Как устроен карбюратор: Устройство карбюратора

Содержание

Устройство карбюратора

Карбюратор устроен из двух основных частей: корпуса и крышки, которые соединяются между собой. Корпус карбюратора включает поплавковую и смесительную камеры. В поплавковой камере установлен главный топливный жиклер, клапан всасывания ускорительного насоса, топливный поплавок установленный на оси. Чтобы получить доступ к главному топливному жиклеру необходимо отвернуть резьбовую заглушку в корпусе поплавковой камеры. В стенке смесительной камеры устанавливается воздушный жиклер холостого хода и распылитель ускорительного насоса. Главная дозирующая система карбюратора состоит из эмульсионных трубок, главного топливного жиклера.

На кор­пусе карбюратора со стороны рычагов размешены клапан отключения топливо подачи через систему холостого хода, винт регулировки состава горючей смеси на холостом ходу, а также регулировочный винт дополнительной системы холостого хода, он же регулировочный винт дополнительного воздуха и штуцер для присоединения вакуумного регулятора опережения зажигания.

Карбюраторы с автоматическим пусковым устройством на задней части имеют штуцер отбора разрежения для вакуумного диафрагменного механизма пускового устройства.

Со стороны ускорительного насоса карбюратора размещены жиклер холостого хода, у карбюраторов с дополнительной системой холостого хода — дополнительный топливный жиклер, а также на конце оси дроссельной заслонки — рычаг управления подачей горючей смеси, который служит приводом ускорительного насоса и упором полного открытия дроссельной заслонки. С этой стороны у карбюраторов с автоматическим пусковым устройством на оси дроссельной заслонки установлены упорный рычаг и рычаг для принудительного открытия воздушной заслонки при полном открытии дроссельной заслонки (устройство wide-open-kick)» и на отогнутом плече упорного рычага — возвратная пружина. В верхней части упорною рычага расположены два регулировочных винта. Верхний винт предназначен для ре­гулировки повышенной частоты вращения при «холодном» пуске и прогре­ве, а нижний — для установки положения дроссельной заслонки.

Устройство простейшего карбюратора, подробнее…

В крышке карбюратора находятся игольчатый запорный поплавковый клапан, присоединительный штуцер для подачи топлива, а в зоне входной воздушной горловины — вентиляционная трубка поплавковой камеры, оба распылителя обогатительных систем полной мощности и воздушная заслонка с соответствующей осью. На крышке карбюратора размещен кор­пус пускового устройства с соответствующими рычагами и пружинами. У карбюраторов, имеющих пусковое устройство с ручным управлением, на одном конце оси воздушной заслонки имеются эксцентрик, пружина кру­чения и кулачковый рычаг. Отогнутое плечо эксцентрика служит рычагом и предназначено для крепления троса Боудена.

Вспомогательные устройства карбюратора…

Принцип работы и устройство карбюратора

На первый взгляд карбюратор может показаться очень сложным устройством. Однако небольшой объём теоретических знаний поможет полностью разобраться с его принципом работы. Что, в свою очередь, позволит самостоятельно выполнять чистку и регулировку карбюратора. Для выполнения этих операций на должном уровне достаточно базовой информации.

Как работает карбюратор

Независимо от модели, принцип работы карбюратора аналогичен. Конструктивно любой карбюратор выполнен по следующей схеме: канал для создания топливовоздушной смеси, в котором есть специальное калибровочное отверстие для входа воздуха, поплавковая камера и выход для готовой смеси.

При работающем моторе во впускном коллекторе (элемент, соединяющий силовой агрегат и топливную систему) создаётся пониженное давление, по отношению к атмосферному. Это приводит к возникновению вакуума в карбюраторе. Благодаря этому в карбюратор, по специальному сужающемуся каналу затягивается воздух и выполняется захват бензина из топливной камеры. В процессе эти ингредиенты смешиваются, что приводит к созданию топливовоздушной смеси, которая воспламеняется в КЗ (камере сгорания) и заставляет двигаться поршни. Количество топлива в готовой смеси зависит от давления, создаваемого в смешивающей камере. Благодаря тому, что камера соединена с атмосферой, из-за разницы давления, бензин поднимается вверх, смешиваясь с воздухом. Далее смесь поступает в камеру сгорания. Сужение прохода ускоряет движение воздуха, что приводит к ещё большему его разряжению.

Подача топлива с воздухом

Управление подачей топлива и воздуха осуществляется педалью газа, она соединена с воздушной заслонкой (ВЗ) и элементом, перекрывающим поплавковую камеру (ПК). Когда педаль свободна, мотор работает на холостом ходу (ХХ). Заслонка почти полностью закрывает калиброванный канал подачи воздуха, а игла проём в топливной камере. Деталь для перекрытия поплавковой камеры выполнена в виде иглы, разделённой на несколько частей, каждая из которых имеет свою толщину. Таким образом, чем выше она поднимается, тем больше происходит подача топлива. Воздушная заслонка работает по такому же принципу, чем шире проём, тем больше поток.

Что такое холостой ход карбюратора — ХХ

Холостой ход можно сравнить с режимом ожидания. Он необходим для стабильного поддержания нужных оборотов в момент, когда автомобиль не едет, чтобы мотор не заглох. В этот случае, воздушная смесь насыщена минимальным количеством топлива, необходимым для поддержания стабильной работы системы.При отпущенной педали газа, игла золотника максимально перекрывает главный канал подачи бензина. Воздушная заслонка остаётся чуть открытой. Проход, через который осуществляется подача бензина, размещён за воздушной заслонкой. Горючая смесь начинает поступать по этому каналу только тогда, когда в карбюраторе есть увеличенное разряжение, которое возникает при сильном открытии воздушной заслонки. Для создания топливовоздушной смеси на ХХ в конструкции предусмотрен дополнительный канал подачи кислорода. В нём есть специальный элемент для регулировки качества горючей смеси. Чем сильнее закручен винт, тем больше смесь насыщается бензином. Увеличиваются обороты холостого хода, и наоборот — откручивание винта снижает их. Таким образом, выполняя регулировку этого винта можно добиться оптимальных опций, повысить экономичность.

Для правильной дозировки ингредиентов горючей смеси, в местах забора устанавливаются жиклёры. Они представляют собой специальный элемент с определённым диаметром прохода, который не позволяет расходовать топлива или воздуха выше установленной нормы. Также жиклёр может выполнять функцию регулировочного винта.

Для чего нужна поплавковая камера в карбюраторе

 

1 — держатель оси поплавка;
2 — язычок поплавка;
3 — поплавок

ПК является одним из основных элементов карбюратора, в котором находится топливо. Уровень жидкости в камере регулируется и контролируется с помощью специального поплавка. К нему прикреплена иголка. Она закрывает канал подачи горючей смеси из бензобака. При уменьшении уровня топлива, поплавок начинает опускаться, а иголка поднимается. При заполнении камеры поплавок поднимается и уровень стабилизируется.

В карбюраторе предусмотрен механизм дополнительного подсоса управления ДЗ. Этот элемент предназначен для ручного обогащения смеси. Для этой функции предусмотрен дополнительный канал, он меньше, чем основной. Управление механизмом подсоса реализовано специальным рычагом на приборной панели. Сначала необходимо вытянуть полностью на себя элемент, тем самым максимально открыть заслонку, по мере прогрева мотора рычаг нужно постепенно вернуть в исходное положение.

Регулировка карбюратора

Регулировка карбюратора может осуществляться только на хорошо прогретом моторе. Независимо от конструкции, принцип выполнения калибровки элементов идентичный.

  • Поплавковая камера. Регулировка и контроль уровня жидкости в ёмкости осуществляется с помощью поплавка, соединённого проволокой с иглой. Уровень необходимого топлива в камере указан в руководстве по эксплуатации конкретной модели автомобиля. Сверьте текущие показатели, замерьте с помощью штангенциркуля высоту зеркала. Если уровень выше нормы, аккуратно возьмите в руку поплавок и прогните его вниз методом механического воздействия на проволоку. Если уровень топлива ниже нормы — поднимите его.
  • Настройка ХХ. Оптимальное количество оборотов на ХХ составляет 800-900 единиц. Закрутите винт качества смеси до упора и выкрутите его на 4-5 оборота обратно. Закрутите до упора винт количества и открутите 3 раза. Включите двигатель, постепенно начните закручивать первый винт, в процессе обороты должны поднять и начаться нестабильная работа мотора. Когда начнётся этап неустойчивости, начните закручивать регулировочный элемент, пока двигатель снова не начнёт работать стабильно. В завершение выполните корректировку винтом количества.
  • Регулировка жиклёров. С помощью подсоса нужно закрыть воздушную заслонку. Хвостовик тяги должен находиться в конце паза штока ПУ карбюратора. При отклонении следует устранить подгибанием тяги. Затем нужно снять крышку, а потом замерить зазор от кромки стенки камеры до ВЗ. Необходимые показатели указаны в руководстве по эксплуатации. Настройка выполняется с помощью регулировочного винта ПУ.

Устройство и основные неисправности карбюраторов

Карбюраторные двигатели внутреннего сгорания, которые еще не так давно были вершиной автомобилестроения, практически отошли в прошлое – их заменили инжекторные системы. Но как показывает статистика, карбюраторы по-прежнему распространены, вот только сузились области их применения. Хоть инжекторы и принято считать более совершенными, грамотному автолюбителю хотя бы ради интереса стоит немного узнать об устройстве карбюраторных системах. Если же он владеет автомобилем с карбюратором, данный материал наверняка окажется для него еще и очень полезным. Об устройстве, эксплуатации, обслуживании и неисправностях карбюраторов – в материале АвтоПро.

Достоинства и недостатки

Говоря об отличиях карбюраторных систем от инжекторных даже знающие люди часто сводят дискуссию к обсуждению достоинств и недостатков первых. Конечно, переход на инжекторы не был спонтанным – ему предшествовали серьезные изменения в машиностроении, так и требования потенциальных покупателей к личному транспорту. Давайте рассмотрим, чем карбюратор может похвастать, а что является его слабой стороной:

  • Достоинства: простота, дешевизна, низкие требования к октановому числу топлива, относительно неплохая динамика;
  • Недостатки: низкий КПД, чувствительность к низким, а также очень высоким температурам, высокий расход топлива, невозможность соответствовать экологическим стандартом Евро.

Кстати, последнее является одной из серьезнейших причин, по которым на карбюраторы смотрят с опаской в странах Запада – он не соответствует даже самым «щадящим» требованиям экологических стандартов. На мотоциклы его, впрочем, ставят, но и экологические требования к данному виду транспорта менее жесткие. Не в пользу агрегата говорит и низкий коэффициент полезного действия. Десятая его часть уходит только на работу топливной системы. Отчасти недостатки карбюраторов компенсируются их «всеядностью» и простотой в ремонте.

Принцип работы

Карбюратор можно назвать сердцем питающей системы двигателя. Он отвечает за «приготовление» топливно-воздушной смеси, которая будет подана в цилиндры двигателя. Если вкратце, то суть работы этого агрегата в том, чтобы создавать топливовоздушную смесь. Кроме того, в карбюраторе имеется диффузор, который отвечает за подачу топлива – двигатель не всасывает его сам, как считают многие автолюбители. Также карбюратор позволяет двигателю нормально работать при разных режимах. Среди них:

  • Холостой ход;
  • Средние обороты;
  • Высокая (максимальная) нагрузка;
  • Введение в работу при полном охлаждение, как, например, после продолжительного нахождения на морозе.

Как несложно догадаться, карбюратор по-разному обогащает топливо и подает его в разных количествах – определенный состав топливовоздушной смеси и определенное ее количество будет соответствовать определенному режиму работы двигателя. Нормальную работу силового агрегата поддерживают и смежные с ним системы, как-то система охлаждения, электросистема и т.п. Здесь особенно важно понимать, что карбюратор должен быть четко откалиброван, ведь иначе вся система не будет работать в полную меру своих возможностей.

А что внутри агрегата

Вообще, карбюратор часто делят на две части. Одна поплавковая, а вторая – смесительная. Это вполне логичное упрощение, однако неопытного автолюбителя оно может навести не на тот след. Давайте попробуем разобраться с устройством агрегата, рассматривая все ключевые элементы, входящие в его состав. Для начала перечислим их, а уже потом рассмотрим в подробностях:

  1. Поплавковая камера;
  2. Система холостого хода;
  3. Главная дозирующая система;
  4. Экономайзер;
  5. Эконостат;
  6. Смесительная камера;
  7. Ускорительный насос.

Одним из самых важных элементов принято считать поплавковую камеру. Она работает так: когда двигатель потребляет топлива, камера начинает опустошаться, причем по мере движения находящегося в ней поплавка вниз открывается игольчатый канал. В работу включается уже топливный насос – как только объем топлива в камере будет достаточным, поплавок спровоцирует закрытие канала. Кстати, если в систему добавить достаточно мощный электрический бензонасос, агрегат будет быстрее набирать обороты за счет сгорания больших объемов топливовоздушной смеси (камера будет попросту наполняться быстрее).

Система холостого хода берет на себя задачу правильного дозирования топлива при, как несложно догадаться, холостых оборотах. Все просто: на холостых главная дозирующая система бездействует, поскольку требуемые объемы топлива невелики, так что работать должна узкоспециализированная система. Эту систему также можно отрегулировать в сторону большего или меньшего обогащения смеси. Главная дозирующая система заслуживает отдельного упоминания. Изучая ее, можно представить, чем могли вдохновляться инженеры, разрабатывавшие инжекторные системы. Если по-простому, то главная дозирующая система отвечает за дозировку горючего в случаях, когда автомобиль едет на средней скорости. Вот из каких элементов она состоит:

  • Жиклеры. Это дозирующий элемент, выполненный в виде резьбовой пробки с одним четко откалиброванным отверстием;
  • Главный распределитель. Понять его назначение легко по одному лишь названию;
  • Диффузор. Место сужения воздушного канала, за счет которого увеличивается скорость потока атмосферного воздуха.

Экономайзер включен как в однокамерный, так и двухкамерный карбюратор. Он обеспечивает еще более сильное обогащение горючего. Незаменим в тех случаях, когда автомобиль нужно разогнать до 110 и более километров в час. Здесь стоит отметить, что существуют экономайзеры принудительного холостого хода (сокращенно ЭПХХ), призванные обеднять топливовоздушную смесь. Обычный экономайзер своему названию не соответствует – он обогащает смесь, открывая дополнительный канал для подачи топлива. Работает в тандеме с дроссельной заслонкой и может иметь механический или же пневматический привод.


Эконостат можно назвать одним из самых простых элементов карбюраторной системы. Он представляет собой трубку, которая поднимает уровень топлива по мере роста числа оборотов коленчатого вала. Эконостат обогащает смесь кислородом. Напоминаем, что правильный состав смеси отвечает не только за мощностные показатели мотора, но и за его экономичность. Эконостат позволяет сделать карбюраторный автомобиль намного более экономичным в плане расхода топлива.

Смесительная камера, одновременно являющаяся нижней частью карбюратора, является той второй «половинкой» агрегата, которую относят к важнейшим компонентам карбюратора. И неудивительно: как и поплавковая, смесительная камера берет на себя основные задачи агрегата. Это главный воздушный тракт, включающий топливодозирующие элементы, дроссельную заслонку и, по сути, диффузор. Как уже было указано выше, карбюраторы бывает одно- и двухкамерными. Речь идет именно о количестве смесительных камер и дроссельных заслонок. Заслонки в карбюраторах с парой смесительных камер могут открываться или одновременно, или последовательно (зависит от устройства конкретного двигателя).

Ускорительный насос обязательно входит в состав карбюраторов. Без него автомобиль мог бы заглохнуть и не отвечал бы требованию повышенной динамики. Данный элемент карбюраторной системы включается в момент открытия дроссельной заслонки – в систему резко попадает дополнительное топливо, столь необходимое, например, при резком увеличении нагрузки на мотор. Кстати, в переходных системах ускорительный насос также обеспечивает переход из одного режима работы карбюратора в другой.

Основные неисправности

Как уже стало ясно, карбюратор отвечает и за смешивание топлива с воздухом, и за его подачу. Несмотря на достаточное простое устройство, карбюраторы не так уж редко выходят из строя, а также нуждаются в довольно частом обслуживании. К счастью, в силу той же простоты агрегат довольно легко чистить, хотя в некоторых случаях его приходится разбирать. Основные неисправности карбюратора почти аналогичны таковым у инжекторов, разница кроется в причинах. А если говорить о следствиях, то они могут быть такими:

  • Провалы при подгазовке. К примеру, автомобиль не сразу набирает скорость при воздействии на педаль «газа»;
  • Раскачивание. По сути, это провалы, в которых можно проследить периодичность;
  • Рывки и подергивания. Их легко прочувствовать, оказавшись за рулем автомобиля с карбюраторной системой, которая нуждается в ремонте и обслуживании. От провалов они отличаются быстротечностью;
  • Сниженная интенсивность разгона. Здесь все понятно из названия.

Также стоит помнить, что на неисправность агрегата может указывать ряд неприятных вещей, которые и не нуждаются в представлении: затрудненный пуск двигателя и плохая работа «на холодную»; снижение или завышение холостых; серьезно завышенный расход топлива; невозможность запуска двигателя. Заметьте, что такие неисправности могут встречаться и при неравномерной компрессии в цилиндрах, прогорании клапанов, износе распределительного вала, смещении фаз газораспределения. В случае проблем лучше проводить полную диагностику у специалиста. Если проблема крылась в карбюраторе, то его неисправность может быть вызвана чем-то из следующего:

  • Неправильная работа электромагнитного клапана;
  • Неисправность ЭПХХ, блока управления;
  • Деформация уплотнительного кольца;
  • Засорение каналов и жиклеров;
  • Дефекты экономайзера;
  • Неверная регулировка поплавковой системы;
  • Выход ускорительного насоса из строя.

Работы по выявлению источника проблем будет много. В подавляющем большинстве случаев система нуждается в промывке и продувке – каналы и жиклеры придут в норме и двигатель сможет работать нормально. Сложнее решать проблему повышенного расхода топлива, так как она может быть вызвать сразу рядом неисправностей. Крайне важна правильная регулировка механизмов системы – они должны работать в тандеме друг с другом, правильно формировать горючую смесь, дозировать и подавать ее. Также не забывайте, что система должна быть в достаточной мере герметичной.

Обслуживания карбюратора

Хоть карбюраторы и практически вытеснены инжекторными системами, они по-прежнему и в строю и, что очень радует, являются весьма дружелюбными по отношению к автолюбителю элементами двигательной установки. Поработать с карбюратором может даже неопытный автолюбитель, хотя и ему стоит обзавестись руководствами по обслуживанию конкретно его модели автомобиля (или найти информацию в сети). Перечень материалов и инструментов для работы с различными карбюраторами практически всегда один:

  • Средство для чистки карбюраторов;
  • Резиновые перчатки;
  • Ветошь;
  • Баллончик со сжатым воздухом;
  • Щетка с не слишком жесткой щетиной;
  • Защитные очки;
  • Объемная емкость для деталей;
  • Инструменты для снятия карбюратора (зависит от модели).

