Принцип работы инжектора на автомобилях: принцип работы и устройство инжекторных систем

Содержание

Устройство инжектора. Что такое инжектор в автомобиле

Инжектор

 

Карбюраторные автомобили давно сменили более мощные инжекторные. Но принцип работы этой системы пока знают не все водители. Устройство инжектора не сложное, достаточно разобраться в его деталях и их функционировании. 

 

Определение понятия

 

Начинающим водителям сначала нужно разобраться в том, что такое инжектор в автомобиле. И только после этого следует узнать о принципах его работы. Инжектор – это система или отдельная форсунка, установленная на мотор. Он необходим для распределения топлива – впрыскивает его в цилиндры или впускной коллектор. Именно в этом и заключается его отличие от карбюратора. 

В зависимости от места установки системы инжекторы делятся на несколько видов. Но любой из них может обеспечить точечную подачу топлива в автомобильный мотор или его положение в камере сгорания, где затем образуется топливно-воздушная смесь. 

Не имеет значения, на каком топливе ездит автомобиль. Инжектор справляется как с бензином, так и с дизелем. 

 

История создания

Голиаф 1951 года

Впервые инжектор был установлен в 1951 году компанией Бош на купе Голиаф 700 Спорт. А через три года Мерседес начали ставить систему на свои машины. Первые опыты использования инжектора оказались успешными. 

Но на самом деле такая установка применялась еще раньше – в 30-х годах, но только на боевой авиации. Первые устройства назвать идеальными сложно, так как они мало увеличивали мощность мотора. А об экономии топлива или охране окружающей среды в то время практически не заботились. 

В 1940-х об инжекторах из-за небольшого КПД забыли на время, так как появились реактивные двигатели. Не считая усилий компаний Мерседес и Бош, активно использовать систему начали только в 80-х. Тогда производители автомобилей внедряли устройство в свои машины. 

В то время уже значительно внимание уделялось снижению количества выбрасываемых в атмосферу газов. Из-за этого требования многие инженеры решили восстановить и модернизировать старые модели форсунок. Они быстро поняли, как работает инжектор, разобрались с его устройством и внедрили его в массовое производство. Результаты не заставили себя долго ждать – большинство современных машин работают именно на такой системе. 

 

Типы форсунок

Существует всего два вида форсунок – электронные и механические. Первый вариант более простой. В механическом инжекторе топливо идет сразу к форсункам, с помощью блока управления оно дозируется и отправляется в камеру сгорания. Именно такой инжектор устанавливают на современных автомобилях. Он дает возможность часто пользоваться машиной. 

Устройство механической форсунки

В механической форсунке нет электронного блока управления. Дозировкой топлива занимаются распределительные клапаны. Они подготавливают очередную порцию в зависимости от уровня открытости системы. Таким было устройство инжектора, произведенного в 30-х годах. Но механические системы встречаются и сегодня – они установлены на старых автомобилях. 

Стоит более детально рассмотреть электронные форсунки. Они делятся на подвиды:

галочка электромагнитные;

галочка электрогидравлические;

галочка пьезоэлектрические. 

Электромагнитные форсунки используются в бензиновых двигателях. У них простая конструкция, основные детали – электромагнитный клапан с иглой и сопло. Блок управления позволяет контролировать работу инжектора, а также обеспечивает напряжение на обмотке клапана в подходящий момент. 

Устройство электромагнитной форсунки

Электрогидравлические форсунки подходят для дизельных двигателей. Это клапаны с камерами управлениями и двумя типами дросселей – впускными и сливными. Устройство инжектора этого вида основано на давлении топлива в каждый момент работы автомобиля. Блок управления у таких форсунок электронный. Он посылает сигналы клапану, тогда инжектор приходит в действие. 

Устройство электрогидравлической форсунки

Пьезоэлектрическая форсунка подходит только для определенного вида дизельных двигателей – с впрыскивающей системой Common Rail. Но у такого инжектора есть свои преимущества: скорость реакции, которая гарантирует несколько подач топливной жидкости за полный цикл. 

Принцип работы пьезоэлектрической форсунки основывается на гидравлике. Поршень толкателя срабатывает благодаря увеличению длины пьезоэлементов, на которые воздействует сигнал блока управления. Дозу топлива определяет длительность этого воздействия и давление жидкости в топливной раме. 

Устройство пьезоэлектрической форсунки

 

Устройство системы

Как устроен инжектор

Устройство инжектора простое, хотя работа системы довольно сложная. Основные элементы:

галочка ЭБУ;

галочка форсунки;

галочка регуляторы давления;

галочка электрический бензонасос.

Электронный блок управления предназначен для контроля работы системы. С его помощью водитель может обеспечить беспрерывное функционирование инжектора. Форсунки – немаловажная деталь системы. Именно форсунки дозируют топливо и передают его в камеру сгорания. Рекомендуется через каждые 30 000 км, проезженных на автомобиле, чистить их от остатков бензина или дизеля. Регуляторы давления стабилизируют работу инжектора. С их помощью топливо выталкивается через форсунки в камеру сгорания. 

А электрический бензонасос подает бензин в двигатель. Он служит связующим звеном между мотором и бензобаком, которые расположены в разных концах машины. Для механических инжекторов на старых автомобилях использовались механические бензонасосы. У них меньше КПД и более короткий эксплуатационный срок. 

В устройство инжектора также входят датчики. Они показывают температуру нагрева и количество масла, напряжение в двигателе. 

В зависимости от типа инжектора меняется и его строение. Электромагнитная форсунка состоит из якоря и сопла, иглы, уплотнения, пружины, обмотки возбуждения и электромагнитного разъема, а также сетчатого фильтра. Эти детали объединены в единую систему под общим корпусом. 

Электрогидравлический инжектор не имеет сетчатый фильтр. Но в нем есть другие детали: камера управления, штуцер подвода бензина, сливной дроссель, поршень. Именно они и обеспечивают дозированную подачу топлива в камеру сгорания. 

В пьезоэлектрической форсунке есть все эти составляющие, но присутствуют и дополнительные детали. К ним относятся: нагнетательный канал, переключательный клапан. Они и обеспечивают стабильную работу системы. 

Независимо от типа инжектора его функционирование не изменяется. Оно основано на одних и тех же принципах действия. 

 

Принципы работы

Принцип работы инжектора

Основные принципы работы инжектора состоят из нескольких этапов. Они тесно связаны между собой, хотя имеются и промежуточные действия. Всего этапов четыре:

палец вправо 1. Измерение массы воздуха.

палец вправо 2. Передача показателей в ЭБУ.

палец вправо 3. Расчет количества топлива.

палец вправо 4. Воздействие заряда на форсунки. 

Сначала специальный датчик измеряет массу воздуха, который поступает в инжектор. Затем эти показатели система передает в блок управления. Сюда же доходит информация и от других датчиков, которые измеряют температуру, скорость движения коленного вала. После этого система подсчитывает количество топлива, необходимого для работы двигателя. И на последнем этапе инжектор воздействует длительными электрическими зарядами на форсунки, из-за чего они открываются и выливают бензин в коллектор из магистралей. 

Самая сложная работа проходит в блоке управления, поэтому его называют мозгом системы. Это мини-компьютер с программой, которая получает данные и моментально их анализирует, быстро реагирует на все изменения в системе. 

Для стабильной работы инжектора понадобится еще две детали – кислородный датчик и каталитический нейтрализатор. Первый способен передать ЭБУ информацию о состоянии топлива и уровне токсичности выхлопных газов. А второй используется для уничтожения недогоревших частиц. 

 

Преимущества и недостатки

Автомобильный инжектор

У каждого устройства есть свои недостатки, не стал исключением и инжектор. Но преимуществ у него все же намного больше. Основные сильные стороны:

галочка

 экономия топлива;

галочка увеличение мощности автомобиля;

галочка снижение токсичности выхлопов;

галочка защита машины от угона;

галочка устранение ручной регулировки топливной подачи. 

Карбюраторы не экономили топливо, а расходовали большое количество. Инжектор позволяет сократить расходы, при этом рабочие обороты снижаются, а мощность двигателя увеличивается. Запуск мотора стал более простым – с этой системой он превратился в автоматизированный. Система обеспечивает поддержку оборотов на холостом ходу. 

Управление мотором расширилось, хотя исчезла необходимость регулировать впрыски топлива вручную. Снизилась токсичность газов, которые образуются при сгорании бензина и выходят через выхлопную трубу. Работа инжектора больше не зависит от атмосферного давления, поэтому авто можно использовать в горах и других местностях, где воздух разрежен. 

Но важно учесть и некоторые недостатки системы:

галочка требования к качеству топлива;

галочка особенная диагностика;

галочка высокое давление внутри инжектора. 

Придется использовать только качественное топливо, так как в противном случае форсунки системы будут постоянно забиваться несгоревшими остатками. Диагностику и ремонт смогут провести специалисты в СТО, самостоятельно разобраться в электронном инжекторе сложно. 

Система очень чувствительна к перепадам напряжения, она зависит от электропитания. Внутри нее топливо постоянно находится под высоким давлением. Из-за этого во время аварий автомобиль может легко загореться и взорваться. На большинстве современных машин во избежание таких ситуаций устанавливают контроллер.

 

Заключение 

Инжектор нельзя назвать очень простым устройством. Но он позволяет использовать автомобиль на более высокой мощности и при этом меньше загрязнять окружающую среду. А отремонтировать его не проблемно – этим занимаются на каждом СТО. Да и определить неисправность легко: буду происходить сбои при запуске двигателя. Начинающим и опытным водителям следует задуматься о покупке современной машины именно с электронным инжектором. 

