре ножки для крепления двигателя к нижнее крыло самолета. Если посмотреть на рисунок немного подробнее, можно увидеть две основные части. картер, коробчатая конструкция справа и изогнутая конструкция слева если смотреть спереди двигателя.

Если смотреть спереди, коробчатая конструкция справа от картера держит четыре цилиндра. Цилиндры прикручиваются изнутри коробки в отверстия, обращенные вправо. камеры сгорания затем вкручиваются в цилиндры снаружи коробки. Стойки коромысла удерживают коромысло рычаги, открывающие выпускные клапаны камер сгорания. Дополнительные отливки на нижнем трюме распределительные валы и система смазки. Коробчатая конструкция также удерживает вода, используемая для прохладно цилиндры в устройстве, называемом водяной рубашкой . Цилиндры окружены водой, которая подается в рубашку через порт в нижней части и возвращается к радиатору два порта видно на в сверху по углам коробки.Вода несет тепло от цилиндров к радиатору. В верхней части коробки мы видим пол карбюратор, где газ и воздух смешиваются на пути к камерам сгорания. Тепло от водяной рубашки используется для испарения бензин капает в карбюратор.

Если смотреть спереди, изогнутая часть слева содержит коленчатый вал который превращает гребные винты для создания тяги. Изогнутая часть открыта, так что вы видите банку внутри. В работе листовая сталь пластина была прикреплена к верхней части, чтобы полностью закрыть отсеки для цилиндров .Есть четыре отсека, разделенные ребрами, которые удерживают отдельные поршни и цилиндры. Поршни соединены с коленчатым валом поршневыми штоками, которые двигаться в бухтах. Коленчатый вал крутится на подшипниках , которые расположены на ребрах картера. Эта анимация, если смотреть сверху двигатель, показана установка коленчатого вала:


Деятельность:

Экскурсии с гидом

Навигация..


Домашняя страница руководства для начинающих

Как работает Картер? | Какова функция картера? |

Двигатель — самая важная часть вашего автомобиля.Он содержит картер, топливную систему, коленчатый вал, поршень, топливный насос, топливную форсунку, шатун и многие другие детали. Картер является наиболее важной частью двигателя внутреннего сгорания. Основное назначение картера — защита коленчатого вала двигателя. Это часть блока цилиндров, установленная под цилиндром. В этой статье в основном объясняется работа картера, его функции, конструкция и некоторые другие аспекты.

Что такое Картер?

Картер — это «корпус», который удерживает вместе все внутренние части двигателя р.Это самая большая часть двигателя, но она должна быть прочной и легкой.

Картер образован частью блока цилиндров под отверстиями цилиндров и штампованным или литым металлическим масляным поддоном, который образует нижнюю часть корпуса двигателя, а также служит резервуаром или отстойником для смазочного масла .

Двухтактные двигатели  обычно используют конструкцию с компрессией картера, в результате чего топливно-воздушная смесь проходит через картер перед поступлением в цилиндр.Эта конструкция двигателя не предусматривает масляного поддона в картере.

Четырехтактные двигатели обычно имеют масляный поддон в нижней части картера, и большая часть моторного масла удерживается внутри картера. Топливно-воздушная смесь не проходит через картер четырехтактного двигателя; однако небольшое количество выхлопных газов часто попадает в виде «прорыва» из камеры сгорания.

Картер часто образует нижнюю половину шеек коренных подшипников (с крышками подшипников, образующими другую половину), хотя в некоторых двигателях картер полностью окружает шейки коренных подшипников.

Конструкция и детали картера

Картер представляет собой металлический литой корпус, используемый для покрытия коленчатого вала поршневого двигателя. В большинстве современных двигателей картер встроен в блок цилиндров. Коленчатый вал двигателя установлен в пазах картера. Это сборка.

Картер состоит из следующих основных частей :

1) Верхняя часть картера

Это верхняя часть картера.Он несет распределительный вал и клапанный механизм. Он имеет отверстия для впускного и выпускного коллектора, в которых размещаются клапаны и клапанные тарелки. Распределительный вал соединен с коленчатым валом через ременную или цепную передачу двигателя.

2) Нижний картер

Это один из основных компонентов двигателя. Он напрямую соединен с блоком двигателя болтами. Нижний картер несет коленчатый вал двигателя, который установлен на корпусе, а картер залит маслом для охлаждения и смазки вала.