Проведите демонтаж карбюратора в соответствие с руководством. В большинстве случаев достаточно оттянуть возвратную пружину, отвести тяги, шланги, патрубки, ослабить хомуты, после чего открутить гайки. Мы все же советуем обратиться к руководствам, найти соответствующую информацию на форумах или даже видео-руководства – доступ к Всемирной паутине здесь будет очень кстати. После того как карбюратор снят, разберите его, поместите все детали в емкость, залейте в нее чистящее средство и оставьте так на несколько минут. После, продолжайте чистку уже с помощью щетки и баллончика с воздухом. Щетки с металлической щетиной для этой работы не подойдут – нужно взять обычную зубную щетку. Будьте особенно осторожны с жиклерами! Их лучше хорошенько продуть, а если проблему загрязнения это не решило, то крайне деликатно прочистить зубочисткой. При необходимости замените прокладки. В магазинах можно найти относительно недорогие ремкомплекты карбюраторов, куда входит все необходимое для ремонта. Если подвижные детали агрегата не повреждены, его можно будет быстро вернуть в строй. Не забывайте также о том, что после разборки, чистка, сборки и установки карбюратора его наверняка придется перенастроить.

Отдельно стоит рассказать об очистителях карбюратора. Волшебное средство, если так подумать – достаточно побрызгать спреем внутрь агрегата, и он очистятся от загрязнений. На самом деле очистители рекомендовано применять каждые 5-7 тысяч километров пробега. Если карбюратор не чистили долгое время, одного лишь спрея будет мало. Агрегат придется разбирать, а детали отмачивать в очистителе, после чего тереть щеткой. Категорически запрещено применение столь популярного WD-40, а также других очистных средств, в составе которых есть масло.

Подбор нового карбюратора

Несмотря на то, что карбюраторные системы являются крайне живучими, иногда они нуждаются не столько в капитальном ремонте, сколько в практически полной замене. К примеру, при полном закоксовывании воздушных и топливных каналов, при искривлении соединений и появлении серьезных механических повреждений карбюратора он нуждается в полной замене. Что здорово, не обязательно менять карбюратор на точно такой же – сегодня некоторые фирмы производят более экономичные, мощные и тихие аналоги. Однако при выборе нового агрегата нужно обращать внимание на:

  • Диффузор. При правильном подборе отдавать предпочтение стоит диффузорам, диаметр которых составляет не более чем 0,8 от диаметра смесительной камеры;
  • Главный топливный жиклер. Жиклер подходящей пропускной способности можно определить экспериментально, однако мы советуем для начала проконсультироваться со специалистом;
  • Воздушный жиклер. Аналогично;
  • Диаметр дросселя. Диапазон диаметров зависит от мощности отдельных цилиндров двигателя.

Также стоит уделить особое внимание подбору подходящего ускорительного насоса. Не забывайте и о том, что при выборе карбюратора стоит узнать как можно больше о фирме-производителе. Вот наиболее известные и надежные производители и поставщики:

Автолюбители также могут найти в продаже карбюраторы от различных малоизвестных фирм, заводы которых расположены в Китае, Турции, Таиланде и Индонезии. По качеству своей продукции они уступают вышеперечисленным фирмам, однако с учетом простоты и надежности карбюраторов, даже их товары могут приятно удивить. Одной из ключевых особенностей этих производителей также демократичная ценовая политика. Приятно радуют как ценой, так и ассортиментом чешские и польские фирмы. Как правило, в их каталогах можно найти не только сами агрегаты, но и все необходимое для их ремонта и обслуживания.

Вывод

Карбюратор – это тот агрегат, который встречается в автомобилях все реже. Многие считают его пережитком прошлого, но карбюраторы по-прежнему используются, к примеру, в газонокосилках и устанавливаются на мотоциклы. Пусть их золотая эпоха уже прошла, для многих автолюбителей они так и остаются символом надежности, простоты и неприхотливости. На самых современных автомобилях карбюраторы уже не найти, что во многом связано с низкой экологичностью, сложностью в эксплуатации при определенных погодных условиях, а также не слишком впечатляющим коэффициентом полезном действия данных агрегатов. К счастью, еще находящиеся в эксплуатации карбюраторные автомобили довольно легко обслуживать, ремонтировать, а в случае нужды и менять – богатство запчастей и новых агрегатов на рынке позволяет работать с карбюраторами и сейчас.

Карбюратор: устройство и принцип работы

Жидкое топливо в бензиновых двигателях не может обеспечить работу поршневой группы. Для создания крутящего момента на коленчатом валу необходима серия циклических микровзрывов в цилиндрах, в то время, как жидкий бензин просто горит. Когда топливо смешивается с воздухом (содержащим большое количество кислорода), создается смесь, способная образовывать вспышку, обладающую большой кинетической энергией.

Автомобильные карбюраторы – история развития

На заре двигателестроения применение газа стало невыгодным. Возникла необходимость создания устройства, которое могло с высокой степенью надежности и безопасности обеспечить формирование из бензина и воздуха качественной смеси. Принцип работы карбюратора первой серии основывался на испарении паров топлива. Камера нагревалась от внешнего источника тепла, бензиновые пары смешивались с воздухом за счет конвекции.

Характеристики такого карбюратора не позволяли развивать большую мощность, поэтому эта конструкция не прижилась в моторостроении. Для первых экземпляров автомобилей было достаточно того, что они просто ехали, в дальнейшем потребности клиентов росли, стал развиваться автоспорт. Возникла необходимость создать карбюратор, не имеющий ограничений по мощности мотора.

Следующее поколение, изобретенное немецкими инженерами Даймлером и Майбахом, работало по принципу распыления топлива. Размеры агрегата уменьшились (не было необходимости встраивать объемную испарительную камеру с емкостью для нагрева), а производительность, напротив, выросла в разы. Фактически был создан вакуумный карбюратор, конструкция которого используется в современных моделях. Главный технический прорыв – переход топлива в газообразное состояние происходил принудительно, что давало простор для экспериментов с производительностью. Разумеется, устройство карбюратора Даймлера – Майбаха было не похоже на современные конструкции высокопроизводительных вакуумных моделей со специальным ресивером и контролем за разряжением воздуха.

Однако принцип работы был таким же, как на любом современном образце.

Устройство карбюратора (типовое описание для всех модификаций)

На схеме изображено взаимное расположение основных узлов:

  1. Трубка подачи бензина от топливного насоса;
  2. Поплавок с игольчатым клапаном, перекрывающим топливопровод;
  3. Жиклер приема топлива из поплавковой камеры;
  4. Форсунка распылителя жидкого топлива;
  5. Камера смесителя, в которой образовывается топливная смесь;
  6. Воздушная заслонка, регулирующая объем входящего потока чистого воздуха из фильтра;
  7. Диффузор, формирующий направление потока воздуха;
  8. Заслонка дросселя, регулирующая подачу смеси во впускной тракт двигателя.

Как работает карбюратор?

Рассмотрим работу каждого узла.

  1. Бензин под небольшим давлением (не путать с высокопроизводительными форсунками инжекторных систем) поступает в поплавковую камеру. Важно поддерживать уровень топлива в карбюраторе, не превышающий расположение жиклера. Иначе в смесительной камере не будет происходить аэрозольное распыление. Для каждой модели установлен верхний предел заполнения камеры, за которым механически «следит» поплавок с игольчатым клапаном. Такая конструкция выбрана потому, что небольшим усилием можно удерживать давление входящего топливопровода. При достижении предела – клапан запирает входное отверстие, при падении уровня – заполняет камеру бензином;
  2. Недостаток конструкции (к сожалению, безальтернативной) – высокая зависимость от загрязнения. Игольчатый клапан может «зависнуть» в закрытом состоянии, и работа мотора будет остановлена;
  3. Далее бензин поступает в жиклер. Диаметр этого элемента строго регламентирован, не допускаются отклонения даже в сотые доли миллиметра. В противном случае, на входе в смесительную камеру не будет происходить аэрозольное распыление, и топливовоздушная смесь не сформируется, а на жидком бензине, как уже говорилось, ДВС не работает;
  4. Из диффузора выходит аэрозоль из мельчайших капелек бензина, готовая для смешивания с воздухом;
  5. Камера смесителя (фактически – корпус карбюратора) предназначена для формирования газообразной смеси, состоящей из паров бензина и кислорода, содержащегося в воздухе. Бензин, равно как и воздух, попадает в камеру не под напором, а наоборот, за счет разряжения. При движении цилиндра вниз, возникает разница в давлении, своеобразный вакуум. За счет специально рассчитанной формы корпуса, потоки топлива и воздуха смешиваются равномерно, образуя качественную смесь;
  6. Заслонки (дроссельная и воздушная) управляемые педалью газа, дозируют интенсивность потока воздуха и скорость всасывания топлива из жиклера. Мотор работает интенсивнее, скорость вращения коленвала меняется вместе с мощностью и крутящим моментом.

Все системы карбюратора должны работать слаженно: если один из каналов (жиклеров) будет засорен, или неверно настроить положение заслонок, формирование смеси будет нарушено. Возрастет расход бензина, потеряется мощность, силовой агрегат будет работать неустойчиво, поэтому все узлы должны быть чистыми, их размер соответствовать заводским расчетам, произведена настройка регулировочных параметров. На карбюраторе есть ряд подстроечных винтов, правильные технические характеристики устанавливаются с их помощью. На иллюстрации показан пример карбюратора «Озон».

Хорошо настроенный карбюратор «выжимает» из мотора максимум возможностей при наименьших затратах на топливо. Разные модели карбюраторов могут иметь свои способы регулировки, но общий принцип единый.

У каждого карбюратора есть инструкция по выставлению параметров. Регулировка может производиться самостоятельно, или на профильном сервисе. При смене условий эксплуатации (количество кислорода в воздухе, регулярная нагрузка на автомобиль, включение кондиционера в летний период и пр.), следует произвести повторную настройку.

Чем отличаются карбюратор классической конструкции и устройство с электронным управлением?

Выше по тексту были описаны принципы работы механического карбюратора. Все настройки устанавливаются с помощью винтов, и не могут быть изменены динамически, в ходе работы. Схема карбюратора постоянно совершенствуется, и в новых моделях (некоторые выпускаются по сей день) достаточно много электроники. Например, электромагнитным клапаном оснащены практически все механические модели.

На этом устройстве остановимся подробнее:

Дело в том, что при полностью отпущенной педали газа, дроссельная заслонка перекрыта, и мотор по идее должен заглохнуть. Для работы ДВС без нагрузки (просто чтобы не заводить его каждый раз после остановки), внедрена система холостого хода. С ее помощью, даже при перекрытых заслонках, в корпус поступает минимальный объем бензина и воздуха. Формируемой топливной смеси достаточно для поддержания работоспособности силового агрегата без нагрузки на коленвал.

Этот параметр требует точной регулировки: если обороты холостого хода завышены, вырастет расход бензина, а если занижены – мотор будет глохнуть при остановках. При изменении условий работы (температура, наличие климатической установки с кондиционером, дополнительное оборудование, дающее нагрузку на генератор), режим холостого хода меняется, поэтому был установлен клапан холостого хода (электрический), который управляет процессом линейно, в зависимости от нагрузки.

Никакой программы управления нет, в клапан заходит лишь провод питания. В зависимости от некоторых условий работы, положение клапана меняется.

Это далеко не все электронные системы, которые могут быть внедрены в механику процесса. Например, все регулировки заводятся на блок управления, типа ЭБУ для инжекторных моторов. Такой микрокомпьютер постоянно отслеживает параметры нагрузки на силовой агрегат, и в реальном времени может менять настройки карбюратора. Задавая себе вопрос: «какой карбюратор лучше поставить?», можно рассматривать внедрение в машину современной конструкции. В отличие от карбюраторов традиционного исполнения, электронные системы не нуждаются в периодической настройке, но имеют более высокую стоимость, и сложнее в обслуживании и ремонте. Для обеспечения электроники исходными данными, на двигатель устанавливаются различные датчики, которые следят за параметрами мотора. На основе получаемой информации, исполнительные механизмы карбюратора приводятся в действие.

Виды карбюраторов по производителям – какой выбрать?

У всех на слуху различие т.н. китайской продукции, и карбюраторов именитых брендов (в список которых входят и ДААЗ, и Солекс, и Озон…). На самом деле, это не более, чем предрассудки. Изделие, выпущенное на заводе, с соблюдением технологии, имеющее сертификат качества, будет хорошо работать вне зависимости от географии производства. Низким качеством отличаются лишь так называемые товары «no-name», собранные крестьянами из Поднебесной буквально напильником на коленке, поэтому при подборе нового карбюратора, прежде всего ориентируйтесь на известность производителя и наличие сопроводительной документации. Разумеется, и гарантийные обязательства должны быть обеспечены сервисными центрами в пределах доступности. То есть, если вы живете в Калининграде, а ближайший сервисный центр производителя в Димитровграде – есть смысл подыскать другой экземпляр.

Итог

Не следует бояться этого на первый взгляд сложного устройства. Схема работы простая и надежная, залог нормального функционирования – чистота всех внутренних элементов и правильная настройка.

 

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

что это такое, как работает, из чего состоит и как устроен, для чего он нужен, описание составляющих (жиклер, диффузор, экономайзер и другие)

Современные модели транспортных средств оснащаются как карбюраторными, так и инжекторными двигателями. В отличие от инжекторов карбюраторы, появившиеся значительно раньше, за годы своего существования претерпели различные изменения и доработки, обретя неоспоримые достоинства. Несмотря на довольно сложную конструкцию карбюраторные моторы являются одними из самых простых в обслуживании.

Разработка и производство

В истории автомобилестроения кабюратор был сконструирован и собран в 1895 году техником-самоучкой немецкого происхождения Вильгельмом Мэйбахом. Карбюраторные двигатели, как и сами карбюраторы, за прошедшие годы не раз изменялись, однако принцип их работы сохранился неизменным. Технология испарения топлива, использовавшаяся в первых версиях карбюраторов для образования топливно-воздушной смеси, в современных моделях была заменена на технологию распыления горючего, что стало основным отличием и преимуществом данного узла автомобиля.

Карбюраторы новой конструкции начали производиться массово в 1925 году всемирно известным концерном Bosch. Надежность и безопасность транспортных средств удалось повысить за счёт внесения в конструкцию карбюраторов изменений, связанных с интеграцией топливного насоса и системы впрыска топлива. Конструктивные изменения карбюратора позволили приступить к созданию инновационных силовых агрегатов, работающих на дизельном топливе. Спустя десять лет с конвейера завода Mercedes сошёл первый автомобиль, оснащённый дизельным двигателем.

Налаженный выпуск инжекторных двигателей начал требовать повышения мощности бензиновых моторов. Достичь этого удалось за счёт внедрения впускного коллектора, что спровоцировало начало производства в середине 40-х годов двигателей с системой непосредственного впрыска топлива и карбюратором большей мощности.

Концерн Bosch в 1965 году выпустил на автомобильный рынок новую версию карбюратора с системой распределённого впрыска топлива. Конструкция карбюратора была значительно изменена и обзавелась электронасосом, который заменил ТНВД, что в результате позволило снизить стоимость и габариты всего узла.

Первый карбюратор с системой распределённого впрыска топлива был выпущен компанией Bosch

Автоконцерн Mitsubishi Motors в 1994 году внедрил в карбюраторные двигатели систему непосредственного впрыска топлива. Подобное конструктивное решение имело свои преимущества: экономия топлива вкупе с достижением максимального крутящего момента.

Что такое карбюратор

ДВС автомобиля работает на топливно-воздушной смеси, образование которой осуществляется в карбюраторе — одном из наиболее важных узлов топливной системы транспортного средства. Смесь представляет собой смешение горючего и воздуха в строго определённых пропорциях.

На сегодняшний день карбюраторные двигатели считаются одними из самых распространённых. На заре автомобилестроения использовались барботажные карбюраторные моторы, которые со временем были заменены более производительными и совершенными с технической точки зрения мембранно-игольчатыми и поплавковыми аналогами.

Мембраны карбюратора мембранно-игольчатого типа разделяют камеры и объединятся штоком, один конец которого выполнен в форме иглы. Последняя, двигаясь вверх-вниз во время работы карбюратора, открывает и закрывает клапан, подающий в топливную систему горючее. Узлы такой конструкции считаются самыми простыми и устанавливаются в основном в грузовые автомобили и различную технику.

Принцип работы разных модификаций поплавкового карбюратора одинаков. Конструкция узла автомобиля очень проста: поплавок и поплавковая камера, в которой и формируется топливно-воздушная смесь. Карбюраторы такого типа отличаются неплохой тягой, динамичностью и способны поддерживать бесперебойную работу мотора авто, благодаря чему их чаще всего используют в автомобилестроении.

Схема строения простейшей модели автомобильного карбюратора

Моновпрыск и карбюраторная система: отличия и сравнительный анализ

Моновпрыск — разновидность электронно контролируемой системы впрыска горючего в ДВС. В подобных системах объединены преимущества инжекторов и карбюраторов, поскольку они являются своеобразным промежуточным звеном между ними.

Моновпрыск первоначально использовался в авиастроительстве. Особенности такого узла позволяли поддерживать постоянный приток горючего в двигатель самолётов во время полётов. Моновпрыск, по сути, является модифицированной версией классической карбюраторной системы за одним исключением — управляется она компьютеризированным электронным блоком, контролирующим поступление бензина и работу топливонасоса и форсунок. Преимуществом моновпрыска являются его компактные габариты и сохранение неизменными основных функций карбюратора.

Моновпрыск, в отличие от карбюраторов, обладает более компактными размерами

Система моновпрыска способна поддерживать в двигателе на регулярной основе минимальное давление в 1 бар, которого достаточно для обеспечения бесперебойной работы силового агрегата. Проще говоря транспортные средства, оснащённые подобной системой, во время резкого торможения или обгона работают без перебоев, в то время как электронные системы зачастую не способны поддерживать стабильную работу двигателя внутреннего сгорания в подобных условиях. Отсутствие провалов подачи топлива гарантирует также высокую мощность мотора.

Несмотря на то, что система моновпрыска обладает определёнными преимуществами перед карбюраторами, именно последние на сегодняшний день являются наиболее экономичными механизмами, поскольку во время их работы впрыск топлива происходит по всей камере, благодаря чему используется весь поступающий объем. Именно благодаря этой особенности в холодное время года проще завести автомобиль с карбюраторным двигателем.