Принцип работы инжектора

Устройство и принцип работы инжектора

На сегодняшний день инжекторный двигатель практически полностью заменил устаревшие карбюраторные двигатели.

Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная.

Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом.

Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Принцип работы инжектора

Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.

К механической части инжектора относится:

  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Основным элементом электронной части является электронный блок, состоящий из контроллера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Конструкция и принцип работы инжектора

Условно эту систему можно разделить на две части – механическую и электронную.

Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры

. Электронная же часть обеспечивает контроль и управление системой.

Механическая составляющая инжектора

К механической части инжектора относится:

  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Видео: Инжектор

Принцип работы инжектора

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей.  Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Электронная составляющая

Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  1. Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
  2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
  3. Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
  4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
  5. Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
  6. Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
  7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
  8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока.

Принцип работы инжектора на автомобилях

Принцип работы инжектора заключается в том, чтобы подать своевременно в камеры сгорания топливовоздушную смесь.

Это необходимо для нормального функционирования двигателя.

Системой управления корректируется момент подачи напряжения на электроды свечей, чтобы воспламенить эту смесь. Причем эти параметры контролируются системой датчиков, установленных на двигателе.

Электронный блок управления

Для работы любого инжекторного мотора необходим блок управления микроконтроллерного типа.

К нему подключаются:

  1. Исполнительные механизмы при помощи электромагнитных реле.
  2. Датчики через согласующие устройства.

Питание осуществляется от бортовой сети.

Электронный блок состоит из:

  1. Постоянной памяти – она необходима для хранения информации, записи алгоритмов работы.
  2. Оперативной памяти – в нее записывается текущая информация, все данные при выключении зажигания стираются из нее.
  3. Микроконтроллера – он позволяет обрабатывать поступающие сигналы и регулировать работу всех исполнительных механизмов.

В памяти устройства записан алгоритм работы, зависит он от поступающих сигналов с датчиков. Называется этот алгоритм «прошивкой» или «топливной картой».

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Принцип работы инжектора: как работает, устройство

Инжектор — это революция в автомобилестроении. Сам по себе механизм сложный и для максимальной производительности его работа должна быть хорошо отлажена. Инжекторная система подачи топлива в двигатель работает по средствам ЭБУ (электронный блок управления), который высчитывает параметры топливной смеси перед ее подачей в цилиндры и управляет подачей напряжения на катушку зажигания для создания искры. Инжекторные агрегаты сместили с производства карбюраторные моторы.

В карбюраторных устройствах задачу подачи исполняет механический эмулятор, что не совсем удобно, потому что его система не способна сформировывать оптимальную смесь при низких температурах, оборотах и старте двигателя. Использование компьютерного блока дало возможность максимально точно осуществлять расчет параметров, и беспрепятственно на любых оборотах и температуре подавать топливо, соблюдая при этом экологические стандарты. Минус наличия ЭБУ в том, что если возникнут проблемы, например, слет прошивки, то мотор начнет работать либо с перебоями, либо вовсе откажется функционировать.

Инжекторный двигатель

Вообще, инжекторный двигатель работает по тому же принципу, что и дизельный. Отличие только в устройстве зажигания, которое придает ему мощности на 10% больше чем у карбюраторного мотора, что не так уж и много. О плюсах и минусах системы пусть спорят профессионалы, но знать устройство инжектора или хотя бы иметь представление о его строении обязан каждый водитель, планирующий ремонтировать двигатель собственноручно. Также со знаниями инжекторного узла, вас не смогут обмануть на СТО недобросовестные работники.

История возникновения инжекторной системы впрыска

Инжектор по сути, форсунка, выступающая распрыскивателем горючего в двигателях. Изготовлен первый инжекторный мотор был в 1916 году российскими конструкторами Стечкиным и Микулиным. Однако воплощена система впрыска топлива в автомобилестроении, была только в 1951 году западногерманской компанией Bosch, которая наделила двухконтактный мотор незамысловатой механической конструкцией впрыска. Примерил на себя новинку микролитражный купе «700 Sport» компании Goliath из Бремена.

По прошествии трех лет задумку подхватил четырехконтактный мотор Mercedes-Benz 300 SL — легендарное купе «Крыло Чайки». Но, так как жестких экологических требований не было, то идея инжекторного впрыска была не востребована, а состав элементов сгорания двигателей не вызывал интереса. Главной задачей на тот момент было повысить мощность, поэтому состав смеси составлялся с расчетом избыточного содержания бензина. Таким образом, в продуктах сгорания, вообще, не было кислорода, а оставшееся несгоревшее горючие образовывало вредоносные газы посредством неполного сгорания.

Установлен инжекторный двигатель

Стремясь увеличить мощность, разработчики ставили на карбюраторы ускорительные насосы, заливавшие горючие в коллектор с каждым нажатием на педаль акселератора. Только в конце 60 х-годов 20 века проблема загрязнения окружающей среды промышленными отходами стала ребром. Транспортные средства заняли лидирующую строчку среди загрязнителей. Было решено для нормальной жизнедеятельности кардинально перестроить конструкцию топливного аппарата. Тут-то и вспомнили за инжекторную систему, которая гораздо эффективнее обычных карбюраторов.
Так, в конце 70-го произошло массовое вытеснение карбюраторов инжекторными аналогами, превосходящими во много раз эксплуатационными характеристиками. Испытательной моделью выступил седан Rambler Rebel («Бунтарь») 1957 модельного года. После инжектор был включен в серийное производство всеми мировыми автопроизводителями.

Как работает инжектор?

Обычно он имеет в своей конструкции следующие составляющие:

  1. ЭБУ.
  2. Форсунки.
  3. Датчики.
  4. Бензонасос.
  5. Распределитель.
  6. Регуляторы давления.

Если описывать коротко принцип работы инжектора заключается в следующем:

  • на датчики поступают сигналы о работе системы;
  • после блок сопоставляет параметры и осуществляет управление системой;
  • затем идет подача электрического разряда на форсунки, под его натиском они открываются, впуская смесь из топливной магистрали во впускной коллектор.

    Схема инжекторного мотора

Электронный блок управления

Его задача беспрерывно анализировать поступающие параметры от датчиков и давать команды системами. Компьютер учитывает факторы внешней среды и особенности различных режимов работы двигателя, при которых происходит эксплуатация. В случае выявления несовпадений, центр подает команды исполнительным элементам для коррекции. ЭБУ также имеет систему диагностики. Когда случается сбой, она распознает возникшие неполадки, оповещая водителя индикатором «CHECK ENGINE». Вся информация о диагностических кодах и ошибках хранится в центральном блоке.

Различают 3 вида памяти:

  1. Однократное программируемое постоянное запоминающее устройство (ППЗУ). Хранит общую установку с последовательностью действий для управления системой. Располагается запоминающий чип в панели на плате блока, он легко сниматься и заменятся на новый. Информация здесь не меняется и при сбоях сети не стирается.
  2. Оперативное запоминающее устройство (ОЗУ). Выступает как временное хранилище «блокнот», где рассчитываются параметры и куда компьютер может вносить изменения. Микросхема располагается на печатной плате блока. Для ее работы постоянно нужна электрическая сеть, если питание не поступает, то все данные находящиеся во временном хранилище стираются.
  3. Электрически программируемое запоминающее устройство (ЭПЗУ). Временное хранилище данных и кодов-паролей противоугонной системы транспортного средства. Память не зависит от сети. Хранящиеся в ней коды нужны для сравнения с кодами иммобилайзера, если совпадения не произошло, то мотор не заведется.

    Первый тойотовский инжекторный двигатель M-E 1972 года

Расположение, классификация и маркировка форсунок

После разбора вопроса как работает инжектор, просмотрим поверхностно всю инжекторную систему. Инжекторная система, производит впрыск горючего во впускной коллектор и цилиндр мотора посредством форсунки, которая способна за секунду открываться и закрываться много раз. Система делится на два типа. Классификация зависит от расположения крепления форсунки, устройства ее работы и количества:

  1. Моновпрыск, иначе как центральный впрыск топлива Throttle body injection (TBI), работает посредством одной форсунки, подающей горючие в цилиндры мотора. Подача струи не синхронизирована ко времени открытия впускного клапана мотора. Одноточечный впрыск простой и мало содержит управляющей электроникой. Вся система TBI находится внутри впускного коллектора. Технология сегодня не популярна и почти не задействуется при производстве авто, так как не удовлетворяет нынешним требованиям.
  2. Распределительный впрыск топлива Multiport Fuel Injection (MFI) на сегодня востребован, потому что гораздо совершенен. Его суть в том, что каждая форсунка подает горючее индивидуально к каждому цилиндру. Крепится конструкция снаружи впускного коллектора. Сигналы синхронизированы с последовательностью зажигания двигателя. Этот тип впрыска сложнее по конструкции, однако, мощнее НА 7–10% и экономичнее предшественников.

