Дизельный двигатель что это: Дизельные двигатели: виды, принцип работы, преимущества дизельных двигателей

Содержание

Дизельный двигатель — это… Что такое Дизельный двигатель?

Ди́зельный дви́гатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1]

Спектр топлива для дизелей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения — рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизель может с определённым успехом работать и на сырой нефти.

Компрессионные карбюраторные двигатели не относят к дизельным двигателям, так как в «дизелях» происходит сжатие чистого воздуха, а не топливо-воздушной смеси. Топливо впрыскивается в конце такта сжатия.[2][3].

История

В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объема», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года (в США в 1895 году

[2]), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее.[3] После нескольких неудач первый практически применимый образец, названый Дизель-мотором, был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество — топливную эффективность.

Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении Дизель-мотора и Тринклер-мотора русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более удачной в плане практического использования. Именно Тринклер-мотор был первым двигателем с воспламенением от сжатия, работавшим на сырой нефти. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. Российская конструкция оказалась проще, надёжнее и перспективнее немецкой.

[4] Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

В 1898 г. Эммануэль Нобель приобрёл лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. С 1899 г. Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизелей. В Петербурге Тринклер приспособил двигатель для работы на сырой нефти вместо керосина. В 1900 г на Всемирной выставке в Париже двигатель Дизеля получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель».

[5] Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой (В. Т. Цветков, «Двигатели внутреннего сгорания», МАШГИЗ, 1954 г.).

В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х — 60-х годов XX века дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель — тепловозы — являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы

[источник не указан 995 дней]. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

Принцип работы

Четырёхтактный цикл

Работа четырёхтактного дизельного двигателя.
  • 1-й такт. Впуск. Соответствует 0° — 180° поворота коленвала. Через открытый ~от 345—355° впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется
    перекрытием клапанов
    .
  • 2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение. Соответствует 360° — 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле — величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
    • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
    • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей — «тепловоз „даёт“ медведя».).
  • 4-й такт. Выпуск. Соответствует 540° — 720° поворота коленвала. Поршень идёт вверх, через открытый на 520—530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

Далее цикл повторяется.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • Дизель с неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
  • Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Принцип работы двухтактного дизельного двигателя Продувка двухтактного дизельного двигателя: внизу — продувочные окна, выпускной клапан верху открыт

Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла.

При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки — осуществляется продувка, совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение — поршень идёт вниз и снова открывает все окна и т. д.

Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых — еще — впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами — один впускными, другой выпускными (система Фербенкс-Морзе — Юнкерса — Корейво: дизели этой системы семейства Д100 использовались на тепловозах ТЭ3, ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6—1,7 раз.

В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

Варианты конструкции

Крейцкопфный (слева) и тронковый (справа) двигатели. Номером 10 обозначен крейцкопф.

Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф. В крейцкопфных двигателях шатун присоединяется к крейцкопфу — ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей — крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто — двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

Реверсивные двигатели

Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.

Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение. Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала сохраняется направление вращения распределительного вала. Двухтактные двигатели с контурной продувкой, когда газораспределение осуществляется поршнем, не нуждаются в специальных реверсивных устройствах (однако в них всё же требуется корректировка момента впрыска топлива).

Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.

Преимущества и недостатки

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Возможно, эта статья содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.
Дополнительные сведения могут быть на странице обсуждения.

Современные дизельные двигатели обычно имеют коэффициент полезного действия до 40-45 %, некоторые малооборотные крупные дизели — свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4 %).[6] Дизельный двигатель из-за особенностей рабочего процесса не предъявляет жестких требований к испаряемости топлива, что позволяет использовать в нём низкосортные тяжелые масла.

Дизельный двигатель не может развивать высокие обороты — топливо не успевает догореть в цилиндрах, для возгорания требуется время инициации. Высокая механическая напряженость дизеля вынуждает использовать более массивные и более дорогие детали, что утяжеляет двигатель. Это снижает удельную мощность двигателя, что послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Junkers, а также советский тяжёлый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А. Д. Чаромского и Т. М. Мелькумова). На максимальных эксплуатационных режимах топливо в дизеле не догорает, приводя к выбросу облаков сажи.

Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями[источник не указан 196 дней]. Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году)[7]. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя, а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды (НС или СН) , оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта[источник не указан 400 дней], в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса[источник не указан 400 дней]. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

Конечно, существуют и недостатки, среди которых — характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail. В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF — фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и «интеркулера» — устройства, охлаждающего воздух после сжатия турбонагнетателем — чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях — в устаревших дизелях — головки поршней содержат в себе камеру сгорания («прямой впрыск»).

Сферы применения

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы, дизелевозы, дизель-поезда, автодрезины) и безрельсовых (автомобили, автобусы, грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы, асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Мифы о дизельных двигателях

Цех судовых дизелей завода «Даймлер-Бенц» в Штутгарте Дизельный двигатель с турбонаддувом
  • Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

  • Дизельный двигатель слишком громко работает.

Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

  • Дизельный двигатель гораздо экономичнее.

Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше[8]. Срок службы дизельного двигателя больше бензинового и может достигать 400—600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

  • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

Рекордсмены

Самый большой/мощный дизельный двигатель

Судовой, 14 цилиндровый — Wärtsilä-Sulzer RTA96-C, созданный финской компанией Wärtsilä в 2002 году, для установки на крупные морские контейнеровозы и танкеры, является самым большим дизелем в мире[9].

Конфигурация — 14 цилиндров в ряд

Рабочий объём — 25 480 литров

Диаметр цилиндра — 960 мм

Ход поршня — 2500 мм

Среднее эффективное давление — 1,96 МПа (19,2 кгс/см²)

Мощность — 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

Крутящий момент — 7 571 221 Н·м

Расход топлива — 13 724 литров в час

Сухая масса — 2300 тонн

Габариты — длина 27 метров, высота 13 метров

Самый большой дизельный двигатель для грузового автомобиля[источник не указан 1275 дней]

MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

Мощность — 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

Крутящий момент — 15728 Н·м

Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля[источник не указан 1275 дней]

Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7.

Конфигурация — 12 цилиндров V-образно, угол развала 60 градусов.

Рабочий объём — 5934 см³

Диаметр цилиндра — 83 мм

Ход поршня — 91,4 мм

Степень сжатия — 16

Мощность — 500 л.с. при 3750 об/мин. (отдача с литра — 84,3 л.с.)

Крутящий момент — 1000 Нм в диапазоне 1750-3250 об/мин.

См. также

Примечания

Ссылки

Дизельный двигатель — это… Что такое Дизельный двигатель?

Ди́зельный дви́гатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1]

Спектр топлива для дизелей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения — рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизель может с определённым успехом работать и на сырой нефти.

Компрессионные карбюраторные двигатели не относят к дизельным двигателям, так как в «дизелях» происходит сжатие чистого воздуха, а не топливо-воздушной смеси. Топливо впрыскивается в конце такта сжатия.[2][3].

История

В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объема», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года (в США в 1895 году[2]), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее.[3] После нескольких неудач первый практически применимый образец, названый Дизель-мотором, был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество — топливную эффективность.

Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении Дизель-мотора и Тринклер-мотора русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более удачной в плане практического использования. Именно Тринклер-мотор был первым двигателем с воспламенением от сжатия, работавшим на сырой нефти. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. Российская конструкция оказалась проще, надёжнее и перспективнее немецкой.[4] Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

В 1898 г. Эммануэль Нобель приобрёл лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. С 1899 г. Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизелей. В Петербурге Тринклер приспособил двигатель для работы на сырой нефти вместо керосина. В 1900 г на Всемирной выставке в Париже двигатель Дизеля получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель».[5] Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой (В. Т. Цветков, «Двигатели внутреннего сгорания», МАШГИЗ, 1954 г.).

В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х — 60-х годов XX века дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель — тепловозы — являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы[источник не указан 995 дней]. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

Принцип работы

Четырёхтактный цикл

Работа четырёхтактного дизельного двигателя.
  • 1-й такт. Впуск. Соответствует 0° — 180° поворота коленвала. Через открытый ~от 345—355° впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется перекрытием клапанов.
  • 2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение. Соответствует 360° — 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле — величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
    • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
    • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей — «тепловоз „даёт“ медведя».).
  • 4-й такт. Выпуск. Соответствует 540° — 720° поворота коленвала. Поршень идёт вверх, через открытый на 520—530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

Далее цикл повторяется.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • Дизель с неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
  • Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Принцип работы двухтактного дизельного двигателя Продувка двухтактного дизельного двигателя: внизу — продувочные окна, выпускной клапан верху открыт

Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла.

При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки — осуществляется продувка, совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение — поршень идёт вниз и снова открывает все окна и т. д.

Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых — еще — впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами — один впускными, другой выпускными (система Фербенкс-Морзе — Юнкерса — Корейво: дизели этой системы семейства Д100 использовались на тепловозах ТЭ3, ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6—1,7 раз.

В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

Варианты конструкции

Крейцкопфный (слева) и тронковый (справа) двигатели. Номером 10 обозначен крейцкопф.

Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф. В крейцкопфных двигателях шатун присоединяется к крейцкопфу — ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей — крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто — двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

Реверсивные двигатели

Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.

Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение. Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала сохраняется направление вращения распределительного вала. Двухтактные двигатели с контурной продувкой, когда газораспределение осуществляется поршнем, не нуждаются в специальных реверсивных устройствах (однако в них всё же требуется корректировка момента впрыска топлива).

Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.

Преимущества и недостатки

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Возможно, эта статья содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.
Дополнительные сведения могут быть на странице обсуждения.

Современные дизельные двигатели обычно имеют коэффициент полезного действия до 40-45 %, некоторые малооборотные крупные дизели — свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4 %).[6] Дизельный двигатель из-за особенностей рабочего процесса не предъявляет жестких требований к испаряемости топлива, что позволяет использовать в нём низкосортные тяжелые масла.

Дизельный двигатель не может развивать высокие обороты — топливо не успевает догореть в цилиндрах, для возгорания требуется время инициации. Высокая механическая напряженость дизеля вынуждает использовать более массивные и более дорогие детали, что утяжеляет двигатель. Это снижает удельную мощность двигателя, что послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Junkers, а также советский тяжёлый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А. Д. Чаромского и Т. М. Мелькумова). На максимальных эксплуатационных режимах топливо в дизеле не догорает, приводя к выбросу облаков сажи.

Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями[источник не указан 196 дней]. Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году)[7]. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя, а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды (НС или СН) , оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта[источник не указан 400 дней], в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса[источник не указан 400 дней]. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

Конечно, существуют и недостатки, среди которых — характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail. В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF — фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и «интеркулера» — устройства, охлаждающего воздух после сжатия турбонагнетателем — чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях — в устаревших дизелях — головки поршней содержат в себе камеру сгорания («прямой впрыск»).

Сферы применения

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы, дизелевозы, дизель-поезда, автодрезины) и безрельсовых (автомобили, автобусы, грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы, асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Мифы о дизельных двигателях

Цех судовых дизелей завода «Даймлер-Бенц» в Штутгарте Дизельный двигатель с турбонаддувом
  • Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

  • Дизельный двигатель слишком громко работает.

Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

  • Дизельный двигатель гораздо экономичнее.

Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше[8]. Срок службы дизельного двигателя больше бензинового и может достигать 400—600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

  • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

Рекордсмены

Самый большой/мощный дизельный двигатель

Судовой, 14 цилиндровый — Wärtsilä-Sulzer RTA96-C, созданный финской компанией Wärtsilä в 2002 году, для установки на крупные морские контейнеровозы и танкеры, является самым большим дизелем в мире[9].

Конфигурация — 14 цилиндров в ряд

Рабочий объём — 25 480 литров

Диаметр цилиндра — 960 мм

Ход поршня — 2500 мм

Среднее эффективное давление — 1,96 МПа (19,2 кгс/см²)

Мощность — 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

Крутящий момент — 7 571 221 Н·м

Расход топлива — 13 724 литров в час

Сухая масса — 2300 тонн

Габариты — длина 27 метров, высота 13 метров

Самый большой дизельный двигатель для грузового автомобиля[источник не указан 1275 дней]

MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

Мощность — 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

Крутящий момент — 15728 Н·м

Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля[источник не указан 1275 дней]

Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7.

Конфигурация — 12 цилиндров V-образно, угол развала 60 градусов.

Рабочий объём — 5934 см³

Диаметр цилиндра — 83 мм

Ход поршня — 91,4 мм

Степень сжатия — 16

Мощность — 500 л.с. при 3750 об/мин. (отдача с литра — 84,3 л.с.)

Крутящий момент — 1000 Нм в диапазоне 1750-3250 об/мин.

См. также

Примечания

Ссылки

Дизельный двигатель — это… Что такое Дизельный двигатель?

Ди́зельный дви́гатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1]

Спектр топлива для дизелей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения — рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизель может с определённым успехом работать и на сырой нефти.

Компрессионные карбюраторные двигатели не относят к дизельным двигателям, так как в «дизелях» происходит сжатие чистого воздуха, а не топливо-воздушной смеси. Топливо впрыскивается в конце такта сжатия.[2][3].

История

В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объема», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года (в США в 1895 году[2]), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее.[3] После нескольких неудач первый практически применимый образец, названый Дизель-мотором, был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество — топливную эффективность.

Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении Дизель-мотора и Тринклер-мотора русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более удачной в плане практического использования. Именно Тринклер-мотор был первым двигателем с воспламенением от сжатия, работавшим на сырой нефти. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. Российская конструкция оказалась проще, надёжнее и перспективнее немецкой.[4] Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

В 1898 г. Эммануэль Нобель приобрёл лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. С 1899 г. Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизелей. В Петербурге Тринклер приспособил двигатель для работы на сырой нефти вместо керосина. В 1900 г на Всемирной выставке в Париже двигатель Дизеля получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель».[5] Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой (В. Т. Цветков, «Двигатели внутреннего сгорания», МАШГИЗ, 1954 г.).

В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х — 60-х годов XX века дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель — тепловозы — являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы[источник не указан 995 дней]. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

Принцип работы

Четырёхтактный цикл

Работа четырёхтактного дизельного двигателя.
  • 1-й такт. Впуск. Соответствует 0° — 180° поворота коленвала. Через открытый ~от 345—355° впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется перекрытием клапанов.
  • 2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение. Соответствует 360° — 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле — величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
    • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
    • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей — «тепловоз „даёт“ медведя».).
  • 4-й такт. Выпуск. Соответствует 540° — 720° поворота коленвала. Поршень идёт вверх, через открытый на 520—530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

Далее цикл повторяется.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • Дизель с неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
  • Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Принцип работы двухтактного дизельного двигателя Продувка двухтактного дизельного двигателя: внизу — продувочные окна, выпускной клапан верху открыт

Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла.

При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки — осуществляется продувка, совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение — поршень идёт вниз и снова открывает все окна и т. д.

Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых — еще — впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами — один впускными, другой выпускными (система Фербенкс-Морзе — Юнкерса — Корейво: дизели этой системы семейства Д100 использовались на тепловозах ТЭ3, ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6—1,7 раз.

В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

Варианты конструкции

Крейцкопфный (слева) и тронковый (справа) двигатели. Номером 10 обозначен крейцкопф.

Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф. В крейцкопфных двигателях шатун присоединяется к крейцкопфу — ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей — крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто — двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

Реверсивные двигатели

Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.

Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение. Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала сохраняется направление вращения распределительного вала. Двухтактные двигатели с контурной продувкой, когда газораспределение осуществляется поршнем, не нуждаются в специальных реверсивных устройствах (однако в них всё же требуется корректировка момента впрыска топлива).

Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.

Преимущества и недостатки

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Возможно, эта статья содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.
Дополнительные сведения могут быть на странице обсуждения.

Современные дизельные двигатели обычно имеют коэффициент полезного действия до 40-45 %, некоторые малооборотные крупные дизели — свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4 %).[6] Дизельный двигатель из-за особенностей рабочего процесса не предъявляет жестких требований к испаряемости топлива, что позволяет использовать в нём низкосортные тяжелые масла.

Дизельный двигатель не может развивать высокие обороты — топливо не успевает догореть в цилиндрах, для возгорания требуется время инициации. Высокая механическая напряженость дизеля вынуждает использовать более массивные и более дорогие детали, что утяжеляет двигатель. Это снижает удельную мощность двигателя, что послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Junkers, а также советский тяжёлый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А. Д. Чаромского и Т. М. Мелькумова). На максимальных эксплуатационных режимах топливо в дизеле не догорает, приводя к выбросу облаков сажи.

Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями[источник не указан 196 дней]. Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году)[7]. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя, а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды (НС или СН) , оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта[источник не указан 400 дней], в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса[источник не указан 400 дней]. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

Конечно, существуют и недостатки, среди которых — характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail. В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF — фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и «интеркулера» — устройства, охлаждающего воздух после сжатия турбонагнетателем — чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях — в устаревших дизелях — головки поршней содержат в себе камеру сгорания («прямой впрыск»).