Жиклёр карбюратора

Современные карбюраторы состоят из множества деталей, одной из которых являются жиклёры — маленькие детали с отверстиями, расположенными в определённом порядке. Жиклёры делятся на два основных типа: воздушные и топливные. Существуют и другие виды жиклёров — компенсационные, главные, холостого хода и прочие.

Установленная на заводе производительность двигателя достигается за счёт пропускной способности жиклёра. Работоспособность данной детали определяется калибровкой отверстий, в связи с чем жиклёр регулярно очищается от нагара и грязи, причём процедура выполняется очень осторожно и аккуратно, дабы размер отверстий не был изменён.

Жиклёры карбюратора -небольшие перфорированные детали, отвечающие за производительность двигателя

Экономайзеры и их разновидности

С целью экономии горючего карбюраторы оснащаются экономайзерами, классифицирующимися на два основных типа:

  1. ЭПХХ — экономайзер принудительного холостого хода. Более широко известен под названием электромагнитного клапана.
  2. ЭМР — экономайзер мощностных режимов.

Электромагнитный клапан, или ЭПХХ, устанавливается рядом с воздушным фильтром и состоит из жиклёра холостого хода, пластикового привода и соленоида. Предназначается экономайзер для перекрытия подачи топлива в смесительную камеру. Прекращение подачи горючего через каналы холостого хода возможно при соблюдении нескольких условий: коленвал должен вращаться со скоростью боле 2 тысяч оборотов в минуту, педаль газа должна быть свободна. Активацией и дезактивацией ЭПХХ занимается блок управления, к которому подключаются микровыключатель и система зажигания. Экономайзер позволяет снизить потребление двигателем горючего во время движения автомобиля по горной местности. На подобных трассах осуществляется торможение двигателем, во время которого ЭПХХ прекращает подачу топлива по системе холостого хода. Подобное решение повышает управляемость машины и безопасность движения.

Электромагнитный клапа , или ЭПХХ, располагается пд воздушным фильтром карбюратора

Состоящий из клапана и расположенной под пружиной мембраны экономайзер мощностных режимов размещается под ЭПХХ. Он отвечает за обогащение топливной смеси. Принцип его работы заключается в подаче топлива к распылителям смесительной камеры и увеличении крутящего момента мотора. Клапан ЭМР прикрыт шариком, упираемым с одной стороны пружиной. Под воздействием давления, нарастающего при работающем двигателе ниже заслонки дросселя, пружина клапан смещает шарик, который закрывает топливный канал, прекращая тем самым ток горючего. Топливо будет поступать в смесительную камеру только при условии снижения давления и газования педалью акселератора.

Экономайзер мощностных режимов, отвечающий за обогащение топливной смеси

Прокладка карбюратора

Основное назначение прокладок, используемых при установке карбюраторов — уплотнение соединений между впускным коллектором и самим карбюратором. Нередко для обеспечения более надёжного и герметичного соединения используют сразу несколько прокладок: они предотвращают подсос воздуха в двигатель со стороны.

При монтаже карбюраторов используются три основных вида прокладок:

  • Теплоизоляционная. Предотвращает перегрев карбюратора, позволяя понизить его температуру;
  • Армированная. Прочность соединений между теплоизоляционной частью карбюратора и его фланцем увеличивается за счёт таких прокладок;
  • Паронитовая. Высокая температура, излучаемая впускным коллектором, изолируется паронитовой прокладкой.

Самостоятельное изготовление прокладок для карбюратора подразумевает использование паронита либо тонкого металлического листа. Новая прокладка изготавливается аналогично той, которая была установлена на заводе-изготовителе.

Специалисты не советуют устанавливать паронитовые прокладки под карбюраторы, поскольку при попадании на них бензина паронит сильно разбухает и начинает сыпаться, что в итоге может привести к попаданию в карбюратор частиц материала и засорению жиклёров.

Для уплотнения стыков между карбюратором и впускным коллектором используются специальные прокладки

Диффузор

Выполненная в виде суженой горловины металлическая часть карбюратора — диффузор — отвечает за подачу воздуха в двигатель машины для образования топливно-воздушной смеси. Топливо в диффузор поступает из поплавковой камеры карбюратора под воздействием высокого давления. Поток воздуха, проходящий через горловину диффузора, смешивается с горючим и под давлением подаётся во впускной коллектор силового агрегата.

За подачу топливно-воздушной смеси в двигатель автомобиля отвечает диффузор карбюратора

ЭПХХ карбюратора автомобиля

Карбюратор транспортного средства оснащается электронным блоком управления, активирующим ЭМК, который контролирует расход топлива при включении режима принудительного холостого хода. Переключение на данный режим работы осуществляется при торможении двигателем. Давление, нарастающее под дроссельной заслонкой, подаёт по каналам топливо в силовой агрегат.

При спуске машины с возвышенности эффективность режима торможения двигателем снижается в разы. В связи с этим повышается потребление бензина, что провоцирует активацию ЭПХХ, который автоматически прекращает подачу топлива.

Основная функция экономайзера принудительного холостого хода — экономия топлива

ЭПХХ срабатывает при получении от датчика сигнала о закрытой заслонке и увеличении количества оборотов коленчатого вала. В рабочем режиме электромагнитный клапан пребывает до тех пор, пока:

  • При опущенной заслонке дросселя не понизится скорость движения;
  • Не будет выжата педаль газа и набрана скорость движения, что приведёт к отключению экономайзера;
  • Не включится стандартный режим холостого хода и не отключится передача.

Функционирование экономайзера позволяет повысить эффективность режима торможения мотором, обогатить топливную смесь и сэкономить бензин.

Дозирующая система

ГДС карбюратора поддерживает работу ДВС автомобиля во всех режимах за исключением режима с низкой частотой вращения коленвала. Основная задача данной системы — подача порции бензина для образования горючей смеси. По мере открытия заслонки дросселя обогащение топливной смеси происходит очень быстро, поскольку бензин поступает в большем объёме, чем воздух через диффузор. Компенсировать состав смеси горючего можно за счёт предотвращения её обогащения, что делает дозирующая система карбюратора.

Дозаторы

В камеру сгорания мотора бензин подаётся порциями определённого объёма из дозатора карбюратора.

Дозатор определяет количество топлива, необходимое для подачи в двигатель автомобиля

Ускорительный насос

Эта механическая система принудительно подаёт бензин в карбюратор при открытых заслонках дросселя. Работоспособность данного узла карбюратора не зависит от потока воздуха, подаваемого диффузором. Обеднение топливно-воздушной смеси происходит при резком разгоне транспортного средства ввиду поступления недостаточного объёма бензина к цилиндрам ДВС. Встраивание ускорительного насоса компенсирует подобные воздействия. Концентрация воздуха и бензина в топливно-воздушной смеси поддерживается насосом, благодаря чему сокращается время разгона и улучшаются динамические характеристики авто.

Ускорительный насос — система, подающая топливо в карбюраторе

Электромагнитный клапан

Неотъемлемой частью карбюраторов современных автомобилей является экономайзер. Такие устройства классифицируются на два основных типа, одним из которых является ЭПХХ, или электромагнитный клапан. Разработано такое устройство было в 80-х годах прошлого века с целью снижения потребления горючего карбюраторными двигателями, значительно уступавшими в этом аспекте инжекторным аналогам.

Внедрение электронных элементов стало единственным способом понижения расхода бензина. Разработка ЭМК и некоторых других устройств позволила сэкономить горючее и повысить эффективность карбюратора.

Стабильность холостого хода двигателя обеспечивается ЭПХХ, который приводится в действие электрическим током. Осуществляется это посредством перекрытия каналов, по которым поступает бензин, в режимах работы мотора, которые не требуют потребления топлива. В таких режимах функционируют только клапана силового агрегата и жиклёры, в то время как другие узлы и детали бездействуют.

Экономайзер принудительного холостого хода карбюратора управляется при помощи специального электронного блока

Электромагнитный клапан позволяет:

  • При функционировании силового агрегата в режиме принудительного холостого хода сэкономить топливо;
  • Поддерживать стабильный холостой ход автомобиля;
  • Усиление подачи горючего позволяет нормализовать прогрев двигателя авто при запуске;
  • Снизить износ дроссельной заслонки и других узлов двигателя;
  • Продлить срок эксплуатации силового агрегата за счёт оптимизации его работы.

Завихритель

Принцип работы карбюратора строится на вихревом смешении воздушного потока и горючего при помощи завихрителя — небольшой выполненной в форме пластинки детали, оснащённой каналами. Завихритель не является частью внутренней конструкции карбюратора, поскольку устанавливается под него.

Создаваемые деталью воздушные завихрения создают мелкие капли горючего, благодаря чему создаётся топливно-воздушная смесь. Специалисты рекомендуют оснащать подобным устройством все карбюраторы, поскольку оно уменьшает расход горючего.

Завихритель смешивает воздушный поток и горючее, создавая топливно-воздушную смесь

Игольчатый клапан

Несмотря на небольшие габариты, игольчатый клапан является одной из основных деталей карбюратора. Работоспособность и исправность клапана влияют на функционирование карбюратора, уровень расхода горючего и качество образуемой топливной смеси.

Конструкция клапана проста и состоит из иглы и цилиндрического корпуса. Данный узел очень хрупкий и деликатный, часто выходит из строя. Все его неполадки разделяют на две группы:

  • Недостаточная герметизация корпуса;
  • «Залипание» иглы.

Причиной первой неисправности становится сильный износ седла клапана и иглы, из-за чего количество поступающего в диффузор топлива ничем не ограничивается, что приводит к повышению расхода бензина, не оказывая при этом никакого влияния на работоспособность силового агрегата автомобиля.Полностью противоположная ситуация с «залипанием» иглы, которое сопровождается недостатком горючего для исправного функционирования мотора.

Одна из основных деталей карбюратора, отвечающая за его нормальное функционирование

Обогащённая топливно-воздушная смесь

Состав топливной смеси зависит от концентрации воздуха и бензина, которые поступают к цилиндрам ДВС. Интенсивное поступление воздуха и, соответственно, насыщение им жидкого топлива происходит при повышении скорости транспортного средства. В результате концентрация и пропорции воздуха и топлива в составе топливно-воздушной смеси изменяются, что приводит к формированию бедной или богатой смеси.

Подготовка топливной смеси осуществляется в карбюраторе. Если в смеси концентрация горючего выше, чем концентрация воздуха, то её называют богатой или высококалорийной. Скорость сгорания такой смеси очень низкая, из-за чего определённый её объем догорает в глушителе машины.

Нормальной топливная смесь считается при условии, что она состоит из 14 кг воздуха и 1 кг жидкого горючего. При превышении части воздуха топливную смесь считают бедной, части бензина — богатой.

Карбюратор — неотъемлемая часть топливной системы автомобиля, каждая деталь которого заточена под выполнение конкретных функций. Исправная работа всей конструкции обеспечивает нормальное функционирование двигателя транспортного средства и безопасность движения.

Элементарный карбюратор | Устройство автомобиля

 

Что называется карбюрацией и карбюратором?

Процесс приготовления горючей смеси вне цилиндров двигателя называется карбюрацией, а прибор, в котором она приготавливается – карбюратором.

Как устроен и работает элементарный карбюратор?

Элементарный (простейший) карбюратор (рис.48) состоит из поплавковой камеры 1 с поплавком 2 и запорной иглой 3, смесительной камеры 6 с диффузором 7 и дроссельной заслонкой 8. Поплавковая и смесительная камеры сообщаются между собой каналом, в котором установлен жиклер 5 с распылителем 4. Распылитель выведен в горловину диффузора так, что топливо будет находиться в нем ниже верхнего края на 2-3 мм, что предотвращает его вытекание при неработающем двигателе. Поплавковая камера каналом А сообщается с атмосферой. Бензин из топливного бака поступает в поплавковую камеру через открытую запорную иглу, опирающуюся на рычажок пустотелого поплавка. Когда бензин достигнет заданного уровня, поплавок всплывает и своим рычажком воздействует на запорную иглу, прекращая поступление бензина в поплавковую камеру. Смесительная камера верхней частью сообщается с атмосферой, нижней – с цилиндром 10 через клапан 9.

Рис.48. Элементарный карбюратор.

Работает карбюратор так. При вращении коленчатого вала поршень 11 движется от ВМТ к НМТ, над ним создается разрежение, которое через открытый впускной клапан 9 и дроссельную заслонку 8 передается в смесительную камеру. Следовательно, в смесительной камере давление ниже атмосферного (0,075-0,090 МПа), а в поплавковой – атмосферное давление (0,1 МПа). Из-за разности давлений бензин начинает вытекать из распылителя в мелко распыленном виде в смесительную камеру, туда же устремляется и воздух. В суженной части диффузора скорость движения воздуха увеличивается, он подхватывает распыленный бензин. При этом бензин испаряется и, смешавшись с воздухом, образует горючую смесь, которая через открытую дроссельную заслонку и впускной клапан поступает в цилиндр, наполняя его. Совершается такт впуска.

С увеличением открытия дроссельной заслонки увеличивается количество истекаемого бензина, то есть скорость его истечения обгоняет истечение воздуха. Горючая смесь обогащается. А при пуске двигателя бензин в силу своей инертности отстает от скорости поступления воздуха. Горючая смесь обедняется. Кроме того, такой карбюратор не обеспечивает работу двигателя на холостом ходу.

На графике (рис. 49) показаны кривые, характеризующие работу элементарного карбюратора (кривая 1) и требуемого состава горючей смеси (кривая 2) в зависимости от режима работы двигателя. Из графика видно, что элементарный карбюратор нуждается в ряде дополнительных устройств для обогащения горючей смеси на всех режимах работы двигателя. Карбюраторы, устанавливаемые на современных двигателях, имеют такие устройства.

Рис.49. Характеристики элементарного (1) и идеального (2) карбюратора.

Как подразделяются карбюраторы в зависимости от направления потока горючей смеси?

Карбюраторы в зависимости от направления потока горючей смеси подразделяются на карбюраторы о восходящим, падающим и горизонтальным потоками. Наибольшее распространение получили карбюраторы с падающим потоком, так как у них лучшие условия смесеобразования и наполнения цилиндров.

Как устроено и работает пусковое устройство карбюратора?

Пусковое устройство карбюратора (рис.50) представляет собой воздушную заслонку 2 с автоматическим клапаном 3, установленную в верхней части карбюратора, управляют которой с места водителя. Во время пуска холодного двигателя заслонку прикрывают или закрывают полностью, что и вызывает обогащение горючей смеси. При полностью закрытой заслонке воздух проходит только через автоматический клапан 3, нагруженный слабой пружиной 4, что предотвращает переобогащение горючей смеси. Бензин проходит через жиклер 6, выбрызгивается через распылитель 1, смешивается с воздухом и образует горючую смесь. Часть бензина проходит через жиклер холостого хода 5 и в канале смешивается с воздухом, образует горючую смесь, которая через отверстие 7 поступает в цилиндры.

Рис.50. Пусковое устройство карбюратора.

Как устроена и работает система холостого хода карбюратора?

Система холостого хода (рис.51) состоит из топливного 7 и воздушного 6 жиклеров, канала 5, в котором бензин смешивается с воздухом и образуется эмульсия, отверстия 3 для плавного перехода работы двигателя с малой частоты вращения коленчатого вала на холостом ходу на среднюю. При закрытой дроссельной заслонке через это отверстие подсасывается воздух, предотвращая переобогащение горючей смеси. Через выходное отверстие 1 горючая смесь поступает в цилиндры. Сечение этого отверстия можно изменять регулировочным винтом 2, регулируя работу двигателя с малой частотой вращения коленчатого вала на холостом ходу.

Рис. 51.Система холостого хода карбюратора.

Работает система холостого хода так. При закрытой дроссельной заслонке бензин из распылителя 4 истекать не будет, так как над заслонкой отсутствует разрежение. За счет разрежения под дроссельной заслонкой бензин через топливный жиклер 7 поступает в канал 5, где, смешиваясь с воздухом, проходящим через воздушный жиклер 6, образует эмульсию, которая опускается вниз. Через отверстие 3 к эмульсии подмешивается воздух, образуя горючую смесь, которая и поступает в цилиндры двигателя. При открывании дроссельной заслонки эмульсия будет выходить одновременно из обоих отверстий, что способствует плавному переходу от малой частоты вращения коленчатого вала на холостом ходу к средней.

Как устроена и работает главная дозирующая система карбюратора?

Главная дозирующая система карбюратора обеспечивает работу двигателя на средних нагрузках, когда от него не требуется получения полной мощности и карбюратор должен приготавливать обедненную (экономичную) горючую смесь. В современных карбюраторах торможение истечения бензина осуществляется путем пневматического торможения (рис.52). Бензин из поплавковой камеры поступает в эмульсионный колодец 9 через главный топливный жиклер 10. В этот колодец опущена эмульсионная трубка 8 с отверстиями. В верхней части трубки установлен воздушный жиклер 7, через который в эмульсионный колодец поступает воздух. При работе двигателя с увеличением открытия дроссельной заслонки 1 в смесительной камере 2 и канале 5 увеличивается разрежение. Воздушная заслонка 6 полностью открыта. Из-за разности давлений бензин из поплавковой камеры через жиклер 10 поступает в эмульсионный колодец 9 и, смешиваясь с воздухом, проходящим через жиклер 7 и отверстия в эмульсионной трубке 8, образует эмульсию, которая по каналу 5 выходит в горловину малого диффузора 4, где смешивается с воздухом и образует горючую смесь. Проходя в горловину большого диффузора 3, скорость потока смеси несколько уменьшается, а давление – повышается, что способствует улучшению наполнения цилиндров. По мере увеличения открытия дроссельной заслонки и расхода бензина в эмульсионном колодце все большее количество отверстий в эмульсионной трубке сообщается с воздухом, тормозя истечение топлива, что и вызывает обеднение горючей смеси. Сечение топливного и воздушного жиклеров подбирают таким образом, чтобы карбюратор приготавливал обедненную смесь. По этой схеме работает карбюратор К-126.

Рис.52. Главная дозирующая система с эмульсионным колодцем.

Воздух с целью торможения истечения топлива можно подводить и непосредственно в канал распылителя (рис.53). При этом топливо, проходящее через жиклер 4, и воздух, проходящий через жиклер 3, смешиваются в канале, и образуется эмульсия. Через распылитель 2 она поступает в кольцевую щель 1 горловины малого диффузора, откуда захватывается воздухом, смешивается с ним, образует горючую смесь и поступает в цилиндры. В этом случае воздух также тормозит истечение топлива, предотвращая переобогащение горючей смеси. По этой схеме работает карбюратор К-88.

Рис.53. Главная дозирующая система с подводом воздуха непосредственно в канал распылителя.

Какое назначение экономайзера в карбюраторе, как он устроен и работает?