    Сравнение карбюратора и инжектора

Есть несколько классификаций распределительного впрыска:

  • одновременный – работа всех форсунок синхронна, то есть впрыск идет сразу во все цилиндры;
  • попарно-параллельный – когда одна открывается перед впуском, а другая перед выпуском;
  • фазированный или двухстадийный режим – инжектор открывается только перед впуском. Дает возможность на малых оборотах, при резком нажатии на педаль акселератора увеличить момент двигателя. Впрыск проходит в два этапа.
  • непосредственный (впрыск на такте впуска) GDI (Gasoline Direct Injection) – струя идет сразу в камеру сгорания. Для моторов с таким впрыском требуется и более качественное топливо, где незначительное количество серы и других химических элементов. Мотор GDI способен исправно служить в режиме сгорания сверхобедненной топливовоздушной смеси. Меньшее содержание воздуха делает состав менее воспламеняемым. Горючее внутри цилиндра прибывает как облако, пребывающее рядом со свечей зажигания. Смесь схожа с стехиометрическим составом, который легко воспламеняется.

Инжекторные форсунки имеют разный способ подачи струи:

  1. Электрогидравлический. Работает посредством разницы давления дизеля на поршень и форсунку. Когда клапан обесточен, иглу форсунки жидкостью придавливает к седлу. А если клапан открывается, то открывается и дроссель, после чего осуществляется заполнение дизелем топливной магистрали. Во время этого давление на поршень снижается, а на игле ничего не происходит, что ее и поднимает в момент впрыска.

    Устройство инжектора

  2. Электромагнитный. На обмотку клапана поступает электрический разряд, контролируемый ЭБУ. В итоге возникает электромагнитное поле наравне со сдавливанием пружины. Поле притягивает иглу и освобождает сопло для подачи струи. Пружина возвращается в прежнее положение после рассеивания электромагнитного поля, отправляя иглу на свое место.
  3. Пьезоэлектрический. Самый продвинутый тип, применяется в дизельных агрегатах. Скорость его действий превышает предыдущие типы в четыре раза, помимо этого, количество впрыскиваемого топливо максимально выверено. Действия инжектора основаны на принципе гидравлики, работа осуществляется из-за разницы давления. Сначала игла находится на седле, потом ток растягивает пьезоэлемент, который начинает воздействовать на толкатель, чем открывает клапан для движения топлива в магистраль. Затем давление спадает, и игла подымается, вверх осуществляя впрыск.

Нейтрализатор/катализатор

Для сокращения выброса окисей углерода и азота, в инжектор был добавлен каталитический нейтрализатор. Он преобразует выделенные из газов углеводороды. Применяется на инжекторах лишь с обратной связью. Перед катализатором имеется датчик содержания кислорода в выхлопных газах, по-другому его называют как лямбда-зонд. Контроллер, получая информацию от датчика, вытягивает подачу топливной смеси до нормы. В нейтрализаторе есть керамические составляющие с микроканалами, где содержатся катализаторы:

  • два окислительных из платины и палладия;
  • один восстановительный из родия.

    Инжекторная топливная система

Нельзя чтобы мотор с нейтрализатором работал на этилированном бензине. Это выведет из строя не только нейтрализаторы, но и датчики концентрации кислорода.

Так как простых каталитических нейтрализаторов недостаточно, то используется рециркуляция отработавших газов. Она существенно убирает образовавшиеся оксиды азота. Помимо этого, для этих целей устанавливается дополнительный NO-катализатор, так как система EGR не способна создать полное удаление NOx. Есть два типа катализаторов для понижения выбросов NOx:

  1. Селективные. Не привередливы к качеству топлива.
  2. Накопительного типа. Гораздо эффективнее, но очень чувствительны к высокосернистым горючим, что нельзя сказать о селективных. Поэтому они обширно применяются на авто для стран с малым количеством серы в топливе.

Основные датчики

  1. Датчик положения коленчатого вала (Датчик Холла). Дает блоку знать, расположение поршней в цилиндрах. Суть работы в том, что находящееся на валу мотора зубчатое колесо двигается около магнита. Его зубья искажают магнитное поле, создавая импульсы в катушке. ЭБУ считывает эти импульсы и определяет положение коленвала. Если этот датчик вышел из строя, то до СТО доехать на своей машине не получится.
  2. Датчик расхода воздуха (ДРВ). Существует два вида таких датчиков, один измеряет массу другой объем вбираемого воздуха. ДМРВ производит замер и посылает в ЭБУ. В потоке есть нагревательный элемент, температура которого автоматически держится на нужном показателе. Чем тяжелее воздух, тем больший ток должен проходить через него, для поддержания оптимальной температуры. Потому ЭБУ по силе тока определяет массу всасываемого воздуха. Что касается датчика объёма (ДОРВ), то он устроен так. В потоке, где проходит забор воздуха, установлена перегородка, открывающаяся под натиском воздуха. ЭБУ определяет положение заслонки при помощи потенциометра. Во время неполадки параметры датчика не учитываются, а расчет происходит по показателям аварийной таблицы.

    ЭБУ инжектора

  3. Датчик положения дроссельной заслонки. Контролирует положение дроссельной заслонки, из-за чего ЭБУ может правильно сокращать или увеличивать расход горючего.
  4. Датчики кислорода (лямбда-зонд). Вычисляет количество кислорода в выхлопных газах. На его показаниях ЭБУ выявляет бедную смесь и вносит поправки.
  5. Датчик температуры охлаждающей жидкости. Дает понять компьютеру, когда мотор достиг нужной рабочей температуры. В момент аварии, параметры датчика игнорируеются, температура, берется из таблицы опираясь на время работы двигателя.
  6. Коллекторный датчик абсолютного давления (ДАД) Анализирует воздух и его количество во впускном коллекторе, этот показатель нужен для устанавливания количества проводимой энергии.
  7. Датчик напряжения. Смотрит за напряжением бортовой сети машины. По его показаниям контроллер может набавлять или, наоборот, уменьшать холостые обороты мотора.
  8. Датчик детонации. Представляет собой высокочастотный микрофон, улавливающий недопустимые звуковые вибрации в моторе. Получая аномальные звуки, контроллер производит автоматическое корректирование угла опережения.

Система подачи топлива

Узел включает в себя:

  • топливный насос;
  • топливный фильтр;
  • топливопроводы;
  • рампу;
  • форсунки;
  • регулятор давления топлива.

    Система подачи топлива

Рассмотрим, как работает бензонасос на инжекторе. Насос находится в топливном баке и подает бензин на рампу под давлением 3,3–3,5 Мпа, что обеспечивает качественный распыл горючего по цилиндрам. Если обороты мотора увеличиваются, заметно возрастает и аппетит, то есть для сохранения давления, в рампу нужно поставлять больше бензина. Поэтому бензонасос по оповещению контроллера начинает ускорять вращения. Вовремя, прохода бензина к топливной рампе, лишнее убирается регулятором давления и спускается назад в бензобак, поддерживая тем самым постоянное давление в рампе.

Топливный фильтр находится под капотом кузова за топливным баком, он вмонтирован между электробензонасосом и топливной рампой в подающую магистраль. Его конструкция не разбирается, она являет собой металлический корпус с бумажной фильтрующей установкой.
Есть прямой и обратный топливопровод. Первый нужен для топлива, идущего из модуля насоса в рампу. Второй возвращает излишки горючего после регулятора назад в бензобак. Рампа – полая планка, соединённая с форсунками, регулятором давления и штуцером контроля давления в системе. Установленный на ней регулятор контролирует давление внутри ее и во впускной трубе. Его конструкция содержит мембранный клапан с диафрагмой и пружину, поджатую к седлу.

Интересное по теме:

загрузка…

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Разбираем принцип работы и устройство инжектора

Как устроен и как работает инжектор

Здравствуйте, уважаемые автолюбители! Как «железный конь пришел на смену деревенской лошадке», также и инжекторная система впрыска топлива, пришла на смену карбюраторам в автомобилях.

О преимуществах и недостатках систем подачи топлива, пусть спорят специалисты, а задача владельца автомобиля иметь представление о том, что такое инжектор, как устроен инжектор автомобиля.

И не обязательно устройство и принцип работы инжектора вам понадобится для того, чтобы ремонтировать его своими руками. Но, знать о том, как работает и из чего состоит инжектор автомобиля, нужно. Хотя бы для того, чтобы недобросовестные мастера автосервисов не пытались «нагреть» руки на вашем незнании своего авто.

Инжектор, как революция в автомобилестроении

Работа инжектора и форсунки

Что такое инжектор автомобиля? Инжектором (лат. injicio, фр. Injecteur, англ. Injector – выбрасываю) – называется форсунка, как распылитель газа или жидкости (топлива) в двигателях, либо часть инжекторной системы подачи (впрыска) топлива в двигателях внутреннего сгорания.

Годом рождения инжекторной системы впрыска считается 1951, когда компания Bosch оснастила ею 2-х тактный двигатель купе Goliath 700 Sport. Затем, в 1954 году, эстафету подхватил Mercedes-Benz 300 SL.

Массовое, серийное внедрение инжекторных систем впрыска топлива началось в конце 70-х годов прошлого века. Работа инжектора, по своим эксплуатационным характеристикам, во многом превосходила работу карбюраторной подачи топлива.

Как результат: первое десятилетие 21 века практически завершило вытеснение карбюраторов. Современные авто снабжаются в основном системами распределенного и прямого электронного впрыска.

Принцип работы инжектораУстройство простейшего инжектора

Принцип работы инжектора в системе подачи топлива

Fuel Injection System (система впрыска топлива) осуществляет подачу топлива посредством прямого впрыска при помощи форсунки (инжектора) в цилиндр двигателя либо во впускной коллектор. Соответственно, автомобили, оснащенные такой системой, носят название инжекторные.

Классификация инжекторного впрыска зависит от того, какой принцип действия инжектора, а также по месту установки и количеству инжекторов.