Сферы применения

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы, дизелевозы, дизель-поезда, автодрезины) и безрельсовых (автомобили, автобусы, грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы, асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Мифы о дизельных двигателях

Цех судовых дизелей завода «Даймлер-Бенц» в Штутгарте Дизельный двигатель с турбонаддувом
  • Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

  • Дизельный двигатель слишком громко работает.

Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

  • Дизельный двигатель гораздо экономичнее.

Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше[8]. Срок службы дизельного двигателя больше бензинового и может достигать 400—600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

  • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

Рекордсмены

Самый большой/мощный дизельный двигатель

Судовой, 14 цилиндровый — Wärtsilä-Sulzer RTA96-C, созданный финской компанией Wärtsilä в 2002 году, для установки на крупные морские контейнеровозы и танкеры, является самым большим дизелем в мире[9].

Конфигурация — 14 цилиндров в ряд

Рабочий объём — 25 480 литров

Диаметр цилиндра — 960 мм

Ход поршня — 2500 мм

Среднее эффективное давление — 1,96 МПа (19,2 кгс/см²)

Мощность — 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

Крутящий момент — 7 571 221 Н·м

Расход топлива — 13 724 литров в час

Сухая масса — 2300 тонн

Габариты — длина 27 метров, высота 13 метров

Самый большой дизельный двигатель для грузового автомобиля[источник не указан 1275 дней]

MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

Мощность — 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

Крутящий момент — 15728 Н·м

Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля[источник не указан 1275 дней]

Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7.

Конфигурация — 12 цилиндров V-образно, угол развала 60 градусов.

Рабочий объём — 5934 см³

Диаметр цилиндра — 83 мм

Ход поршня — 91,4 мм

Степень сжатия — 16

Мощность — 500 л.с. при 3750 об/мин. (отдача с литра — 84,3 л.с.)

Крутящий момент — 1000 Нм в диапазоне 1750-3250 об/мин.

См. также

Примечания

Ссылки

Дизельные двигатели. Устройство и принцип работы

Все больше появляется автомобилей, у которых характерное постукивание из-под капота выдает тип установленного мотора. Разберем устройство, принцип работы и особенности дизельных двигателей.

Особенности дизельного двигателя, такие как экономичность, высокий крутящий момент и более дешевое топливо, делают его предпочтительным вариантом. Дизели последних поколений вплотную приблизились к бензиновым моторам по шумности, сохраняя при этом преимущества в экономичности и надежности.


КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

По конструкции дизельный двигатель не отличается от бензинового — те же цилиндры, поршни, шатуны. Правда, клапанные детали существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия намного выше (19-24 единиц против 9-11 у бензинового мотора). Именно этим объясняется большой вес и габариты дизельного двигателя в сравнении с бензиновым.

Принципиально отличие заключается в способах формирования топливно-воздушной смеси, ее воспламенения и сгорания. У бензинового мотора смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндры поступает чистый воздух. В конце сжатия, когда он нагревается до температуры 700-800оС, в камеру сгорания форсунками, под большим давлением впрыскивается топливо, которое почти мгновенно самовоспламеняется.

Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля. Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Экологические характеристики тоже лучше — при работе на бедных смесях выбросы вредных веществ заметно меньше, чем у бензиновых моторов.

К недостаткам относят повышенную шумность и вибрацию, меньшую мощность и трудности холодного пуска. У современных дизелей эти проблемы не являются столь очевидными.


ТИПЫ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

Существует несколько типов дизельных двигателей, различие между которыми заключено в конструкции камеры сгорания. В дизелях с неразделенной камерой сгорания — их называю дизелями с непосредственным впрыском — топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне. Непосредственный впрыск применялся в основном на низкооборотных двигателях большого рабочего объема. Это было связано с трудностями процесса сгорания, а также повышенным шумом и вибрацией.

Благодаря внедрению топливных насосов высокого давления (ТНВД) с электронным управлением, двухступенчатого впрыска топлива и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой сгорания на оборотах до 4500 об/мин, улучшить его экономичность, снизить шум и вибрацию. 

Наиболее распространенным является другой тип дизеля — с раздельной камерой сгорания. Впрыск топлива осуществляется не в цилиндр, а в дополнительную камеру. Обычно применяется вихревая камера, выполненная в головке блока цилиндров и соединенная с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался, что улучшает процесс самовоспламенения и смесеобразования. Самовоспламенение начинается в вихревой камере, а затем продолжается в основной камере сгорания.

При раздельной камере сгорания снижается темп нарастания давления в цилиндре, что способствует снижению шумности и повышению максимальных оборотов. Вихрекамерные двигатели составляют большинство среди устанавливаемых на легковые автомобили и джипы (около 90 %).


УСТРОЙСТВО ТОПЛИВНОЙ СИСТЕМА ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Важнейшей системой дизеля является система топливоподачи. Ее функция — подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой.

Главными элементами топливной системы дизеля являются: топливный насос высокого давления (ТНВД), форсунки и топливный фильтр.


ТНВД — топливный насос высокого давления.

ТНВД предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и управляющих действий водителя. По своей сути современный всережимный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера. 

Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые уже сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п. На современных внедорожниках обычно применяются ТНВД распределительного типа.

ТНВД распределительного типа. Насосы этого типа получили широкое распространение на легковых дизелях. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время эти насосы предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.


Форсунки дизеля.
Другим важным элементом топливной системы является форсунка. Она вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе, а тип распылителя определяет форму факела топлива, которая имеет важное значение для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем.

Форсунка на двигателе работает в очень тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.


Топливные фильтры дизеля.

Топливный фильтр, несмотря на его простоту, является важнейшим элементом дизельного мотора. Его параметры, такие, как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды, для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы.

Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.


КАК ПРОИСХОДИТ ЗАПУСК ДИЗЕЛЬНОГО ДВИГАТЕЛЯ?

Холодный пуск дизеля обеспечивает система предпускового подогрева. Для этого в камеры сгорания вставлены электрические нагревательные элементы — свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900оС, обеспечивая тем самым подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива. О работе системы водителю в кабине сигнализирует контрольная лампа. 

Погасание контрольной лампы свидетельствует о готовности к запуску. Электропитание со свечи снимается автоматически, но не сразу, а через 15-25 секунд после запуска, чтобы обеспечить устойчивую работу непрогретого двигателя. Современные системы предпускового подогрева обеспечивают легкий пуск исправного дизеля до температуры 25-30оС, разумеется, при условии соответствия сезону масла и дизтоплива.


ТУРБОНАДДУВ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате увеличивается мощность двигателя. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — «турбоямы».

Турбодизель имеет и некоторые недостатки, связанные с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя и не превышает обычно 150 тыс. км. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Подробнее в статье: что такое турбокомпрессор.


СИСТЕМА COMMON-RAIL ДЛЯ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.

В результате в дизелях с системой Common-Rail расход топлива сокращается на 20%, а крутящий момент на малых оборотах коленвала возрастает на 25%. Также уменьшается содержание в выхлопе сажи и снижается шумность работы мотора. 

Что такое дизельная технология и так ли это выгодно?

Дизельные двигатели в легковых автомобилях набирают все большую популярность, так как современные технологии решают все больше их недостатков. Большую часть времени, они заводятся и едут как бензиновые двигатели. Они проезжают не менее 800 миль от заправки до заправки, что хорошо, так как есть проблема керосинового запаха, цепко приставшего к вашим рукам после заправки.

Чуть меньше чем один из 100 проданных сегодня легковых автомобилей или внедорожников в США, это дизель. Добавьте пикапы, где 10 из 100 дизели, и вы получите 3% рынка, занятого этими двигателями. Какой бы незначительной бы ни была цифра. она отображает рост популярности: это почти столько же, сколько и продаж гибридных двигателей, встраиваемых, и электромобилей, если вы считаете и пикапы. Дизели составляют примерно половину всех продаж в Европе.

Так в чем заключается дизельная технология?

Вот что делает дизель, и почему многие люди считают, что дизель лучше бензина. Дизельное топливо представляет собой маслянистую жидкость-сородича керосина, печного топлива и авиационного керосина. Несмотря на кажущуюся более низкую степень рафинации или меньшую сложность, чем бензин, дизель выдает примерно на 10% больше БТЕ/галон, чем бензин. Прочно построенный дизельный двигатель сжимает воздух до одной двадцатой первоначального объема, затем дизельное топливо впрыскивается в цилиндр, и воспламеняется самопроизвольно, без свечи зажигания. Бензиновый двигатель, в сравнении, сжимает смесь топлива и воздуха примерно до одной десятой его первоначального объема, и затем свеча зажигания его воспламеняет.

Транспорт на дизельном двигателе обычно стоит на $1000-2500 больше, чем машина или внедорожник с сопоставимым бензиновым двигателем. Практически каждый дизельный пассажирский транспорт использует турбокомпрессор (мы говорим о современном). Если автомобиль обошелся гораздо дороже, или дешевле, уровни оборудования не сопоставимы. Для пикапов, стоимость может быть на $5000 больше в пользу дизельных двигателей, рассчитанных на сотни тысяч миль. Вы платите за более прочные детали двигателя, созданные, чтобы выдерживать более высокую степень сжатия и более выносливую камеру сгорания.

Система впрыска топлива является более сложной, и работает при более высоком давлении. В самом простом бензиновом двигателе топливные форсунки работают при 45-60 PSI выше атмосферного давления (14.7 фунтов на кв. дюйм), или при 3-4 бар (атмосфер). Большинство дизельных двигателей второго поколения нынче продаваемых используют технологию общей топливной рампы, которая работает при 15000 PSI или 1000 бар. Дизельные двигатели третьего поколения достигают 45000 PSI или 3000 бар, используя пьезоэлектрические форсунки, очень похожие на те, которые компания Epson использует в своих струйных принтерах. (Прямой впрыск бензина, когда сопло форсунки воткнуто в камеру сгорания, работает при подобном давлении.)

Сегодняшние дизели — «совершенно чистые» дизели

Большинство дизельных машин и внедорожников в США называются чистыми дизелями. Это промышленное понятие, описывающее дизельный автомобиль или внедорожник, чей выхлоп на одном уровне с бензиновым двигателем. Это сочетание ультранизкого содержания серного дизельного топлива, экономичного дизельного двигателя с точным дозированием топлива в цилиндры (иногда несколько импульсов за цикл сгорания), несколькими фильтрами, которые отлавливают сажу, расширенные элементы контроля выбросов, включая окончательное очищение впрыска отработанной жидкости в выхлопную трубу.

После того, как выхлопной газ покидает выпускной коллектор двигателя, и прежде, чем он выйдет из глушителя и выхлопной трубы, он подвергается селективному каталитическому снижению, или процессу SCR (картинка выше), который снижает уровень окиси азота, окиси углерода, углеводородов, и взвешенных частиц (сажи). Представители отрасли говоря, что процесс SCR может снизить выбросы NOx до 90%, углеводородов окиси углерода на 50-90%, а твердых частиц на 30-50%. При необходимости, особенно на больших коммерческих автомобилях, может быть установлен отдельный фильтр для твердых частиц. Если вы увидите, что 18″ колеса радостно пыхтят дымом, то это либо очень старый грузовик, либо здесь что-то неладно с системой выхлопа.

Как часть процесса SCR, выработанное топливо подается из бака на 5-7 литров. Эта жидкость также называется выхлопной дизельной жидкостью, DEF, или торговым названием AdBlue. DEF вызывает химические реакции: оксид азота распадается на азот, воду, и небольшие количества углекислого газа (СО2). Дизельная выхлопная жидкость используется медленно. Mercedes-Benz говорят, что потребление составляет около литра на каждые 1,000км, или галлон на 2,500 миль, что означает, что запаса хватит как минимум на 10,000 миль.

Преимущества дизельного двигателя: 400-800 миль на один бак.

  • 1 миля — 1,609 км
  • 1 галлон — 3,785 литра

Когда BMW представила BMW 328d, она поместила нахальный рекламный щит в Нью-Йорке на выезде из автомобильного туннеля Линкольна в Нью-Джерси: «От берега до берега всего за 2 заправки. (Маями Бич.)» С потреблением 45 миль на галлон, на скоростных шоссе можно было бы поставить всего две-три заправки, если бы все автомобили потребляли не более галлона на 50 миль. Это главное преимущество: скоростное шоссе от 400 до 800 миль пролетается всего за одну заправку и долгий день езды. Даже в смешанном вождении по городу/шоссе, вы сделаете меньше остановок на заправке.

Diesel Technology Forum, отраслевая торговая группа, заявляет, что дизельные автомобили могут сэкономить владельцам $2,000-$6,000 совокупной стоимости топлива за 3-5-летний период по сравнению с бензиновыми двигателями. Мы согласны, что вы сохраните деньги, однако, экономия в данном случае зависит от многих переменных, которые время от времени изменятся, например, цена на топливо. В конце 2014 и начале 2015, цена на дизельное топливо подскочила почти до 90 центов за галлон, в то время, как премиум поднялся до 50 центов за галлон. Цена сейчас настолько упала, что дизель дешевле премиума.

Стоимость топлива в реальной жизни может сравниться с гибридом до тех пор, пока есть смесь городского трафика и шоссе. В 2008, дизельная BMW 5 и Toyota Prius гибрид участвовали в гонке на экономию топлива от Лондона до Женевы. Победил BMW, 41.9 миль на галлон, по сравнению с 40.1 миль на галлон у Toyota, несмотря на то, что победитель был на 500 фунтов тяжелей. Почти половина от 175,000 американских заправок также заправляют дизель. На развязках шоссе, это почти универсально. Не найти дизель можно только в маленьких городках. Во время сильных штормов или сбоев электропитания, использование бензина может и не оправдать себя. Протяните до остановки грузовиков, станьте в очередь на дизель, и вам не придется ждать до завтра, чтобы заправиться.

  • 1 миля — 1,609 км
  • 1 галлон — 3,785 литра

Некоторые дизельные автомобили на самом деле стоят меньше, чем сопоставимые автомобили с газовым двигателем прямиком с конвейера. Один из самых роскошных автомобилей для междугородних поездок по шоссе — Mercedes-Benz GL. Дизельная версия стоит на $1,600 меньше, чем самая дешевая газовая комплектация. Дизельные двигатели также имеют тенденцию жить дольше, из-за своей более прочной конструкции и смазывающих свойств дизельного топлива (тем не менее, вам все равно надо машинное масло).

Природа дизельного двигателя заключается в том, что он обеспечивает вращающий момент или мощность, чтобы двигаться на низких оборотах. Так что независимо от времени, затраченного дизелем на разгон 0-60, он может очень шустро выжать 0-20. На скорости по трассе, пассажиры не могут отличить дизель от бензина. На холостом ходу, вы можете что-то заметить, но только если очень сильно прислушаетесь. Нынешние дизели запускаются мгновенно, в отличие от предыдущего поколения, когда вы ждали 10-30 секунд, пока свечи накаливания разогреют цилиндры после холодной ночи.

Хоть он выдает больше мощность на галлон, дизель горит менее охотно, потому он безопасней, если вдруг машина будет охвачена пламенем. Огонь — огромная проблема военных автомобилей, и большинство перешло с газовых установок на дизельные двигатели, или смежные виды топлива, вроде реактивного горючего.

Недостатки дизельного двигателя: парочка, их немного.

Недостатков меньше, чем лет десять назад, не говоря уже о поколении. В очень холодную погоду, вы захотите воспользоваться печкой для более быстрого прогрева двигателя. Холодный двигатель в холодных погодных условиях стучит минуты две; люди снаружи машины могут заметить, но звукоизоляция и двойная изоляция стекла делают звук едва уловимым изнутри. Снаружи на холостом ходу, люди поблизости могут уловить запах сгоревшего дизельного топлива. Очень редко, может быть след дыма при запуске. Дизельные профи гвоорят, что вы такие мелочи не заметите. А может, и заметите, но не придадите значения. Также, низкое содержание серы в топливе, которое стало обязательным с 2007 года, теперь не создает запах тухлых яиц на дизельном ходу.

Бака для выработанного дизельного топлива хватает на тысячи миль, и заполнять его приходится практически одновременно со сменой масла. Если эта жидкость заканчивается, машина не поедет. Но не потому, что это опасно, а потому, что выхлопных загрязнений будет больше, а именно это правила и запрещают. Вы будете предупреждены за несколько сотен миль до полного опустошения, но если бак таки опустеет, машина не заведется. Тем не менее, двигатель не заглохнет, если вы в момент истощения были на ходу.

Несмотря на заверения фанатов дизеля, вполне возможно, что дизель обойдется вам дороже, если вы средний городской водитель со тредним диапазоном цены. Очень многое зависит от сопоставимой цены топлива, и количество проделанного пути.

Самый большой недостаток дизеля для физических лиц может заключаться именно в заправке. Вы чуете запах топлива во время заправки, несколько капель попадет на одежду, а руки будут пахнуть даже после мытья с мылом. (Попробуйте воспользоваться одноразовыми латексными перчатками.) Заправка дизельного топлива выглядит грязнеее, чем соседние бензонасосы, разве что их не протирают каждый день по несколько раз. (Бензин используется как растворитель в большем количестве случаев) Вы и сами можете убедиться, посмотрев на маслянистый осадок дизельного топлива, неспособный растворить практически ничего. Это кое-что, чем всем уважающим себя СТО следует заняться. Радуйтесь, если вы живете в Орегоне, или в Нью-Джерси, это два штата, в которых запрещено самообслуживание на заправке. Потому пачкать руки придется кому-угодно, но не вам. И хотя в Гарден Стейт более низкая цена на бензин и дизель, это, в основном, из-за низкого государственного налога на топливо.