Экономайзер в карбюраторе служит для обогащения горючей смеси, когда дроссельная заслонка открывается на 85% и более с тем, чтобы двигатель развивал наибольшую мощность. На большинстве отечественных карбюраторов устанавливают экономайзеры с механическим приводом. Состоит он (рис.54) из клапана 4, нагруженного пружиной 5, стремящейся удерживать его в закрытом положении, штока 2, тяги 3, рычага 8, дроссельной заслонки 9, жиклера 6 экономайзера, главного топливного жиклера 7 с распылителем 1.

Рис.54. Экономайзер с механическим приводом.

Работает экономайзер так. При открытии дроссельной заслонки на 85 % и более шток опускается и воздействует на клапан. Он открывается, и бензин через жиклер экономайзера (помимо главного топливного жиклера) из поплавковой камеры проходит в распылитель и далее в смесительную камеру. Это вызывает обогащение горючей смеси до мощностной, и двигатель развивает наибольшую мощность. С уменьшением нагрузки, когда дроссельная заслонка прикрывается, шток отходит от клапана экономайзера и пружина закрывает клапан. Дополнительная подача топлива прекращается, горючая смесь обедняется (становится экономичной).

Какое назначение ускорительного насоса в карбюраторе?

Ускорительный насос подает порцию топлива в смесительную камеру карбюратора при резком открытии дроссельной заслонки с тем, чтобы предотвратить обеднение горючей смеси, так как в это время истечение топлива отстает от поступления воздуха в смесительную камеру карбюратора.

Как устроен и работает ускорительный насос?

Ускорительный насос (рис.55) состоит из колодца 1, в котором установлен поршень 8, жестко соединенный со штоком 2. На шток надета пружина 4. Шток планкой 3, тягой 6 и рычагом 7 соединен с дроссельной заслонкой 9. Колодец сообщается с поплавковой камерой через обратный шариковый клапан 5, а со смесительной камерой – через нагнетательный клапан 10 и жиклер-распылитель 11. Когда дроссельная заслонка закрыта, поршень находится в верхнем положении, и топливо через открытый шариковый клапан поступает в колодец, заполняя его подпоршневое пространство. Нагнетательный клапан в это время опущен вниз. При резком открытии дроссельной заслонки усилие через рычаг 7, тягу 6, планку 3 и пружину 4 передается на поршень 8, который, опускаясь, давит на топливо. Под давлением топлива шариковый обратный клапан закрывается, а нагнетательный 10 – открывается и топливо через жиклер-распылитель 11 подается воздухом в смесительную камеру, где, смешиваясь с воздухом, образует горючую смесь, которая поступает в цилиндры двигателя.

Рис.55. Ускорительный насос.

Если дроссельную заслонку удерживать в этом положении, то топливо ускорительным насосом подаваться не будет, но будет работать главная дозирующая система. Чтобы ускорительный насос подал очередную порцию топлива, необходимо отпустить педаль газа, дроссельная заслонка закроется, шариковый клапан опустится, и топливо заполнит подпоршневое пространство в колодце. Теперь при резком нажатии на педаль газа ускорительный насос подаст порцию топлива в смесительную камеру.

Для чего применяется балансировка карбюратора?

Балансировка карбюратора необходима для предотвращения обогащения горючей смеси в случае засорения воздушного фильтра и таким образом снижения расхода топлива. В несбалансированном карбюраторе поплавковая камера непосредственно сообщается с атмосферой. В таком карбюраторе в случае засорения воздушного фильтра в смесительной камере увеличивается разрежение, а в поплавковой остается неизменным, что ведет к увеличению истечения топлива из распылителя и к повышенному его расходу. В сбалансированном карбюраторе воздух в поплавковую и смесительную камеры поступает после воздушного фильтра, и его засорение не вызывает разности давлений в поплавковой и смесительной камерах. Следовательно, не будет и избыточного истечения топлива из распылителя. Для поступления воздуха в поплавковую камеру в сбалансированном карбюраторе в верхней части над воздушной заслонкой устанавливается заборная трубка или выполняется канал, сообщающий камеры. Карбюраторы современных автомобилей отечественного производства сбалансированы.

***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Система питания карбюраторных двигателей»

бензин, воздух, горючий, дроссельный, жиклер, заслонка, камера, карбюратор, смесь, топливо

Смотрите также:

Карбюратор мотоцикла.

Карбюратор мотоцикла одна из важнейших деталей двигателя и главная деталь системы питания, и от него зависит нормальная работа мотора. И вместе с правильно настроенной системой зажигания, только исправный и правильно настроенный карбюратор, обеспечит нормальную работу двигателя. Правильная настройка карбюратора очень важна, так как при неправильном соотношении количества воздуха к количеству топлива, двигатель нормально работать не будет, и возможен даже прогар поршней (при сильно обеднённой смеси). В этой статье мы рассмотрим устройство, принцип работы, основные неисправности мотоциклетного карбюратора и его настройку, что позволит новичкам самостоятельно добиться нормальной работы двигателя.

Вообще как я уже говорил выше, на работу двигателя влияет не только исправная и настроенная система питания, но и система зажигания, которая на большинстве отечественных мотоциклов несовершенна. И прежде всего, чем браться за настройку карбюратора, следует настроить, или улучшить штатную систему зажигания. Как её усовершенствовать на отечественных мотоциклах, читаем вот здесь, а так же вот тут.

Не смотря на то, что система впрыска появляется на большинстве свежих серийных мотоциклов, карбюраторы всё ещё устанавливают на многие мотоциклы, предназначенные для стран, в которых не такие жёсткие требования по экологии (в основном страны третьего мира). Так же по свету передвигается огромное количество более старых моделей мотоциклов, оснащённых карбюраторами, которые более надёжны чем система впрыска, и более ремонтопригодны.

Ведь на большинстве современных моторов, если полетит какая то радио-деталь в электронной системе впрыска топлива, то можно вызывать эвакуатор или механика электронщика, а в карбюраторе в принципе и ломаться то нечему, ну если только снять и почистить (удалить) попавшую соринку.

Вакуумный карбюратор для четырёхтактного двигателя мотоцикла.
1 — полость диффузора, 2 — резиновая мембрана, 3 — пружина дроссельного золотника, 4 — дроссельный золотник, 5 — игла, 6 — поворотная дроссельная заслонка, 7 трубка распылителя, 8 — главный жиклер, 9 — поплавок, 10 — игольчатый клапан.

К тому же современные вакуумные карбюраторы (см рисунок слева) нисколько не проигрывают в мощности мотора современным инжекторам, а только лишь по экологии и расходу топлива.

В этой статье я не буду затрагивать современные вакуумные карбюраторы, их ремонт и настройку, так как об этом я уже писал, и желающие могут почитать про их ремонт вот здесь, а про настройку (синхронизацию) вот тут.

А рассмотрим устройство и работу самого простого карбюратора, ведь чтобы новичкам понять основные действия при настройке любого карбюратора, нужно знать устройство и принцип работы самого простейшего прибора. Так как принцип работы у всех одинаков, ну только лишь отличается некоторыми улучшенными со временем деталями.

Но прежде чем рассматривать устройство карбюратора, я опишу к чему нужно стремиться при его настройке, чтобы получить в итоге НОРМАЛЬНУЮ рабочую смесь бензина с воздухом, и в итоге нормальное сгорание бензина на всех режимах, ну и соответственно нормальную работу двигателя.

Горючая смесь.

Процесс распыления бензина и смешивание его в определённой пропорции с воздухом, называется карбюрацией, ну а прибор, в котором происходит процесс смешивания, называется карбюратором. А горючая смесь, приготовленная в карбюраторе, попадая в цилиндр (или цилиндры) двигателя, смешивается с остаточными отработанными газами и образует рабочую смесь. И в зависимости от соотношения количества бензина и воздуха, рабочие смеси бывают:

  • Нормальная горючая смесь состоит из 1 килограмма бензина и 15 килограммов воздуха, который теоретически нужен для полного сгорания бензина.
  • Обеднённая горючая смесь, она содержит на 1 кг бензина от 15 до 17 кг воздуха.
  • Бедная горючая смесь содержит более 17 кг воздуха на 1 килограмм бензина.
  • Обогащённая горючая смесь имеет в своём составе от 13 до 15 кг воздуха на 1 кг бензина.
  • Богатая горючая смесь содержит на 1 кг бензина менее 13 кг воздуха.

Но следует иметь в виду, что для работы мотора на разных режимах, нужно иметь различный состав горючей смеси, потому что:

При пуске холодного мотора горючая смесь которую готовит карбюратор в этот момент, должна быть богатой. Ведь к моменту воспламенения какая то часть паров бензина конденсируется на холодных стенках впускного канала, камеры сгорания и цилиндров, и состав богатой рабочей смеси оказывается наилучшим для воспламенения от искры свечи зажигания.

На холостом ходу для нормальной устойчивой работы двигателя на малых оборотах, горючая смесь должна быть обогащённой. Такая смесь нужна потому, что во первых, дроссельная заслонка карбюратора прикрыта на холостом ходу, и в цилиндры мотора поступает мало горючей смеси, ну а во вторых, то что в цилиндрах при такой работе мотора имеется большое количество остаточных отработанных газов. И образующаяся в таких условиях рабочая смесь, горит медленнее, а для ускорения сгорания её нужно обогатить.

Следует учесть ещё вот что: при эксплуатации мотоцикла (или автомобиля), в зависимости от разных дорожных условий (ну и атмосферных тоже), любой двигатель работает на разных часто меняющихся режимах и при этом с разной нагрузкой. Причём нагрузка у любого карбюраторного мотора характеризуется степенью открытия дроссельных заслонок (или заслонки), то есть чем больше открыты заслонки, тем при одной и той же частоте вращения коленвала двигателя больше нагрузка.

Причём при одном и том же положении дроссельной заслонки (или заслонок) частота вращения коленвала может как увеличиваться (движение с горы под уклон), так и уменьшаться (например преодоление крутого подъёма).

При средней нагрузке, когда от мотора не требуется полной мощности, для обеспечения его экономичной работы, горючая смесь должна быть обеднённой.

При полной нагрузке, когда мотор должен развивать максимальный крутящий момент, горючая смесь должна быть несколько обогащённой. Такая смесь обладает наибольшей скоростью сгорания и обеспечивает выработку двигателем максимальной мощности.

При резком увеличении нагрузки, например при разгоне мотоцикла (или машины), горючая смесь должна кратковременно обогащаться (на некоторых более современных карбюраторах для этой цели установлен ускорительный насос).

Устройство карбюратора.

Устройство простейших карбюраторов показано на рисунке 3 (для двухтактного мотора) и на рисунке 2 (для четырёхтактного мотора), а устройство вакуумного карбюратора показано выше, на рисунке 1. Естественно устройство всех карбюраторов невозможно описать в одной статье, да это и не нужно, так как принцип работы почти у всех приборов одинаковый.

Простейший карбюратор (см. рисунок 2) состоит из корпуса, поплавковой камеры 13 и смесительной камеры 11. В поплавковой камере располагается (обычно подвешен шарнирно на оси) поплавок 1 (или два поплавка объединённые тягой). Поплавок на более старых карбюраторах изготавливали из листовой латуни, а на более современных карбюраторах из бензостойкого пластика или вспененного полимера. Над поплавком расположен игольчатый клапан 2.

В смесительной камере располагается диффузор 7 — (см рисунок 2) с распылителем 5, дроссельная заслонка 8 и жиклер 12. На рисунке 3 диффузор указан цифрой 2, распылитель цифрой 4, дроссельная заслонка цифрой 1, а главный жиклер цифрой 6.

Жиклер (хорошо виден на рисунке 1) представляет собой пробку с наружной резьбой, внутри которого просверлено с большой точностью калиброванное отверстие, диаметр которого рассчитан на протекание определённого количества бензина зв еденицу времени.

При работе любого двигателя (см. рисунок 2), в тот момент, когда поршень движется от верхней мёртвой точки к нижней мёртвой точке и при этом впускной клапан 9 открыт (такт впуска), то в цилиндре двигателя, впускном канале 10 и в смесительной камере карбюратора создаётся разряжение. От действия разности давлений в поплавковой и смесительной камер карбюратора, из распылителя 5 начинает поступать бензин.

В этот момент через смесительную камеру карбюратора проходит поток воздуха, скорость которого с суженной части диффузора (у отверстия распылителя) получается наибольшая и может достигать от 50 до 150 метров в секунду! И капельки бензина, выходящие из распылителя и попадая в движущуюся с такой скоростью струю воздуха, размельчаются в виде дисперсного тумана (как в распылителе для покраски), испаряются и смешиваясь с воздухом образуют горючую смесь.

Такой способ смешивания бензина с воздухом и образования горючей смеси называется пульверизационным, так как действует по принципу пульверизатора, или как его ещё называют распылителя.

По мере расходования бензина из поплавковой камеры и падения его уровня, поплавок опускается, при этом опуская иглу 2 игольчатого клапана, которая открывает конусное отверстие и бензин из шланга (от бака) вновь начинает поступать и заполнять поплавковую камеру, то тех пор, пока поплавок из-за поднявшегося уровня бензина вновь не надавит на иглу 2, которая поднявшись выше перекроет отверстие до нового понижения уровня бензина.

Таким образом на автомате поддерживается постоянный нужный уровень бензина не только в поплавковой камере, но и в распылителе, в котором уровень бензина при неработающем моторе должен быть на 1 — 1,5 мм ниже верхней кромки распылителя.

По мере открытия дроссельной заслонки, за счёт большего наполнения цилиндра горючей смесью, возрастает скорость сгорания рабочей смеси и давление газов, и от этого растёт частота вращения коленвала двигателя. При этом разряжение в смесительной камере увеличивается ещё больше и скорость воздушного потока, проходящего через диффузор.

От этого соответственно растёт скорость истечения бензина из распылителя и его количество, так как ещё и игла в распылителе подымается выше, увеличивая проходное кольцевое отверстие в распылителе, и ещё увеличивается количество воздуха, проходящего через диффузор.

Но всё же количество бензина выходящего из распылителя нарастает быстрее количества воздуха, и от этого соотношение количества воздуха и бензина в горючей смеси изменяется в сторону её обогащения. То есть получается, что простейший карбюратор с одним жиклером, обеспечивает необходимый состав горючей смеси только при определённой частоте вращения коленвала и определённой нагрузке на двигатель.

Но ведь при движении мотоцикла (или автомобиля) нагрузка на его мотор и частота вращения коленвала постоянно меняются, в зависимости от дорожных и иных условий, то необходимо соответственно изменять и состав горючей смеси, которую готовит карбюратор мотоцикла или автомобиля. Это достигается внедрением в простейший карбюратор дополнительных систем и устройств, которые представляют: главная дозирующая система, система холостого хода, ускорительный насос, экономайзер мощностных режимов, эконостат, переходная система, система пуска, экономайзер принудительного холостого хода.

На большинстве мотоциклетных карбюраторов (особенно отечественных) нет некоторых полезных систем, которые перечислены выше и которые усложняют конструкцию, они есть на современных автомобильных карбюраторах. Поэтому мы затронем ниже только те системы, которые имеются на обычных карбюраторах большинства мотоциклов, не вакуумных, так как я уже говорил, что о вакуумниках и их настройке я уже писал и ссылки выше в тексте.

Главная дозирующая система карбюратора мотоцикла. 

На большинстве карбюраторов, когда золотник (заслонка) поднимается выше 6-ти мм, начинает работать главная дозирующая система. Как я говорил выше, движение воздуха создаёт над распылителем разряжение и происходит подсос и распыление топлива. При подсосе топлива из поплавковой камеры бензин проходит через отверстие главного жиклера и попадает в кольцевой канал между распылителем и конусной иглой.

Туда же через специальное отверстие поступает небольшое количество воздуха, которое вместе с бензином образует эмульсию. И только после этого эмульсия выбрасывается в диффузор, где и смешивается с основным потоком воздуха. Такой как бы двухступенчатый процесс обеспечивает отличное распыление топлива.

На состав рабочей смеси при полном и среднем поднятии заслонки можно повлиять двумя способами — изменяя положение иглы или проходное сечение главного жиклера. Причём размер проходного отверстия главного жиклера оказывает большее воздействие на состав рабочей смеси, при полном поднятии заслонки (при полном открытии диффузора). А изменение положения иглы влияет в основном при среднем открытии заслонки.

К тому же при неполном поднятии заслонки максимальная мощность от двигателя не требуется, но важна экономичность, то нужно чтобы рабочая смесь была обеднённой. Но чрезмерное обеднение вызовет провалы в работе мотора на режимах частичного открытия заслонки. Поэтому нужно выбрать такое положение иглы, чтобы рабочая смесь была немного обеднённой, но работа мотора оставалась при этом устойчивой на всех режимах без провалов в работе.

Опускание иглы (то есть перестановка защёлки иглы по делениям вверх) вызовет обеднение, ну а поднятие иглы будет способствовать обогащению рабочей смеси. Но всё же будет лучше, если переставляя иглу, обратить внимание на работу мотора вашего мотоцикла до и после перестановки иглы, то есть попробовав разные положения иглы и проверку тестдрайвом. Это делать желательно, так как перестановка иглы влияет не только на работу и мощность мотора, но и на его экономичность.

При полном открытии заслонки нужна максимальная мощность, поэтому смесь должна быть обогащённой. И мотоциклисты требовательные к увеличению мощности (но снижению экономичности) могут попробовать поменять главный жиклер на жиклер с отверстием с большим диаметром (проходным сечением).

Обычно на жиклере есть маркировка, и если вы к примеру купите вместо жиклера с маркировкой 90 жиклер с числом 92, то диаметр проходного отверстия будет больше на 5 %. Если проблематично найти такой, то можно рассверлить отверстие в штатном жиклере на пару соток, если найдёте такое тонкое сверло, которое нужно перемерить с помощью микрометра.

Эконостат.

На большинстве советских мотоциклов его нет, но на некоторых импортных есть. На состав рабочей смеси при большом открытии заслонки и влияет эта система, называемая эконостатом. Он служит для дополнительного обогащения смеси при большом поднятии (или открытии) заслонки, обычно более 14 мм. Устроен простейший эконостат очень просто. Бензин забирается из поплавковой камеры латунной трубкой, и далее бензин проходит через отверстие жиклера эконостата.

Далее по каналам в корпусе карбюратора, бензин поступает впереди диффузора и впрыскивается перед золотником. Причём распылитель (отверстие) эконостата в отличии от других распылителей, расположен в верхней части диффузора. Поэтому движение воздуха, при малом открытии заслонки, мимо распылителя эконостата очень незначительное. И только лишь при поднятии заслонки более половины (обычно выше 14 мм) поток воздуха у распылителя и вверху диффузора делается достаточно сильным и начинается распыление топлива через распылитель (отверстие) эконостата.

Система пуска. 