Центральный впрыск топлива (моновпрыск) осуществляет впрыск посредством одной форсунки на все цилиндры двигателя. Инжектор, как правило, располагается на впускном коллекторе (на месте карбюратора). Система моновпрыска на сегодняшнее время не пользуется популярностью у автомобилестроителей.

Основная масса современных серийных автомобилей, снабжена системой распределенного впрыска топлива. То есть, отдельная форсунка отвечает за свой цилиндр.

Система распределенного впрыска топлива, классифицируется по типам:

  • одновременный – все форсунки системы подают топливо одновременно во все цилиндры,
  • попарно-параллельный – тип впрыска, когда происходит парное открытие форсунок: одна открывается перед циклом впуска, другая, перед циклом выпуска. Характерно то, что попарно-параллельный принцип открытия форсунок применяется в период запуска двигателя, либо в аварийном режиме неисправности датчика положения распредвала. А во время движения, используется так называемый фазированный впрыск топлива,
  • фазированный —  тип впрыска, когда каждый инжектор открывается перед тактом впуска,
  • прямой – тип впрыска, происходящий непосредственно в камеру сгорания.

Принцип работы инжектора основывается на использовании сигналов микроконтроллера, который в свою очередь получает данные от датчиков.

Схема работы инжектора

Если не влазить в дебри «электронного мозга» нашего автомобиля, то схема работы инжектора выглядит следующим образом. На многочисленные датчики поступает информация о: вращении коленвала, о расходе воздуха, о том, какая температура охлаждающей жидкости двигателя, о дроссельной заслонке, о детонации в двигателе, о расходе топлива, о скоростном режиме, о напряжении бортовой сети авто и так далее.

Контроллер, получая данную информацию о параметрах автомобиля, производит управление системами и приборами, в частности: подачей топлива, системой зажигания, регулятором холостого хода, системой диагностики и так далее. Изменение рабочих параметров инжекторной системы впрыска меняется систематически, исходя из полученных данных.

Устройство простейшего инжектора

Инжектор включает в себя такие исполнительные элементы, как:

  • бензонасос (электрический),
  • ЭБУ (контроллер),
  • регулятор давления,
  • датчики,
  • форсунка (инжектор).

Соответственно, схема инжектора: электробензонасос подает топливо, регулятор давления поддерживает разницу давления в инжекторах (форсунках) и воздухом впускного коллектора. Контроллер, обрабатывает информацию от датчиков: температуры, детонации, распредвала и коленвала, и управляет системами зажигания, подачи топлива и так далее.

Всем хороша инжекторная система впрыска топлива, но и она не обошлась без своих особенностей. Приверженцы карбюраторов, называют их недостатками. Особенностями инжектора смело можно назвать: достаточно высокая стоимость узлов инжектора, низкая ремонтопригодность, высокие требования к качеству и составу топлива, необходимость специального оборудования для диагностики, и высокая стоимость ремонтных работ.

Теперь, перейдем от рассказа о том, как работает и выглядит инжектор к наглядному пособию. Вы увидите на  видео, принцип работы инжектора, и вам сразу же станет понятно всё, о чем написано выше.

Принцип работы инжектора на автомобилях :: SYL.ru

Принцип работы инжектора заключается в том, чтобы подать своевременно в камеры сгорания топливовоздушную смесь. Это необходимо для нормального функционирования двигателя. Системой управления корректируется момент подачи напряжения на электроды свечей, чтобы воспламенить эту смесь. Причем эти параметры контролируются системой датчиков, установленных на двигателе.

Электронный блок управления

Для работы любого инжекторного мотора необходим блок управления микроконтроллерного типа. К нему подключаются:

  1. Исполнительные механизмы при помощи электромагнитных реле.
  2. Датчики через согласующие устройства.
принцип работы инжектора

Питание осуществляется от бортовой сети. Принцип работы инжектора ВАЗ такой же, как и на любом другом автомобиле. Электронный блок состоит из:

  1. Постоянной памяти – она необходима для хранения информации, записи алгоритмов работы.
  2. Оперативной памяти – в нее записывается текущая информация, все данные при выключении зажигания стираются из нее.
  3. Микроконтроллера – он позволяет обрабатывать поступающие сигналы и регулировать работу всех исполнительных механизмов.

В памяти устройства записан алгоритм работы, зависит он от поступающих сигналов с датчиков. Называется этот алгоритм «прошивкой» или «топливной картой».

Система датчиков

На инжекторных двигателях устанавливается множество датчиков, они позволяют считывать максимальное количество информации о работе. Следующие датчики можно встретить на отечественных и импортных автомобилях:

  1. Расхода воздуха.
  2. Температуры антифриза.
  3. Положения коленчатого вала.
  4. Положения распределительного вала.
  5. Давления во впускном коллекторе.
  6. Скорости автомобиля.
  7. Уровня бензина в баке.
  8. Положения дроссельной заслонки.
  9. Концентрации кислорода в выхлопных газах.

Все эти датчики управляют исполнительными механизмами, которые участвуют в образовании смеси и корректировке угла опережения зажигания.

Датчик массового расхода воздуха

Это устройство, в основе которого находится нить из драгметалла – платины. Стоимость таких датчиков очень высокая, поэтому лучше следить за его состоянием и не допускать поломок. Обязательно нужно знать, какой у датчика принцип работы. На ВАЗ всех моделей с инжекторными моторами такие приборы устанавливаются.

принцип работы ГБО 2 поколения на инжектор

Работает он так:

  1. Нить из платины прогревается до 600 градусов.
  2. Через фильтр в трубку с нитью поступает поток воздуха под действием разрежения во впускном коллекторе.
  3. В блоке управления имеются данные о температуре нити и размерах трубки датчика.
  4. Поток воздуха охлаждает нить на несколько градусов.
  5. По разнице температур ЭБУ высчитывает количество воздуха, которое проходит через трубку за определенный момент времени.

Эти данные необходимы для того, чтобы составить топливную смесь в правильной пропорции.

Датчик температуры антифриза

Этот прибор позволяет электронному блоку управления понять, что двигатель прогрет до рабочей температуры. При запуске холодного двигателя в топливной смеси нужно уменьшать количество воздуха, для этого используется регулятор холостого хода. При помощи этого мотор работает максимально эффективно, быстро выводится в устоявшийся режим. Принцип работы ГБО 2 поколения на инжекторе такой же, как и на карбюраторе. Вот только при помощи сигнала с датчика температуры можно реализовать запуск двигателя на бензине и после прогрева автоматический переход на газовое топливо. Располагается датчик температуры в блоке двигателя или в корпусе термостата.

принцип работы инжектора ВАЗ

Датчики положения валов

Устанавливаются эти приборы на коленчатом и распределительном валах. Стоит отметить, что на распредвалах не всегда используются датчики – часто обходятся без них. Но их использование позволяет добиться максимальной мощности от двигателя, улучшить качество смесеобразования, правильно скорректировать момент подачи искры на электроды свечей.

Работают приборы на эффекте Холла – при прохождении металлического предмета возле активной части датчика происходит генерация импульса. Он подается на электронный блок управления и сравнивается с остальными параметрами работы мотора. Намного лучше сможет работать двигатель в режиме холостого хода. Принцип работы инжекторной системы основывается на сравнении сигналов, поступающих от датчиков.

принцип работы инжектора на ВАЗ

Датчик давления во впускном коллекторе

Его еще называют МАР-сенсор. Он может использоваться как совместно с датчиком расхода воздуха, так и полностью замещать его. Поэтому, если на двигателе имеется МАР-сенсор, поломка ДМРВ почти не страшна. Его функции перейдут к этому прибору. В основе элемента находится чувствительная пластина, которая под действием давления меняет сопротивление. Соединение с электронным блоком управления производится при помощи согласующего устройства.

Датчик положения дроссельной заслонки

Устанавливается на корпусе дросселя, датчик может быть аналоговым или бесконтактным. Первые работают по принципу переменного резистора – при вращении оси заслонки происходит перемещение бегунка на обмотке. При этом меняется сопротивление элемента, уменьшается или увеличивается уровень сигнала, поступающего на электронный блок управления. Существуют приборы бесконтактного типа, они работают так же, как энкодеры. Отличаются высокой надежностью, но с аналоговыми приборами не взаимозаменяемы.

принцип работы инжектора холостой ход

Прибор позволяет оценить положение заслонки, чтобы выдать информацию об этом блоку управления. Последний, исходя из этого значения, подаст в топливную рампу именно столько бензина, сколько необходимо для нормального смесеобразования.

Лямбда-зонд

Это прибор, который позволяет оценить содержание кислорода в выхлопной системе. Изготавливается датчик из керамики, обычно из диоксида циркония. Особенность этого материала в том, что он становится проницаемым для ионов кислорода при условии, что произойдет нагрев до температуры 300 градусов и выше. Замер уровня кислорода происходит как внутри выхлопной системы, так и снаружи.

механический инжектор принцип работы

Ведь блок управления не измеряет точное количество кислорода, он только оценивает разницу в проводимости керамического элемента внутри и снаружи системы. Именно такой используется принцип работы. Инжекторы на автомобилях функционируют нормально только лишь при условии, что система работает стабильно. Датчик снаружи вырабатывает определенный сигнал, который считается электронным блоком как эталон. Именно с ним происходит сравнение сигнала, поступающего от внутреннего лямбда-зонда.