Коленчатый вал крепится с помощью упорных подшипников, которые не дают коленвалу сдвинуться со своего места. Один конец коленчатого вала несет постоянную нагрузку, которая проливает масло на коленчатый вал при вращении внутри картера.

3) Клапан

Клапан устанавливается в нижней части. Этот клапан используется для замены масла. Когда вы откроете его, масло будет течь вниз под действием силы тяжести.

Картер Функция

Картер является центральным компонентом двигателя.В нем находится весь кривошипно-шатунный механизм, включая поршни, цилиндры и шатуны. Аксессуары, трансмиссия/коробка передач и система управления двигателем с головкой блока цилиндров крепятся к картеру.

Основной универсальной функцией картера является защита коленчатого вала и шатунов от мусора. В простых двухтактных двигателях картер выполняет несколько функций и используется как камера наддува топливно-воздушной смеси.

В более сложных четырехтактных двигателях он отделен от топливно-воздушной смеси поршнями и служит главным образом для хранения и циркуляции масла. Это также работает как функция безопасности, чтобы люди не могли попасть в движущиеся части, но это с натяжкой.

Преимущества картера
  • Картер окружает шатун и коленчатый вал и предотвращает их повреждение из-за загрязнения.
  • Предотвращает попадание мусора в коленчатый вал и шатун.
  • В сложных двигателях способствует циркуляции масла.
  • Он также действует как камера наддува топливно-воздушной смеси.
  • Эта часть двигателя имеет герметичный корпус, предотвращающий попадание влаги и грязи на вращающиеся компоненты.

Как добавить обработку двигателя морской пеной в картерное масло для бензиновых и дизельных двигателей

Позвольте опыту технических экспертов Sea Foam помочь вам с наиболее распространенными, проверенными временем рекомендациями по использованию SEA FOAM MOTOR TREATMENT в картерных маслах газовых и дизельных двигателей.

Сколько морской пены следует добавить в картерное масло?

Добавьте от 1 до 1,5 унций Sea Foam на каждый литр картерного масла для всех 4-тактных бензиновых, роторных и дизельных двигателей. Использование во всех типах обычных и синтетических моторных масел.

Одной банки Sea Foam хватает на 16 литров моторного масла. Большинство легковых и грузовых автомобилей имеют масляные системы на 5 и 6 литров: половина банки рассчитана на 5 или 6 литров масла.

Sea Foam содержит только ингредиенты на нефтяной основе.В отличие от некоторых присадок, оно НЕ содержит детергентов или химикатов, которые могут нанести вред вашему двигателю.

Когда следует добавлять морскую пену в масло?

Sea Foam можно добавлять в моторное масло так же часто, как при каждом интервале замены масла — просто залейте его в маслоналивную горловину двигателя!

Для плановой очистки картера двигателя добавляйте Sea Foam в моторное масло (в заливную горловину) за 100–300 миль до плановой замены масла и фильтра.

Регулярно проверяйте чистоту масла.Всякий раз, когда он становится грязным (меняет цвет с прозрачного на темный), меняйте масло и фильтр.

Как Sea Foam поможет масляному картеру моего двигателя?

  • Sea Foam разжижает нефтяные остатки, которые ограничивают поток масла и смазку двигателя.
  • Очищает маслосъемные кольца и приводы.
  • Растворяет и очищает отложения в картере, включая остатки дизельной сажи.
  • Успокаивает шумные подъемники.
  • Более чистый масляный картер повысит производительность двигателя и продлит срок его службы.

How-To: руководство по очистке и защите картера автомобиля и масляной системы двигателя

Самые приятные ощущения возникают во время этих плавных поездок, когда вы уверены в обслуживании и уходе за своим автомобилем.

Наши коллеги-автогуру знают, как важно поддерживать в первозданном виде внешний вид автомобиля, а также двигатель внутри!

Итак, вы готовы бороться с грязью, скопившейся в картере и масляной системе двигателя?

В этом посте вы узнаете, почему так важно промывать двигатель и как поддерживать картер двигателя и масляную систему в идеальном состоянии.Обещаем, это не так страшно, как кажется.

Что такое промывка двигателя?

Как бы это ни звучало, промывка двигателя — это решение, позволяющее промыть двигатель, разрушив накопление смазки и грязи в масляной системе двигателя. Как вы можете себе представить, накопление жира и грязи не является хорошей вещью. Когда в нашем двигателе накапливаются масляные отложения, ваш автомобиль не может работать оптимально.

Если с момента последней плановой замены масла прошло много времени, обратите внимание на эти многочисленные симптомы масляных отложений:

  • > Трудный запуск
  • > Осечка
  • > Неисправные кислородные датчики
  • > Двигатель «слишком горячий»
  • > Световой индикатор низкого уровня масла

 

Вот 3 главные причины, по которым важно промывать картер и масляную систему двигателя:

1: Обеспечивает чистоту деталей двигателя.
Если у вас нет совершенно нового автомобиля с небольшим пробегом, важно содержать детали двигателя в чистоте, чтобы обеспечить их бесперебойную работу. Чем больше грязи и грязи накапливается, тем менее эффективными они будут, что приводит к снижению эффективности использования топлива и снижению мощности.

2: Поддерживает чистоту нового масла.
Всякий раз, когда вы меняете масло, старое масло из вашего двигателя сливается и добавляется новое масло. Если вы не промоете бак, накопившийся мусор загрязнит ваше новое масло, в результате чего новое масло будет таким же грязным, как и старое.Если вы регулярно промываете двигатель, интервал между заменами масла может даже увеличиться, так как масло дольше остается чистым.

3: Помогает дать старым автомобилям новый старт.
Если у вас есть автомобиль с большим пробегом, который не обслуживался должным образом, рекомендуется выполнить промывку масла, а затем заменить масло. Это поможет машине работать более плавно и может уберечь вас от проблем в будущем. Мы рекомендуем наш специальный омолаживающий масляный комплекс B-60 High Mileage Oil System Rejuvenator для автомобилей с большим пробегом, который очищает и защищает картер и масляную систему двигателя всех транспортных средств, работающих на газе, включая автомобили с пробегом более 60 000 миль.Он кондиционирует и восстанавливает уплотнения и прокладки, помогая предотвратить утечки моторного масла.

 


Итак, как проходит процесс очистки?

Теперь, когда мы обсудили преимущества промывки двигателя, давайте приступим!

Процесс прост. Просто следуйте этим шагам, и ваша масляная система и картер двигателя будут чистыми в кратчайшие сроки.

  1. – Убедитесь, что ваш двигатель прогрет.
    Вы должны убедиться, что промываете двигатель в более теплый день, или, если вы живете в штате, печально известном своей прохладной погодой, вы можете сделать это в теплый день, чтобы ваш двигатель оставался теплым.
  2. – Добавьте одно из наших омолаживающих средств Berryman Oil System непосредственно в моторное масло.
    См. рекомендации по продукту и информацию/руководство по применению.
  3. – Проедьте или оставьте машину на холостом ходу на 15 минут, чтобы раствор проник в двигатель.
    В то время как раствор выполняет тяжелую работу по очистке смазки, копоти, отложений и грязи из масляной системы двигателя.
  4. – Слейте и замените масляный фильтр.
  5. — И, наконец, пришло время заменить моторное масло на свежее, чистое масло.

 

Долговечность вашего двигателя зависит от его промывки. Поддерживайте чистоту двигателя с помощью нашей промывочной жидкости для замены масла Berryman для автомобилей с пробегом менее 60 000 миль или нашего омолаживающего средства для масляной системы с большим пробегом B-60 для автомобилей с пробегом более 60 000 миль.

 

Все, что вы хотели знать об осмотре картера на корабле

Существует несколько важных факторов, о которых необходимо позаботиться для эффективной работы главного двигателя на корабле, и одним из них является картер корабельного двигателя.Картер является одной из таких частей главного двигателя, которая содержит наиболее чувствительные компоненты главного двигателя. Прежде чем приступить к проверке картера, вы не понимаете, какие правила безопасности необходимо соблюдать, или когда-нибудь задавались вопросом, что следует проверять, а что нет? Если да, то вы пришли в нужное место. В этой статье мы узнаем самые важные моменты, которые необходимо учитывать для эффективной работы картера главного двигателя. Изучите важные проверки картера и все, что должно быть включено в проверку картера на корабле.

Необходимые и выполненные проверки На борту картера Смазочное масло

Смазочное масло картера необходимо поддерживать в хорошем состоянии для эффективной работы главного двигателя. Если периодически не проводить техническое обслуживание и проверку, смазочное масло картера может повредить подшипники и другие части двигателя, что может привести к большим потерям и потерям времени при техническом обслуживании. Более того, если ущерб больше, судну может потребоваться выйти из чартера, что недопустимо в судоходной деятельности.

Еженедельные проверки картера

При еженедельном испытании картера необходимо проводить испытание смазочного масла водой. Это делается для того, чтобы убедиться, что в картере нет утечек и он в хорошем состоянии. Если содержание воды менее 2 % от общего объема, то оно допустимо и может быть уменьшено с помощью очистки.

Однако, если он выше 2%, необходимо провести исследование на наличие утечки воды внутри картера.В случае протечки необходимо проверить и заделать трещины, а также найти причины попадания воды. После этого необходимо полностью заменить масло в картере.

Во время еженедельных проверок также проводятся другие проверки для определения общего щелочного числа и вязкости масла. Картер необходимо долить или заменить масло в соответствии с рекомендациями производителя.

Раз в три месяца масло необходимо отправлять на лабораторный анализ, т. е. спектрографический анализ, чтобы убедиться, что степень износа и мелкие частицы металла находятся в допустимых пределах.В случае, если это запрещено, в отчете о лабораторном анализе будут рекомендованы процедуры или меры предосторожности, которые необходимо предпринять для разрешения ситуации.

Проверка картера больших тихоходных двигателей

Осмотр картера проводится каждый месяц, когда судно находится в порту и имеется достаточно времени для осмотра. При этом требуется тщательный осмотр для анализа состояния внутри и наличия повреждений подшипников.

Перед проверкой необходимо выполнить следующие процедуры
  • Разрешение должно быть получено до прибытия в порт, чтобы убедиться, что у властей нет проблем с этим.Это называется иммобилизационным разрешением главного двигателя.
  • После получения разрешения необходимо заполнить контрольный список.
  • Вопросы безопасности должны быть обсуждены с людьми, участвующими в проверке.
  • Когда двигатель находится в «остановленном» состоянии, необходимо остановить насос смазочного масла и крейцкопфный масляный насос и вынуть гидромолот, чтобы он не запустился сам по себе или по ошибке кого-либо другого.
  • Надлежащие знаки и плакаты, которые должны быть размещены относительно мужчин на работе.
  • Поскольку картер двигателя является замкнутым пространством, необходимо также заполнить контрольный лист входа в замкнутое пространство.
  • После остановки двигателя и насосов необходимо открыть дверцы картера и дать достаточно времени для охлаждения и вентиляции помещения, так как внутри очень жарко и мало воздуха.
  • После охлаждения и вентиляции помещения человек, входящий в помещение, должен быть в надлежащих средствах индивидуальной защиты, таких как комбинезон, страховочные ремни и противоскользящие накладки для обуви.
  • Убедитесь, что в ваших карманах нет инструментов, ручек и т. д., которые могут упасть внутрь и повредить подшипник и детали механизма
  • Перед входом человек должен быть подробно ознакомлен с тем, что нужно проверить внутри. Особое внимание также уделяется, если какой-либо другой вопрос указан техническим отделом или обнаружена какая-либо серьезная проблема на других судах.

Внутри картера необходимо выполнить следующие проверки

1.     Проверьте общее качество масла, независимо от того, чистое оно или загрязнено частицами углерода.

2.     Проверьте наличие характерного запаха. Если он обнаружен, это может быть связано с бактериальным загрязнением масла. Обычно запах тухлых яиц.

3.    Проверьте наличие металлических частиц возле решетки в картере.

4.   Проверьте состояние и наличие повреждений решеток.

5.    Проверьте следы проскальзывания на паутине; они должны быть в одной строке. При обнаружении проскальзывания необходимо сообщить об этом компании и классификационному обществу.

6.    Проверьте наличие голубоватых темных пятен, это указывает на то, что точки перегрева вызваны трением при недостаточной смазке.

7.    Проверьте траверсу на наличие повреждений.

8.    Проверьте направляющие крестовины на наличие повреждений и следов.

9.       Проверьте опорную плиту на наличие сварочных трещин и т. д.

10.   Проверьте наличие металла рядом с подшипниками, выступающего в результате протирания.

11.   Проверьте трубопроводы и любые неплотные соединения между ними.

12.Проверьте стопорные тросы и стопорные шайбы на болтах сальника.

13.   Проведите другие проверки, указанные техническим отделом.

14. Перед выходом убедитесь, что внутри ничего не осталось.

Теги: проверка картера главного двигателя

Контроль прорыва газов в дизельных двигателях

У каждого двигателя есть некоторый уровень прорыва газов, но когда дело доходит до больших дизелей, проблема усиливается. Когда вы сочетаете большой диаметр цилиндра, высокое давление в цилиндре за счет турбонаддува, многочасовую эксплуатацию и незначительное техническое обслуживание, результатом становится чрезмерный прорыв газов.

Утечка любых продуктов сгорания, воздуха или давления в картер двигателя считается прорывом газов. На большом дизеле около 60% картерных газов попадает в картер, проходя мимо поршневых колец. Это происходит, когда перепад давления в отверстии цилиндра является наибольшим по сравнению с давлением в масляном поддоне. Таким образом, прорыв газов максимален во время такта расширения (рабочего) двигателя и, во вторую очередь, во время такта сжатия.

Кроме того, прорыв газов неразрывно связан с температурой и нагрузкой двигателя.При измерении в кубических футах в минуту (куб. фут/мин) 12-литровый двигатель в хорошем механическом состоянии может иметь на холостом ходу 1,5 куб. фута в минуту при нормальной рабочей температуре и 3,5 куб. фут в минуту в холодном состоянии. При полной нагрузке продувка может составлять 2,7 кубических фута в минуту.

Остальные 40% прорыва газов происходят из источников, которые большинство не принимает во внимание, таких как турбонагнетатель или компрессор пневматических тормозов грузовика. При диагностике чрезмерного прорыва газов вам необходимо посмотреть на любые компоненты двигателя, которые связаны с моторным маслом и, следовательно, с картером.

Источник прорыва будет определять, как он проявляется, и потенциальные долгосрочные последствия. Прорыв газов, проходящий мимо поршневых колец, не только создает давление в масляном поддоне, но и вводит газы сгорания, содержащие несгоревшее топливо, твердые частицы и выбросы оксидов азота. Они также создают конденсат из-за разницы температур дымовых газов и картера.

При смешивании с моторным маслом картерные газы образуют шлам и кислоты, которые воздействуют на все детали двигателя.Несгоревшее топливо снижает смазывающую способность и вязкость моторного масла, воздействуя на подшипники двигателя, клапанный механизм и стенки цилиндров.

При наличии моторного тормоза при включении системы будет индуцироваться более высокий, чем обычно, прорыв газов. При активации поршень перемещается, а кольца трепещут, что позволяет им потерять герметичность. Моторный тормоз предназначен для того, чтобы помочь остановить транспортное средство и уменьшить фрикционный износ, но его не следует использовать чрезмерно.

Blowby отрывает масло от поршня и колец.Сначала он испаряется, а затем превращается в аэрозоль, который вы видите в виде пленки или дыма вокруг вентиляционной трубки картера.

Ключ к минимизации прорыва газов заключается в одном слове: уплотнение. Необходимо создать и поддерживать отличное уплотнение между поршневыми кольцами и стенкой цилиндра, а также другими областями, такими как турбонагнетатель и, если применимо, компрессор. Держите газы сгорания и давление там, где они должны быть, и прорыв газов не будет проблемой.

Поскольку у каждого двигателя есть некоторый уровень прорыва газов, картеру нужен способ дышать.Это проблематично для дизельного двигателя с турбонаддувом по сравнению с бензиновым двигателем без наддува, поскольку нельзя использовать клапан PCV. Дизель для тяжелых условий эксплуатации, в зависимости от его использования и возраста, может иметь открытую вентиляционную трубу. Это не что иное, как следует из названия. Его задача – сбросить давление в картере; он мало что делает для удаления дымовых газов или влаги. В более новых двигателях может использоваться какой-либо тип сепаратора, и это считается закрытой системой. В этой конструкции моторное масло отделяется, а продукты сгорания подаются обратно в систему впуска.Масло удаляется, чтобы не повредить лопатки на колесе компрессора турбокомпрессора и не нарушить теплообменную способность промежуточного охладителя. Некоторые двигатели могут иметь маслоотделитель и открытую вентиляционную трубу.

Ознакомьтесь с работой системы вентиляции картера на каждом из ваших дизелей. Если он выйдет из строя, двигатель со временем будет подвергаться чрезмерному износу и будет склонен к утечкам масла из-за давления в масляном поддоне.

.

Добавить комментарий

Ваш адрес email не будет опубликован.