На более старых карбюраторах имеется утопитель поплавка, при нажатии которого поплавок притапливается и уровень в поплавковой камере повышается, обогащая смесь для пуска двигателя. На более свежих моделях карбюраторов для пуска двигателя создано специальное пусковое устройство, которое представляет из себя обогатитель в виде миниатюрного карбюратора, встроенного в основной (на некоторых моделях есть обе системы — и утопитель поплавка и дополнительное пусковое устройство о котором ниже).

Для его включения служит специальный рычажок, или штырь с наплавленной пластиковой чёрной бобышкой, которая хорошо видна на самом верхнем фото (типа чока на машинах.). Перед пуском мотора рычажок или штырёк подымается вверх, и открывает проход дополнительного бензина через канал жиклера пускового устройства. Жиклер запрессован в поплавковой камере, и через него бензин попадает в специальный колодец, из которого забирается через латунную трубку в смесительный патрубок.

Далее рабочая смесь бензина и воздуха (эмульсия) впрыскивается в полость диффузора за дроссельной заслонкой. Поэтому чем ниже расположена дроссельная заслонка при пуске двигателя, тем сильнее разряжение за ним и тем больше бензина будет поступать в пусковое устройство.

Именно поэтому следует учитывать, что пусковое устройство работает только при опущенной вниз дроссельной заслонке. Но некоторые владельцы мотоциклов пытаются запускать холодный мотор подняв заслонку (дав газу) и в таком случае пусковое устройство не срабатывает или срабатывает плохо (зависит от величины поднятия заслонки) и пуск двигателя затрудняется.

Пуск мотора может затрудниться еще и от того, если на горячем моторе пусковое устройство будет включено (или забыли выключить) и из-за переобогащения рабочей смеси горячий мотор будет переливать, и он не заведётся.

И ещё следует учесть, что жиклер пускового устройства запрессован у дна поплавковой камеры и имеет очень маленькое проходное отверстие, и от этого не исключено его засорение, особенно если у вас под баком не установлен фильтр тонкой очистки топлива. Это тоже приведёт к затруднениям при пуске двигателя. В таком случае нужно снять поплавковую камеру (на многих мотоциклах для этого даже не надо снимать карбюратор с двигателя) и промыть её от грязи, а жиклер пускового устройства продуть сжатым воздухом от компрессора или насоса.

Ну и на самых свежих моделях карбюраторов установлено автоматическое пусковое устройство, работающее от бортовой сети мотоцикла. Принцип такого устройства почти аналогичен вышеописанному ручному пусковому устройству, но здесь в пусковом карбюраторе установлена термотаблетка ( термоэлемент). Эта таблетка при повороте ключа зажигания (и поступлении на неё напряжения 12 в) начинает выдвигать конусную иглу, которая у холодного мотора находится в открытом положении (открыт канал пускового жиклера) но по мере прогрева двигателя постепенно выдвигает конусную иглу, которая постепенно перекрывает канал пускового устройства.

Примерно через 3 — 5 минут, когда мотор прогревается, термоэлемент полностью  перекрывает с помощью иглы пусковое устройство, а при выключении ключа зажигания и по мере остывания двигателя, конусная игла постепенно опять открывает канал (под действием пружины) и пусковое устройство готово к следующему запуску. Такая система распространена на многих японских или китайских скутерах, квадриках, или мотоциклах, точнее на их вакуумных карбюраторах (для четырёхтактников) или на обычных карбюраторах (для двухтактников). На наших отечественных мотоциклах её нет.

Система холостого хода карбюратора мотоцикла.

После пуска двигателя вступает в работу система холостого хода. Эта система как и пусковой карбюратор описанный выше, работает только лишь при малом открытии дроссельной заслонки (примерно пол миллиметра). Система холостого хода состоит из жиклера холостого хода, который по диаметру проходного отверстия более чем в половину меньше отверстия главного жиклера. Так же эта система состоит из эмульсионных трубок, винта (с конусом на конце) регулировки качества смеси, и каналов для прохода воздуха и эмульсии.

Винт регулировки качества смеси с помощью конуса на конце, регулирует проходное сечение воздушного канала (дозировать воздух гораздо легче чем бензин). И при закручивании этого винта, количество воздуха уменьшается и от этого рабочая смесь обогащается. Ну а при выкручивании винта качества, подача воздуха по каналу увеличивается и от этого рабочая смесь обедняется. Обычно оптимальное соотношение воздуха выставляется ещё на заводе соответствующим количеством оборотов этого винта (обычно 1,5) которые нужно считать при регулировке ( но желательно уточнить в мануале своего мотоцикла количество оборотов винта).

Регулировка холостого хода карбюратора.

На большинстве карбюраторов регулировка холостого хода одинаковая, так как имеются те же винты качества и винт упора золотника (количества). Поэтому я не буду описывать разные карбюраторы, принцип регулировки у большинства одинаковый, только следует перед регулировкой немного прогреть двигатель.

Так же желательно перед регулировкой посчитать обороты винтов на вашем карбюраторе и свериться с рекомендуемыми заводом изготовителем, и выставить винты, считая обороты (как рекомендует завод). Так будет легче отрегулировать карбюратор, даже если у вас не родной воздушный фильтр.

При регулировке сначала винтом упором золотника (некоторые называют его винт количества смеси) устанавливаем минимально устойчивые обороты двигателя, выкручивая этот винт. Для обкатанного и прогретого двигателя это примерно 600 — 1000 оборотов в минуту (смотрим по тахометру).

Далее вращаем винт качества, ищем положение, при котором обороты двигателя будут максимальными. Делаем это очень медленно вращая винт качества, то есть повернув винт примерно на 1/4 часть оборота винта, немного ждём, пока частота вращения коленвала стабилизируется. Здесь следует учесть, что отворачивание винта качества на большинстве карбюраторов более чем на два оборота неэффективно, то есть дальнейшее откручивание винта бесполезно, и дальнейшего обеднения смеси происходить не будет.

После того, как выставлено положение винта при максимальных оборотах, винт количества (винт упора заслонки) немного откручиваем, опуская дроссельную заслонку и снижая обороты до ранее установленных минимальных.

После такой регулировки полезно проверить работу карбюратора. Для этого резко даём газ (но не очень резко, если у вас нет в карбюраторе ускорительного насоса) и если двигатель захлёбывается и стреляет в карбюраторах (обратные вспышки), то винт качества немного закручиваем (примерно на 1/4 оборота), обогащая смесь и опять пробуем дать газ.

Делаем всё по чуть чуть, чтобы не слишком обогатить смесь, при этом полезно смотреть на выхлопные газы, они не должны быть чёрного цвета. Если идёт чёрных дым, значит вы переобогатили смесь, и теперь нужно винт качества немного выкрутить, чтобы добавить больше воздуха и немного обеднить смесь.

Ещё более подробно о полной регулировке карбюраторов мотоциклов, как обычных, так и современных вакуумных, советую почитать вот в этой статье.

Переходная система (переходной режим).

На современных карбюраторах с системой холостого хода связана дополнительная переходная система. Без этой системы, при большом подъёме дроссельной заслонки будет проявляться провал в работе двигателя, так как система уже не обеспечивает нужного качества смеси, и рабочая смесь слишком обеднена. А главная дозирующая система ещё не включается в работу.

Чтобы избежать провала в работе, на многих современных карбюраторах предусмотренна дополнительная система, которая имеет дополнительные топливный и воздушный жиклеры. Причём воздух для дополнительной системы забирается через общий воздушный канал. Далее поток воздуха раздваивается, часть воздуха идёт в систему холостого хода, а остальной воздух через воздушный жиклер идёт к смесителю дополнительной системы. Отверстие смесителя расположено не сзади дроссельной заслонки, а под ней, немного сзади от иглы.

Ускорительный насос.

На большинстве современных карбюраторов (даже на скутерах — мопедах) в карбюраторе устанавливают ускорительный насос. Он служит для кратковременного обогащения горючей смеси при резкой подаче газа (при резком открытии дроссельной заслонки). Это существенно улучшает приёмистость (динамику разгона) мотоцикла.

Он состоит из колодца (см. рисунок 4), поршня 26 со штоком (на некоторых моделях вместо поршня установлена резиновая мембрана), так же состоит из обратного 25 и нагнетательного 28 клапанов, жиклера 27 и механической тяги (привода). При резкой подаче газа и открытии дроссельной заслонки 9, под действием рычага 19, тяги и планки 15, поршень 26 в колодце быстро двигается вниз.

При этом в колодце резко возрастает давление топлива, при этом обратный клапан закрывается, а нагнетательный открывается, и порция бензина через жиклер распылителя 27 впрыскивается в смесительную камеру (диффузор) и этим обогащает рабочую смесь.

А при плавной подаче газа и плавном открытии дроссельной заслонки, обратный клапан остаётся открытым, и часть топлива из колодца через этот клапан вытесняется обратно в поплавковую камеру. Кроме поршневого привода ускорительного насоса, на многих карбюраторах применяют так же насос диафрагменного типа с приводом от кулачка оси дроссельной заслонки.

Основные неисправности карбюратора и системы питания.

Обогащение рабочей смеси.

При умеренном обогащении рабочей смеси, как видно из таблице слева, мощность двигателя возрастает, а при дальнейшем обогащении начинает уменьшаться по вполне понятной причине — для сгорания всей порции бензина не хватает воздуха. Число оборотов коленчатого вала двигателя в этом случае медленно возрастает, вспышки в цилиндрах происходят с перерывами.

Вследствие неполного сгорания из глушителя выходит чёрный дым: на поршне, головке цилиндра и свечах зажигания быстро отлагается нагар, нарушающий нормальную работу двигателя. У свечи зажигания нижняя часть изолятора быстро покрывается копотью и свеча через несколько минут работы двигателя выходит из строя.

Несгоревшее топливо смывает смазку со стенок цилиндра и разжижает масло в картере. При ещё большем недостатке воздуха рабочая смесь в цилиндре не воспламеняется и вполне исправный двигатель перестаёт работать. Чтобы удалить лишний бензин из цилиндра, двигатель продувают, т.е. коленчатый вал медленно прокручивают пусковой педалью при полностью открытом дроссельном золотнике.

Переобогащение смеси возникает вследствие сильного загрязнения воздухоочистителя и переполнения поплавковой камеры бензином, а также из-за неправильной сборки и регулировки карбюратора.

Для очистки воздухоочиститель старого типа 2-3 раза прополаскивают в керосине (бумажный фильтрующий элемент нового типа просто заменяется новым). После очистки воздухоочиститель погружают в автол и затем энергично встряхивают, чтобы удалить излишки масла.

Причины переполнения поплавковой камеры бензином следующие: попадание сора или воды под конус запорной иглы, износ самого конуса (его можно притереть, а если конус обрезинен, то заменить иглу новой) проникновение бензина внутрь поплавка, соскакивание пружинного замка с запорной иглы, скопление сора в нижней направляющей для запорной иглы.

Последняя из причин, если на неё не обратить внимание , доставляет водителям много неприятностей, а именно: нижний конец запорной иглы временами увязает в клейком отстое и без всякой видимой причины начинается вытекание бензина из поплавковой камеры, хотя явных признаков невсплывания  поплавка нет.

Нормальную работу запорной иглы часто можно восстановить путём лёгких постукиваний по корпусу поплавковой камеры кусочком дерева. При сильном ударе по корпусу из цинкового сплава, из которого изготовлены карбюраторы, карбюратор может расколоться.

От постукивания игла плотнее установится в гнездо, а дальнейшем вследствие вибрации двигателя и омывания бензином конус иглы и её гнездо освободятся от сора. Если постукивание не поможет, отвёртывают крышку поплавковой камеры, вынимают из поплавка иглу и, удалив сор, пальцами вращают иглу в обе стороны, прижимая к гнезду.

Если игла прочная и короткая, её можно » прибить» к гнезду. В этом случае, вставив иглу в гнездо, легко ударяют по её торцу. Вследствие этого герметичность запорной иглы восстанавливается. Но лучше всё таки аккуратно притереть иглу к своему седлу с помощью мелкой притирочной пасты.

Ну и основные неисправности любого карбюратора — это износ подвижных частей. Например износ конусной иглы поплавка и от этого негерметичность и недержание топлива устраняется притиркой конуса иглы к седлу с помощью пасты для притирки клапанов четырёхтактного двигателя и после этого пастой ГОИ. Кто не хочет заморачиваться с притиркой, или у кого игла с обрезиненным конусом (как на новых карбюраторах), то следует просто купить новую иглу и заменить её.

Если же изношена дроссельная заслонка и она болтается в своём колодце, то просто заменяем заслонку новой, которая продаётся в большинстве ремкомплектов для карбюратора (фото слева). Кстати в ремкомплекте имеется ещё и игла, и много других полезных и изнашиваемых деталей.

Но следует учесть, что кроме заслонки может износиться ещё и её колодец, и даже новая заслонка может болтаться в колодце карбюратора. В таком случае следует нарастить диаметр (или толщину её стенок, если заслонка плоская) заслонки больше чем у новой, с помощью состава описанного в этой статье.

Обеднение рабочей смеси.

Несколько обеднив смесь, можно добиться минимального расхода топлива без ощутимого уменьшения мощности. При сильном обеднении рабочей смеси, расход топлива увеличивается, двигатель заметно хуже тянет, температура повышается, происходят вспышки в карбюраторе( движок чихает).

Объясняются эти явления замедленным горением бедной рабочей смеси, длящимися во время тактов рабочего хода и выпуска. В случаях, когда горение продолжается до начала впуска, свежая горючая смесь воспламеняется от соприкосновения с горящей в цилиндре рабочей смесью.При этом горение происходит на всём пути от цилиндра до карбюратора, вызывая обратные вспышки в карбюраторе.

Обеднение рабочей смеси происходит вследствие попадания в топливо воды и засорения воздушного отверстия пробки бензобака, бензокраника и отстойника, бензопровода, поплавковой камеры и канала, ведущего от неё к жиклёру, от засорения самого жиклера, а также от неправильной регулировки карбюратора (винт качества слишком выкручен).

Для быстрого определения места скопления грязи (соринки), следует надавить кнопку утопителя поплавка. Если поплавок всплывает, то засорение произошло между поплавковой камерой и жиклером, или засорился сам жиклер.

Если поплавок прощупать кнопкой не удаётся (он не всплывает), то засорение произошло между поплавковой камерой и бензобаком, или в пробке бензобака засорилось отверстие (от этого создаётся вакуум в баке и бензин не поступает). Засорение устраняют продувкой и чисткой.

Намного реже, но всё же бывает обеднение смеси ещё от того, что игла выпадает из стопора дроссельной заслонки, и перекрывает поступление бензина из главного топливного жиклера.

Обеднение ещё может быть когда через неплотности в соединении карбюратора и цилиндра (головки) проникает воздух ( обычно при этом обороты увеличиваются), или через неплотности картера или сальника коленвала двухтактного двигателя.

 

Ну и на последок ещё несколько советов новичкам.

Помните, что заводские регулировки с помощью считывания количества оборотов винтов качества и количества действуют только при заводском воздушном фильтре. Если вы заменили воздушный фильтр не родным фильтром, или просто долго его не меняете на новый (он забит пылью), то выставив винты качества и количества по заводу, вы не добьётесь нормальной настройки карбюратора.

Так как каждый воздушный фильтр имеет свою пропускную способность воздуха, и при установке не родного фильтра, следует производить регулировку состава рабочей смеси по новой. И бывает, что при не родном воздушном фильтре регулировок винтов не хватает и приходится обеднять или обогащать состав смеси с помощью последнего способа — изменения уровня топлива в поплавковой камере.

Это достигается подгибанием язычка упора поплавка (на старых поплавках для изменения уровня топлива имелись канавки и защёлка) При уменьшении уровня топлива в поплавковой камере смесь обедняется, а при повышении уровня топлива смесь обогащается. При этом следует помнить, что главным индикатором правильной регулировки является цвет электродов и центрального изолятора свечи зажигания.

Центральный изолятор свечи должен быть коричневатого (тёмно-кирпичного) цвета, если он чёрный, то следует обеднить смесь, а если белый или светло-коричневый, то следует немного обогатить смесь.

Определить бедная или богатая смесь можно и при работе мотора: если при подаче газа двигатель стреляет (чихает) в карбюраторах, то рабочая смесь бедная и её нужно немного обогатить.

Если при подаче газа стреляет в глушителе или выходит чёрный дым, то смесь слишком богатая и её нужно обеднить.

Ещё обогатить можно смесь с помощью перестановки иглы вверх в дроссельной заслонке. А при перестановке иглы вниз, смесь обедняется и ухудшается приёмистость (динамика разгона), но при этом уменьшается расход топлива.

Если расход топлива нормальный (как в мануале мотора) и мотоциклист удовлетворён динамикой разгона мотоцикла, то нет смысла менять положение иглы относительно дроссельной заслонки.

Ещё следует учесть, что при чрезмерной перестановке иглы вниз для уменьшения расхода бензина, может произойти обратное явление — наоборот увеличение расхода бензина. Это происходит от того, что при ухудшении динамики разгона (приёмистости), время движения на пониженных передачах (которое необходимо для разгона мотоцикла) перед переходом на повышенную передачу — увеличивается.

А как известно, на пониженных передачах расход бензина всегда больше, и поэтому слишком опустив иглу вниз, можно только напрасно понизить ускорение мотоцикла, не добившись снижения расхода и даже немного увеличив расход бензина.

И наоборот, немного приподняв иглу вверх и немного обогатив смесь, можно ощутимо улучшить тяговые и динамические свойства мотоцикла, при этом не вызывая увеличения топлива, так как перед переключением на повышенные передачи, байк будет быстрее набирать скорость.

Опускать иглу желательно последовательно на 1-2 проточки, если свеча зажигания покрывается копотью при работе мотора. А поднять иглу на 1-2 позиции рекомендуется, если при плавном увеличении скорости байка, возникают обратные вспышки в карбюраторе или если в моторе появляются детонационные стуки.

Вод вроде бы и всё, что я хотел написать о карбюраторах для мотоцикла, и надёюсь эта статья пригодится начинающим мотоциклистам, успехов всем.

 

Как карбюратор работает в топливной системе?

Карбюратор отвечает за смешивание бензина и воздуха в нужных количествах и подачу этой смеси в цилиндры. Хотя карбюраторы не используются в новых автомобилях, они обеспечивают топливом двигатели всех автомобилей, от легендарных гоночных автомобилей до роскошных автомобилей высшего класса. Они использовались в NASCAR до 2012 года, и многие энтузиасты классических автомобилей используют карбюраторные автомобили каждый день. При таком количестве стойких энтузиастов карбюраторы должны предложить что-то особенное для тех, кто любит автомобили.

Как работает карбюратор?