Датчик уровня бензина

Применяются механизмы поплавкового типа, очень похожи по принципу действия на резистивные датчики положения заслонки дросселя. При изменении уровня топлива в баке поплавок будет подниматься или опускаться. При этом изменяется сопротивление датчика в цепи. Используется прибор для того, чтобы оповещать водителя об уровне бензина. Может применяться и для автоматического перехода с газа на бензин и обратно, если установлено ГБО.

Датчик скорости

Предназначен для контроля скорости автомобиля. Может устанавливаться как в тросиковом спидометре, так и в электронном. В первом случае прибор позволяет только выдавать сигнал для работы системы впрыска. Во втором случае он включен в цепь электронного спидометра. При наличии электроусилителя рулевого управления, иммобилайзера или иных охранных систем, этот датчик подключается к ним. Дело в том, что усилитель руля работает только при движении с малой скоростью. Как только скорость увеличивается, необходимость в усилителе отпадает. Многие охранные системы соединяются с датчиком скорости, чтобы обеспечить максимальную безопасность.

Исполнительные механизмы

Для нормального функционирования инжекторной системы используются исполнительные механизмы. Принцип работы механического инжектора «Ауди» немного отличается от электронного. Суть процессов примерно аналогичная.

принцип работы инжектора на автомобилях

В системе используются такие исполнительные устройства:

  1. Электрический топливный насос.
  2. Регулятор холостого хода.
  3. Топливные форсунки.
  4. Дроссельный узел.
  5. Модуль зажигания.

При помощи всех этих устройств производится управление двигателем внутреннего сгорания. Именно с помощью них можно поддержать на нормальном уровне холостой ход. Принцип работы инжектора в этом режиме такой же, как и в любом другом.

Типы впрыска топлива

Центральный впрыск во многом похож на карбюраторную систему, только вместо сложной совокупности каналов и жиклеров используется одна электромагнитная форсунка. Она устанавливается на впускной коллектор, и через нее подается топливная смесь в камеры сгорания. Недостаток один – при выходе из строя форсунки автомобиль не сможет продолжать движение.

принцип работы механического инжектора Ауди

Намного лучше в работе окажутся системы с парным или фазированным впрыском. Особенно эффективны последние – смесь поступает в камеры сгорания каждого цилиндра, в зависимости от того, в каком конкретно цикле на данный момент находится мотор. Устанавливается по одной форсунке на цилиндр и столько же катушек зажигания. Но может применяться и модуль.

Питание двигателя газом

Инжекторные двигатели можно без особых проблем перевести на питание газом (пропаном или метаном). Вот только если решите установить ГБО второго поколения, необходимо использовать меры защиты. Проблема в том, что при работе газобаллонного оборудования могут происходить хлопки. Для карбюратора это не очень страшно, а вот в инжекторных моторах может выйти из строя датчик расхода воздуха. Принцип работы ГБО 2 поколения на инжекторе заключается в том, чтобы обезопасить от хлопков систему впрыска. Для этого производится установка специальных устройств.

инжектор Вентури принцип работы

Но намного лучше использовать ГБО 4 поколения – такие устройства предназначены для установки на инжекторные моторы. В комплекте имеется несколько датчиков, которые дополняют стандартную конструкцию, а также электронный блок управления. Он соединяется со штатным и берет данные о работе двигателя именно от него. Пятое поколение газобаллонного оборудования используют крайне редко – стоимость его очень высокая.

При переходе с бензина на газ необходимо выполнить такие условия:

  1. В системе охлаждения жидкость должна быть теплой – свыше 50 градусов. Только в этом случае газ сможет нормально испаряться в редукторе.
  2. Обязательно необходимо отключить бензиновые форсунки.
  3. Сразу же происходит включение газовых форсунок.
  4. Время их открывания должно немного отличаться от аналогичного параметра бензиновых. Коэффициент вычисляется при калибровке.
  5. Происходит корректировка угла опережения зажигания, так как октановое число газа более 100.

Инжектор «Вентури» и автомобильный

Отличий у них множество, но есть и схожие черты. Принцип работы инжектора «Вентури» заключается в том, чтобы по трубе определенного диаметра пропустить жидкость или газ. На этой трубе имеется форсунка определенного диаметра, через нее вещество выходит под действием давления. При помощи такого инжектора получается реализовать системы орошения полей, подачу жидкости в емкости на производстве. В большинстве случаев такими инжекторами производится замер количества жидкости, проходящей за единицу времени.

Принцип работы инжектора, фото, видео, типы инжектора

Принцип работы инжектора в последнее время интересует многих автолюбителей. И это не удивительно, ведь в последние годы инжекторные автомобили существенно потеснили карбюраторные, а в ближайшем будущем вообще полностью их заменят.

Хотя многие автомобилисты со стажем со скептицизмом относятся к системам принудительного впрыска топлива, обосновывая свою позицию сложностью конструкции, дороговизной в обслуживании и ремонте.

Но для этих людей все же можно найти оправдание, ведь когда все время ездишь на карбюраторном отечественном автомобиле, то про карбюратор знаешь по сути все.

Поэтому ремонт и обслуживание топливной системы у таких людей не вызывает проблем, а вот что делать с инжекторной топливной системой многие еще не знают.

Хотя если захотеть понять принцип работы инжектора, то все на много проще, чем кажется. Как говорится, было бы желание.

Однако желания мало, чтобы понять принцип работы инжектора, необходима соответствующая информация, которая помогла бы быстро разобраться в этом вопросе.

Система TCCS

Возьмем, к примеру, систему принудительного впрыска топлива от фирмы Toyota. Называется она TCCS — Toyota Computer Control System. Данная система является одной из передовой и самой надежной на данное время и поэтому заслуживает особого к себе внимания. Однако она дорогая и сложная в обслуживании.

Принцип работы инжектора

Принцип работы инжектора

Принцип же работы инжектора других топливных систем аналогичный и основывается он на следующих процессах.

Воздух под давлением поступает в двигатель. Но предварительно поток воздуха анализируется специальным датчиком, который вычисляет объем воздуха в данный момент времени.

Эти данные передаются на компьютер, который анализирует не только данные с датчика расхода воздуха, но и другие данные по работе двигателя, такие как частота вращения коленвала двигателя, температура двигателя и воздуха и т.д.

Принцип работы инжектора

После того как вся полученная информация обработана, компьютер определяет количество топливо, которое является оптимальным для данного объема воздуха и при этом было получено максимальное КПД (коэффициент полезного действия) от двигателя.

После обработки всей информации на форсунки подается электрически разряд определенной продолжительности. Форсунки открываются на необходимый период времени и впрыскивают заданную дозу топлива во впускной коллектор.

Принцип работы инжекторного ДВС с прямым впрыском.

Вот и весь основной принцип работы инжектора. Конечно же все это происходит очень быстро буквально за долю секунды.

Сложная составляющая

Основой и самой сложной составляющей, казалось бы, не сложного процесса, является специальная программа, которая прописана в компьютере.

Сложность ее заключается в том, что в ней должны быть учитаны и прописаны все внутренние и внешние условия работы двигателя и его систем. А это не так просто и сделать.

В остальном же, если рассматривать механическую сторону всей этой системы, то принцип работы инжектора не так уж и сложен. Про что уже и говорилось выше.

Устройство системы принудительного впрыска топлива

Из чего же состоит система принудительного впрыска топлива.

Как мы уже говорили, это:

  1. Специальная программа, прописанная для каждой марки автомобиля;
  2. Клапан холостых оборотов;
  3. Топливный перепускной клапан;
  4. Форсунки;
  5. Различные датчики (в том числе и датчик кислорода, он же лямда-зонд).

Типы инжекторов

Так же хотелось бы отметить тот факт, что системы принудительного впрыска топлива встречаются двух типов.

Первый тип.

Первый предназначен для стран Европы, Японии, США, в общем, для развитых стран, где существуют строгие экологические нормы на выброс токсических веществ в атмосферу, и называется он тип инжектора с обратной связью. В таких системах уже предусмотрены и лямбда-зонд и каталитический нейтрализатор.

Второй тип.

Другой тип не имеет обратной связи, и такое оборудование в нем не предусмотрено. Соответственно такие автомобили дешевле. И выпускаются такие автомобили для стран, где не очень жесткие экологические нормы и законы.

Вкратце, не углубляясь в сложные технологические процессы, мы рассмотрели принцип работы инжектора автомобиля.

Конечно, он в некоторой мере сложнее, чем у карбюратора, но сложность эта оправдана более экономичным расходом топлива, и более высоким КПД работы двигателя в разных режимах работы. Да и время диктует свое.

Когда-то, и инжектор будет заменен более совершенной, но в тоже время еще сложной системой. Новые технологии, от этого не куда не денешься.

7 мифов о чистке инжектора.

Устройство автомобиля: инжектор

Споры о преимуществах инжекторного двигателя над карбюраторным, давно не актуальны – инжекторные системы воцарились на рынке, а новый автомобиль с карбюратором теперь попросту не найти. И все же не лишним будет разобраться, что же такое «инжектор», и чем обеспечено его тотальное господство на рынке легкового автотранспорта?

История инжектора

Впервые о замене карбюратора принципиально новой системой задумались ещё в самом начале 20-го века авиационные инженеры. Перепробовав все известные типы карбюраторов, они уже к сороковым годам прошлого века пришли с готовой к серийному производству системой инжектора, под давлением подающей топливо в камеру сгорания независимо от гравитации (что важно для самолётов) и точно в требуемом количестве (что позволяет получать меньший расход топлива, большую мощность и снижение уровня вибраций).

К концу второй мировой войны инжекторный двигатель с механическим впрыском можно было встретить на истребителях и бомбардировщиках Германии, Японии, Великобритании, СССР и США.