Экологически, некоторые части Европы выступают против дизеля. Дизельные двигатели побеждают бензиновые по уровню выхлопа СО2 (диоксид углерода является прокси для снижения расхода топлива), но есть некоторые опасения по поводу NOx и сажи (твердых частиц). Некоторые французские чиновники заявили, что обеспечение благоприятного режима налогообложения на дизельное топливо было ошибкой; мэр Парижа сказал, что она была бы рада увидеть запрет на дизели в своем городе к 2020 году. Таким образом, в гонке за очищение дизельного топлива еще сильней, используются все более изощренные технологии сжигания топлива и очистки выхлопных газов.

Экономите ли вы деньги с дизелем?

Формула для расчета безубыточности включает в себя несколько переменных, которые вызовут у вас некоторые вопросы. Рассчитайте количество миль, которое вы проедете на автомобиле за год. Посчитайте цену на дизель против бензина и приложите ее к предполагаемому времени жизни автомобиля. Посчитайте количество миль на галлон как бензина, так и дизеля. Рассчитайте, нужно ли добавлять 5-10% сверху для дизеля за счет шоссе, так как в реальном мире дела обстоят лучше, чем на цифрах. Решите, сравниваете ли вы дизель с бензином для одной и той же модели на основе лошадиных сил, миль на галлон, или ускорения. (Также посмотрите, если один или другой имеют больше стандартного оборудования, которое не должно быть частью сравнения стоимости.)

По состоянию на середину мая 2015, топливо стоит $2.66 за обычный бензин (за галлон), $3.06 (за галлон) за премиум, и $2.85 (за галлон) за дизель (средняя по стране). Шесть месяцев нзад, дизель был дороже премиума. Средняя стоимость с 2007 года составляет $3.11 за галлон обычного (все составы всех территорий США), $3.38 за премиум, $3.44 за дизель с ультранизким уровнем серы, согласно данным Министерства энергетики.

Учитывайте, что Volkswagen Jetta (главное фото) — лидер продаж дизеля в Америке (почти четверть от 160,000 проданных в прошлом году Jetta приходились на дизельную версию этой машины). Jetta TDI 2015 года выдает 31 милю на галлон по городу, 46 миль на галлон по шоссе, 36 миль на галлон комбинированного пути, основываясь на данных EPA по 55-45 город-шоссе. Спортивная Jetta с бензиновым двигателем, используя премиум-топливо получает 23/33/23, а экономная Jetta с меньшим двигателем, пользующаяся обычным бензином, показала 25/37/30. Предположим, что автомобиль проезжает 20,000 миль в год, на треть больше, чем средний автомобиль в стране, и соотношение город-шоссе 25:75. Предположим, мы используем средние цены на топливо 2007-2015 годов. Вот, что мы получаем.

Jetta дизель, в среднем 42 миль на галлон, 473 галлона по $3.44, $1,628 в год для 5,000 в городе и 15,000 миль на шоссе.

Jetta газ, премиум, 31 мили на галлон, 656 галлонов по $3.38, $2,216 в год, на $588 больше, чем дизель.

Jetta газ, обычное топливо, 34 мили на галлон, 588 галлонов по $3.11, $1,829 в год, что на $201 больше, чем дизель.

Выберите текущие (май 2015) цены на топливо, и недостаток стоимости премиум-топлива возрастет до $657, в то время, как обычное топливо вырастет всего до $216. Если вы станете коммивояжером, будете проезжать 40,000 в этом году, и экономия с дизелем составит под $1,500. Такая экономия за пару лет окупит вам саму машину. В этом случае, дизельная Jetta будет выгодней.

Стоит ли покупать дизель?

Идеальный покупатель дизельного автомобиля или внедорожника должен проезжать от 20,000 миль в год, в основном на шоссе. Дизели — лучший и самый экономный вариант в случае длительных скоростных поездок. (Они также отлично показывают себя на холостом ходу; не потребляет много топлива для поддержания автомобиля на 800 оборотах в минуту.) Когда идентичный газовый двигатель использует премиум топливо, показать выгодность дизеля проще. Премиум ближе по цене к дизелю, таким образом, снижая время, необходимое на то, чтобы окупить себя. (Volkswagen по-своему уникален, предлагая обычную газовую, премиум-газ, и дизельную версию одной и той же машины.)

При почти скоростных поездках, как уже выше упоминалось, вы сможете проезжать 400-800 миль всего на одной заправке. Ваш мочевой пузырь сдастся раньше, но это немного не по теме. Дозаправка занимает всего 10 минут дополнительного времени, как раз, чтобы сбегать по зову природы. Даже при смешанном вождении в городе/по шоссе, вы сможете кататься 10 дней против недели без заправки, а это значит, что прикасаться к баку с дизельным насосом придется меньше раз.

В 2014 году, Volkswagen удерживал 1-2-3 позиции продаж дизеля среди машин и внедорожников. На первом месте Volkswagen Jetta Diesel (около 40,000 продаж), Volkswagen Passat Diesel (фото-вставка), Volkswagen Golf Diesel, BMW X5 Diesel, Audi Q5 Diesel, Chevrolet Cruze Diesel, Mercedes-Benz GL-Class Diesel (фото выше), Porsche Cayenne Diesel, и Audi Q7 Diesel. Это шесть внедорожников и четыре седана. Еще одна американский внедорожник, который продавался с дизельным двигателем, был Jeep Grand Cherokee Diesel. Японский автопром до сих пор избегает дизельных машин и внедорожников. Mazda представила дизельную версию Mazda SkyActiv-D и дизель Mazda6 для США, но пока что она не прибыла. Официальные лица заявили, что Mazda находится на стадии улучшения производительности.

История дизеля

Дизельный двигатель

В последнее десятилетие дизельные технологии развиваются впечатляющими темпами. Модификации легковых авто с дизельными моторами составляют половину новых автомобилей, продаваемых в Европе. Густой черный дым из выхлопной трубы, громкое тарахтение и неприятный запах остались далеко в прошлом. Дизельные моторы сегодня – это не только экономичность, но также высокая мощность и достойные динамические характеристики.

Современный дизель стал тихим и экологически чистым. Как же удалось этому типу ДВС соответствовать постоянно ужесточающимся нормам токсичности и при этом не только не проигрывать в тяговитости и экономичности, но и улучшать эти показатели? Рассмотрим все по порядку…

Содержание статьи

Принцип работы

На первый взгляд дизельный двигатель почти не отличается от обычного бензинового – те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте.

В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.

Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре – отсюда повышенная шумность и жесткость работы дизеля.

Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.

Конструкция

Особенности

Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки – ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень.

Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода.

Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.

Поршни и свечи дизеля

Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

Типы камер сгорания

Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.

Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.

Камеры сгорания дизельного двигателя

При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.

Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.

Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в
цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.

Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.

Системы питания

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Система питания дизельного двигателя

Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.

Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название – рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.

Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.

Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.

Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима.

Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.

Кардинально изменить ситуацию могла только оптимизация процесса горения топливо – воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом.

В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как “волновое гидравлическое давление”. При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, “бегающие” по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.

Насос-форсунка дизельного двигателя

В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.

Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок.

Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.

Система питания Common Rail

Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска.

Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам.

Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок – высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд».

Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля.

Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

Турбодизель

Эффективным средством повышения мощности и гибкости работы является турбонаддув двигателя. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя.

Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала – “турбоямы”. Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором.

На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха – интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения “высотности” двигателя – в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности.

В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.

Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.

Принцип работы дизельного двигателя

Автор admin На чтение 6 мин. Просмотров 2.6k.

Дизельный двигатель – двигатель внутреннего сгорания, изобретенный Рудольфом Дизелем в 1897 году. Устройство дизельного двигателя тех лет позволяло использовать в качестве топлива нефть, рапсовое масло, и твердые виды горючих веществ. Например, каменноугольную пыль.

Принцип работы дизельного двигателя современности не изменился. Однако моторы стали более технологичными и требовательными к качеству топлива. Сегодня в дизелях используется только высококачественное ДТ.

Моторы дизельного типа отличаются топливной экономичностью и хорошей тягой при низких оборотах коленвала, поэтому получили широкое распространение на грузовых автомобилях, кораблях и поездах.

С момента решения проблемы высоких скоростей (старые дизели при частом использовании на высоких скоростях быстро выходили из строя) рассматриваемые моторы стали часто устанавливаться на легковые авто. Дизели, предназначенные для скоростной езды, получили систему турбонаддува.

Принцип работы двигателя Дизеля

Принцип действия мотора дизельного типа отличается от бензиновых моторов. Здесь отсутствуют свечи зажигания, а топливо подается в цилиндры отдельно от воздуха.

Цикл работы такого силового агрегата можно представить в следующем виде:

  • в камеру сгорания дизеля подается порция воздуха;
  • поршень поднимается, сжимая воздух;
  • от сжатия воздух нагревается до температуры около 800˚C;
  • в цилиндр впрыскивается топливо;
  • ДТ воспламеняется, что приводит к опусканию поршня и выполнению рабочего хода;
  • продукты горения удаляются с помощью продувки через выпускные окна.

От того, как работает дизельный двигатель, зависит его экономичность. В исправном агрегате используется бедная смесь, что позволяет сэкономить количество топлива в баке.

Как устроен дизельный двигатель

Основным отличием конструкции дизеля от бензиновых моторов является наличие топливного насоса высокого давления, дизельных форсунок и отсутствие свечей зажигания.

Общее устройство этих двух разновидностей силового агрегата не различается. И в том, и в другом имеются коленчатый вал, шатуны, поршни. При этом у дизельного мотора все элементы усилены, так как нагрузки на них более высокие.

На заметку: некоторые движки дизельного типа имеют свечи накаливания, которые ошибочно принимаются автолюбителями за аналог свечей зажигания. На самом деле, это не так. Свечи накаливания используются для нагрева воздуха в цилиндрах в мороз.

При этом дизель легче заводится. Свечи зажигания в бензиновых моторах применяются для воспламенения топливовоздушной смеси в процессе работы двигателя.

Систему впрыска на дизелях делают прямой, когда топливо поступает непосредственно в камеру, или непрямой, когда воспламенение происходит в предкамере (вихревая камера, фор-камера). Это небольшая полость над камерой сгорания, с одним или несколькими отверстиями, через которые туда поступает воздух.

Такая система способствует лучшему смесеобразованию, равномерному нарастанию давления в цилиндрах. Зачастую именно в вихревых камерах применяются калильные свечи, призванные облегчить холодный пуск. При повороте замка зажигания, автоматически запускается процесс нагрева свечей.

Плюсы и минусы дизельного мотора

Как и любой другой тип силового агрегата, дизельный мотор имеет положительные и отрицательные черты. К «плюсам» современного дизеля относят:

  • экономичность;
  • хорошую тягу в широком диапазоне оборотов;
  • больший, чем у бензинового аналога, ресурс;
  • меньшее количество вредных выбросов.

Дизель не лишен и недостатков:

  • моторы, не оснащенные свечами накаливания, плохо заводятся в мороз;
  • дизель дороже и сложнее в обслуживании;
  • высокие требования к качеству и своевременности обслуживания;
  • высокие требования к качеству расходных материалов;
  • большая, чем у бензиновых движков, шумность работы.

Дизельный двигатель с турбонаддувом

Принцип работы турбины на дизельном двигателе практически не отличается от такового на бензиновых моторах. Суть заключается в нагнетании в цилиндры дополнительного воздуха, что закономерно увеличивает количество поступающего топлива. За счет этого отмечается серьезный прирост мощности мотора.

Устройство турбины дизельного двигателя также не имеет существенных отличий от бензинового аналога. Устройство состоит из двух крыльчаток, жестко связанных между собой, и корпуса, внешне напоминающего улитку. На корпусе турбокомпрессоров имеется 2 входных и 2 выходных отверстия. Одна часть механизма встраивается в выпускной коллектор, вторая во впускной.

Схема работы проста: газы, выходящие из работающего мотора, раскручивают первую крыльчатку, которая вращает вторую. Вторая крыльчатка, вмонтированная во впускной коллектор, нагнетает атмосферный воздух в цилиндры. Увеличение подачи воздуха приводит к увеличению подачи топлива и росту мощности. Это позволяет мотору быстрее набирать скорость даже на низких оборотах.

Турбояма

В процессе работы турбина может совершать до 200 тысяч оборотов в минуту. Раскрутить ее до необходимой скорости вращения моментально невозможно. Это приводит к появлению т.н. турбоямы, когда с момента нажатия на педаль газа до начала интенсивного разгона проходит некоторое время (1-2 секунды).

Проблема решается доработкой турбинного механизма и установкой нескольких крыльчаток разного размера. При этом маленькие крыльчатки раскручиваются моментально, после чего их догоняют элементы большого размера. Такой подход позволяет практически полностью ликвидировать турбояму.

Также производятся турбины с изменяемой геометрией, VNT (Variable Nozzle Turbine), призванные решать те же проблемы. В настоящий момент существует большое количество модификаций подобного типа турбин. Коррекция геометрии успешно справляется и с обратной ситуацией, когда оборотов и воздуха становится слишком много и необходимо притормозить обороты крыльчатки.

Интеркуллер

Было замечено, что если при смесеобразовании используется холодный воздух, КПД двигателя увеличивается до 20%. Это открытие привело к появлению интеркуллера – дополнительного элемента турбин, повышающего эффективность работы.

После всасывания воздуха он проходит через радиатор, и в охлажденном состоянии попадает во впускной коллектор. Мы уже публиковали статью, в которой можно подробно ознакомиться со схемой работы интеркуллера.

За турбиной современного автомобиля необходимо должным образом ухаживать. Механизм крайне чувствителен к качеству моторного масла и перегреву. Поэтому смазочный материал рекомендуется менять не реже, чем через 5-7 тысяч километров пробега.

Кроме того, после остановки машины следует оставлять ДВС включенным на 1-2 минуты. Это позволяет турбине остыть (при резком прекращении циркуляции масла она перегревается). К сожалению, даже при грамотной эксплуатации ресурс компрессора редко превышает 150 тысяч километров.

На заметку: оптимальным решением проблемы перегрева турбины на дизельных моторах является установка турботаймера. Устройство оставляет двигатель запущенным на протяжении необходимого времени после выключения зажигания. После окончания необходимого периода электроника сама выключает силовой агрегат.

Строение и принцип действия дизельного двигателя делают его незаменимым агрегатом на тяжелом транспорте, которому необходима хорошая тяга «на низах». Современные дизели с равным успехом работают и в легковых автомобилях, главное требование к которым: приемистость и время набора скорости.

Сложный уход за дизелем компенсируется долговечностью, экономичностью и надежностью в любых ситуациях.

Мне нравится2Не нравится
Что еще стоит почитать

Как работают дизельные двигатели?

Вы когда-нибудь с изумлением смотрели, как гигантский грузовик медленно ползет в гору? Возможно нет! Такое случается каждый день. Но остановись и подумай момент о том, что происходит — как огромная, тяжелая нагрузка систематически поднимается против подавляющей силы гравитации, используя не более чем несколько чашек грязной жидкости (другими словами, топлива) — и вы можете согласиться то, что вы видите, весьма примечательно.Дизельные двигатели — это сила наших самых больших машин — грузовиков, поезда, корабли и подводные лодки. На первый взгляд, они похожи на обычные бензиновые (бензиновые) двигатели, но вырабатывают больше мощности, более эффективно, работая несколько иначе. Возьмем пристальный взгляд!

Фото: Дизельные двигатели (как в этом локомотиве) идеально подходят для буксировки тяжелых поездов. Это прекрасно сохранившийся (и отполированный до блеска!) British Rail Class 55 («Deltic»), номер 55022, названный Royal Scots Grey, датируемый 1960 годом.Вот изображение Дизельный двигатель Napier Deltic, которым он питается.

Что такое дизельный двигатель?

Подобно бензиновому двигателю, дизельный двигатель является двигателем внутреннего сгорания. Горение — это другое слово для обозначения горения и внутреннего означает внутри, поэтому двигатель внутреннего сгорания — это просто двигатель, в котором топливо сжигается внутри основной части двигателя (цилиндров) где производится энергия.

Это сильно отличается от внешнего двигатель внутреннего сгорания, такой как те, которые используются старомодным паром локомотивы.В паровой машине на одном конце бойлер, который нагревает воду для получения пара. Пар стекает долго трубы к цилиндру на противоположном конце котла, где он толкает поршень вперед и назад для перемещения колес. Это внешний горение, потому что огонь находится вне цилиндра (действительно, обычно на расстоянии 6-7 метров или 20-30 футов). В бензиновом или дизельном двигателе топливо горит внутри самих баллонов. Отходы внутреннего сгорания гораздо меньше энергии, потому что тепло не должно исходить откуда производится в цилиндр: все происходит в одном и том же место.Вот почему двигатели внутреннего сгорания более эффективны чем двигатели внешнего сгорания (они производят больше энергии из тот же объем топлива).

На фото: типичный дизельный двигатель (от пожарной машины) производства Detroit Diesel Corporation (DDC). Фото Хуана Антуана Кинга любезно предоставлено ВМС США и Wikimedia Commons.