Карбюратор использует вакуум, создаваемый двигателем, для втягивания воздуха и топлива в цилиндры. Эта система использовалась так долго из-за ее простоты. Дроссель может открываться и закрываться, позволяя большему или меньшему количеству воздуха попадать в двигатель. Этот воздух проходит через узкое отверстие, называемое трубкой Вентури . Это создает разрежение, необходимое для работы двигателя.

Чтобы понять, как работает трубка Вентури, представьте себе реку, текущую нормально.Эта река движется с постоянной скоростью, и ее глубина одинакова на всем протяжении. Если в этой реке есть узкий участок, воде придется ускориться, чтобы такой же объем прошел на той же глубине. Как только река вернется к исходной ширине после узкого места, вода все равно будет пытаться сохранить ту же скорость. Это заставляет воду с более высокой скоростью на дальней стороне узкого места притягивать воду, приближающуюся к узкому горлышку, создавая вакуум.

Благодаря трубке Вентури внутри карбюратора создается достаточно вакуума, чтобы воздух, проходящий через него, постоянно втягивал газ из форсунки .Жиклер находится внутри трубки Вентури и представляет собой отверстие, через которое топливо из поплавковой камеры может смешиваться с воздухом перед тем, как попасть в цилиндры. Поплавковая камера вмещает небольшое количество топлива, например резервуар, и позволяет горючему легко течь к жиклеру по мере необходимости. Когда дроссельная заслонка открывается, в двигатель втягивается больше воздуха, принося с собой больше топлива, что заставляет двигатель создавать большую мощность.

Основная проблема этой конструкции заключается в том, что дроссельная заслонка должна быть открыта, чтобы двигатель мог получить топливо.Дроссельная заслонка закрыта на холостом ходу, поэтому жиклер на холостом ходу позволяет небольшому количеству топлива поступать в цилиндры, чтобы двигатель не глохнул. Другие мелкие проблемы включают выход избыточных паров топлива из поплавковой камеры (камер).

В топливной системе

Карбюраторы на протяжении многих лет производились в различных формах и размерах. Маленькие двигатели могут использовать только один карбюратор с одной форсункой для подачи топлива в двигатель, в то время как более крупные двигатели могут использовать до двенадцати форсунок, чтобы оставаться в движении.Трубка, содержащая трубку Вентури и жиклер, называется баррель , хотя этот термин обычно используется только в отношении многоствольных карбюраторов .

Многоствольные карбюраторы в прошлом были большим аргументом в пользу автомобилей, предлагая варианты конфигурации с 4 или 6 цилиндрами. Больше бочек означало, что в цилиндры могло поступать больше воздуха и топлива. В некоторых двигателях даже использовалось несколько карбюраторов.

Спортивные автомобили часто приходили с завода с одним карбюратором на цилиндр, к большому разочарованию их механиков.Все они должны были быть индивидуально настроены, и темпераментные (обычно итальянские) силовые установки были особенно чувствительны к любым недостаткам настройки. К тому же они довольно часто нуждались в настройке. Это большая причина, по которой впрыск топлива впервые был популяризирован в спортивных автомобилях.

Куда пропали все карбюраторы?

С 1980-х годов производители постепенно отказываются от карбюраторов в пользу впрыска топлива. Оба выполняют одну и ту же работу, но сложные современные двигатели просто эволюционировали по сравнению с карбюраторами, и на смену пришел гораздо более точный (и программируемый) впрыск топлива.На это есть несколько причин:

  • Впрыск топлива может подавать топливо непосредственно в цилиндр, хотя иногда используется корпус дроссельной заслонки, позволяющий одной или двум форсункам подавать топливо в несколько цилиндров.

  • Холостой ход сложно с карбюратором, но очень просто с топливными форсунками. Это связано с тем, что система впрыска топлива может просто добавить небольшое количество топлива в двигатель, чтобы поддерживать его работу, но карбюратор закрывает дроссельную заслонку на холостом ходу. Жиклер холостого хода необходим для предотвращения остановки карбюраторного двигателя при закрытой дроссельной заслонке.

  • Впрыск топлива более точный и расходует меньше топлива. Благодаря этому также уменьшается количество паров газа при впрыске топлива, поэтому вероятность возгорания меньше.

Несмотря на то, что карбюраторы устарели, они вошли в историю автомобилестроения и работают чисто механически и грамотно. Работая с карбюраторными двигателями, энтузиасты могут получить практические знания о том, как воздух и топливо попадают в двигатель для воспламенения и поддерживают все в движении.

Как работают карбюраторы мотоциклов?

1) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

2) Для получения информации о результатах программы и другой информации посетите сайт www.uti.edu/disclosures.

3) Приблизительно 8000 из 8400 выпускников UTI в 2019 году были готовы к трудоустройству. На момент составления отчета около 6700 человек были трудоустроены в течение одного года после даты выпуска, в общей сложности 84%. В эту ставку не включены выпускники, недоступные для работы по причине продолжения образования, военной службы, здоровья, заключения, смерти или статуса иностранного студента.В ставку включены выпускники, прошедшие специализированные программы повышения квалификации и занятые на должностях. которые были получены до или во время обучения по ИМП, где основные должностные обязанности после окончания учебы соответствуют образовательным и учебным целям программы. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

5) Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь, для специалистов по автомобилям, дизельным двигателям, ремонту после столкновений, мотоциклетным и морским техникам.Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от в качестве технического специалиста, например: специалист по запчастям, специалист по обслуживанию, изготовитель, лакокрасочный отдел и владелец / оператор магазина. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

6) Достижения выпускников ИТИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату.ИМП образовательное учреждение и не может гарантировать работу или заработную плату.

7) Для завершения некоторых программ может потребоваться более одного года.

10) Финансовая помощь и стипендии доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и состояния.

11) См. Подробную информацию о программе, где указаны требования и условия, которые могут применяться.

12) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2016-2026), www.bls.gov, просмотрено 24 октября 2017 г. Прогнозируемое количество годовых вакансии по классификации должностей: Автомеханики и механики — 75 900; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 28 300 человек; Ремонтники кузовов и связанных с ними автомобилей, 17 200. Вакансии включают вакансии в связи с ростом и чистые замены.

14) Программы стимулирования и соответствие критериям для сотрудников остаются на усмотрение работодателя и доступны в определенных местах. Могут применяться особые условия.Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем районе.

15) Оплачиваемые производителем программы повышения квалификации проводятся UTI от имени производителей, которые определяют критерии и условия приемки. Эти программы не являются частью аккредитации UTI. Программы доступны в некоторых регионах.

16) Не все программы аккредитованы ASE Education Foundation.

20) Льготы VA могут быть доступны не на всех территориях университетского городка.

21) GI Bill® является зарегистрированным товарным знаком U.S. Департамент по делам ветеранов (VA). Более подробная информация о льготах на образование, предлагаемых VA, доступна на официальном веб-сайте правительства США.

22) Грант «Приветствие за службу» доступен всем ветеранам, имеющим право на участие в программе, на всех кампусах. Программа «Желтая лента» одобрена в наших кампусах в Эйвондейле, Далласе / Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.

24) Технический институт NASCAR готовит выпускников к работе в качестве технических специалистов по обслуживанию автомобилей начального уровня.Выпускники, которые выбирают специальные дисциплины NASCAR, также могут иметь возможности трудоустройства в отраслях, связанных с гонками. Из тех выпускников 2019 года, которые взяли факультативы, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.

25) Расчетная годовая средняя заработная плата для специалистов по обслуживанию автомобилей и механиков в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве автомобильных техников.Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, смог. инспектор и менеджер по запасным частям. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников и механиков по обслуживанию автомобилей в Содружестве Массачусетса (49-3023) составляет от 29 050 до 45 980 долларов (данные по Массачусетсу, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: The U.S. Согласно оценке Министерства труда США, средняя почасовая оплата в размере 50% квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 19,52 доллара США. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,84 и 10,60 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. и Механика, просмотр 14 сентября 2020 года.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

26) Расчетная годовая средняя заработная плата сварщиков, закройщиков, паяльщиков и брейзеров в Бюро трудовой статистики США по занятости и заработной плате, май 2019. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических специалистов, например, сертифицированный инспектор и контроль качества.Информация о заработной плате в штате Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих сварщиками, резчиками, паяльщиками и брейзерами в штате Массачусетс (51-4121), составляет от 33 490 до 48 630 долларов. (Массачусетс: рабочая сила и развитие рабочей силы, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в среднем 50% для квалифицированных сварщиков в Северной Каролине, опубликованную в мае 2019 года, и составляет 19 долларов.77. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-е и 10-й процентиль почасовой оплаты труда в Северной Каролине составляют 16,59 и 14,03 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2019 г. Сварщики, резаки, паяльщики и брейзеры, просмотрено в сентябре 14, 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

27) Не включает время, необходимое для прохождения 18-недельной квалификационной программы предварительных требований плюс дополнительные 12 или 24 недели обучения, зависящего от производителя, в зависимости от производителя.

28) Расчетная годовая средняя заработная плата специалистов по ремонту кузовов автомобилей и связанных с ними ремонтов в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например оценщик, оценщик. и инспектор. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве ремонтников автомобилей и связанных с ними (49-3021), в Содружестве Массачусетс составляет от 31 360 до 34 590 долларов. (Массачусетс: рабочая сила и развитие рабочей силы, данные за май 2018 г., просмотр за 10 сентября 2020 г.).Зарплата в Северной Каролине информация: Департамент труда США оценивает почасовую заработную плату в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованную в мае 2019 года, и составляет 21,76 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако, 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,31 и 12,63 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018 г. 14 сентября 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

29) Расчетная годовая средняя заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в разделе «Занятость и заработная плата» Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве дизельных техников . Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от дизельных. техник по грузовикам, например техник по обслуживанию, техник по локомотиву и техник по морскому дизелю.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков. и специалистов по дизельным двигателям (49-3031) в штате Массачусетс составляет от 29 730 до 47 690 долларов США (Массачусетс, штат Массачусетс, данные за май 2018 г., просмотрено 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в размере 50% для квалифицированных дизельных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 22 доллара.04. Бюро статистики труда. не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 18,05 и 15,42 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018. Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.

30) Расчетная средняя годовая зарплата механиков мотоциклистов в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников мотоциклов. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, оборудование. обслуживание и запчасти. Информация о заработной плате для Содружества Массачусетс: Средняя годовая заработная плата начального уровня для лиц, занятых в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетса, составляет 28 700 долларов США (данные по развитию трудовых ресурсов штата Массачусетс, май 2018 г., просмотр на 10 сентября 2020 г.) .Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата составляет 50% в среднем для Стоимость квалифицированных специалистов по мотоциклам в Северной Каролине, опубликованная в мае 2019 года, составляет 16,92 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,18 и 10,69 долларов. соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г., Motorcycle Mechanics, просмотр 14 сентября 2020 г.)) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

31) Расчетная годовая средняя заработная плата механиков моторных лодок и техников по обслуживанию в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических специалистов, например, в сфере обслуживания оборудования, инспектор и помощник по запчастям.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков моторных лодок и техников по обслуживанию (49-3051) в Содружестве Массачусетса. составляет от 31 280 до 43 390 долларов (данные за май 2018 г., Массачусетс, США, 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированного морского техника в Северной Каролине, опубликованная в мае 2019 года, составляет 18 долларов.56. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 14,92 доллара и 10,82 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Специалисты по обслуживанию, просмотр 2 сентября 2020 г.) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.

34) Расчетная годовая средняя заработная плата операторов компьютерных инструментов с числовым программным управлением в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве технических специалистов по обработке с ЧПУ. Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, оператор ЧПУ, подмастерье. слесарь и инспектор по обработанным деталям. Информация о заработной плате для штата Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением, металла и пластика (51-4011) в Содружестве штата Массачусетс составляет 36 740 долларов (данные за май 2018 г., данные за май 2018 г., данные за 10 сентября, штат Массачусетс, 2020).Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2019 года, составляет 18,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 15,39 и 13,30 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Операторы инструмента, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.

37) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Информацию о результатах программы и другую информацию можно найти на сайте www.uti.edu/disclosures.

38) Бюро статистики труда США прогнозирует, что к 2029 году общая занятость в каждой из следующих профессий составит: Техники и механики автомобильного сервиса — 728 800; Сварщики, резаки, паяльщики и паяльщики — 452 500 человек; Автобусы и грузовики и специалисты по дизельным двигателям — 290 800 человек; Ремонтники кузовов автомобилей и сопутствующие товары — 159 900; и операторы инструментов с ЧПУ, 141 700.См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 и прогнозируемый 2029 Бюро статистики труда США, www.bls.gov, дата просмотра — 3 июня 2021 г.

39) Повышение квалификации доступно для выпускников только в том случае, если курс еще доступен и есть места. Студенты несут ответственность за любые другие расходы, такие как оплата лабораторных работ, связанных с курсом.

41) Для специалистов по обслуживанию автомобилей и механиков Бюро статистики труда США прогнозирует в среднем 61 700 вакансий в год в период с 2019 по 2029 год.Вакансии включают вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Разделения и вакансии по профессиям, прогноз на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра — 3 июня 2021 г.

42) Для сварщиков, резчиков, паяльщиков и паяльщиков, Бюро труда США По статистике, в период с 2019 по 2029 год в среднем будет открываться 43 400 вакансий в год. В число вакансий входят вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Профессиональные разделения и вакансии, прогнозируемые на 2019-29 гг., U.S. Bureau of Labor Statistics, www.bls.gov, дата просмотра — 3 июня 2021 г.

43) Для специалистов по механике автобусов и грузовиков и специалистов по дизельным двигателям Бюро статистики труда США прогнозирует в среднем 24 500 вакансий в год в период с 2019 по 2029. Вакансии включают вакансии в связи с ростом и чистым замещением. См. Таблицу 1.10 Разделения и вакансии по профессиям, прогнозируемые на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра 3 июня 2021 года.По прогнозам Бюро статистики труда, в период с 2019 по 2029 год в среднем будет открываться 13 600 рабочих мест в год. В число вакансий входят вакансии, связанные с ростом и чистым замещением. См. Таблицу 1.10 Разделение и вакансии по профессиям, прогноз на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра 3 июня 2021 г.

45) Для операторов компьютерных инструментов с числовым программным управлением Бюро статистики труда США прогнозирует в среднем 11 800 вакансий в период с 2019 по 2029 год. Вакансии включают вакансии, связанные с ростом и чистым замещением.См. Таблицу 1.10 Профильные увольнения и вакансии, прогноз на 2019-29 годы, Бюро статистики труда США, www.bls.gov, дата просмотра — 3 июня 2021 года.

46) Студенты должны иметь средний балл не ниже 3,5 и посещаемость 95%.

47) Бюро статистики труда США прогнозирует, что к 2029 году общая численность специалистов по обслуживанию автомобилей и механиков составит 728 800 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 и прогнозируемый 2029 Бюро статистики труда США, www.bls.gov, дата просмотра — 3 июня 2021 г.

48) Бюро статистики труда США прогнозирует, что к 2029 году общая занятость механиков автобусов и грузовиков и специалистов по дизельным двигателям составит 290 800 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 и прогнозируемый 2029 Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 г.

49) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено в сентябре 8, 2020. Планируемое общее количество ремонтов кузовов и связанных с ними автомобилей к 2029 году составит 159 900 человек.

50) Бюро статистики труда США прогнозирует, что общая занятость сварщиков, резчиков, паяльщиков и паяльщиков к 2029 году составит 452 500 человек. См. Таблицу 1.2 Занятость в разбивке по профессиям, 2019 и прогнозируемый 2029 Бюро статистики труда США, www.bls.gov, просмотрено 3 июня 2021 г.

51) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено в сентябре 8, 2020. Планируемое общее количество операторов инструмента с ЧПУ к 2029 году составит 141 700 человек.

Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета по высшему образованию штата Иллинойс.

Как работает карбюратор?

Посмотрите видео, чтобы лучше рассмотреть эти части.

Карбюратор работает «нормально» на полностью открытой дроссельной заслонке. В этом случае дроссельная заслонка параллельна длине трубки, позволяя максимальному потоку воздуха проходить через карбюратор.Воздушный поток создает хороший вакуум в трубке Вентури, и этот вакуум всасывает отмеренное количество топлива через жиклер. Вы можете увидеть пару винтов в правом верхнем углу карбюратора на фото 1. Один из этих винтов (помеченный «Hi» на корпусе цепной пилы) регулирует, сколько топлива поступает в трубку Вентури при полном открытии дроссельной заслонки.

При работе двигателя на холостом ходу дроссельная заслонка почти закрыта (положение дроссельной заслонки на фотографиях — это положение холостого хода). Через трубку Вентури проходит недостаточно воздуха для создания вакуума.Однако на задней стороне дроссельной заслонки очень много вакуума (потому что дроссельная заслонка ограничивает воздушный поток). Если просверлить крошечное отверстие на стороне трубки карбюратора сразу за дроссельной заслонкой, топливо может быть втянуто в трубку с помощью разрежения дроссельной заслонки. Это крошечное отверстие называется жиклером холостого хода . Другой винт пары, показанной на фото 1, помечен как «Lo», и он регулирует количество топлива, протекающего через жиклер холостого хода.

Оба винта Hi и Lo представляют собой просто игольчатые клапаны.Поворачивая их, вы позволяете большему или меньшему количеству топлива проходить мимо иглы. Регулируя их, вы напрямую контролируете, сколько топлива проходит через жиклер холостого хода и главный жиклер.

Когда двигатель холодный и вы пытаетесь запустить его с помощью тягового троса, двигатель работает на очень низких оборотах. К тому же он холодный, поэтому для начала нужна очень богатая смесь. Здесь на помощь приходит дроссельная заслонка. При активации дроссельная заслонка полностью закрывает трубку Вентури (см. Это видео о дроссельной заслонке, чтобы увидеть ее в действии).Если дроссельная заслонка широко открыта, а трубка Вентури закрыта, вакуум двигателя втягивает много топлива через главный жиклер и жиклер холостого хода (так как конец трубки карбюратора полностью закрыт, весь вакуум двигателя идет на всасывание топлива через форсунки). Обычно эта очень богатая смесь позволяет двигателю запускаться один или два раза или работать очень медленно. Если вы затем откроете воздушную заслонку, двигатель заработает нормально.

Первоначально опубликовано: 10 мая 2000 г.

Как работает карбюратор

Новые автомобили сбивают с толку.Со всеми компьютерами, датчиками и гаджетами может показаться, что под капотом происходит какое-то волшебное колдовство и волшебство. Мы здесь, чтобы показать вам, как работают современные автомобильные компьютерные системы управления, но сегодня мы собираемся начать с некоторых старых технологий: карбюратора.

Ладно, в новых машинах карбюраторы почти не используются. Тем не менее, важно понимать, как двигатели стали такими, какие они есть сегодня. Все началось со старого доброго карбюратора. Для многих из вас это обзор, но если мы хотим, чтобы новое поколение автолюбителей заботилось об автомобилях, не помешает объяснить, как они на самом деле работают.