Кстати, тогда же появилась и столь знакомая многим современным автолюбителям процедура, как промывка инжектора — легендарный японский истребитель А6М «Зеро» требовал чистки форсунок после каждого вылета.

Затем автопроизводители оценили возможности применения впрыска для увеличения мощности двигателя при сохранении его экономичности: в 1940 году итальянцы из Alfa Romeo на своём купе 6C тестируют экспериментальную систему электронного впрыска, а Mercedes-Benz в 1954 году запускает в серию своё легендарное купе 300SL «Крыло Чайки», где была установлена механическая система прямого впрыска топлива.

Впрочем, никто из них не был пионером в создании «инжектора» – те или иные технические решения, примененные в этих автомобилях, отрабатывались на множестве экспериментальных конструкций, начиная с французских двигателей Леона Левассера с механическим впрыском образца 1902 года.

В России же системами инжекторного впрыска на автомобильной технике занимались и в Центральном научно-исследовательском автомобильном и автомоторном институте «НАМИ» и на Горьковском автомобильном заводе. Впрочем, некоторое отставание в области электронных компонентов не позволило удачно развернуть производство электронных систем впрыска в шестидесятых годах. Механический же впрыск в СССР, к сожалению, массово не вышел за рамки авиационных и дизельных двигателей.

Схема работы инжектора

Схема инжектора и закономерности его работы, пожалуй, даже проще для понимания, чем принципы работы карбюратора. Если карбюратор – это изящное техническое воплощение целого ряда физических законов в металле, то даже самая современная система инжектора таит в себе всего-лишь насос, подающий топливо сначала в находящуюся под небольшим давлением систему топливных каналов (топливную рампу), а потом (через электрический клапан) в сопло форсунки. Сопло, в свою очередь, распыляет топливо, которое смешивается с воздухом внутри впускного коллектора и через впускной клапан попадает в цилиндр уже в виде топливо-воздушной смеси. Собственно, терминами «инжектор» и «форсунка» сейчас чаще всего обозначают устройство, совмещающее в одном корпусе сопло-распылитель и электрический клапан.

Для понимания принципов работы инжекторного двигателя можно представить себе обычный цикл работы цилиндра четырёхтактного двигателя. При установке на нём карбюратора можно вполне налить топлива в сам карбюратор и отключить его от топливной системы вовсе – двигатель сможет завестись сам, так как топливно-воздушная смесь формируется в карбюраторе под действием втягивающего потока воздуха, который «засасывает» с собой смесь, и она уже готовой попадает во впускной коллектор. Не нужно ни давления, ни особого управления – схема проста и характеризуется тем, что топливная смесь формируется ещё до попадания к впуску в цилиндр.

В схеме с применением инжекторных форсунок смесь «готовится» непосредственно во впускном коллекторе (а в случае прямого впрыска – вообще в самой камере сгорания). В точно заданный системой управления момент открывается электроклапан, разделяющий топливную систему и впускной коллектор. Под давлением, созданным бензонасосом, инжектор распыляет топливную смесь в количестве, строго необходимом для поддержания близкого к стехиометрическому (читай-оптимальному) составу смеси. При этом воздух в коллектор на большей части нетурбированных автомобилей попадает под воздействием разряжения, созданного цилиндром – что позволяет, зная текущую его температуру, точно понимать, сколько топлива можно сжечь, имея данный объем воздуха.

Минус схемы инжектора в том, что смесь получается не настолько гомогенной (однородной и хорошо перемешанной), как на дорогих спортивных карбюраторах, а система управления форсунками требует точной настройки для оптимальной синхронизации работы топливных форсунок, впускных клапанов и цилиндров. Но плюсов системы всё же оказывается больше:

  • растёт экономичность и одновременно мощность за счёт точной дозировки топлива в зависимости от текущей потребности и ситуации.
  • равномернее распределяется топливо и между цилиндрами (мы не берем сейчас многокарбюраторные системы и ранние инжекторы с одной форсункой на несколько цилиндров),
  • автоматизируются процессы настройки двигателя в зависимости от условий эксплуатации,
  • понижается уровень вредных выбросов в атмосферу,
  • расширяются возможности для тюнинга двигателя
  • облегчается диагностика двигателя (с учетом использования электронных технических средств)
  • сборка и настройка инжекторных двигателей в производстве обходится дешевле, чем сборка и настройка карбюраторных систем

С точки зрения водителя, автомобиль с инжекторной системой впрыска, как правило, быстрее реагирует на изменение положения педали газа, легче заводится в условиях, отличных от идеальных, потребляет меньше топлива и обладает более высокой мощностью по сравнению с аналогичным двигателем с карбюраторной системой питания.

Кстати, возможность выбирать – карбюратор или инжектор, когда-то была: на раннем этапе развития систем впрыска применялся в основном центральный (моно, одноточечный, Single-Point injection, SPi) впрыск, форсунка легко ставилась на место карбюратора как опция и работала одновременно на все цилиндры двигателя. Система была проста, надёжна и предполагала расположение форсунки вне зоны высоких температур.

При такой схеме не требовалось сложной электроники или механики для синхронизации работы форсунок на нескольких цилиндрах, но за это приходилось платить отсутствием той универсальности, которую дают более современные системы с распределенным, или многоточечным (Multi-Point Injection, MPi), впрыском.

В итоге именно распределенный впрыск получил наибольшее распространение и сейчас эволюционировал во множество подвидов, как то непосредственный впрыск в камеру сгорания (Direct Fuel injection, DFI) и несколько подвидов обычного распределенного впрыска в зависимости от времени открытия форсунок:

  • при параллельном, или одновременном, впрыске (SMPI) все форсунки в двигателе срабатывают одновременно и независимо от тактов цилиндров, дважды за цикл впрыскивая топливо во впуск соответствующего цилиндра. При данном способе впрыска, часто встречавшемся на автомобилях 90-х годов, форсунки нужны в основном для более точной – по сравнению с центральным впрыском — дозировки топлива. Тем не менее, время между впрыском и попаданием топлива в цилиндр для разных цилиндров оказывается разным (пусть мы и говорим о миллисекундах), что сказывается на неравномерности смеси от цилиндра к цилиндру.
  • при попарно-параллельном – форсунки делятся на группы, срабатывающие в разное время. Таким образом, точка срабатывания форсунки приближается к оптимальному времени впрыска топлива для подготовки смеси – что позволяет сократить разницу в качестве смеси в цилиндрах. За цикл работы двигателя топливо впрыскивается дважды, как и при одновременном впрыске – более того, на время пуска двигатель с попарно-параллельной схемой впрыска переходит в режим одновременного впрыска.
  • при фазированном впрыске или (CIFI) – каждая форсунка управляется независимо от остальных и открывается точно перед тактом впуска. Именно эта система в данный момент является наиболее распространенной, так как позволяет обеспечить точное управление каждой форсункой и использовать оптимальное для каждого цилиндра время впрыска.

Отдельно следует отметить, что система инжекторного впрыска сама по себе универсальна и используется не только для бензиновых автомобилей. Механический впрыск на дизельных двигателях появился едва ли не раньше, чем на бензиновых – с двадцатых годов двадцатого века и поныне только на модельных дизелях и некоторых тракторных моторах используется схема, отличная от инжекторного впрыска.

Например, для дизельных силовых агрегатов крайне распространена прогрессивная система прямого впрыска Common Rail (она же известна как TDI, VCDi, CDI, TCDi, i-DTEC, CRDi – в зависимости от производителя), фактически превращающая топливную рампу в замкнутый аккумулятор для хранения топлива под более высоким, по сравнению с другими системами впрыска, давлением. В результате форсунки подают топливо с ещё большим давлением, что положительно сказывается, в частности, на расходе топлива. Но между прочим, впервые эта «современная» система была применена на британских двигателях для подводных лодок Vickers в 1916 году и в дальнейшем развивалась в основном по пути повышения давления в топливном аккумуляторе.

Система управления инжектора

Системы, координирующие действия каждой отдельной форсунки- инжектора двигателя, бывают как механическими, так и электронными. Собственно, первые массовые системы впрыска на легковых автомобилях появились в пятидесятых годах двадцатого века и довольно долгое время были исключительно механическими (как, например, целое семейство систем Bosch D-Jetronic).

Но по-настоящему эпоха инжекторного впрыска началась только с распространением микроконтроллеров — стоимость их разработки, производства и настройки гораздо ниже в сравнении с аналогичными процессами для механических систем с теми же функциональными возможностями.

Сегодня система управления инжекторным двигателем далеко ушла от алгоритмов работы первых механических систем. Соблазн относительно недорого использовать возможность оперативного изменения дозировки и времени подачи топлива на каждый отдельный инжектор двигателя (форсунку – ведь именно так переводится слово «инжектор») сделал своё – микроконтроллер сейчас собирает данные со множества дополнительных датчиков (от температурных и ДМРВ(Датчик Массового Расхода Воздуха) до датчиков включения кондиционера и отслеживания неровностей дороги). В зависимости от результата анализа этих данных контроллер выдаёт указания целому ряду устройств помимо, собственно, связки «бензонасос-инжектор» — системе зажигания, регулятору холостого хода, системе охлаждения и тому же кондиционеру.

Промывка инжектора

Есть целый ряд проблем, характерных именно для инжекторных двигателей. Это могут быть проблемы, общие для всех типов двигателей, а могут появляться и проблемы с электронными датчиками, вышедшими из строя по разным причинам.
Но главная проблема даже самого надежного инжекторного двигателя в России — сбои из-за засорения системы топливоподачи.