Чем дизельный двигатель отличается от бензинового?

Бензиновые и дизельные двигатели работают за счет внутреннего сгорания, но в немного разными способами.В бензиновом двигателе топливо и воздух впрыскивается в небольшие металлические цилиндры. Поршень сжимает (сжимает) смесь, делающая его взрывоопасным, и небольшую электрическую искру от свеча зажигания поджигает его. Это заставляет смесь взорваться, генерирующая мощность, которая толкает поршень вниз по цилиндру и (через коленчатый вал и шестерни) крутит колеса. Ты можешь читать подробнее об этом и посмотрите простую анимацию того, как это работает в нашем статья о автомобильных двигателях.

Дизельные двигатели похожи, но попроще.Во-первых, воздух попадает в цилиндр и поршень сжимают его — но гораздо больше, чем в бензиновый двигатель. В бензиновом двигателе топливно-воздушная смесь сжат примерно до одной десятой от первоначального объема. Но в дизеле В двигателе воздух сжимается от 14 до 25 раз. [1] Если вы когда-нибудь накачивали велосипедную шину, вы почувствовали ее накачку. Чем дольше вы его использовали, тем горячее в ваших руках. Это потому что при сжатии газа выделяется тепло. Представьте себе, сколько тепла создается за счет нагнетания воздуха в 14-25 раз меньшее пространство, чем обычно занимает.Так много тепла, что воздух действительно горячий — обычно не менее 500 ° C (1000 ° F), а иногда очень сильно горячее. Как только воздух сжимается, в цилиндр обычно (в современном двигателе) электронным система впрыска топлива, которая работает как сложный аэрозоль жестяная банка. (Количество впрыскиваемого топлива варьируется в зависимости от мощности водитель хочет, чтобы двигатель работал.) Воздух такой горячий, что топливо мгновенно воспламеняется и взрывается без искры затыкать.Этот управляемый взрыв заставляет поршень выталкиваться из цилиндр, производящий мощность, которая приводит в движение транспортное средство или машину на котором установлен двигатель. Когда поршень возвращается в цилиндр, выхлопные газы выталкиваются через выпускной клапан и процесс повторяется — сотни или тысячи раз минута!

Что делает дизельный двигатель более эффективным?

Фото: Типичный дизельный двигатель, испытываемый в лабораторных условиях. Фото Пэта Коркери любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Дизельные двигатели вдвое эффективнее бензиновых — около 40–45 процентов. в лучшем случае эффективен. [2] Проще говоря, это означает, что при том же количестве топлива вы можете пройти гораздо дальше. (или получите больше миль за свои деньги). Есть несколько причин для это. Во-первых, они сильнее сжимаются и работают при более высоких температурах. Фундаментальная теория того, как работают тепловые двигатели, известное как правило Карно, говорит нам, что эффективность двигателя зависит от от высоких и низких температур, между которыми он работает.Дизельный двигатель, работающий через большую разницу температур (более высокая самая высокая температура или самая низкая низкая температура) более эффективна. Во-вторых, отсутствие системы зажигания свечи зажигания делает более простая конструкция, которая может с легкостью сжимать воздух намного сильнее, а также это делает топливо более горячим и полным, высвобождая больше энергии. Есть еще одна экономия на эффективности тоже. В бензиновом двигателе, который не работает на полную мощность, вам понадобится подавать больше топлива (или меньше воздуха) в цилиндр, чтобы он работал; дизельные двигатели не имеют этой проблемы, поэтому им нужно меньше топлива, когда они работают на более низкой мощности.Еще одним важным фактором является то, что дизельное топливо несет немного больше энергии на галлон, чем бензин потому что молекулы, из которых он сделан, имеют больше энергии, запирая их атомы вместе (другими словами, дизель имеет более высокую удельную энергию, чем бензин). Дизель тоже лучше смазка, чем бензин, так что дизельный двигатель, естественно, будет работать с меньшим трением.

Чем отличается дизельное топливо?

Дизель и бензин совершенно разные. Вы это узнаете, если вы когда-либо слышал ужасные истории о людях, которые заправили свою машину или грузовик с неправильным видом топлива! По сути, дизель — это низкосортный, менее очищенный нефтепродукт, полученный из более тяжелых углеводороды (молекулы, состоящие из большего количества углерода и водорода атомов).Сырые дизельные двигатели без сложной системы впрыска топлива Теоретически системы могут работать практически на любом углеводородном топливе — отсюда популярность биодизеля (вид биотоплива, производимого, среди прочего, вещи, отработанное растительное масло). Изобретатель дизельного двигателя, Рудольф Дизель успешно запускал свои первые двигатели на арахисовом масле и думал, что его двигатель окажет людям услугу, освободив их от зависимость от топлива, такого как уголь и бензин, и централизованная источники энергии. [3] Если бы он только знал!

Фото: Смазка поедет: Джошуа и Кайя Тикелл, пара Защитники окружающей среды, используйте этот трейлер (Green Grease Machine), чтобы сделать биодизельное топливо для своего фургона (прикрепленного к передней части), используя отработанное кулинарное масло, выбрасываемое ресторанами быстрого питания.Топливо стоит впечатляющих 0,80 доллара за галлон. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Преимущества и недостатки дизельных двигателей

Дизели — самые универсальные двигатели, работающие на топливе, которые широко используются сегодня. можно найти во всем, от поездов и кранов до бульдозеров и подводные лодки. По сравнению с бензиновыми двигателями они проще, эффективнее и экономичнее. Они также безопаснее, потому что дизельного топлива меньше летучий и его пары менее взрывоопасны, чем бензин.В отличие от бензиновых двигателей они особенно хороши для перемещать большие грузы на низких скоростях, поэтому они идеально подходят для использования в грузовые суда, грузовики, автобусы и локомотивы. Более высокое сжатие означает, что части дизельного двигателя должны выдерживать гораздо большие напряжения и деформации, чем в бензиновом двигателе. Вот почему дизельные двигатели должны быть сильнее и тяжелее и почему, надолго время они использовались только для питания больших транспортных средств и машин. В то время как это может показаться недостатком, это означает, что дизельные двигатели обычно более надежны и служат намного дольше, чем бензиновые двигатели.

Фото: Дизельные двигатели используются не только в транспортных средствах: эти огромные стационарные дизельные двигатели вырабатывают электроэнергию на электростанции на Остров Сан-Клементе. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Загрязнение одно из самых больших недостатков дизельных двигателей: они производят смесь загрязняющих веществ, в том числе оксиды азота, оксид углерода, углеводороды и частицы сажи, которые являются грязными и опасными для здоровья.Теоретически дизели более экономичны, поэтому они должны использовать меньше топлива, производить меньше выбросов углекислого газа (CO2) и меньше способствуют глобальному потеплению. На практике есть некоторые споры о том, правда ли это. Некоторые лабораторные эксперименты показали средние выбросы дизельного топлива. лишь немного ниже, чем у бензиновых двигателей, хотя производители настаивают на том, что если аналогичные дизельные и бензиновые автомобили по сравнению, дизели действительно лучше выходят. Другое недавнее исследование показывает, что даже новые дизельные автомобили сильно загрязняют окружающую среду.Европейское агентство по окружающей среде, например, отмечает, что даже типичный «чистый» дизельный автомобиль соответствует нормам выбросов EURO 6, производит примерно в 10 раз больше азота оксидное загрязнение, как у сопоставимого автомобиля с бензиновым двигателем. [4] А как насчет выбросов CO2? По данным Британского общества производителей двигателей и трейдеры: «Автомобили с дизельным двигателем внесли огромный вклад в сокращение выбросов CO2. С 2002 года покупатели, выбравшие дизельное топливо, сэкономили почти 3 миллиона тонн CO2 от попадания в атмосферу». Дизельные двигатели, как правило, изначально стоят дороже, чем бензиновые, хотя их эксплуатационные расходы и более длительный срок службы обычно компенсирует это.Несмотря на это, покупатели автомобилей больше не кажутся убежденными: с тех пор продажи значительно упали. скандал с выбросами Volkswagen в 2015 году, когда немецкий автопроизводитель исказил выбросы своих дизельных автомобилей, чтобы они казались меньше загрязнение.

Нет никаких сомнений в том, что дизельные двигатели будут продолжать устанавливаться на тяжелых транспортных средствах — грузовиках, автобусы, корабли и железнодорожные локомотивы — все зависит от них, но их будущее в автомобилях и легких транспортных средствах становится все более неопределенным. Стремление к электромобилям дало мощный толчок к тому, чтобы сделать бензиновые двигатели более легкими, экономичными и менее загрязняющими, и эти улучшенные газовые двигатели подрывают некоторые предполагаемые преимущества использования дизелей в автомобилях.В условиях растущей конкуренции между доступными электромобилями и улучшенными бензиновые автомобили, дизели могут оказаться вытесненными и вовсе. Опять же сами дизели постоянно развиваются; В 2011 году Министерство энергетики США предсказало, что будущие двигатели могут повысить эффективность с сегодняшних 40 процентов до 60 процентов и более. Если это произойдет, дизельное топливо может остаться. соперник в автомобилях меньшего размера на многие годы вперед, особенно если их выхлопные газы можно правильно решить.

Кто изобрел дизельный двигатель?

Неудивительно, что это был немецкий инженер Рудольф Дизель (1858–1913).Вот вкратце история:

  • 1861: французский инженер Альфонс Бо де Роша (1815–1893) излагает основную теорию четырехтактного двигателя и подает патент на идею 16 февраля 1862 года, но ему не удается собрать рабочую машину.
  • 1876: немецкий инженер Николаус Отто (1832–1891) создает первый успешный четырехтактный двигатель внутреннего сгорания.
  • 1878: Шотландец Дугальд Клерк (1854–1932) разрабатывает двухтактный двигатель.
  • 1880: 22 года, Рудольф Дизель переходит на работу к инженеру по холодильникам Карлу фон Линде (1842–1934), где он изучает термодинамику (науку о том, как движется тепло) и как работают двигатели.
  • 1890: Дизель выясняет, как улучшить внутреннее сгорание двигатель, работающий при более высоких давлениях и температурах, не требующий свечи зажигания.
  • 1892: Дизель начинает патентовать свои идеи, чтобы не дать другим получить от них прибыль.

    Изображение: оригинальный двигатель внутреннего сгорания Рудольфа Дизеля, как он изобразил в своем патенте 1895 года. Цилиндр (1) находится вверху. 2) «Плунжер» (как его называют дизель) прикреплен кривошипом и шатуном (3) к маховику (4).Шестерня, приводимая в движение маховиком (5), прикреплена к центробежному регулятору (6), который поддерживает постоянную скорость вращения двигателя (отключает подачу топлива, если двигатель работает слишком быстро, а затем снова включает ее, когда двигатель снова замедляется). Изображение предоставлено Управлением по патентам и товарным знакам США (цвета и нумерация добавлены нами для упрощения объяснения). Вы можете прочитать больше в Патент США № 542846: Рудольф Дизель, способ и устройство для преобразования тепла в работу.

  • 1893: Дизель создает огромный стационарный двигатель, который работает целую минуту самостоятельно. власти, 17 февраля 1894 года.
  • 1895: Патент на двигатель Дизеля получен в США 16 июля 1895 г.
  • 1898: С помощью Дизеля первый коммерческий двигатель построен в фабрика в Сент-Луисе, штат Миссури, США, автор — Адольфус Буш (1839–1913), пивовар пива Budweiser.
  • 1899: На заводе Diesel в Аугсбурге начинается производство дизельных двигателей. Дизель начинает передавать свои идеи другим фирмам и вскоре становится очень богатый.
  • 1903: Petit Pierre, один из первых дизельных судов, начинает работу на канале Марн-Рейн во Франции.
  • 1912: MS Selandia, первое океанское дизельное судно, совершает свой первый рейс.
  • 1913: Дизель умирает при загадочных обстоятельствах, очевидно, упав за борт корабля «Дрезден» во время путешествия из Лондона, Англия, в Германию. Ходят слухи, что он был убит или покончил жизнь самоубийством, но ничего не известно. доказано.
  • 1931: Клесси Камминс, основатель Cummins Engine Co., построил один из первых успешных автомобилей с дизельным двигателем и продемонстрировал его эффективность, проехав на нем из Индианаполиса в Нью-Йорк всего за 1 доллар.39 топлива.
  • 1931: Компания Caterpillar произвела революцию в сельском хозяйстве, представив Diesel Sixty, первый гусеничный трактор с дизельным двигателем, созданный на базе популярной модели Caterpillar Sixty.
  • 1936: Mercedes представляет 260D, один из первых серийных легковых автомобилей с дизельным двигателем, и остается в производстве до 1940 года. В течение следующих четырех десятилетий Mercedes продает почти два миллиона автомобилей с дизельным двигателем.
  • 1939: General Motors представляет свой EMD FT, мощный дизель-электрический локомотив, и отправляет первый (номер 103) в годичное плавание, чтобы продемонстрировать его достоинства.Несомненно, доказывая превосходство дизельного топлива, это звучит как похоронный звон для паровозов.
  • 1970-е: Мировой топливный кризис пробудил возобновление интереса к использованию небольших эффективных дизельных двигателей в автомобилях.
  • 1987: всемирно известный корабль Queen Elizabeth 2 (QE2) переоборудованный девятью дизель-электрическими двигателями (каждый размером с двухэтажный автобус), что сделало его самым мощным торговым судном с дизельными двигателями того времени.
  • 2000: Peugeot представляет первые в мире фильтры для твердых частиц (PF) для дизельных двигателей на своей модели 607, заявив, что выбросы сажи сокращаются на 99%.
  • 2015: Volkswagen погрузился в огромный мировой скандал из-за систематического мошенничества при испытаниях дизельных двигателей на выбросы выхлопных газов. Продажи дизельных автомобилей резко упали впервые за много лет.
  • 2017: Volvo становится первым крупным автопроизводителем, отказавшимся от бензиновых и дизельных двигателей, объявляя об этом все новые автомобили будут гибридными или полностью электрическими с 2019 года.

Как работают дизельные двигатели?

Вы когда-нибудь с изумлением смотрели, как гигантский грузовик медленно ползет в гору? Возможно нет! Такое случается каждый день. Но остановись и подумай момент о том, что происходит — как огромная, тяжелая нагрузка систематически поднимается против подавляющей силы гравитации, используя не более чем несколько чашек грязной жидкости (другими словами, топлива) — и вы можете согласиться то, что вы видите, весьма примечательно. Дизельные двигатели — это сила наших самых больших машин — грузовиков, поезда, корабли и подводные лодки.На первый взгляд, они похожи на обычные бензиновые (бензиновые) двигатели, но вырабатывают больше мощности, более эффективно, работая несколько иначе. Возьмем пристальный взгляд!

Фото: Дизельные двигатели (как в этом локомотиве) идеально подходят для буксировки тяжелых поездов. Это прекрасно сохранившийся (и отполированный до блеска!) British Rail Class 55 («Deltic»), номер 55022, названный Royal Scots Grey, датируемый 1960 годом. Дизельный двигатель Napier Deltic, которым он питается.

Что такое дизельный двигатель?

Подобно бензиновому двигателю, дизельный двигатель является двигателем внутреннего сгорания. Горение — это другое слово для обозначения горения и внутреннего означает внутри, поэтому двигатель внутреннего сгорания — это просто двигатель, в котором топливо сжигается внутри основной части двигателя (цилиндров) где производится энергия.

Это сильно отличается от внешнего двигатель внутреннего сгорания, такой как те, которые используются старомодным паром локомотивы. В паровой машине на одном конце бойлер, который нагревает воду для получения пара.Пар стекает долго трубы к цилиндру на противоположном конце котла, где он толкает поршень вперед и назад для перемещения колес. Это внешний горение, потому что огонь находится вне цилиндра (действительно, обычно на расстоянии 6-7 метров или 20-30 футов). В бензиновом или дизельном двигателе топливо горит внутри самих баллонов. Отходы внутреннего сгорания гораздо меньше энергии, потому что тепло не должно исходить откуда производится в цилиндр: все происходит в одном и том же место.Вот почему двигатели внутреннего сгорания более эффективны чем двигатели внешнего сгорания (они производят больше энергии из тот же объем топлива).

На фото: типичный дизельный двигатель (от пожарной машины) производства Detroit Diesel Corporation (DDC). Фото Хуана Антуана Кинга любезно предоставлено ВМС США и Wikimedia Commons.

Чем дизельный двигатель отличается от бензинового?

Бензиновые и дизельные двигатели работают за счет внутреннего сгорания, но в немного разными способами.В бензиновом двигателе топливо и воздух впрыскивается в небольшие металлические цилиндры. Поршень сжимает (сжимает) смесь, делающая его взрывоопасным, и небольшую электрическую искру от свеча зажигания поджигает его. Это заставляет смесь взорваться, генерирующая мощность, которая толкает поршень вниз по цилиндру и (через коленчатый вал и шестерни) крутит колеса. Ты можешь читать подробнее об этом и посмотрите простую анимацию того, как это работает в нашем статья о автомобильных двигателях.

Дизельные двигатели похожи, но попроще.Во-первых, воздух попадает в цилиндр и поршень сжимают его — но гораздо больше, чем в бензиновый двигатель. В бензиновом двигателе топливно-воздушная смесь сжат примерно до одной десятой от первоначального объема. Но в дизеле В двигателе воздух сжимается от 14 до 25 раз. [1] Если вы когда-нибудь накачивали велосипедную шину, вы почувствовали ее накачку. Чем дольше вы его использовали, тем горячее в ваших руках. Это потому что при сжатии газа выделяется тепло. Представьте себе, сколько тепла создается за счет нагнетания воздуха в 14-25 раз меньшее пространство, чем обычно занимает.Так много тепла, что воздух действительно горячий — обычно не менее 500 ° C (1000 ° F), а иногда очень сильно горячее. Как только воздух сжимается, в цилиндр обычно (в современном двигателе) электронным система впрыска топлива, которая работает как сложный аэрозоль жестяная банка. (Количество впрыскиваемого топлива варьируется в зависимости от мощности водитель хочет, чтобы двигатель работал.) Воздух такой горячий, что топливо мгновенно воспламеняется и взрывается без искры затыкать.Этот управляемый взрыв заставляет поршень выталкиваться из цилиндр, производящий мощность, которая приводит в движение транспортное средство или машину на котором установлен двигатель. Когда поршень возвращается в цилиндр, выхлопные газы выталкиваются через выпускной клапан и процесс повторяется — сотни или тысячи раз минута!

Что делает дизельный двигатель более эффективным?

Фото: Типичный дизельный двигатель, испытываемый в лабораторных условиях. Фото Пэта Коркери любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Дизельные двигатели вдвое эффективнее бензиновых — около 40–45 процентов. в лучшем случае эффективен. [2] Проще говоря, это означает, что при том же количестве топлива вы можете пройти гораздо дальше. (или получите больше миль за свои деньги). Есть несколько причин для это. Во-первых, они сильнее сжимаются и работают при более высоких температурах. Фундаментальная теория того, как работают тепловые двигатели, известное как правило Карно, говорит нам, что эффективность двигателя зависит от от высоких и низких температур, между которыми он работает.Дизельный двигатель, работающий через большую разницу температур (более высокая самая высокая температура или самая низкая низкая температура) более эффективна. Во-вторых, отсутствие системы зажигания свечи зажигания делает более простая конструкция, которая может с легкостью сжимать воздух намного сильнее, а также это делает топливо более горячим и полным, высвобождая больше энергии. Есть еще одна экономия на эффективности тоже. В бензиновом двигателе, который не работает на полную мощность, вам понадобится подавать больше топлива (или меньше воздуха) в цилиндр, чтобы он работал; дизельные двигатели не имеют этой проблемы, поэтому им нужно меньше топлива, когда они работают на более низкой мощности.Еще одним важным фактором является то, что дизельное топливо несет немного больше энергии на галлон, чем бензин потому что молекулы, из которых он сделан, имеют больше энергии, запирая их атомы вместе (другими словами, дизель имеет более высокую удельную энергию, чем бензин). Дизель тоже лучше смазка, чем бензин, так что дизельный двигатель, естественно, будет работать с меньшим трением.

Чем отличается дизельное топливо?

Дизель и бензин совершенно разные. Вы это узнаете, если вы когда-либо слышал ужасные истории о людях, которые заправили свою машину или грузовик с неправильным видом топлива! По сути, дизель — это низкосортный, менее очищенный нефтепродукт, полученный из более тяжелых углеводороды (молекулы, состоящие из большего количества углерода и водорода атомов).Сырые дизельные двигатели без сложной системы впрыска топлива Теоретически системы могут работать практически на любом углеводородном топливе — отсюда популярность биодизеля (вид биотоплива, производимого, среди прочего, вещи, отработанное растительное масло). Изобретатель дизельного двигателя, Рудольф Дизель успешно запускал свои первые двигатели на арахисовом масле и думал, что его двигатель окажет людям услугу, освободив их от зависимость от топлива, такого как уголь и бензин, и централизованная источники энергии. [3] Если бы он только знал!

Фото: Смазка поедет: Джошуа и Кайя Тикелл, пара Защитники окружающей среды, используйте этот трейлер (Green Grease Machine), чтобы сделать биодизельное топливо для своего фургона (прикрепленного к передней части), используя отработанное кулинарное масло, выбрасываемое ресторанами быстрого питания.Топливо стоит впечатляющих 0,80 доллара за галлон. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Преимущества и недостатки дизельных двигателей

Дизели — самые универсальные двигатели, работающие на топливе, которые широко используются сегодня. можно найти во всем, от поездов и кранов до бульдозеров и подводные лодки. По сравнению с бензиновыми двигателями они проще, эффективнее и экономичнее. Они также безопаснее, потому что дизельного топлива меньше летучий и его пары менее взрывоопасны, чем бензин.В отличие от бензиновых двигателей они особенно хороши для перемещать большие грузы на низких скоростях, поэтому они идеально подходят для использования в грузовые суда, грузовики, автобусы и локомотивы. Более высокое сжатие означает, что части дизельного двигателя должны выдерживать гораздо большие напряжения и деформации, чем в бензиновом двигателе. Вот почему дизельные двигатели должны быть сильнее и тяжелее и почему, надолго время они использовались только для питания больших транспортных средств и машин. В то время как это может показаться недостатком, это означает, что дизельные двигатели обычно более надежны и служат намного дольше, чем бензиновые двигатели.

Фото: Дизельные двигатели используются не только в транспортных средствах: эти огромные стационарные дизельные двигатели вырабатывают электроэнергию на электростанции на Остров Сан-Клементе. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Загрязнение одно из самых больших недостатков дизельных двигателей: они производят смесь загрязняющих веществ, в том числе оксиды азота, оксид углерода, углеводороды и частицы сажи, которые являются грязными и опасными для здоровья.Теоретически дизели более экономичны, поэтому они должны использовать меньше топлива, производить меньше выбросов углекислого газа (CO2) и меньше способствуют глобальному потеплению. На практике есть некоторые споры о том, правда ли это. Некоторые лабораторные эксперименты показали средние выбросы дизельного топлива. лишь немного ниже, чем у бензиновых двигателей, хотя производители настаивают на том, что если аналогичные дизельные и бензиновые автомобили по сравнению, дизели действительно лучше выходят. Другое недавнее исследование показывает, что даже новые дизельные автомобили сильно загрязняют окружающую среду.Европейское агентство по окружающей среде, например, отмечает, что даже типичный «чистый» дизельный автомобиль соответствует нормам выбросов EURO 6, производит примерно в 10 раз больше азота оксидное загрязнение, как у сопоставимого автомобиля с бензиновым двигателем. [4] А как насчет выбросов CO2? По данным Британского общества производителей двигателей и трейдеры: «Автомобили с дизельным двигателем внесли огромный вклад в сокращение выбросов CO2. С 2002 года покупатели, выбравшие дизельное топливо, сэкономили почти 3 миллиона тонн CO2 от попадания в атмосферу». Дизельные двигатели, как правило, изначально стоят дороже, чем бензиновые, хотя их эксплуатационные расходы и более длительный срок службы обычно компенсирует это.Несмотря на это, покупатели автомобилей больше не кажутся убежденными: с тех пор продажи значительно упали. скандал с выбросами Volkswagen в 2015 году, когда немецкий автопроизводитель исказил выбросы своих дизельных автомобилей, чтобы они казались меньше загрязнение.

Нет никаких сомнений в том, что дизельные двигатели будут продолжать устанавливаться на тяжелых транспортных средствах — грузовиках, автобусы, корабли и железнодорожные локомотивы — все зависит от них, но их будущее в автомобилях и легких транспортных средствах становится все более неопределенным. Стремление к электромобилям дало мощный толчок к тому, чтобы сделать бензиновые двигатели более легкими, экономичными и менее загрязняющими, и эти улучшенные газовые двигатели подрывают некоторые предполагаемые преимущества использования дизелей в автомобилях.В условиях растущей конкуренции между доступными электромобилями и улучшенными бензиновые автомобили, дизели могут оказаться вытесненными и вовсе. Опять же сами дизели постоянно развиваются; В 2011 году Министерство энергетики США предсказало, что будущие двигатели могут повысить эффективность с сегодняшних 40 процентов до 60 процентов и более. Если это произойдет, дизельное топливо может остаться. соперник в автомобилях меньшего размера на многие годы вперед, особенно если их выхлопные газы можно правильно решить.

Кто изобрел дизельный двигатель?

Неудивительно, что это был немецкий инженер Рудольф Дизель (1858–1913).Вот вкратце история:

  • 1861: французский инженер Альфонс Бо де Роша (1815–1893) излагает основную теорию четырехтактного двигателя и подает патент на идею 16 февраля 1862 года, но ему не удается собрать рабочую машину.
  • 1876: немецкий инженер Николаус Отто (1832–1891) создает первый успешный четырехтактный двигатель внутреннего сгорания.
  • 1878: Шотландец Дугальд Клерк (1854–1932) разрабатывает двухтактный двигатель.
  • 1880: 22 года, Рудольф Дизель переходит на работу к инженеру по холодильникам Карлу фон Линде (1842–1934), где он изучает термодинамику (науку о том, как движется тепло) и как работают двигатели.
  • 1890: Дизель выясняет, как улучшить внутреннее сгорание двигатель, работающий при более высоких давлениях и температурах, не требующий свечи зажигания.
  • 1892: Дизель начинает патентовать свои идеи, чтобы не дать другим получить от них прибыль.

    Изображение: оригинальный двигатель внутреннего сгорания Рудольфа Дизеля, как он изобразил в своем патенте 1895 года. Цилиндр (1) находится вверху. 2) «Плунжер» (как его называют дизель) прикреплен кривошипом и шатуном (3) к маховику (4).Шестерня, приводимая в движение маховиком (5), прикреплена к центробежному регулятору (6), который поддерживает постоянную скорость вращения двигателя (отключает подачу топлива, если двигатель работает слишком быстро, а затем снова включает ее, когда двигатель снова замедляется). Изображение предоставлено Управлением по патентам и товарным знакам США (цвета и нумерация добавлены нами для упрощения объяснения). Вы можете прочитать больше в Патент США № 542846: Рудольф Дизель, способ и устройство для преобразования тепла в работу.

  • 1893: Дизель создает огромный стационарный двигатель, который работает целую минуту самостоятельно. власти, 17 февраля 1894 года.
  • 1895: Патент на двигатель Дизеля получен в США 16 июля 1895 г.
  • 1898: С помощью Дизеля первый коммерческий двигатель построен в фабрика в Сент-Луисе, штат Миссури, США, автор — Адольфус Буш (1839–1913), пивовар пива Budweiser.
  • 1899: На заводе Diesel в Аугсбурге начинается производство дизельных двигателей. Дизель начинает передавать свои идеи другим фирмам и вскоре становится очень богатый.
  • 1903: Petit Pierre, один из первых дизельных судов, начинает работу на канале Марн-Рейн во Франции.
  • 1912: MS Selandia, первое океанское дизельное судно, совершает свой первый рейс.
  • 1913: Дизель умирает при загадочных обстоятельствах, очевидно, упав за борт корабля «Дрезден» во время путешествия из Лондона, Англия, в Германию. Ходят слухи, что он был убит или покончил жизнь самоубийством, но ничего не известно. доказано.
  • 1931: Клесси Камминс, основатель Cummins Engine Co., построил один из первых успешных автомобилей с дизельным двигателем и продемонстрировал его эффективность, проехав на нем из Индианаполиса в Нью-Йорк всего за 1 доллар.39 топлива.
  • 1931: Компания Caterpillar произвела революцию в сельском хозяйстве, представив Diesel Sixty, первый гусеничный трактор с дизельным двигателем, созданный на базе популярной модели Caterpillar Sixty.
  • 1936: Mercedes представляет 260D, один из первых серийных легковых автомобилей с дизельным двигателем, и остается в производстве до 1940 года. В течение следующих четырех десятилетий Mercedes продает почти два миллиона автомобилей с дизельным двигателем.
  • 1939: General Motors представляет свой EMD FT, мощный дизель-электрический локомотив, и отправляет первый (номер 103) в годичное плавание, чтобы продемонстрировать его достоинства.Несомненно, доказывая превосходство дизельного топлива, это звучит как похоронный звон для паровозов.
  • 1970-е: Мировой топливный кризис пробудил возобновление интереса к использованию небольших эффективных дизельных двигателей в автомобилях.
  • 1987: всемирно известный корабль Queen Elizabeth 2 (QE2) переоборудованный девятью дизель-электрическими двигателями (каждый размером с двухэтажный автобус), что сделало его самым мощным торговым судном с дизельными двигателями того времени.
  • 2000: Peugeot представляет первые в мире фильтры для твердых частиц (PF) для дизельных двигателей на своей модели 607, заявив, что выбросы сажи сокращаются на 99%.
  • 2015: Volkswagen погрузился в огромный мировой скандал из-за систематического мошенничества при испытаниях дизельных двигателей на выбросы выхлопных газов. Продажи дизельных автомобилей резко упали впервые за много лет.
  • 2017: Volvo становится первым крупным автопроизводителем, отказавшимся от бензиновых и дизельных двигателей, объявляя об этом все новые автомобили будут гибридными или полностью электрическими с 2019 года.

Как работают дизельные двигатели?

Вы когда-нибудь с изумлением смотрели, как гигантский грузовик медленно ползет в гору? Возможно нет! Такое случается каждый день. Но остановись и подумай момент о том, что происходит — как огромная, тяжелая нагрузка систематически поднимается против подавляющей силы гравитации, используя не более чем несколько чашек грязной жидкости (другими словами, топлива) — и вы можете согласиться то, что вы видите, весьма примечательно. Дизельные двигатели — это сила наших самых больших машин — грузовиков, поезда, корабли и подводные лодки.На первый взгляд, они похожи на обычные бензиновые (бензиновые) двигатели, но вырабатывают больше мощности, более эффективно, работая несколько иначе. Возьмем пристальный взгляд!

Фото: Дизельные двигатели (как в этом локомотиве) идеально подходят для буксировки тяжелых поездов. Это прекрасно сохранившийся (и отполированный до блеска!) British Rail Class 55 («Deltic»), номер 55022, названный Royal Scots Grey, датируемый 1960 годом. Дизельный двигатель Napier Deltic, которым он питается.

Что такое дизельный двигатель?

Подобно бензиновому двигателю, дизельный двигатель является двигателем внутреннего сгорания. Горение — это другое слово для обозначения горения и внутреннего означает внутри, поэтому двигатель внутреннего сгорания — это просто двигатель, в котором топливо сжигается внутри основной части двигателя (цилиндров) где производится энергия.

Это сильно отличается от внешнего двигатель внутреннего сгорания, такой как те, которые используются старомодным паром локомотивы. В паровой машине на одном конце бойлер, который нагревает воду для получения пара.Пар стекает долго трубы к цилиндру на противоположном конце котла, где он толкает поршень вперед и назад для перемещения колес. Это внешний горение, потому что огонь находится вне цилиндра (действительно, обычно на расстоянии 6-7 метров или 20-30 футов). В бензиновом или дизельном двигателе топливо горит внутри самих баллонов. Отходы внутреннего сгорания гораздо меньше энергии, потому что тепло не должно исходить откуда производится в цилиндр: все происходит в одном и том же место.Вот почему двигатели внутреннего сгорания более эффективны чем двигатели внешнего сгорания (они производят больше энергии из тот же объем топлива).

На фото: типичный дизельный двигатель (от пожарной машины) производства Detroit Diesel Corporation (DDC). Фото Хуана Антуана Кинга любезно предоставлено ВМС США и Wikimedia Commons.

Чем дизельный двигатель отличается от бензинового?

Бензиновые и дизельные двигатели работают за счет внутреннего сгорания, но в немного разными способами.В бензиновом двигателе топливо и воздух впрыскивается в небольшие металлические цилиндры. Поршень сжимает (сжимает) смесь, делающая его взрывоопасным, и небольшую электрическую искру от свеча зажигания поджигает его. Это заставляет смесь взорваться, генерирующая мощность, которая толкает поршень вниз по цилиндру и (через коленчатый вал и шестерни) крутит колеса. Ты можешь читать подробнее об этом и посмотрите простую анимацию того, как это работает в нашем статья о автомобильных двигателях.

Дизельные двигатели похожи, но попроще.Во-первых, воздух попадает в цилиндр и поршень сжимают его — но гораздо больше, чем в бензиновый двигатель. В бензиновом двигателе топливно-воздушная смесь сжат примерно до одной десятой от первоначального объема. Но в дизеле В двигателе воздух сжимается от 14 до 25 раз. [1] Если вы когда-нибудь накачивали велосипедную шину, вы почувствовали ее накачку. Чем дольше вы его использовали, тем горячее в ваших руках. Это потому что при сжатии газа выделяется тепло. Представьте себе, сколько тепла создается за счет нагнетания воздуха в 14-25 раз меньшее пространство, чем обычно занимает.Так много тепла, что воздух действительно горячий — обычно не менее 500 ° C (1000 ° F), а иногда очень сильно горячее. Как только воздух сжимается, в цилиндр обычно (в современном двигателе) электронным система впрыска топлива, которая работает как сложный аэрозоль жестяная банка. (Количество впрыскиваемого топлива варьируется в зависимости от мощности водитель хочет, чтобы двигатель работал.) Воздух такой горячий, что топливо мгновенно воспламеняется и взрывается без искры затыкать.Этот управляемый взрыв заставляет поршень выталкиваться из цилиндр, производящий мощность, которая приводит в движение транспортное средство или машину на котором установлен двигатель. Когда поршень возвращается в цилиндр, выхлопные газы выталкиваются через выпускной клапан и процесс повторяется — сотни или тысячи раз минута!

Что делает дизельный двигатель более эффективным?

Фото: Типичный дизельный двигатель, испытываемый в лабораторных условиях. Фото Пэта Коркери любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Дизельные двигатели вдвое эффективнее бензиновых — около 40–45 процентов. в лучшем случае эффективен. [2] Проще говоря, это означает, что при том же количестве топлива вы можете пройти гораздо дальше. (или получите больше миль за свои деньги). Есть несколько причин для это. Во-первых, они сильнее сжимаются и работают при более высоких температурах. Фундаментальная теория того, как работают тепловые двигатели, известное как правило Карно, говорит нам, что эффективность двигателя зависит от от высоких и низких температур, между которыми он работает.Дизельный двигатель, работающий через большую разницу температур (более высокая самая высокая температура или самая низкая низкая температура) более эффективна. Во-вторых, отсутствие системы зажигания свечи зажигания делает более простая конструкция, которая может с легкостью сжимать воздух намного сильнее, а также это делает топливо более горячим и полным, высвобождая больше энергии. Есть еще одна экономия на эффективности тоже. В бензиновом двигателе, который не работает на полную мощность, вам понадобится подавать больше топлива (или меньше воздуха) в цилиндр, чтобы он работал; дизельные двигатели не имеют этой проблемы, поэтому им нужно меньше топлива, когда они работают на более низкой мощности.Еще одним важным фактором является то, что дизельное топливо несет немного больше энергии на галлон, чем бензин потому что молекулы, из которых он сделан, имеют больше энергии, запирая их атомы вместе (другими словами, дизель имеет более высокую удельную энергию, чем бензин). Дизель тоже лучше смазка, чем бензин, так что дизельный двигатель, естественно, будет работать с меньшим трением.

Чем отличается дизельное топливо?

Дизель и бензин совершенно разные. Вы это узнаете, если вы когда-либо слышал ужасные истории о людях, которые заправили свою машину или грузовик с неправильным видом топлива! По сути, дизель — это низкосортный, менее очищенный нефтепродукт, полученный из более тяжелых углеводороды (молекулы, состоящие из большего количества углерода и водорода атомов).Сырые дизельные двигатели без сложной системы впрыска топлива Теоретически системы могут работать практически на любом углеводородном топливе — отсюда популярность биодизеля (вид биотоплива, производимого, среди прочего, вещи, отработанное растительное масло). Изобретатель дизельного двигателя, Рудольф Дизель успешно запускал свои первые двигатели на арахисовом масле и думал, что его двигатель окажет людям услугу, освободив их от зависимость от топлива, такого как уголь и бензин, и централизованная источники энергии. [3] Если бы он только знал!

Фото: Смазка поедет: Джошуа и Кайя Тикелл, пара Защитники окружающей среды, используйте этот трейлер (Green Grease Machine), чтобы сделать биодизельное топливо для своего фургона (прикрепленного к передней части), используя отработанное кулинарное масло, выбрасываемое ресторанами быстрого питания.Топливо стоит впечатляющих 0,80 доллара за галлон. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Преимущества и недостатки дизельных двигателей

Дизели — самые универсальные двигатели, работающие на топливе, которые широко используются сегодня. можно найти во всем, от поездов и кранов до бульдозеров и подводные лодки. По сравнению с бензиновыми двигателями они проще, эффективнее и экономичнее. Они также безопаснее, потому что дизельного топлива меньше летучий и его пары менее взрывоопасны, чем бензин.В отличие от бензиновых двигателей они особенно хороши для перемещать большие грузы на низких скоростях, поэтому они идеально подходят для использования в грузовые суда, грузовики, автобусы и локомотивы. Более высокое сжатие означает, что части дизельного двигателя должны выдерживать гораздо большие напряжения и деформации, чем в бензиновом двигателе. Вот почему дизельные двигатели должны быть сильнее и тяжелее и почему, надолго время они использовались только для питания больших транспортных средств и машин. В то время как это может показаться недостатком, это означает, что дизельные двигатели обычно более надежны и служат намного дольше, чем бензиновые двигатели.

Фото: Дизельные двигатели используются не только в транспортных средствах: эти огромные стационарные дизельные двигатели вырабатывают электроэнергию на электростанции на Остров Сан-Клементе. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Загрязнение одно из самых больших недостатков дизельных двигателей: они производят смесь загрязняющих веществ, в том числе оксиды азота, оксид углерода, углеводороды и частицы сажи, которые являются грязными и опасными для здоровья.Теоретически дизели более экономичны, поэтому они должны использовать меньше топлива, производить меньше выбросов углекислого газа (CO2) и меньше способствуют глобальному потеплению. На практике есть некоторые споры о том, правда ли это. Некоторые лабораторные эксперименты показали средние выбросы дизельного топлива. лишь немного ниже, чем у бензиновых двигателей, хотя производители настаивают на том, что если аналогичные дизельные и бензиновые автомобили по сравнению, дизели действительно лучше выходят. Другое недавнее исследование показывает, что даже новые дизельные автомобили сильно загрязняют окружающую среду.Европейское агентство по окружающей среде, например, отмечает, что даже типичный «чистый» дизельный автомобиль соответствует нормам выбросов EURO 6, производит примерно в 10 раз больше азота оксидное загрязнение, как у сопоставимого автомобиля с бензиновым двигателем. [4] А как насчет выбросов CO2? По данным Британского общества производителей двигателей и трейдеры: «Автомобили с дизельным двигателем внесли огромный вклад в сокращение выбросов CO2. С 2002 года покупатели, выбравшие дизельное топливо, сэкономили почти 3 миллиона тонн CO2 от попадания в атмосферу». Дизельные двигатели, как правило, изначально стоят дороже, чем бензиновые, хотя их эксплуатационные расходы и более длительный срок службы обычно компенсирует это.Несмотря на это, покупатели автомобилей больше не кажутся убежденными: с тех пор продажи значительно упали. скандал с выбросами Volkswagen в 2015 году, когда немецкий автопроизводитель исказил выбросы своих дизельных автомобилей, чтобы они казались меньше загрязнение.

Нет никаких сомнений в том, что дизельные двигатели будут продолжать устанавливаться на тяжелых транспортных средствах — грузовиках, автобусы, корабли и железнодорожные локомотивы — все зависит от них, но их будущее в автомобилях и легких транспортных средствах становится все более неопределенным. Стремление к электромобилям дало мощный толчок к тому, чтобы сделать бензиновые двигатели более легкими, экономичными и менее загрязняющими, и эти улучшенные газовые двигатели подрывают некоторые предполагаемые преимущества использования дизелей в автомобилях.В условиях растущей конкуренции между доступными электромобилями и улучшенными бензиновые автомобили, дизели могут оказаться вытесненными и вовсе. Опять же сами дизели постоянно развиваются; В 2011 году Министерство энергетики США предсказало, что будущие двигатели могут повысить эффективность с сегодняшних 40 процентов до 60 процентов и более. Если это произойдет, дизельное топливо может остаться. соперник в автомобилях меньшего размера на многие годы вперед, особенно если их выхлопные газы можно правильно решить.

Кто изобрел дизельный двигатель?

Неудивительно, что это был немецкий инженер Рудольф Дизель (1858–1913).Вот вкратце история:

  • 1861: французский инженер Альфонс Бо де Роша (1815–1893) излагает основную теорию четырехтактного двигателя и подает патент на идею 16 февраля 1862 года, но ему не удается собрать рабочую машину.
  • 1876: немецкий инженер Николаус Отто (1832–1891) создает первый успешный четырехтактный двигатель внутреннего сгорания.
  • 1878: Шотландец Дугальд Клерк (1854–1932) разрабатывает двухтактный двигатель.
  • 1880: 22 года, Рудольф Дизель переходит на работу к инженеру по холодильникам Карлу фон Линде (1842–1934), где он изучает термодинамику (науку о том, как движется тепло) и как работают двигатели.
  • 1890: Дизель выясняет, как улучшить внутреннее сгорание двигатель, работающий при более высоких давлениях и температурах, не требующий свечи зажигания.
  • 1892: Дизель начинает патентовать свои идеи, чтобы не дать другим получить от них прибыль.

    Изображение: оригинальный двигатель внутреннего сгорания Рудольфа Дизеля, как он изобразил в своем патенте 1895 года. Цилиндр (1) находится вверху. 2) «Плунжер» (как его называют дизель) прикреплен кривошипом и шатуном (3) к маховику (4).Шестерня, приводимая в движение маховиком (5), прикреплена к центробежному регулятору (6), который поддерживает постоянную скорость вращения двигателя (отключает подачу топлива, если двигатель работает слишком быстро, а затем снова включает ее, когда двигатель снова замедляется). Изображение предоставлено Управлением по патентам и товарным знакам США (цвета и нумерация добавлены нами для упрощения объяснения). Вы можете прочитать больше в Патент США № 542846: Рудольф Дизель, способ и устройство для преобразования тепла в работу.

  • 1893: Дизель создает огромный стационарный двигатель, который работает целую минуту самостоятельно. власти, 17 февраля 1894 года.
  • 1895: Патент на двигатель Дизеля получен в США 16 июля 1895 г.
  • 1898: С помощью Дизеля первый коммерческий двигатель построен в фабрика в Сент-Луисе, штат Миссури, США, автор — Адольфус Буш (1839–1913), пивовар пива Budweiser.
  • 1899: На заводе Diesel в Аугсбурге начинается производство дизельных двигателей. Дизель начинает передавать свои идеи другим фирмам и вскоре становится очень богатый.
  • 1903: Petit Pierre, один из первых дизельных судов, начинает работу на канале Марн-Рейн во Франции.
  • 1912: MS Selandia, первое океанское дизельное судно, совершает свой первый рейс.
  • 1913: Дизель умирает при загадочных обстоятельствах, очевидно, упав за борт корабля «Дрезден» во время путешествия из Лондона, Англия, в Германию. Ходят слухи, что он был убит или покончил жизнь самоубийством, но ничего не известно. доказано.
  • 1931: Клесси Камминс, основатель Cummins Engine Co., построил один из первых успешных автомобилей с дизельным двигателем и продемонстрировал его эффективность, проехав на нем из Индианаполиса в Нью-Йорк всего за 1 доллар.39 топлива.
  • 1931: Компания Caterpillar произвела революцию в сельском хозяйстве, представив Diesel Sixty, первый гусеничный трактор с дизельным двигателем, созданный на базе популярной модели Caterpillar Sixty.
  • 1936: Mercedes представляет 260D, один из первых серийных легковых автомобилей с дизельным двигателем, и остается в производстве до 1940 года. В течение следующих четырех десятилетий Mercedes продает почти два миллиона автомобилей с дизельным двигателем.
  • 1939: General Motors представляет свой EMD FT, мощный дизель-электрический локомотив, и отправляет первый (номер 103) в годичное плавание, чтобы продемонстрировать его достоинства.Несомненно, доказывая превосходство дизельного топлива, это звучит как похоронный звон для паровозов.
  • 1970-е: Мировой топливный кризис пробудил возобновление интереса к использованию небольших эффективных дизельных двигателей в автомобилях.
  • 1987: всемирно известный корабль Queen Elizabeth 2 (QE2) переоборудованный девятью дизель-электрическими двигателями (каждый размером с двухэтажный автобус), что сделало его самым мощным торговым судном с дизельными двигателями того времени.
  • 2000: Peugeot представляет первые в мире фильтры для твердых частиц (PF) для дизельных двигателей на своей модели 607, заявив, что выбросы сажи сокращаются на 99%.
  • 2015: Volkswagen погрузился в огромный мировой скандал из-за систематического мошенничества при испытаниях дизельных двигателей на выбросы выхлопных газов. Продажи дизельных автомобилей резко упали впервые за много лет.
  • 2017: Volvo становится первым крупным автопроизводителем, отказавшимся от бензиновых и дизельных двигателей, объявляя об этом все новые автомобили будут гибридными или полностью электрическими с 2019 года.

Как работают дизельные двигатели?

Вы когда-нибудь с изумлением смотрели, как гигантский грузовик медленно ползет в гору? Возможно нет! Такое случается каждый день. Но остановись и подумай момент о том, что происходит — как огромная, тяжелая нагрузка систематически поднимается против подавляющей силы гравитации, используя не более чем несколько чашек грязной жидкости (другими словами, топлива) — и вы можете согласиться то, что вы видите, весьма примечательно. Дизельные двигатели — это сила наших самых больших машин — грузовиков, поезда, корабли и подводные лодки.На первый взгляд, они похожи на обычные бензиновые (бензиновые) двигатели, но вырабатывают больше мощности, более эффективно, работая несколько иначе. Возьмем пристальный взгляд!

Фото: Дизельные двигатели (как в этом локомотиве) идеально подходят для буксировки тяжелых поездов. Это прекрасно сохранившийся (и отполированный до блеска!) British Rail Class 55 («Deltic»), номер 55022, названный Royal Scots Grey, датируемый 1960 годом. Дизельный двигатель Napier Deltic, которым он питается.

Что такое дизельный двигатель?

Подобно бензиновому двигателю, дизельный двигатель является двигателем внутреннего сгорания. Горение — это другое слово для обозначения горения и внутреннего означает внутри, поэтому двигатель внутреннего сгорания — это просто двигатель, в котором топливо сжигается внутри основной части двигателя (цилиндров) где производится энергия.

Это сильно отличается от внешнего двигатель внутреннего сгорания, такой как те, которые используются старомодным паром локомотивы. В паровой машине на одном конце бойлер, который нагревает воду для получения пара.Пар стекает долго трубы к цилиндру на противоположном конце котла, где он толкает поршень вперед и назад для перемещения колес. Это внешний горение, потому что огонь находится вне цилиндра (действительно, обычно на расстоянии 6-7 метров или 20-30 футов). В бензиновом или дизельном двигателе топливо горит внутри самих баллонов. Отходы внутреннего сгорания гораздо меньше энергии, потому что тепло не должно исходить откуда производится в цилиндр: все происходит в одном и том же место.Вот почему двигатели внутреннего сгорания более эффективны чем двигатели внешнего сгорания (они производят больше энергии из тот же объем топлива).

На фото: типичный дизельный двигатель (от пожарной машины) производства Detroit Diesel Corporation (DDC). Фото Хуана Антуана Кинга любезно предоставлено ВМС США и Wikimedia Commons.

Чем дизельный двигатель отличается от бензинового?

Бензиновые и дизельные двигатели работают за счет внутреннего сгорания, но в немного разными способами.В бензиновом двигателе топливо и воздух впрыскивается в небольшие металлические цилиндры. Поршень сжимает (сжимает) смесь, делающая его взрывоопасным, и небольшую электрическую искру от свеча зажигания поджигает его. Это заставляет смесь взорваться, генерирующая мощность, которая толкает поршень вниз по цилиндру и (через коленчатый вал и шестерни) крутит колеса. Ты можешь читать подробнее об этом и посмотрите простую анимацию того, как это работает в нашем статья о автомобильных двигателях.

Дизельные двигатели похожи, но попроще.Во-первых, воздух попадает в цилиндр и поршень сжимают его — но гораздо больше, чем в бензиновый двигатель. В бензиновом двигателе топливно-воздушная смесь сжат примерно до одной десятой от первоначального объема. Но в дизеле В двигателе воздух сжимается от 14 до 25 раз. [1] Если вы когда-нибудь накачивали велосипедную шину, вы почувствовали ее накачку. Чем дольше вы его использовали, тем горячее в ваших руках. Это потому что при сжатии газа выделяется тепло. Представьте себе, сколько тепла создается за счет нагнетания воздуха в 14-25 раз меньшее пространство, чем обычно занимает.Так много тепла, что воздух действительно горячий — обычно не менее 500 ° C (1000 ° F), а иногда очень сильно горячее. Как только воздух сжимается, в цилиндр обычно (в современном двигателе) электронным система впрыска топлива, которая работает как сложный аэрозоль жестяная банка. (Количество впрыскиваемого топлива варьируется в зависимости от мощности водитель хочет, чтобы двигатель работал.) Воздух такой горячий, что топливо мгновенно воспламеняется и взрывается без искры затыкать.Этот управляемый взрыв заставляет поршень выталкиваться из цилиндр, производящий мощность, которая приводит в движение транспортное средство или машину на котором установлен двигатель. Когда поршень возвращается в цилиндр, выхлопные газы выталкиваются через выпускной клапан и процесс повторяется — сотни или тысячи раз минута!

Что делает дизельный двигатель более эффективным?

Фото: Типичный дизельный двигатель, испытываемый в лабораторных условиях. Фото Пэта Коркери любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Дизельные двигатели вдвое эффективнее бензиновых — около 40–45 процентов. в лучшем случае эффективен. [2] Проще говоря, это означает, что при том же количестве топлива вы можете пройти гораздо дальше. (или получите больше миль за свои деньги). Есть несколько причин для это. Во-первых, они сильнее сжимаются и работают при более высоких температурах. Фундаментальная теория того, как работают тепловые двигатели, известное как правило Карно, говорит нам, что эффективность двигателя зависит от от высоких и низких температур, между которыми он работает.Дизельный двигатель, работающий через большую разницу температур (более высокая самая высокая температура или самая низкая низкая температура) более эффективна. Во-вторых, отсутствие системы зажигания свечи зажигания делает более простая конструкция, которая может с легкостью сжимать воздух намного сильнее, а также это делает топливо более горячим и полным, высвобождая больше энергии. Есть еще одна экономия на эффективности тоже. В бензиновом двигателе, который не работает на полную мощность, вам понадобится подавать больше топлива (или меньше воздуха) в цилиндр, чтобы он работал; дизельные двигатели не имеют этой проблемы, поэтому им нужно меньше топлива, когда они работают на более низкой мощности.Еще одним важным фактором является то, что дизельное топливо несет немного больше энергии на галлон, чем бензин потому что молекулы, из которых он сделан, имеют больше энергии, запирая их атомы вместе (другими словами, дизель имеет более высокую удельную энергию, чем бензин). Дизель тоже лучше смазка, чем бензин, так что дизельный двигатель, естественно, будет работать с меньшим трением.

Чем отличается дизельное топливо?

Дизель и бензин совершенно разные. Вы это узнаете, если вы когда-либо слышал ужасные истории о людях, которые заправили свою машину или грузовик с неправильным видом топлива! По сути, дизель — это низкосортный, менее очищенный нефтепродукт, полученный из более тяжелых углеводороды (молекулы, состоящие из большего количества углерода и водорода атомов).Сырые дизельные двигатели без сложной системы впрыска топлива Теоретически системы могут работать практически на любом углеводородном топливе — отсюда популярность биодизеля (вид биотоплива, производимого, среди прочего, вещи, отработанное растительное масло). Изобретатель дизельного двигателя, Рудольф Дизель успешно запускал свои первые двигатели на арахисовом масле и думал, что его двигатель окажет людям услугу, освободив их от зависимость от топлива, такого как уголь и бензин, и централизованная источники энергии. [3] Если бы он только знал!

Фото: Смазка поедет: Джошуа и Кайя Тикелл, пара Защитники окружающей среды, используйте этот трейлер (Green Grease Machine), чтобы сделать биодизельное топливо для своего фургона (прикрепленного к передней части), используя отработанное кулинарное масло, выбрасываемое ресторанами быстрого питания.Топливо стоит впечатляющих 0,80 доллара за галлон. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Преимущества и недостатки дизельных двигателей

Дизели — самые универсальные двигатели, работающие на топливе, которые широко используются сегодня. можно найти во всем, от поездов и кранов до бульдозеров и подводные лодки. По сравнению с бензиновыми двигателями они проще, эффективнее и экономичнее. Они также безопаснее, потому что дизельного топлива меньше летучий и его пары менее взрывоопасны, чем бензин.В отличие от бензиновых двигателей они особенно хороши для перемещать большие грузы на низких скоростях, поэтому они идеально подходят для использования в грузовые суда, грузовики, автобусы и локомотивы. Более высокое сжатие означает, что части дизельного двигателя должны выдерживать гораздо большие напряжения и деформации, чем в бензиновом двигателе. Вот почему дизельные двигатели должны быть сильнее и тяжелее и почему, надолго время они использовались только для питания больших транспортных средств и машин. В то время как это может показаться недостатком, это означает, что дизельные двигатели обычно более надежны и служат намного дольше, чем бензиновые двигатели.

Фото: Дизельные двигатели используются не только в транспортных средствах: эти огромные стационарные дизельные двигатели вырабатывают электроэнергию на электростанции на Остров Сан-Клементе. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Загрязнение одно из самых больших недостатков дизельных двигателей: они производят смесь загрязняющих веществ, в том числе оксиды азота, оксид углерода, углеводороды и частицы сажи, которые являются грязными и опасными для здоровья.Теоретически дизели более экономичны, поэтому они должны использовать меньше топлива, производить меньше выбросов углекислого газа (CO2) и меньше способствуют глобальному потеплению. На практике есть некоторые споры о том, правда ли это. Некоторые лабораторные эксперименты показали средние выбросы дизельного топлива. лишь немного ниже, чем у бензиновых двигателей, хотя производители настаивают на том, что если аналогичные дизельные и бензиновые автомобили по сравнению, дизели действительно лучше выходят. Другое недавнее исследование показывает, что даже новые дизельные автомобили сильно загрязняют окружающую среду.Европейское агентство по окружающей среде, например, отмечает, что даже типичный «чистый» дизельный автомобиль соответствует нормам выбросов EURO 6, производит примерно в 10 раз больше азота оксидное загрязнение, как у сопоставимого автомобиля с бензиновым двигателем. [4] А как насчет выбросов CO2? По данным Британского общества производителей двигателей и трейдеры: «Автомобили с дизельным двигателем внесли огромный вклад в сокращение выбросов CO2. С 2002 года покупатели, выбравшие дизельное топливо, сэкономили почти 3 миллиона тонн CO2 от попадания в атмосферу». Дизельные двигатели, как правило, изначально стоят дороже, чем бензиновые, хотя их эксплуатационные расходы и более длительный срок службы обычно компенсирует это.Несмотря на это, покупатели автомобилей больше не кажутся убежденными: с тех пор продажи значительно упали. скандал с выбросами Volkswagen в 2015 году, когда немецкий автопроизводитель исказил выбросы своих дизельных автомобилей, чтобы они казались меньше загрязнение.

Нет никаких сомнений в том, что дизельные двигатели будут продолжать устанавливаться на тяжелых транспортных средствах — грузовиках, автобусы, корабли и железнодорожные локомотивы — все зависит от них, но их будущее в автомобилях и легких транспортных средствах становится все более неопределенным. Стремление к электромобилям дало мощный толчок к тому, чтобы сделать бензиновые двигатели более легкими, экономичными и менее загрязняющими, и эти улучшенные газовые двигатели подрывают некоторые предполагаемые преимущества использования дизелей в автомобилях.В условиях растущей конкуренции между доступными электромобилями и улучшенными бензиновые автомобили, дизели могут оказаться вытесненными и вовсе. Опять же сами дизели постоянно развиваются; В 2011 году Министерство энергетики США предсказало, что будущие двигатели могут повысить эффективность с сегодняшних 40 процентов до 60 процентов и более. Если это произойдет, дизельное топливо может остаться. соперник в автомобилях меньшего размера на многие годы вперед, особенно если их выхлопные газы можно правильно решить.

Кто изобрел дизельный двигатель?

Неудивительно, что это был немецкий инженер Рудольф Дизель (1858–1913).Вот вкратце история:

  • 1861: французский инженер Альфонс Бо де Роша (1815–1893) излагает основную теорию четырехтактного двигателя и подает патент на идею 16 февраля 1862 года, но ему не удается собрать рабочую машину.
  • 1876: немецкий инженер Николаус Отто (1832–1891) создает первый успешный четырехтактный двигатель внутреннего сгорания.
  • 1878: Шотландец Дугальд Клерк (1854–1932) разрабатывает двухтактный двигатель.
  • 1880: 22 года, Рудольф Дизель переходит на работу к инженеру по холодильникам Карлу фон Линде (1842–1934), где он изучает термодинамику (науку о том, как движется тепло) и как работают двигатели.
  • 1890: Дизель выясняет, как улучшить внутреннее сгорание двигатель, работающий при более высоких давлениях и температурах, не требующий свечи зажигания.
  • 1892: Дизель начинает патентовать свои идеи, чтобы не дать другим получить от них прибыль.

    Изображение: оригинальный двигатель внутреннего сгорания Рудольфа Дизеля, как он изобразил в своем патенте 1895 года. Цилиндр (1) находится вверху. 2) «Плунжер» (как его называют дизель) прикреплен кривошипом и шатуном (3) к маховику (4).Шестерня, приводимая в движение маховиком (5), прикреплена к центробежному регулятору (6), который поддерживает постоянную скорость вращения двигателя (отключает подачу топлива, если двигатель работает слишком быстро, а затем снова включает ее, когда двигатель снова замедляется). Изображение предоставлено Управлением по патентам и товарным знакам США (цвета и нумерация добавлены нами для упрощения объяснения). Вы можете прочитать больше в Патент США № 542846: Рудольф Дизель, способ и устройство для преобразования тепла в работу.

  • 1893: Дизель создает огромный стационарный двигатель, который работает целую минуту самостоятельно. власти, 17 февраля 1894 года.
  • 1895: Патент на двигатель Дизеля получен в США 16 июля 1895 г.
  • 1898: С помощью Дизеля первый коммерческий двигатель построен в фабрика в Сент-Луисе, штат Миссури, США, автор — Адольфус Буш (1839–1913), пивовар пива Budweiser.
  • 1899: На заводе Diesel в Аугсбурге начинается производство дизельных двигателей. Дизель начинает передавать свои идеи другим фирмам и вскоре становится очень богатый.
  • 1903: Petit Pierre, один из первых дизельных судов, начинает работу на канале Марн-Рейн во Франции.
  • 1912: MS Selandia, первое океанское дизельное судно, совершает свой первый рейс.
  • 1913: Дизель умирает при загадочных обстоятельствах, очевидно, упав за борт корабля «Дрезден» во время путешествия из Лондона, Англия, в Германию. Ходят слухи, что он был убит или покончил жизнь самоубийством, но ничего не известно. доказано.
  • 1931: Клесси Камминс, основатель Cummins Engine Co., построил один из первых успешных автомобилей с дизельным двигателем и продемонстрировал его эффективность, проехав на нем из Индианаполиса в Нью-Йорк всего за 1 доллар.39 топлива.
  • 1931: Компания Caterpillar произвела революцию в сельском хозяйстве, представив Diesel Sixty, первый гусеничный трактор с дизельным двигателем, созданный на базе популярной модели Caterpillar Sixty.
  • 1936: Mercedes представляет 260D, один из первых серийных легковых автомобилей с дизельным двигателем, и остается в производстве до 1940 года. В течение следующих четырех десятилетий Mercedes продает почти два миллиона автомобилей с дизельным двигателем.
  • 1939: General Motors представляет свой EMD FT, мощный дизель-электрический локомотив, и отправляет первый (номер 103) в годичное плавание, чтобы продемонстрировать его достоинства.Несомненно, доказывая превосходство дизельного топлива, это звучит как похоронный звон для паровозов.
  • 1970-е: Мировой топливный кризис пробудил возобновление интереса к использованию небольших эффективных дизельных двигателей в автомобилях.
  • 1987: всемирно известный корабль Queen Elizabeth 2 (QE2) переоборудованный девятью дизель-электрическими двигателями (каждый размером с двухэтажный автобус), что сделало его самым мощным торговым судном с дизельными двигателями того времени.
  • 2000: Peugeot представляет первые в мире фильтры для твердых частиц (PF) для дизельных двигателей на своей модели 607, заявив, что выбросы сажи сокращаются на 99%.
  • 2015: Volkswagen погрузился в огромный мировой скандал из-за систематического мошенничества при испытаниях дизельных двигателей на выбросы выхлопных газов. Продажи дизельных автомобилей резко упали впервые за много лет.
  • 2017: Volvo становится первым крупным автопроизводителем, отказавшимся от бензиновых и дизельных двигателей, объявляя об этом все новые автомобили будут гибридными или полностью электрическими с 2019 года.
Дизельные двигатели

Дизельные двигатели

Ханну Яэскеляйнен, Магди К. Хаир

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Реферат : Дизельный двигатель, изобретенный в конце 19-го -го -го века доктором Рудольфом Дизелем, является наиболее энергоэффективной силовой установкой среди всех типов двигателей внутреннего сгорания, известных сегодня. Такой высокий КПД обеспечивает хорошую экономию топлива и низкие выбросы парниковых газов. Другие характеристики дизельного топлива, которые не были сопоставлены с конкурирующими машинами для преобразования энергии, включают долговечность, надежность и топливную безопасность.К недостаткам дизелей можно отнести шум, низкую удельную мощность, выбросы NOx и PM и высокую стоимость.

Что такое дизельный двигатель?

В большинстве современных дизельных двигателей используется обычное расположение цилиндров и поршней, приводимое в действие кривошипно-шатунным механизмом, общим для других двигателей внутреннего сгорания, таких как бензиновый двигатель. Учитывая этот базовый механизм, разница между базовой конструкцией дизельного и бензинового двигателей очень незначительна.

Концептуально дизельные двигатели работают, сжимая воздух до высокого давления / температуры, а затем впрыскивая небольшое количество топлива в этот горячий сжатый воздух.Высокая температура вызывает испарение небольшого количества сильно распыленного впрыскиваемого топлива. Смешиваясь с горячим окружающим воздухом в камере сгорания, испарившееся топливо достигает температуры самовоспламенения и сгорает, высвобождая энергию, которая хранится в этом топливе [391] .

Определение дизельного двигателя менялось с годами. Например, в начале -х годов века было проведено различие между «настоящим дизельным двигателем» и двигателем, который разделял некоторые аспекты дизельного цикла, но не охватывал все аспекты, которые считались частью дизельного цикла, как тогда предполагалось. .Одно из первых определений «настоящего дизельного двигателя» — это двигатель, имеющий следующие характеристики [2959] :

  1. Сжатие, достаточное для получения температуры, необходимой для самовозгорания топлива.
  2. Впрыск топлива струей сжатого воздуха.
  3. Максимальное давление цикла (достигаемое при сгорании), не намного превышающее давление сжатия, т. Е. Отсутствие выраженного взрывного действия.

В то время как первый пункт из вышеперечисленных характеристик соответствует современному дизельному двигателю, последние два нет.В течение 1920-1930-х годов две другие характеристики утратили свое значение.

Твердотопливный впрыск начал появляться примерно в 1910 году, но только в конце 1920-х годов он начал быстро получать признание. Интересно отметить, что сам Дизель выбрал нагнетание воздушной струи скорее по необходимости, чем по собственному выбору. Дизель предполагал топливную систему с твердым впрыском, а не систему воздушной струи.

Дизель довольно строго придерживался горения при постоянном давлении, пункт 3.Это, однако, было возможно только в больших относительно тихоходных дизельных двигателях, которые были распространены до 1920-х годов. В меньших по размеру высокоскоростных двигателях, появившихся в 1920-х годах, практические соображения означали, что сгорание было ближе к процессу постоянного объема, как в цикле Отто, а не к постоянному давлению, как в дизельном цикле.

Краткий обзор ранней истории дизельного двигателя обсуждается в другом месте.

###

Объяснение функции двигателей с воспламенением от сжатия

Дизельные двигатели — это рабочие лошадки как в промышленности, так и в производительности.Но чтобы по-настоящему оценить их, важно понять, как они работают.

Дизельные двигатели являются основным двигателем в промышленности. Применение дизельных двигателей в тяжелых условиях, требующих высокого крутящего момента, долговечности и превосходной экономии топлива, повсеместно. Отрасли автомобильного, морского и железнодорожного транспорта в значительной степени полагаются на дизельную энергию, а не на бензиновые двигатели. Даже многие электростанции вырабатывают электроэнергию с помощью больших дизельных двигателей. И, конечно же, почти все тяжелое строительное, сельскохозяйственное и горнодобывающее оборудование работает на дизельном топливе.Мировая торговля эффективно работает на дизельной энергии. Несмотря на то, что они схожи по внешнему виду, важные различия отделяют дизельные и бензиновые двигатели друг от друга и определяют, какой тип двигателя лучше всего подходит для любого конкретного применения, включая грузовики и автомобили.

В отличие от обычного бензинового двигателя, дизель впрыскивает топливо непосредственно в цилиндр во время рабочего такта, который затем сгорает из-за высоких температур цилиндра.

Дизельные и бензиновые двигатели относятся к двигателям внутреннего сгорания (ВС).Топливо и воздух объединяются и сжигаются внутри двигателя для получения энергии. Подобно бензиновому двигателю, дизельный двигатель имеет цилиндры, коленчатый вал, шатуны и поршни для передачи энергии топлива от линейного движения к вращательному. Основное различие заключается в способе воспламенения топливно-воздушной смеси. Бензиновые двигатели — это двигатели с искровым зажиганием, а дизельные двигатели — это двигатели с воспламенением от сжатия.

Четыре такта, циклы двигателя внутреннего сгорания

  • Впуск
  • Сжатие
  • Горение (расширение)
  • Выхлоп

Эти циклы в основном одинаковы для обоих типов двигателей, за исключением цикла сгорания, когда бензиновый двигатель запускается искрой, а дизель — сжатием.Разница является ключевой в превосходстве дизеля для применений, требующих высокой эффективности и высокого крутящего момента с хорошей топливной экономичностью.

ГОРЕНИЕ

Бензиновый двигатель внутреннего сгорания забирает предварительно смешанное топливо и воздух через систему впуска, сжимает его в каждом цилиндре с помощью поршня и воспламеняет смесь с помощью свечи зажигания. Топливо добавляется во время такта впуска, чтобы создать желаемую топливно-воздушную смесь, готовую к сгоранию. Последующий цикл сгорания расширяет горящую смесь и повышает давление в цилиндре, чтобы толкнуть поршень вниз и создать крутящий момент.

В дизельном двигателе воздух и топливо предварительно не смешиваются. Воздух вводится в цилиндры и сжимается поршнем до гораздо более высокого давления, чем в бензиновом двигателе; в некоторых случаях до 25: 1. Это механическое или адиабатическое сжатие перегревает воздух до 400 ° или более. В этот момент топливо впрыскивается в горячий сжатый воздух, вызывая его мгновенное возгорание. Создается более высокое давление в цилиндре, создавая больший крутящий момент для привода автомобиля.

Вот деталь, которую вы не найдете в дизельном двигателе.В отличие от бензиновых двигателей, которым требуется триггерное событие — сильный электрический разряд — для инициирования сгорания, дизельные двигатели полагаются исключительно на температуру сжатого воздуха в верхней мертвой точке.

КАЧЕСТВО СМЕСИ

Дизельные двигатели

обеспечивают более высокий КПД по нескольким причинам. Одна веская причина заключается в том, что более высокое давление в цилиндре во время впрыска топлива создает гораздо более плотную смесь, которая дает более сильный удар; плотность смеси имеет первостепенное значение для создания энергии.Более высокая степень сжатия также заставляет топливо сгорать более полно, высвобождая больше энергии, поскольку дизельное топливо дает более высокую плотность энергии. Кроме того, уникальная способность дизеля впрыскивать топливо на протяжении большей части рабочего хода помогает создать более высокое среднее давление в цилиндре, чем сопоставимый бензиновый двигатель. Дизельное топливо также имеет смазывающий компонент, который помогает снизить трение в цилиндрах.

Камера сгорания в головке поршня дизельного двигателя представляет собой неглубокую камеру с центральным конусом для облегчения распределения смеси из топлива под высоким давлением, впрыскиваемого непосредственно над ней.«В приложениях с высокими эксплуатационными характеристиками решающее значение имеет сочетание угла распыления впрыска и конструкции тарелки», — отмечает JJ Zimmerman из Diamond Pistons. «Большая часть нашего времени инженеров тратится на эту конкретную арену, поскольку именно здесь можно выиграть или проиграть гонки».

Хотя начало сгорания отличается от типичного бензинового двигателя, фундаментальное отличие также существует в конструкции камеры сгорания для оптимизации распыления топлива. Большинство бензиновых двигателей имеют камеру сгорания в головке блока цилиндров, но в дизельном двигателе камера сгорания расположена внутри днища поршня.Поршень дизеля имеет контурное углубление или чашу в центре днища поршня, где происходит сгорание. В центре чаши конусообразный выступ находится прямо под топливной форсункой.

Конус и камера захваченного поршня под головкой блока цилиндров способствуют оптимизированному распылению топлива в пространстве сгорания под высоким давлением. Эта форма камеры конуса в короне обычно упоминается как конструкция «мексиканской шляпы» (сомбреро), и она почти универсальна для дизельных поршней.Высокоэффективная камера в центре поршня централизует большую часть силы, создаваемой циклом расширения (сгорания), и направляет ее прямо вниз по шатуну к ходу коленчатого вала.

Кованые сменные поршни из сплава 2618 компании Diamond Pistons для Cummins, Duramax и Power Stroke (показаны) заполняют пустоту для специалистов по восстановлению рабочих характеристик, нуждающихся в высококачественных сменных поршнях, соответствующих степеням сжатия OEM, с полным покрытием поршней и штифтами из инструментальной стали DLC h23.

Еще одно отличие состоит в том, что дизельный двигатель дросселируется за счет подачи топлива, а бензиновый двигатель дросселируется за счет подачи воздуха. Поскольку воздушный поток не дросселируется, дизельный двигатель также не создает вакуума. Подача топлива осуществляется прямым впрыском в цилиндр, направленным прямо на верхнюю часть поршня. Это очень важно для качества топливной смеси и последующей эффективности сгорания.

Прямой впрыск делает процесс сгорания проще и эффективнее.Дизельные двигатели работают при значительно более бедном соотношении воздух-топливо, чем бензиновые двигатели, обычно от 25: 1 до 40: 1 по сравнению с обычным бензиновым диапазоном от 12: 1 до 15: 1. Современные дизельные двигатели с прямым впрыском впрыскивают топливо при давлении, приближающемся (или в некоторых случаях превышающем) 30 000 фунтов на квадратный дюйм. Это обеспечивает наилучшее возможное распыление не только для эффективного сжигания, но и с низким уровнем отходящего тепла. А бедные смеси являются ключевой причиной такой топливной экономичности дизелей.

СРОКИ

Еще одно интересное различие между дизельным и бензиновым двигателями — это синхронизация форсунок по сравнению с синхронизацией зажигания.В бензиновых двигателях момент зажигания относится к точке, в которой горение инициируется свечой зажигания. В дизельном двигателе синхронизация относится к началу события впрыска топлива, которое рассчитывается по времени, чтобы воспользоваться точкой максимального сжатия смеси.

Хотя в основном это грузовые автомобили, дизельные двигатели нашли большой успех в грузовых автомобилях. 6,8-литровый автомобиль Райана Милликена ’66 Nova с двигателем Cummins — это автомобиль с радиальными шинами, который доказывает, что дизельное топливо многогранно. В двигателе используются поршни Diamond Pistons и турбонагнетатель Massive Garrett GTX5533R, позволяющий совершать дымные прохождения на четверть мили.

ТУРБОНАДДУВ

Для дизельных двигателей

требуются более прочные компоненты, прежде всего из-за более высокого давления в цилиндрах и высокого крутящего момента. Давление в цилиндрах возрастает до 3600 фунтов на квадратный дюйм в современных приложениях с турбонаддувом и до более 8000 фунтов на квадратный дюйм в приложениях с высокой производительностью. На 4-дюймовом отверстии это может составлять 45 000 фунтов давления, толкающего поршень вниз. Таким образом, блок цилиндров, коленчатый вал, шатуны, поршни, головки цилиндров и клапаны значительно более прочны, чем у бензинового двигателя.Поскольку они предназначены для работы под высоким давлением, большая часть дизельных двигателей оснащена турбонаддувом.

Турбокомпрессоры

идеально подходят для дизелей, поскольку они повторно используют отработанные выхлопные газы для эффективного наддува двигателя, который уже спроектирован для работы при высоком давлении в цилиндрах. Тепловой КПД дизельного двигателя эффективно повышается за счет турбонаддува, поскольку он существенно увеличивает объем воздуха, поступающего в двигатель, что позволяет впрыскивать больше топлива.Топливо создает энергию, но для ее разблокировки требуется воздух.

Отношение крутящего момента к мощности дизельных двигателей обычно составляет около 2: 1, но многие промышленные двигатели достигают отношения 3: 1 или 4: 1 в отличие от типичного отношения 1: 1, создаваемого бензиновым двигателем. Дизели обладают эффективным крутящим моментом, потому что они создают высокое давление в цилиндре за счет очень эффективного сгорания, и они применяют его к длинному ходу коленчатого вала, что увеличивает рычаг. Турбонаддув добавляет совершенно новый фактор в уравнение крутящего момента, поскольку он снижает насосные потери во время такта впуска и значительно увеличивает давление в цилиндре во время рабочего такта.Дизели любят повышать давление. Дизельные двигатели нередко работают в два, три или более раз над давлением наддува, обычно используемым в бензиновых двигателях.

На отечественном рынке дизельных двигателей преобладают двигатели GM Duramax, Dodge Cummins и Ford PowerStroke.

УПРАВЛЕНИЕ ВПРЫСКАМИ

Среди других распространенных практик настройки увеличение времени впрыска и его более ранний запуск создает большее давление в цилиндре. Множественные события впрыска (пилотный впрыск) за цикл мощности теперь также являются обычным явлением.Таким образом, сгорание инициируется и усиливается за счет дополнительных впрысков в течение каждого цикла. Это позволяет максимально использовать преимущества более высоких уровней наддува и эффективности сгорания для создания более высокого давления в цилиндрах.

По своей природе процесс сгорания дизельного двигателя имеет тенденцию сопротивляться плавности и однородности, в первую очередь из-за колебаний нагрузки и температуры. Важнейшей целью ужесточения контроля за процессом впрыска является уменьшение отклонений сгорания от цикла к циклу. Современные датчики и система управления двигателем помогают сгладить ситуацию, а современные дизели тише и мощнее, чем когда-либо.Системы управления и впрыск Common Rail с более высоким давлением теперь способны производить до трех впрысков на одно событие сгорания, и они могут варьировать каждый впрыск с большим или меньшим количеством топлива и более высоким или более низким давлением, что считается необходимым для оптимального сгорания.

Diamond предлагает поршни для популярных дизелей в кованых конфигурациях 2618, а также термическое покрытие и покрытие юбки, а также штифты из инструментальной стали.

УПРАВЛЕНИЕ ДИЗЕЛЬНЫМ ПОРШНЕМ

Все это делает поршень главным героем в повышении давления сгорания.Хотя дизели обычно имеют очень прочную архитектуру, поршень — это игрок, который должен постоянно повышать свою квалификацию.

Diamond Pistons представляет собой полную линейку сменных поршней из кованого алюминия для всех распространенных дизельных платформ последних моделей. Среди них основными игроками являются Dodge Cummins, GM Duramax и Ford Power Stroke. Эти поршни поддерживают рынок дизельных двигателей для восстановления рабочих характеристик за счет стандартных и негабаритных поршней из сплава 2618, изготовленных из сплава 2618, которые жестко анодированы и поставляются с наручными штифтами из инструментальной стали H23 с алмазоподобным покрытием DLC (алмазоподобное покрытие) — отличный шаг в обеспечении высококачественных поршней для соревнований и гоночных дизелей. Приложения.

Рынок дизельного топлива стремительно растет уже более десяти лет. OEM-производители и энтузиасты бешено продвигают технологию. Diamond быстро реагирует на растущий рыночный спрос, чтобы гарантировать, что они могут поставлять поршни, которые удовлетворят все потребности своих клиентов в производительности.

Дизельные двигатели — обзор

3.1.9 Оптимизация конструкции для достижения цели, конструкции для вариативности и конструкции для обеспечения надежности

Конструкция системы дизельного двигателя требует оптимизированной спецификации как номинального целевого значения, так и допуска.Оптимизация установившегося двигателя с большим количеством факторов обычно требует техники DoE. На рисунке 3.9 показаны процессы оптимизации конструкции системы дизельного двигателя. Процессы состоят из трех уровней работы:

3.9. Процесс оптимизации DoE для разработки системы стационарного дизельного двигателя.

детерминированный процесс «проектирование для цели» для предварительного отбора субоптимальных значений номинального значения проектной спецификации

недетерминированный процесс «проектирования с учетом вариативности» для достижения оптимального дизайна — оба номинальное значение и допуск проектной спецификации с учетом изменчивости

недетерминированный процесс «проектирования для обеспечения надежности» для достижения оптимальной конструкции — как номинальное значение, так и допуск проектной спецификации, при условии надежности.

Разница между изменчивостью и надежностью состоит в том, что анализ надежности включает влияние зависящих от времени шумовых факторов (например, ухудшение). Проект для изменчивости использует вероятностные целевые функции для управления как номинальным значением, так и диапазоном допусков, чтобы сделать проект нечувствительным к факторам шума.

Содержание этапов 1.1–1.5, описанных на рис. 3.9 для уровня дизайна для цели, подробно поясняется в разделе 3.2. Модель RSM-1, упомянутая в шаге 1.3 относится к модели эмулятора подгонки поверхности, которая связывает номинальное значение отклика с факторами. На этом слое нет модели эмулятора для допуска.

Оптимизация дизайна с учетом изменчивости проиллюстрирована шагами 2.4–2.5 на рис. 3.9. Соответствующее моделирование методом Монте-Карло показано на рис. 3.10. По сути, моделирование методом Монте-Карло представляет собой расчет вероятности с использованием случайных комбинаций случайных выборок, выбранных из вероятностных распределений нескольких входных факторов.Вероятностное распределение выходного отклика можно спрогнозировать вместе с оценкой интенсивности отказов или надежности. Чтобы оценка была точной, количество случайных выборок должно быть очень большим. Детали моделирования Монте-Карло представлены в разделе 3.4.

3.10. Распространение статистической неопределенности и расчет изменчивости.

Коэффициенты шума, упомянутые в шаге 2.1 на рис. 3.9, относятся ко всем факторам шума, охватываемым анализом изменчивости.Шаги 2.1–2.3 составляют DoE-1, и по своей сути они аналогичны шагам 1.1–1.3. Установка уровня коэффициентов шума на шаге 2.1 выполняется так же, как и на шаге 1.1 (т. Е. Только для уровней средних значений). Модели подгонки поверхности эмулятора DoE-1 RSM-1 часто требуются в качестве суррогатных моделей для замены имитационных моделей цикла двигателя, требующих больших вычислительных ресурсов, поскольку моделирование Монте-Карло на шаге 2.5 требует тысяч прогонов. Тысячи прогонов Монте-Карло необходимо повторить для каждого случая в DoE-2.Следует отметить, что установка уровня коэффициентов шума в DoE-2 на шаге 2.4 отличается от такового на шаге 2.1 (или шаге 1.1). Факторы шума на этапе 2.4 должны быть описаны несколькими факторами распределения (например, средним значением, стандартным отклонением; параметром масштаба и параметром формы), чтобы отразить его конкретную форму вероятностного распределения. Эти факторы называются факторами распределения вероятностей. Каждый фактор распределения вероятностей является фактором в DoE-2. Каждый коэффициент шума на этапе 2.4 должен иметь несколько уровней коэффициента для каждого коэффициента распределения вероятностей в разумном диапазоне для формы данного типа функции вероятности.Например, для коэффициента шума КПД турбины его коэффициент «среднего значения» должен иметь пять уровней настройки, чтобы охватить диапазон возможных средних значений вероятностного распределения КПД турбины, например 58%, 59%, 60%, 61% и 62%. Его коэффициент «стандартного отклонения» также должен иметь пять уровней настройки, чтобы охватить диапазон возможных различных форм вероятностного распределения КПД турбины, например 0,3%, 0,6%, 0,9%, 1,2% и 1,5%. Очевидно, размер DoE на шаге 2.4 обычно больше, чем на шаге 2.1. Например, предполагая, что DoE-2 на шаге 2.4 имеет 10 факторов (т. Е. 4 фактора управления и 3 фактора шума, которые дают 6 факторов распределения вероятности шума) и 210 случаев (прогонов), для каждого случая необходимо выполнить моделирование Монте-Карло. выполнено 1000 раз, взяв 1000 случайных комбинаций вероятностных выборок. Такой огромный объем вычислений обычно не может быть выполнен с использованием исходных подробных системных моделей. Поэтому модель RSM-1, описанная на шаге 2.3 здесь нужен как быстрая суррогатная модель.

Выходные данные этапа 2.5 на рис. 3.9 включают все отклики двигателя в виде форм вероятностного распределения, их статистические свойства для выбранного соответствия функции распределения вероятностей и статистику вероятностей (т. Е. Интенсивность отказов для изменчивости). Статистические свойства ответов могут включать в себя следующее: минимум, максимум, среднее значение, стандартное отклонение, асимметрия, избыточный эксцесс и режим. (Определение этих параметров распределения вероятностей см. В таблицах A.1 и A.2 в Приложении.) Подозреваемые выбросы в распределении вероятностей смоделированных ответов не редкость. Выбросы не обязательно являются плохими точками данных. С ними следует обращаться осторожно, а не просто удалять автоматически. Модели эмулятора RSM-2 описаны в шаге 2.6 путем связывания факторов DoE-2 с ответами распределения вероятностей и статистикой вероятностей. Модели эмуляторов позволяют оценить чувствительность распределений вероятностей выходных данных ко всем входным факторам с использованием ранее представленных методов анализа (например,g., параметрическая развертка, двумерная оптимизация с контурными картами).

Шаг 2.7 имеет решающее значение для надежной оптимизации. В традиционной теории надежного проектирования доктор Тагучи использовал подход «двухэтапной оптимизации» (Fowlkes and Creveling, 1995a). При таком подходе допуск продукта сначала снижается до желаемой формы распределения вероятностей, затем вся кривая распределения вероятностей смещается к желаемой цели путем корректировки номинального расчетного значения. Такой двухэтапный подход имеет определенные недостатки.Например, номинальная целевая конструкция и проект допусков разделены, и их взаимодействие сложно эффективно обрабатывать. В этой теории робастной оптимизации для проектирования системы дизельного двигателя эти недостатки преодолеваются за счет одновременной одностадийной оптимизации как номинальной конструкции, так и конструкции допусков. Математическая формулировка оптимизации с использованием моделей эмулятора DoE-2 RSM-2 на шаге 2.7 обеспечивает такую ​​одновременную оптимизацию, поскольку модели включают в себя все статистические свойства (номинальные или средние, допуск или отклонение) для оптимизации с ограничениями (например.g., при условии ограничения количества отказов на уровне или ниже определенного заданного целевого значения). Следует отметить, что такое преимущество предлагаемого подхода «дизайн с учетом вариативности» над традиционным подходом «двухэтапной оптимизации» может быть достигнуто только путем внедрения RSM в область надежного проектирования.

Добавить комментарий

Ваш адрес email не будет опубликован.