Чтобы оптимизировать работу двигателя, инженеры хотят обеспечить смешивание достаточного количества воздуха с бензином, чтобы весь газ сгорал во время сгорания. Такая смесь, в которой сгорает все топливо, называется стехиометрической смесью. Поддержание стехиометрической смеси позволяет двигателям максимально использовать преимущества высокой плотности энергии бензина (34 мегаджоулей на литр). Если поступает недостаточно воздуха, двигатель будет работать на богатой смеси, что часто приводит к плохой экономии топлива и выходу черного дыма из выхлопной трубы.Если с топливом смешано слишком много воздуха, двигатель работает на обедненной смеси, вырабатывая меньше мощности и больше тепла. Следовательно, инженеры должны оптимизировать это соотношение, чтобы получить максимальную механическую работу на единицу массы топлива. Оптимальное соотношение воздуха и топлива для типичного двигателя внутреннего сгорания составляет около 14,7 фунтов воздуха на каждый фунт бензина. Вопрос о том, как обеспечить это идеальное соотношение, был в авангарде автомобильной инженерии на протяжении десятилетий.

КАРБЮРАТОРЫ

G / O Media может получить комиссию

В конце девятнадцатого века, считающемся началом автомобильной истории, механизм смешивания топлива и воздуха был карбюратором.Карбюратор произошел от французского слова «carbure», что означает «карбид», и представляет собой чисто механическое устройство (хорошо, некоторые используют электрические дроссели), которое использовалось для смешивания воздуха и топлива вплоть до начала 1990-х годов (Jeep Grand Wagoneer 1991 года был последним автомобилем американского производства, в котором использовался карбюратор). Чтобы понять, как работают карбюраторы, вы должны понять принцип Бернулли. Показанное ниже уравнение Бернулли демонстрирует, что увеличение скорости жидкости (кинетической энергии) требует уменьшения давления (потенциальной энергии):

p1, ρ1 и v1 — статическое давление, плотность и скорость, соответственно, при пункт 1.p2, , ρ и v2 — статическое давление, плотность и скорость в другом месте потока. Можно предположить, что плотность жидкости остается примерно постоянной, поэтому ρ1 примерно такое же, как ρ2 . Предположим, что в точке 2 ниже по потоку у нас есть сужение, в котором скорость жидкости увеличивается. Это означает, что v2 больше, чем v1. Чтобы левая и правая части уравнения Бернулли оставались эквивалентными, p1 должно быть больше p2. Таким образом, высокая скорость в сужении дает низкое давление.

Схема из Википедия

Хотя многие считают карбюраторы волшебными приспособлениями, в которых заключены всевозможные вуду, карбюратор — это, по сути, просто трубка, через которую отфильтрованный воздух поступает из воздухозаборника автомобиля. Внутри этой трубки есть сужение, или трубка Вентури, в которой создается вакуум. В сужении есть небольшое отверстие, называемое жиклером, по которому топливо подается через поплавковую камеру. Поплавковая камера представляет собой емкость, заполненную количеством топлива, которое устанавливается поплавком.Вакуум, создаваемый в трубке Вентури, всасывает топливо из поплавковой камеры, которая находится под давлением окружающей среды. Чем быстрее фильтрованный воздух поступает через горловину карбюратора, тем ниже давление в трубке Вентури. Это приводит к увеличению разницы давлений между трубкой Вентури и поплавковой камерой, и, таким образом, больше топлива выходит из жиклера и смешивается с воздушным потоком.

За жиклером находится дроссельная заслонка, которая открывается при нажатии педали акселератора. Этот дроссельный клапан ограничивает количество воздуха, поступающего в карбюратор.Если вы нажмете педаль газа до упора, дроссельная заслонка откроется полностью, позволяя воздуху быстрее проходить через карбюратор, создавая больший вакуум в трубке Вентури, отправляя больше топлива в двигатель, создавая большую мощность. На холостом ходу дроссельная заслонка полностью закрыта, но есть жиклер холостого хода, который обходит дроссельную заслонку и отправляет заданное количество топлива и воздуха в двигатель. Без жиклера холостого хода двигатель отключился бы, если бы водитель не активировал дроссельную заслонку во время холостого хода.

А как насчет того маленького рычага, который вы видите в старых машинах? Ну вот и дроссель. Назначение воздушной заслонки — обеспечить двигатель богатой топливной смесью при запуске. Когда вы нажимаете на рычаг воздушной заслонки, вы закрываете воздушную заслонку и ограничиваете поток воздуха на входе в карбюратор. Это делает двигатель богатым. Как только автомобиль прогреется, нажмите на заслонку и дайте двигателю поработать до этого волшебного стехиометрического соотношения.

Старое школьное видео ниже показывает, как все это работает. Проверьте это:

Фото: Uber Prutser

Фото наверху: Дерек Лайонс

Схема из Википедия

Как работает карбюратор?

Карбюратор — это высокочувствительный прецизионный инструмент, предназначенный для смешивания топлива и воздуха в правильном соотношении в довольно динамичном рабочем диапазоне двигателя внутреннего сгорания.

Их также, хотите верьте, хотите нет, очень легко понять. Хотя я не скажу, что карбюраторы и их настройка (адаптация карбюратора к конкретному двигателю и даже конкретному сценарию использования) просты, их принцип работы довольно прост, а обслуживание обычно легко выполнить, если конструкция карбюратора является работоспособной. и доступ к нему достаточный. Карбюраторы — это отчасти изящные вещи, потому что мы все еще живем в эпоху, когда они используются (и, возможно, самые сложные и лучшие конструкции карбюраторов — это все, что остается в игре), но из-за ограничений выбросов они больше не разрабатываются.В этом отношении они вроде как живые ископаемые.

Чтобы лучше объяснить конструкцию и усовершенствование карбюратора, я сделаю то, что обычно делаю: верну вас в прошлое, чтобы понять простейшую форму темы, которую мы рассматриваем, а затем мы перейдем ко всем большие важные вехи. Я также добавлю перца в некоторые фактоиды, чтобы он не пересыхал.

Вот основная идея трубки Вентури. Если вы это понимаете, вы в значительной степени разбираетесь в карбюраторе.Иллюстрация RevZilla.

Принцип работы

Как и многие части мотоцикла, устройство для смешивания воздуха и топлива является результатом исследований, завершенных в другом столетии. В 1730-х годах Даниэль Бернулли, швейцарский математик и физик, обнаружил, что давление воздуха уменьшается с увеличением скорости. Так получилось, что хороший и последовательный способ заставить этот сценарий реализоваться — это пропустить воздух через ограниченный участок трубы; воздух ускоряется, а давление падает.Это было открыто около 1797 года итальянским физиком по имени Джованни Вентури. Он сконструировал трубку с гораздо меньшим входным отверстием при этом ограничении в зоне низкого давления. Это входное отверстие позволяет трубке втягивать жидкость в поток воздуха.

Вот и все в двух словах. Вот что такое карбюратор и что он делает. Это трубка, по которой воздух проходит через специально расположенные пустоты, через которые в двигатель попадает очень определенное количество топлива. В идеале он также эмульгирует топливо с помощью распыления воздуха.(Важно знать, что жидкое топливо гораздо труднее воспламеняется, чем пары топлива, взвешенные в воздухе.)

Это съемная трубка Вентури от карбюратора Langsenkamp-Linkert, которую можно найти на многих старинных товарах Harley-Davidson. Видите область, где диаметр сужается? Фото Лемми.

Поэтому, когда вы «даете ему газ», вы на самом деле ничего не делаете с топливом. Между вашей правой рукой и бензином нет прямой связи. То, что вы делаете, на самом деле заливаете воздухом .Вы впускаете в двигатель больше воздуха — так уж получилось, что из-за эффекта Вентури больший перепад давления воздуха позволяет ему уносить с собой больше топлива.

Если вы не продвинетесь дальше в этой статье, вы в значительной степени поймете, что делает карбюратор и как он это делает. Но, как и все механические части в мото, были очень интересные изменения и улучшения. История и эволюция также помогают объяснить, почему вы не найдете старинного Schebler раннего Харлея, свисающего с дрэг-байка.

Осадка

Прежде чем мы начнем, вы должны знать, что все карбюраторы можно классифицировать по тому, как воздух входит и выходит из карбюратора, когда он находится в установленном положении. Таким образом, в карбюраторе с нисходящим потоком, который можно найти в маслкаре с V8, воздух входит сверху и движется вниз, забирая топливо, откуда они вместе попадают в коллектор и затем в камеру сгорания.

В мире мотоциклов почти каждый карбюратор имеет боковую тягу.Я уверен, что какой-нибудь зоркий читатель создаст малоизвестную модель с карбюратором с восходящим или нисходящим потоком, о котором я не могу думать, но шансы отличные, если вы увидите карбюратор мотоцикла, это блок с боковым тягом. Это связано в первую очередь с ограничениями по упаковке, а также взаимосвязано с попытками сохранить длину впускных направляющих как можно ближе к равной на многоцилиндровых мотоциклах.

Дроссель, пережиток ушедшей эпохи. Эта заслонка закрывается вручную, чтобы ограничить поток воздуха на конце карбюратора от двигателя.Это позволяет двигателю «присосаться» к нему, так что топливо может поступать легко, но ограничение воздуха делает двигатель очень богатым, облегчая запуск. Фото Лемми.

Части карбюратора

У большинства углеводов есть чаша, область, где висит топливо. Некоторые из них дистанционно сдвинуты в сторону, но у большинства есть буквальная чаша, которая отделяется от корпуса карбюратора. Там есть поплавок, который работает так же, как поплавок в вашем горшке. Он управляет иглой, которая устанавливается на предмет, который, по логике вещей, называется сиденьем.

Чаша карбюратора. Фото Лемми.

Большинство мотоциклетных карбюраторов питаются самотеком (бак всегда устанавливается над карбюратором, если нет топливного насоса), поэтому поплавок, игла и седло работают вместе, чтобы подавать топливо в карбюратор по мере необходимости, не переполняя резервуар.

Черный элемент здесь — это поплавок, а с ним соединена игла, которая плотно прилегает к его седлу. Не в фокусе латунные насадки — это жиклеры. Самый верхний элемент из латуни — пилотный жиклер, а нижний — главный.Фото Лемми.

В чаше вы также можете увидеть форсунки, ведущие к основному корпусу карбюратора. Обычно это сменные латунные детали с просверленными отверстиями очень точного размера. Они часто бывают разных размеров для настройки. Размер отверстия влияет на количество топлива в топливовоздушной смеси.

Вот слайд карбюратора. Обратите внимание, что вырез (вырез слева внизу) виден. Форма и высота выреза может быть изменена для изменения отклика на холостом ходу.Этот золотник аналогичен дроссельной заслонке в более ранних карбюраторах. Фото Лемми.

Вы также можете увидеть иглы в карбюраторе. В зависимости от карбюратора это могут быть топливные иглы, воздушные иглы или «игольчатые форсунки». Они выглядят как настоящая игла (хотя и толще) и не похожи на иглу, которая прикрепляется к поплавку. Разве это не глупо?

В корпусе карбюратора вы можете увидеть ползун, удерживающий иглу жиклера, или вы можете увидеть дроссельный диск, который может перемещаться, когда вы поворачиваете дроссельную заслонку (это может также быть не так, в зависимости от типа карбюратора у вас ) и вы можете увидеть другой диск, заслонку воздушной заслонки.Не все карбюраторы имеют все эти детали. Почему? Что ж, это хороший переход к тому, как углеводы эволюционировали и отличаются друг от друга.

Давным-давно, когда

Я собираюсь описать следующее с точки зрения возрастающей сложности, и, вообще говоря, все двигалось в этом порядке с точки зрения сложности. Улучшения были внесены в очень разные графики, но это примерно прогрессия — это просто было реализовано в разное время разными производителями карбюраторов и велосипедов, и некоторые шаги были пропущены на этом пути.

На рассвете мотоспорта углеводы были похожи на ту базовую единицу, которую мы только что описали выше. Двигатели были примитивными, поэтому карбюраторы тоже могли. Степень сжатия была низкой, металлургия была плохой, что ограничивало обороты двигателя, технология уплотнения была где-то между доисторическими и несуществующими.

Некоторые ранние мотоциклы использовали впускной клапан атмосферного давления. Фактически, впускной клапан удерживался закрытым с помощью пружины, как обычный клапан сегодня, но пружина была намного слабее.Однако клапан не открывался механически, как в современных двигателях. Вместо этого движение поршня вниз создавало достаточное отрицательное давление, чтобы преодолеть слабую пружину и впустить поступающий воздушный топливный заряд в камеру сгорания. Когда всасывание уменьшалось, клапан закрывался под давлением пружины. Это не имеет прямого отношения к карбюраторам, но вступит в игру чуть позже в этой статье, так что подумайте, хорошо? Через несколько лет впускные клапаны стали стандартными, которые мы знаем сейчас, их открывал кулачок и подъемник с хорошей сильной пружиной, чтобы закрыть их обратно.

По мере того, как двигатели становились более мощными, стало понятно, что более плавная работа и лучшая работа могут быть достигнуты за счет более точного контроля подачи топлива. Двигатель на холостом ходу, быстро повернутая дроссельная заслонка от гонщика, требующего ускорения, и двигатель на полном ходу — все это требует подачи топлива по-разному.

Ранние велосипедные карбюраторы имели две цепи: цепь холостого хода и цепь высокой скорости. «Контур» можно рассматривать как часть дроссельной заслонки, которой управляет конкретный топливный тракт.Таким образом, контур холостого хода на раннем карбюраторе может регулировать холостой ход до 25%, а высокоскоростной контур может справиться с остальным. Почти в каждом карбюраторе есть некоторое перекрытие и утечка в отношении того, какая цепь обслуживает какую часть дроссельной заслонки. Изменение чего-либо в одном контуре может что-то изменить в другом, и часто такие детали, как регулируемые отводы воздуха, могут перемещать точку перехода, чтобы избежать грубых или неустойчивых изменений контура.

Хорошим примером этого является размер трубки Вентури.Ранние карбюраторы Harley Linkert-Langsenkamp, ​​например, очень похожи карбюраторы, даже для двигателей с достаточно разной мощностью. Воздушный поток контролировался «бабочкой» или дроссельной заслонкой, названной так потому, что во время работы он напоминает взмахи крыла бабочки. Чтобы учесть необходимость использования одного корпуса с множеством смещений, для Linkerts были доступны разные Вентури, и они были более или менее отличительным фактором между моделями карбюратора.

Проблема, однако, в том, что данный размер трубки Вентури действительно оптимален только для заданного расхода, что соответствует одной скорости двигателя.Это нормально для мотокультиватора и т.п., в которых используется двигатель, работающий с фиксированной скоростью. Они достаточно гибкие, но идеальным вариантом были бы Вентури разных размеров для различных ситуаций с дроссельной заслонкой. Введите слайд карбюратора.

Скользящий карбюратор. Фото Лемми.

Скользящие карбюраторы отличаются от карбюраторов-бабочек тем, что в них не используется дроссельная заслонка, а вместо них используется круглый или плоский «ползун», который работает аналогично гильотине. Этот слайд поднимается тросом дроссельной заслонки, когда гонщик «крутит фитиль».”

Скользящие углеводы имеют несколько преимуществ по сравнению с карбюраторами типа «бабочка». Во-первых, что наиболее важно, размер Вентури увеличивается при открытии дроссельной заслонки. Он маленький при малых отверстиях дроссельной заслонки и становится больше при больших отверстиях. Некоторые люди до сих пор называют эти углеводы «переменной Вентури».

Это установка в виде бабочки. Многие ранние карбюраторы используют эту конструкцию клапана. Вал, на котором установлен диск, вращается примерно на 90 градусов. Это положение было бы широко открытым дросселем.Ага! Фото Лемми.

Ползунковые карбюраторы также имеют то преимущество, что втулки вала дроссельной заслонки не изнашиваются. Изношенные втулки действительно могут затруднить поддержание разумных оборотов холостого хода и смеси. Кроме того, поскольку вал дроссельной заслонки и дроссельная заслонка не занимают места во впускном отверстии карбюратора, скользящий карбюратор при полностью открытой дроссельной заслонке не имеет внутренних препятствий на впускном тракте.

Помните, когда мы раньше говорили о схемах? Одним из способов улучшения карбюраторов было добавление контуров.С одной стороны, дополнительные схемы обеспечивали все более детальную и тонкую настройку. Обратной стороной этого, как и для всего, что имеет повышенную настраиваемость, является повышенная сложность, которая дает возможность настраивать более неправильно, чем когда-либо прежде.

Вот отверстие, просверленное в пилотном жиклере. Должно быть довольно легко понять, почему клейкое топливо или грязный карбюратор могут помешать вашему мотоциклу заводиться и работать. Фото Лемми.

Одна схема, которая появилась и встречается на большинстве слайд-карбюраторов, — это струйная игла, о которой мы говорили ранее.Вместо того, чтобы просто иметь цепь холостого хода и цепь «всего остального», дроссельная заслонка была разделена на три части. На большинстве скользящих карбюраторов игла жиклера регулирует положение дроссельной заслонки примерно на одну восьмую вплоть до ее полного открытия, при этом пилот работает на холостом ходу и на холостом ходу, а главная цепь обрабатывает большинство больших отверстий дроссельной заслонки, обычно с некоторой помощью струйная игла.

Струйная игла. Обратите внимание на различные положения зажима, а также на очень аккуратный конус струйной иглы.Фото Лемми.

Струйные иглы часто имеют несколько положений для удерживающих зажимов. Чем выше струйная игла движется по слайду (зажим движется к заостренному концу игольчатого сопла), тем богаче смесь может быть получена в средней части дроссельной заслонки. Это обрабатывает нижнюю часть среднего диапазона. Верхний конец обрабатывается самим конусом иглы. Длинный плавный конус будет более скудным при открытии дроссельной заслонки, чем короткий, агрессивный, когда игла движется вверх вместе с ползунком.

Интересно, что такие вещи, как игольчатые форсунки с несколькими положениями, начали исчезать в более поздних карбюраторах не потому, что они плохо работали, а потому, что ограничения выбросов вынудили производителей сделать свои карбюраторы «защищенными от несанкционированного доступа». Часто по этой причине винты холостого хода устанавливаются на заводе и закрываются латунными заглушками. Вы все еще можете получить доступ к регулировочному винту, вам просто нужно удалить запрессованную заглушку, что обычно квалифицируется как вмешательство в устройство контроля выбросов.Что-то вроде «Уловки-22», а?