Троение, не связанное с состоянием свечей зажигания, катушек и высоковольтных проводов, трудности запуска зимой, заметное ухудшение приемистости двигателя, разница в нагаре на свечах зажигания из разных цилиндров, повышенный расход топлива и неполное сгорание смеси – всё это действительно может указывать в том числе и на закоксовывание форсунок.

Большая часть операций с системой впрыска инжекторного двигателя, с точки зрения многих официальных производителей, сводится к замене неразборных форсунок новыми, но существуют и методики чистки, охотно предлагаемые различными автосервисами.

Их условно можно разделить на два типа – промывку инжектора и ультразвуковую чистку форсунок. И та, и другая операция выполняется как со снятием топливных форсунок, так и прямо на двигателе.

У каждого способа свои нюансы, но следует помнить, что при промывке форсунок жидкостью без снятия их с двигателя после завершения процедуры рекомендуется заменить свечи и масло (и соответствующий фильтр) в двигателе, предварительно промыв его — что делает операцию весьма накладной. Кроме того, следует учитывать, что ввиду наличия в форсунках сеточки-уловителя, промывка некоторых форсунок может быть возможна только в направлении, обратном обычному распылению.

При снятии форсунок с двигателя замене подлежат уплотнительные резиновые прокладки этих форсунок. При этом для самой чистки потребуется специальный промывочный стенд либо самодельные приспособления, которые заставят форсунку открыть клапан для промывки.

В любом случае есть серьёзный риск повреждения двигателя в результате неверных действий. А в случае обслуживания дизельных двигателей следует учитывать еще и возможность наличия в системе серьёзного остаточного давления.

И все же нельзя сказать, что диагностика и обслуживание инжекторного двигателя существенно сложнее диагностики и обслуживания карбюраторного.

Конечно, для обслуживания карбюраторного двигателя не нужен сканер ошибок или бортовой компьютер. В нем не присутствует того количества датчиков и подсистем, которое мы встречаем в системе управления инжекторным двигателем.

С другой стороны – при наличии нужного оборудования компьютер инжекторного двигателя тут же объясняет, где искать неисправность – и для этого не надо вызывать опытного специалиста-диагноста, а достаточно подключить бортовой компьютер или OBD-сканер.

На ряд же неисправностей, не улавливаемых сканером, существует управа в виде внимательного отношения к собственному авто – изменение поведения автомобиля на дороге, смена звучания двигателя, сбои в работе отдельных систем или внезапно проснувшийся аппетит – всё это указывает на возникшие проблемы и необходимость диагностики. А еще, самый страшный враг «инжектора» — некачественное топливо. Так что внимательно стоит отнестись и к выбору заправочной станции.

Автор
Дмитрий Лонь, корреспондент MotorPage.ru
Издание
MotorPage.Ru

Принцип инжектора. Механический инжектор: принцип работы

В данной статье будет рассмотрен принцип работы инжектора и все его основные компоненты. Это довольно перспективная система, которая в настоящее время используется на всех автомобилях независимо от их ценовой группы. Но не забывайте, что впервые такие конструкции стали массово применяться в 70-80-х годах. И сначала форсунки были без использования электронных компонентов. Конечно, они могли присутствовать, но в минимальном количестве.Также стоит сравнить инжекторную и карбюраторную системы впрыска топлива.

Карбюратор против инжектора

Пожалуй, среди любителей карбюратора останутся только те, кто любит стартовать со светофора. Причина в том, что карбюратор позволяет развивать большой крутящий момент и мощность внизу. Система впрыска впрыска, даже идеально настроенная, не рядом. Простота карбюратора и стоимость обслуживания также дают небольшое преимущество. Но вот что касается мощности и крутящего момента на высоких оборотах, тут инжектор здесь выигрывает, причем с большим отрывом.Другими словами, если вы обгоните свою машину, она будет более первозданной, если будет установлен впрыск. Также возможно увеличить мощность, установив турбину — устройство, способное нагнетать избыточное давление воздуха в систему впрыска. За счет этого мощность двигателя увеличивается во много раз. Конечно, ресурс страдает, но чем не пожертвуете ради эффектной езды?

Этапы развития инжекторного впрыска

На знаменитых «сигарах» «Ауди 100» применялся механический инжектор.Принцип ее действия можно сравнить с системой подачи топлива в дизельных двигателях. С помощью механического насоса и такого же привода форсунок топливно-воздушная смесь подавалась в камеры сгорания. Конечно, нельзя не упомянуть переходное звено — карбюраторы с электронным управлением. Они использовались на небольшом количестве автомобилей, причем исключительно японского производства. Жители Страны восходящего солнца и по сей день очень любят разнообразные электронные гаджеты.Но электронные карбюраторы не пользовались большой популярностью, в конце 80-х началась их эпоха и сразу закончилась. Кстати, на автомобилях ВАЗ-2110, например, устанавливались карбюраторы без тросового «всасывания». Регулировка подачи воздуха производилась автоматически, с помощью специальной заслонки, меняющей свое положение по мере прогрева двигателя. Но сегодня большую популярность приобрели форсунки, конструкции которых уже стали классическими. Вот они и стоит рассмотреть подробнее, разобрать по частям.

Топливный насос

Это сердце всей топливной системы, так как он помогает циркулировать бензин. В его состав входят следующие элементы:

  1. Фильтр (в народе он называется «памперсы», так как имеет завидное сходство).
  2. Электродвигатель постоянного тока.
  3. Насос с приводом от двигателя.
  4. Датчик уровня (конструктивно интегрирован с топливным насосом).

Насос расположен непосредственно в резервуаре, закреплен гайками.Доступ к нему можно получить, подняв заднее сиденье. Во всех машинах, будь то старая «десятка» или новая «японка», прямо под сиденьем стоит бензонасос. Конечно, снятие и установка на всех машинах будет производиться по-разному. От насоса до аппарели проложен топливопровод. Она должна выдерживать большое давление, поэтому всегда следите за ее состоянием. Параллельно этой магистрали проложена труба, по которой излишки бензина возвращаются обратно в бак. Все очень просто принцип работы бензонасоса.Инжектор функционирует из-за избыточного давления, создаваемого насосом.

Топливная рампа

Устанавливается непосредственно на двигателе. Его задача — поддерживать определенное давление в смеси бензина и воздуха. Именно в нем происходит процесс соединения двух компонентов горючей смеси — бензина и воздуха. И пропорция всегда должна быть одинаковой — 14 частей воздуха на бензин. Только в этом случае двигатель будет работать максимально стабильно, стабильно, экономично.К пандусу подключены такие механизмы, как дроссельная заслонка, электромагнитные форсунки, предохранительный клапан. Кстати, именно в топливной рампе установлен датчик давления топлива. Но о нем и всех остальных электронных компонентах будет рассказано дальше. Следует отметить, что инжектор Вентури, принцип действия которого аналогичен системе, рассмотренной в статье, имеет очень широкое применение, причем не только в автомобилях.

Форсунки

С помощью этих устройств подача топливовоздушной смеси поступает в камеры сгорания всех цилиндров.Что это за механизмы? Если вы сносно знаете конструкцию карбюратора, то вспомните электромагнитный клапан. Все, конструкция очень похожа на ту, что видна у насадок. У них есть обмотка, на которую подается постоянное напряжение. Игольчатый клапан при подаче напряжения открывает путь для прохождения топлива. Вся эта смесь под давлением распыляется в камеры сгорания. Учтите, что форсунки должны распылять топливо таким образом, чтобы оно максимально заполняло камеру сгорания.Легко понять принцип работы инжектора инжектора, с его помощью происходит распыление. Топливно-воздушная смесь в этот момент похожа на туман, в определенном объеме воздуха бензин находится во взвешенном состоянии. Следовательно, зажигание происходит намного быстрее и лучше, чем в случае карбюраторной системы.

Корпус дроссельной заслонки

Откройте капот автомобиля и внимательно посмотрите, что под ним. Вы увидите воздушный фильтр, который обычно прикручивается к «телевизору» — передней части автомобиля. От него идет небольшой патрубок, соединенный с отрезком пластиковой трубы, к которому подключаются провода.Это датчик, который измеряет расход пневмодвигателя. Но после это заслонка. С его помощью регулируется подача воздуха в топливную рампу. Но здесь нужно посмотреть принцип работы инжектора. Ведь следует отметить, что при полностью закрытой заслонке небольшая часть воздуха все же поступает в топливную систему, чтобы обеспечить оптимальное значение оборотов двигателя. И происходит это с помощью одного конкретного исполнительного механизма — регулятора холостого хода (называть его датчиком неправильно, так как это шаговый двигатель, он не производит никаких измерений).Этот механизм открывает и при необходимости закрывает канал, по которому воздух поступает в топливную рампу.

Электронный блок управления

Без этого элемента системы впрыска двигатель не может работать. Однако иногда, даже если оно того стоит, это не значит, что двигатель заведется и будет работать нормально. А все дело в том, что электронный блок управления построен на микропроцессоре. И он специально запрограммирован на работу в качестве модуля управления для всех исполнительных механизмов на основе данных, полученных с датчиков.Следовательно, в электронном блоке управления должна быть программа, написанная по определенному алгоритму. Причем этот алгоритм должен быть понятным, чтобы микроконтроллер точно знал, что ему нужно делать, если, например, есть сигнал от датчика детонации, без которого не может существовать ни один современный инжектор. Принцип работы двигателя как с инжектором, так и с карбюратором остается неизменным.

Датчики в автомобиле

Для правильной и своевременной подачи топлива во все цилиндры, а также импульсов на электроды свечей зажигания необходимо точно считывать все параметры двигателя.В частности, важно знать, какая частота вращения коленчатого вала. И не вмешивайтесь в сведения о том, на чем нажимают

.

Инжектор — Как работают системы впрыска топлива

Топливная форсунка — это не что иное, как клапан с электронным управлением. В него подается топливо под давлением от топливного насоса вашего автомобиля, и он может открываться и закрываться много раз в секунду.


Внутри топливной форсунки

Когда инжектор находится под напряжением, электромагнит перемещает плунжер, который открывает клапан, позволяя топливу под давлением выливаться через крошечное сопло.Форсунка предназначена для распыления топлива — чтобы создать как можно более мелкий туман, чтобы он мог легко гореть.


Топливная форсунка зажигания

Количество топлива, подаваемого в двигатель, определяется количеством времени, в течение которого топливная форсунка остается открытой. Это называется шириной импульса и управляется ЭБУ.


Топливные форсунки во впускном коллекторе двигателя

Форсунки установлены во впускном коллекторе так, что они распыляют топливо непосредственно на впускные клапаны.Трубка, называемая топливной рампой , подает топливо под давлением ко всем форсункам.


На этом снимке вы видите три форсунки. Топливная рейка — это трубка слева.

Чтобы обеспечить нужное количество топлива, блок управления двигателем оборудован множеством датчиков. Давайте посмотрим на некоторые из них.

,

Простые советы по диагностике неисправной топливной форсунки

Mechanic Checking Faulty Fuel Injector Mechanic Checking Faulty Fuel Injector

Профилактический уход имеет решающее значение, когда речь идет о техническом обслуживании автомобилей . Владение автомобилем — это ответственность и временами проблема, которая стоит нам больше денег, чем мы хотели бы, в большинстве случаев, чем хотелось бы. Соблюдение графика технического обслуживания , рекомендованного производителем. — отличный способ убедиться, что ваш автомобиль всегда работает с максимальной производительностью; однако, несмотря на все наши усилия, все еще может пойти не так.Природа механики в целом заключается в том, что сложная инженерия состоит из множества частей, которые потенциально могут изнашиваться, корродировать и выходить из строя, требуя ремонта или замены с течением времени. Одна из наиболее распространенных проблем, с которыми сталкиваются водители, — это диагностика симптомов, которые проявляются в их автомобиле. Доверить диагностику профессиональному механику может быть сложно для многих, поскольку подавляющее большинство людей имеют негативный опыт работы с автомастерскими . В крупных городах, таких как Лос-Анджелес , Анахайм , Глендейл , Лонг-Бич и Гардена, Калифорния , дорожные условия с каждым годом становятся все более обременительными для наших автомобилей, вызывая проблемы, в основном связанные с топливом ,В пробках мы склонны замечать симптомы, которые показывает наш автомобиль, а топливные форсунки — одна из наиболее часто заменяемых частей. Вот несколько симптомов, на которые следует обратить внимание, которые могут предупредить вас о необходимости зайти в магазин.

Индикатор проверки двигателя указывает на проблему с топливной форсункой

Обычно, когда что-то идет не так с вашей топливной форсункой, на приборной панели загорается индикатор проверки двигателя . Этот свет указывает на то, что компьютер автомобиля передает код, который должен быть прочитан профессиональным автомобильным техником с соответствующими автомобильными технологиями и устройствами.Как только вы принесете свой автомобиль в автомобильный магазин, они смогут диагностировать код неисправности и выключить для вас индикатор проверки двигателя. Если проблема связана с топливной форсункой, им необходимо будет провести тщательный осмотр, чтобы убедиться, что никакие другие детали не были повреждены в результате неисправности топливной форсунки. Профилактическая помощь , особенно в таких оживленных городах, как Гардена, имеет первостепенное значение; Проблемы с топливными форсунками можно обнаружить на ранней стадии, что вдвое сократит ваш счет за ремонт.

Неисправная топливная форсунка издает неприятный запах

Сильный запах бензина в кабине вашего автомобиля является еще одним признаком того, что топливная форсунка нуждается в проверке.Если форсунка выходит из строя, возможно, ее просто нужно почистить или отремонтировать. Иногда система форсунки под высоким давлением может вызвать утечку топлива и вокруг точек соединения механизма. Следите за топливной экономичностью . — хороший способ определить, нет ли утечки топлива. Оно может протекать даже тогда, когда ваш автомобиль стоит на стоянке. Если вы подозреваете, что проблема связана с топливной форсункой, следите за любыми жидкостями, которые собираются под вашим автомобилем.

Другие симптомы неисправности топливной форсунки

Fuel Injector Fuel Injector Ежедневно в пробке бывает трудно распознать значительные изменения в расходе бензина.Кто знает, сколько топлива мы используем изо дня в день, объезжая обширные территории Южной Калифорнии . Важно следить за экономией топлива вашего автомобиля; он может многое рассказать вам о том, что происходит с вашей машиной, особенно если вы подозреваете, что возникла проблема. Топливные форсунки помогают определить отношение кислорода к газу в двигателе, что позволяет двигателю нормально работать. Когда топливные форсунки начинают выходить из строя или выходят из строя, типичным признаком является затрудненное ускорение или пропуски зажигания двигателя .Если ваш автомобиль глохнет, буксует или икнет, проблема может быть в топливной форсунке, но это также может быть связано с любым количеством проблем, поскольку эти симптомы также типичны для других проблем с компонентами, таких как отказ массового воздушного потока . датчик .

Заключительные слова

Если вы заметили какой-либо из вышеупомянутых симптомов в своем автомобиле, вам может потребоваться осмотреть топливную форсунку . Pro Car Mechanics, расположенный в Гардене, Калифорния, является одним из самых популярных и авторитетных автомобильных магазинов в районах Лос-Анджелеса, Анахайма, Глендейла и Лонг-Бич.Предлагая клиентам цены до на 30% ниже, чем дилерских центров , они предоставляют доступных автомобильных услуг для роскошных европейских импортных товаров и могут решить все автомобильные проблемы, с которыми сталкиваются их клиенты. Загляните в Pro Car Mechanics для осмотра или просто для встречи с персоналом; они заслужат ваше доверие всего за одно посещение.

Следите за нами и ставьте лайки:

.

Признаки неисправной или неисправной топливной форсунки

Топливные форсунки — это компонент системы управления двигателем, который используется в подавляющем большинстве дорожных транспортных средств. Они являются частью топливной системы автомобиля и действуют как форсунки, распыляющие топливо в двигатель. Они управляются компьютером двигателя и работают путем распыления топлива по определенным схемам и через определенные временные интервалы, которые оптимизируют работу двигателя. Они в той или иной форме встречаются на подавляющем большинстве дорожных транспортных средств.Поскольку они являются частью топливной системы, любые проблемы с топливными форсунками могут вызвать всевозможные проблемы с производительностью двигателя, которые иногда даже могут сделать автомобиль непригодным для движения. Обычно неисправная или неисправная топливная форсунка вызывает несколько симптомов, которые могут предупредить водителя о потенциальной проблеме

1. Пропуски зажигания в двигателе и снижение мощности, ускорения и топливной экономичности

Одним из наиболее распространенных симптомов потенциальной проблемы с топливной форсункой являются проблемы с производительностью двигателя.Если какая-либо из топливных форсунок автомобиля неисправна, соотношение воздух-топливо в двигателе будет нарушено, что может привести к проблемам с производительностью. Неисправная топливная форсунка может вызвать пропуски зажигания в автомобиле, потерю мощности и ускорения, снижение топливной экономичности, а в тяжелых случаях может вызвать остановку двигателя или вообще не дать двигателю работать.

2. Запах топлива

Еще один частый симптом потенциальной проблемы с топливной форсункой — запах топлива. Форсунки выдерживают высокое давление, которое со временем может привести к утечке через сопло или уплотнение, расположенное на конце форсунки.Негерметичная форсунка приведет к утечке топлива в камеру сгорания двигателя, в то время как негерметичное уплотнение приведет к утечке топлива в основании форсунки. Оба могут влиять на производительность двигателя, в частности на топливную экономичность, и оба обычно производят заметный запах топлива. Любые запахи топлива следует устранять как можно скорее, чтобы предотвратить их превращение в потенциальную угрозу безопасности.

3. Загорается индикатор двигателя.

Еще одним признаком потенциальной проблемы с топливной форсункой является горящая лампа Check Engine.Если какая-либо из топливных форсунок засоряется и вызывает пропуски зажигания или возникает проблема с электричеством, компьютер включает световой индикатор Check Engine, чтобы предупредить водителя о проблеме. Индикатор Check Engine также может быть активирован при большом количестве других проблем с управлением двигателем, поэтому настоятельно рекомендуется сканировать компьютер на наличие кодов неисправностей.

Благодаря своей роли форсунок, обеспечивающих работу двигателя, топливные форсунки являются очень важным компонентом общей работы и управляемости автомобиля.Если на вашем автомобиле проявляются какие-либо из вышеперечисленных симптомов или вы подозреваете, что у вашего автомобиля могут быть проблемы с одной из топливных форсунок, обратитесь к профессиональному специалисту, например, из YourMechanic, для диагностики автомобиля, чтобы определить, есть ли какие-либо из этих проблем. топливные форсунки необходимо заменить.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о