Еще одна разработка, которая возникла, заключалась в добавлении ускорительного насоса, который не является отдельной схемой, но предназначен для очень конкретной потребности: устранение спотыкания, которое обычно возникает из-за быстро открывающейся дроссельной заслонки. Это спотыкание обычно происходит из-за того, что поток воздуха внезапно увеличивается, но топливо отстает. Акселераторные насосы — это, по сути, крошечные топливные насосы с механическим приводом, которые управляются дроссельной заслонкой, и они обычно открываются только при определенных обстоятельствах.Если вы когда-нибудь слышали, как кто-то говорит о «мощном» карбюраторе, это то, на что они ссылаются.

Они настроены так, что мягкое открывание дроссельной заслонки недостаточно сильно, чтобы привести их в действие, но когда дроссельная заслонка резко открывается, в карбюратор подается хороший порция топлива. (В большинстве случаев они могут быть настроены, поэтому размер «выстрела» может быть адаптирован для удаления болота, но не слишком богатого.)

Со временем на карбюраторах стала проявляться еще одна корректировка: стравливание воздуха.Регулируемые отводы воздуха в основном помогают ускорить или отсрочить переход с одного контура на другой, снова расширяя возможности регулировки карбюратора, к лучшему или к худшему.

Это карбюратор CV. Видите эту большую большую обложку сверху? Это ваша наводка. Фото Лемми.

Современная эпоха

Что ж, этот подзаголовок неправильно употреблен. Хотя с заводов все еще выпускается несколько мотоциклов с карбюраторами, их становится мало, и их обычно можно найти на старых моделях.Таким образом, мы можем определить «современный» здесь как примерно 1990-е годы.

Введите постоянную скорость, или CV, карбюратор. Карбюраторные карбюраторы существуют уже давно, но они стали очень популярными в 1990-х годах из-за их способности очищать карбюратор, сводя к минимуму избыток несгоревших углеводородов, которые обеспечивали менее точные устройства для распыления топлива.

А это слайд резюме. (Звучит как изящный танец, не так ли?) Это более поздний блок в стиле диафрагмы. Видите, почему углеводы такие большие? Фото Лемми.

По сути, карбюратор CV поднимает ползун не механически, а пневматически. Карбюратор разделяет функцию подъема слайда, используя трос дроссельной заслонки для открытия и закрытия бабочки в горловине карбюратора, а не путем прямого подъема слайда. Затвор, теперь уплотненный диафрагмой и закрытый слабой пружиной, открывается относительно вакуума двигателя. Таким образом, ползун карбюратора управляется двигателем. На самом деле всадник косвенно управляет воздушным потоком.

«Но Лем!» Я слышу, как вы говорите. «Разве это не ухудшит реакцию дроссельной заслонки?» да. Да, было бы. Но это было неплохо, особенно когда задействовали ускорительный насос. Это было лучше для окружающей среды, потому что не было всех этих сильных всплесков (численно низкое соотношение воздух / топливо), возникающих каждый раз, когда гонщик доволен газом. Вместо этого произошло приятное равномерное повышение оборотов двигателя с меньшим ущербом для окружающей среды. Однако вы, как правило, не увидите карбюраторы CV (обычно идентифицируемые по очень большим квадратным или круглым вершинам, на которых расположены диафрагмы) на гоночных или соревновательных машинах.(Взгляните на современный двухтактный мотоцикл для бездорожья!) Вместо этого их использование было отнесено в основном к повседневным стандартам и пригородным мотоциклам. Карбюратор CV, как вы уже догадались, очень экономно расходует топливо. От чего они отказываются в отклике на газ и производительности, они возвращают эффективность и экономичность.

А сейчас я верну вас к той мысли, которую просил удержать ранее. Помните атмосферные клапаны? Они в основном полагались на то, что вакуум в двигателе преодолевает слабую пружину, чтобы впускать воздух и топливо в двигатель.Звучит знакомо? По сути, дизайнеры взяли тот же принцип, соединив его с идеей старого Вентури, и создали самые технологически продвинутые и экологически эффективные массовые карбюраторы, которые когда-либо устанавливались на серийные мотоциклы.

Закат

За исключением старых мотоциклов, которые все еще соответствуют законам о выбросах, таких как Suzuki S40 Boulevard или Honda XR650L (которые, кстати, оба используют CV) и соревновательных машин, карбюраторы в значительной степени исчезли, их заменила система впрыска топлива.

Почему, спросите вы? Что ж, они менее вредны для окружающей среды. Впрыск топлива отключает подачу топлива в условиях высокого вакуума и низкой нагрузки. (Подумайте о том, когда вы спускаетесь на низкоскоростной спуск с закрытой дроссельной заслонкой.) Карбюратор по своей конструкции продолжает забрасывать много топлива во впускной тракт. Так что впрыск топлива в этом отношении более эффективен.

Однако более серьезная причина в том, что карбюратор загрязняет намного больше, чем FI, но, вероятно, не так, как вы думаете.Поскольку углеводы не являются системами под давлением, такими как впрыск топлива, топливо должно падать из бака в топливный бак карбюратора под действием силы тяжести, а это означает, что и бак, и бак должны выпускаться в атмосферу, выбрасывая в воздух очень вредные несгоревшие углеводороды. А топливо, как и многие растворители, очень легко испаряется. Если умножить это испарение на все мотоциклы в мире, можно легко представить, сколько бензина (в газообразной форме) выбрасывается в атмосферу. (Велосипеды с впрыском топлива представляют собой герметичные системы и обычно содержат испарительный баллон для улавливания паров до следующего запуска велосипеда, когда они попадут в воздухозаборник и сгорят.)

Карбюраторы работают хорошо, и это удивительно простые, но точные устройства. Они ушли на второй план по какой-то причине, но это, конечно, не умаляет изобретательности, необходимой для их разработки, создания и настройки.

Как работают карбюраторы?

Карбюраторы, которые сейчас можно найти только в классических автомобилях, когда-то были основным решением для эффективного смешивания воздуха и топлива. Так как они работали?

Скорее всего, если вам меньше 25 лет, вы, вероятно, никогда не контактировали с карбюратором.Впрыск топлива теперь полностью доминирует в автомобильном мире, обеспечивая более стабильную и надежную топливную смесь для двигателя. Но вернитесь в середину 20-го века, и углеводы были нормой почти в каждом автомобиле, от Austin 1100 до Aston Martin DB5.

Карбюраторы — это цилиндрические компоненты, которые используются в двигателях старых автомобилей и используются для обеспечения правильного соотношения воздух / топливо, поступающего в цилиндры двигателя с требуемой скоростью. Основную схему можно увидеть ниже:

Карбюратор работает с перепадами давления через трубку Вентури и исследует теорию гидродинамики, называемую теоремой Бернулли.Бернулли по сути придумал уравнение уравновешивания давления, которое доказало, что жидкости всегда будут перемещаться из области высокого давления в область низкого давления.

Когда воздух проходит через воздухозаборник, он попадает в карбюратор и достигает сужения, называемого трубкой Вентури. По мере того, как площадь становится меньше, давление воздуха повышается, ускоряя его до области с более низким давлением на другой стороне трубки Вентури. В сужение подается небольшая трубка, известная как жиклер, которая проходит от поплавковой камеры (в которой находится топливо) к воздушной камере.

Теорема Бернулли … не спрашивайте

Из-за перепада давления, создаваемого трубкой Вентури, топливо всасывается из зоны относительного высокого давления через жиклер в воздушный поток в виде брызг.Количество топлива, поступающего в карбюратор, определяется разницей давления внутри поплавковой камеры до конца жиклера, которая зависит от скорости воздушного потока. Скорость воздуха, проходящего через карбюратор, регулируется частотой вращения двигателя и, следовательно, регулируется дроссельной заслонкой в ​​основании камеры карбюратора.

Одноструйные карбюраторы были чрезвычайно простыми в своей настройке и поэтому были модифицированы в середине 20-го века для удовлетворения потребностей продаваемых автомобилей.По мере того, как автомобильные двигатели становились более эффективными и мощными, конструкция карбюратора также должна была развиваться, поскольку в систему требовалось больше воздуха, чтобы поддерживать соотношение воздух / топливо на желаемых значениях.

Таким образом, в конструкцию карбюратора было встроено средство, называемое отводом воздуха, которое ограничивало количество топлива, поступающего в двигатель, за счет увеличения количества воздуха в соотношении.Воздух подавался в жиклер в небольших количествах, чтобы в основном предварительно перемешать топливо, поступающее в воздушную камеру, увеличивая количество воздуха в соотношении.

Одним из недостатков карбюраторов всегда была необходимость использования дроссельной заслонки. Когда двигатель запускается в холодном состоянии, смесь воздуха и топлива должна быть богаче, чтобы двигатель работал, поэтому воздушная заслонка закрывается вручную на верхнем конце карбюратора, чтобы уменьшить количество поступающего воздуха. Это закрытие также означает, что всасывание, создаваемое перепадом давления, концентрируется на входе топлива, дополнительно уменьшая соотношение воздух / топливо.

Современные автомобили с системой впрыска топлива имеют автоматическую заслонку, имитируемую посредством топливной карты «запуска», которая запрограммирована в ЭБУ для создания богатой смеси при холодном запуске, в результате чего работа заслонки в настоящее время отсутствует.

Другой проблемой карбюраторов было отсутствие воздушного потока, когда автомобиль стоял на холостом ходу, что приводило к недостатку топлива, поступающего в трубку Вентури. Это должно было быть решено с помощью жиклера холостого хода, который впрыскивал небольшое количество топлива в нижний конец карбюратора на дроссельной заслонке. Используя небольшое количество воздуха, всасываемого из трубки Вентури, можно было подать в двигатель достаточное количество смеси, чтобы он продолжал работать на холостом ходу. Опять же, системы впрыска топлива были полностью разработаны для устранения этих проблем, что делает карбюратор практически ненужным.

Карбюратор от Ford Model A с регулировкой холостого хода с помощью винтов. Карбюраторы

разрабатывались все более и более на протяжении массового производства автомобилей в прошлом веке, и во многих высокопроизводительных автомобилях того времени вы часто будете видеть двойные и тройные карбюраторы, используемые для удовлетворения требований двигателя.Они использовались вплоть до 1990-х годов, с тех пор система впрыска топлива была более чем способна взять бразды правления на себя. Поскольку карбюраторы требуют значительного обслуживания из-за постоянной потребности в настройке для обеспечения бесперебойной работы двигателя, они во многом ушли в прошлое, за исключением некоторых очень простых автомобилей на развивающихся рынках.

Но если вы когда-нибудь планируете восстанавливать классический автомобиль или просто ежедневно ездить на старом автомобиле, надеюсь, теперь вы знаете основы того, что является чрезвычайно важным компонентом прошлых лет.

Что такое карбюратор? »Блог« Ноу-хау NAPA »

Если ваш автомобиль был построен до конца 1980-х годов, скорее всего, в двигателе используется карбюратор для подачи воздуха и топлива в двигатель. Карбюраторы (или карбюраторы) представляют собой сложные компоненты, которые выполняют несколько ключевых функций, когда речь идет о характеристиках двигателя: поток воздуха / топлива (дроссельная заслонка), смесь воздух / топливо (распыление), хранение топлива (топливные баки), качество холостого хода и для автомобилей с В автоматических трансмиссиях карбюратор может даже управлять точками переключения через рычажный механизм.

Расход воздуха / топлива — Воздух поступает в карбюратор через воздушный рог в верхней части карбюратора. Есть две основные системы — первичная и вторичная (для 4-цилиндровых карбюраторов). Воздух втягивается в двигатель через разрежение во впускном коллекторе. Когда воздух проходит через трубку Вентури (цилиндр) карбюратора, из-за падения давления создается вакуум, поскольку скорость воздушного потока увеличивается по сравнению с конструкцией трубки Вентури. Он протягивает топливо через главные жиклеры системы дозирования карбюратора, а затем распыляется из форсунки Вентури внутри главного цилиндра карбюратора.Каждый ствол карбюратора имеет отдельную систему. Лопатки дроссельной заслонки управляются непосредственно водителем через педаль газа.

Соотношение смеси AF — также называемое соотношением AF (AFR), это баланс воздуха и топлива в двигателе. Выраженное в виде отношения, например, 12 фунтов воздуха в сочетании с 1 фунтом топлива составляют 12: 1. Независимо от конструкции или характеристик двигателя, передаточные числа остаются неизменными.


Характеристики AFR

5: 1 — Предел насыщенного горения.Двигатель будет работать неровно и неустойчиво.

6-9: 1 — Чрезвычайно богатый. Низкая производительность с черным выхлопом, от которого могут гореть нос и глаза

10-11: 1 — Очень богатый. Здесь могут работать форсированные двигатели для контроля детонации.

12-13: 1 — Богатый. Лучший диапазон мощности для безнаддувных двигателей.

14-15: 1 — Химически идеален. 14,6: 1 — идеальный AFR, не оставляющий несгоревшего топлива или кислорода.

16-17: 1 — Lean. Лучшее для экономии топлива. Приемлемо для круиза с частичным дросселем.

18-19: 1 — Очень худой. Это предел допустимого вождения.

20-25: 1 — Предел сжигания обедненной смеси. Хотя это зависит от двигателя, на этом этапе вы рискуете взорваться, появиться горячие точки и сгореть поршни.

AFR управляется тремя системами: холостым, первичным и вторичным. Это функция того, сколько топлива подается в двигатель в зависимости от расхода воздуха.

На передней стороне карбюратора находятся винты первичной смеси холостого хода, а также некоторые вакуумные порты.

Хранение топлива — Для запуска и всплесков мощности карбюратор должен хранить небольшое количество топлива внутри себя. В отличие от системы впрыска топлива, где топливо находится под высоким давлением (40-65 фунтов на квадратный дюйм), карбюраторные системы обычно настроены на повышение давления топлива только до 6-7 фунтов на квадратный дюйм. Поскольку топливо доставляется под вакуумом, а не под давлением (как EFI), наличие небольшого количества топлива на борту очень важно. Большинство карбюраторов всегда вмещают пару унций топлива. Уровень топлива внутри чаш регулируется иглой и седлом.Когда уровень топлива опускается ниже установленного, вес топливного поплавка открывает иглу, топливо поступает через отверстие в седле, пока поплавок не поднимется, закрывая иглу. Когда дроссельная заслонка резко открывается для прохождения, слияния или просто для работы, необходимое дополнительное топливо механически перекачивается через карбюратор через систему пружины и плунжера непосредственно от топливных баков к трубке Вентури.

Качество холостого хода — Функция системы дозирования холостого хода, а также дроссельных заслонок, качество холостого хода двигателя важно по нескольким причинам.Неровный холостой ход означает неаккуратную работу при остановке и трогании, больший износ и загрязнение свечей зажигания, а также затруднения при запуске, особенно при холодном двигателе. На холостом ходу система дозирования подает все топливо, две другие системы не задействованы. В режиме холостого хода, когда открываются дроссельные заслонки, система холостого хода работает в тандеме с основной системой дозирования. При открытии дроссельной заслонки роль системы холостого хода уменьшается. На холостом ходу разрежение протягивает топливо через систему дозирования, включая отверстия винта холостого хода, которые позволяют регулировать топливную смесь холостого хода.

В карбюраторах с 4 цилиндрами первичная система используется до тех пор, пока дроссельная заслонка не откроется примерно на 65%, после чего начнут открываться вторичные стволы. Обе системы достигают широко открытой дроссельной заслонки (WOT) в одной и той же точке, но карбюраторы с разнесенными размерами отверстий, такие как GM Quadrajet, имеют эффект, называемый «врезанием», когда вторичные звенья намного больше, чем первичные стволы, что есть точка, в которой потоки воздуха и топлива совершают внезапный скачок. Стволы одинакового размера устраняют эту проблему.

В этом карбюраторе Edelbrock используются вторичные вторичные обмотки большего размера (вверху) и первичные валы меньшего размера (внизу) для лучшей экономии топлива на низких оборотах.

В большинстве случаев штатного карбюратора достаточно для стандартного двигателя, но запасной карбюратор может помочь разбудить штатный двигатель и обычно требуется для приложений с высокими эксплуатационными характеристиками. Ключом к выбору нового карбюратора является соответствие размера двигателя размеру карбюратора. Вопреки распространенному мнению, большинство маленьких двигателей V8 могут использовать воздушный поток только 600-650 кубических футов в минуту без серьезных изменений производительности.Несмотря на то, что многие малоблочные двигатели Chevy поставлялись с карбюраторами Quadrajet 750 или 850, переход на квадратное отверстие (равные стволы) равного размера может привести к заболачиванию и снижению топливной экономичности. Для уличных двигателей карбюратор подходящего размера обычно немного меньше.

Стандартный четырехцилиндровый карбюратор слева от Mercury 390 1965 года выпуска. Он работает, но несколько пластмассовых звеньев сломаны, и заменить его проще, чем искать детали, которые трудно найти.

В конце концов, все карбюраторы нуждаются в ремонте.Поскольку они подвергаются воздействию воздуха и топлива, внутри них накапливаются грязь и лак. Загрязнение дозирующих систем резко снижает производительность карбюратора. Поддержание чистоты воздушного и топливного фильтров продлит срок службы карбюратора (и двигателя). Вы можете продлить срок службы старого карбюратора с помощью топливной обработки, которая очищает лак изнутри. Независимо от технического обслуживания, в конечном итоге потребуется перестройка.

Старый автомобиль был откручен и отсоединен от впускного коллектора.Убедитесь, что все застежки и детали сохранены, они будут использоваться повторно.

В некоторых случаях восстановление карбюратора невозможно или экономически нецелесообразно. Сломанные детали, трудно найти прокладки и сложные процессы превращают восстановление в азартную игру, особенно для менее распространенных автомобилей. Замена — лучший вариант здесь. Недавно мы прошли через этот процесс с Mercury Parklane 1965 года выпуска с двигателем Ford FE 390. Первоначальный карбюратор нуждался в ремонте, но было несколько сломанных частей, которые очень трудно найти.Мы также хотели разбудить сонный 390. Карбюратор серии Edelbrock 600 CFM Thunder был выбран и заказан в местном магазине автозапчастей NAPA.

Каждый раз, когда карбюратор снимается, необходимо заменить прокладку. Если вы этого не сделаете, произойдет утечка воздуха.

Установка нового карбюратора требует небольшой настройки, но карбюраторы Edelbrock очень близки к тому, чтобы быть идеальными «из коробки», что является одним из преимуществ этого пути. Конструкция очень похожа на оригинальный карбюратор и заменяется болтовым соединением, адаптеры не требуются (для некоторых приложений требуются адаптеры, проверьте это дважды в местном магазине).

После ввинчивания необходимых вакуумных фитингов карбюратор монтировался. В этом случае нам потребовалось переделать топливопровод. Мы просто отрезали и расширили конец, чтобы на него поместился кусок топливного шланга 5/16 ″.

После установки нового карбюратора 390 запускался намного легче, с плавным холостым ходом и лучшими характеристиками на холостом ходу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *