Устройство и принцип работы карбюратора
До середины 80-х бензиновые двигатели внутреннего сгорания на легковых и легких грузовых автомобилях массово оснащались карбюраторами. Такие двигатели работают по принципу сгорания заранее приготовленной внешним устройством топливно-воздушной смеси в цилиндрах мотора. Указанная рабочая смесь состоит из капель горючего и воздуха. Карбюратор отвечает за процесс, подразумевающий образование смеси из этих компонентов в нужной пропорции для максимальной эффективности работы ДВС. Простейший карбюратор представляет собой механическое дозирующее устройство.
Содержание статьи
Немного истории
Ранние разработки на заре эпохи двигателестроения использовали в качестве горючего светильный газ. Карбюратор таким двигателям на раннем этапе был попросту не нужен. Светильный газ поступал в цилиндры благодаря разрежению, которое образовывалось в процессе работы двигателя. Главной проблемой такого горючего являлась его высокая стоимость и ряд сложностей в процессе использования.
Вторая половина XIX века стала тем периодом, когда изобретатели, инженеры и механики во всем мире старались заменить дорогой светильный газ более экономичным, дешевым и доступным видом горючего для двигателя внутреннего сгорания. Лучшим решением стало использование привычного для нас сегодня жидкого топлива.
Стоит учесть, что такое топливо не может воспламениться без участия воздуха. Для приготовления смеси из воздуха и топлива потребовалось дополнительное устройство. Мало того, но смешивать воздух с горючим необходимо было еще и в нужных пропорциях.
Для решения этой задачи изобрели первый карбюратор. Устройство увидело свет в 1876 году. Создателем ранней модели карбюратора стал итальянский изобретатель Луиджи Де Христофорис. По своей конструкции и принципу работы первый карбюратор имел ряд существенных отличий от более современных аналогов. Для получения качественной топливно-воздушной смеси горючее в первом устройстве нагревалось, а его пары смешивались с воздухом. По ряду причин этот способ образования рабочей смеси не получил широкого распространения.
Разработки в данной области продолжились, а уже через год талантливые инженеры Готлиб Даймлер и Вильгельм Майбах создали конструкцию двигателя внутреннего сгорания, который имел карбюратор, работающий по принципу распыления топлива. Это устройство легло в основу для всех последующих разработок.
Модернизация
Главным направлением дальнейшей работы инженеров стала максимальная автоматизация всех процессов смесеобразования. Над совершенствованием конструкции карбюратора трудились лучшие умы многих компаний по производству автомобилей и сопутствующего оборудования. По этой причине можно встретить великое множество простых и сложных моделей карбюраторов от многочисленных мировых производителей.
Дальнейшее развитие
Карбюраторы стали активно вытесняться инжекторными системами только в конце XX века. До этого времени конструкцию карбюратора усиленно совершенствовали. Последними витками эволюции карбюраторного впрыска стали карбюраторы под контролем электроники. В таких карбюраторах имелось несколько электромагнитных клапанов, работу которых контролировало специальное устройство управления. Для примера можно упомянуть марку карбюратора Hitachi. В конструкции насчитывалось без малого 5 клапанов, а заслонки управлялись электронным способом.
Последнее поколение конструктивно сложных карбюраторов отлично демонстрирует уже упомянутая модель карбюратора Hitachi. Этот карбюратор устанавливался на автомобили марки Nissan в самом конце 80-х и в начале 90-х годов. Сложность этого поколения карбюраторов заключается в большом количестве вспомогательных устройств, особенно если сравнивать продукт Hitachi с примитивным «Солекс», который ставился на ВАЗ.
Вспомогательные устройства отвечали за стабилизацию работы карбюратора в различных режимах. К таким режимам и особенностям эксплуатации можно отнести резкий сброс газа, режим холостого хода в процессе простоя на автомобиле с автоматической КПП, выравнивание и стабилизацию оборотов силового агрегата после включении климатической установки, а также многие другие.
Доведенный до совершенства карбюратор последних поколений базово состоял из многочисленных устройств. Мы назовем только некоторые из них для ознакомления:
- Система регулирования температуры наружного воздуха;.
- Обогреватель впускного коллектора;
- Клапан прекращения подачи топлива;
- Клапан устройства обогащения смеси;
- Биметаллическая пружина воздушной заслонки в устройстве механизма открытия дросселя;
- Система быстрого холостого хода и т.д;
Такие устройства относятся к последним «электронным» карбюраторам. Дополнительные элементы в этих моделях были выполнены в виде отдельных аналоговых устройств. Устройства управлялись простейшей электроникой или работали по принципу саморегулирования (биметаллическая пружина).
Примечательно то, что простые механические карбюраторы являются очень универсальными устройствами и могут быть установлены при помощи переходника на разные модели автомобилей. Отличным примером является все тот же прекрасно известный отечественным автомобилистам карбюратор «Солекс».
Карбюратор и инжектор
Главным преимуществом инжектора является намного более точное и своевременное дозирование топлива для получения нужных пропорций топливно-воздушной смеси. Появление и внедрение в автоиндустрию доступных по цене микропроцессоров в итоге привело к тому, что необходимость в сложном карбюраторе и дополнительных устройствах в его конструкции попросту исчезла. Все функции отдельных элементов карбюратора взял на себя один единственный блок управления (ЭБУ), а в конструкции инжектора установили простые устройства исполнения.
Ошибочно полагать, что инжектор является более экономичным решением сравнительно с карбюратором. Хорошо отстроенный карбюратор демонстрирует схожие показатели по расходу топлива. Популярность распределенного впрыска обусловлена тем, что именно такой механизм топливоподачи способен соответствовать всем жестким современным нормам и требованиям по экологичности ДВС. Карбюратор удовлетворить такие требования не может, что обусловлено его конструктивными особенностями и производительностью жиклеров.
Сегодня карбюраторный впрыск встречается только на тех двигателях, основным назначением которых является целевая установка на спецтехнику. Причиной такого решения стала уязвимость электронных инжекторных систем во время тяжелых условий эксплуатации. Электронные узлы и модули инжектора страдают от повышенной влажности и загрязненности, а форсунки чувствительны к качеству топлива. Для примера стоит сказать, что однозначно лучше установить на транспортное спецсредство при использовании такового на болотах именно механический карбюратор, который не перегорит. Такой карбюратор всегда можно с легкостью обслужить, почистить и просушить при необходимости.
Виды карбюраторов
Как мы уже говорили, процесс модернизации карбюраторов породил большое количество видов данного устройства от разных производителей. Все это многообразие карбюраторов условно можно разделить на три группы:
- барботажный;
- мембранно-игольчатый;
- поплавковый;
Два первых типа карбюраторов уже давно практически не встречаются, так что останавливаться на этих конструкциях мы не будем. Целесообразнее рассмотреть поплавковый карбюратор, который еще можно увидеть в различных модификациях на гражданских автомобилях эпохи 90-х в наши дни.
Устройство поплавкового карбюратора
Главной задачей карбюратора является смешение топлива и воздуха. Разные модели карбюраторов осуществляют этот процесс по схожему принципу. Поплавковый карбюратор состоит из следующих элементов:
- поплавковая камера;
- поплавок;
- запорная игла поплавка,
- жиклер;
- смесительная камера;
- распылитель;
- трубка Вентури;
- дроссельная заслонка;
Поплавковый карбюратор устроен так, что к его поплавковой камере подведена специальная магистраль. По этой магистрали из топливного бака в карбюратор подается топливо. Регулирование количества топлива в камере осуществляется посредством двух элементов, которые взаимосвязаны. Речь идет о поплавке и игле. Падение уровня топлива в поплавковой камере означает, что и поплавок опустится вместе с иглой. Таким образом получится, что опустившаяся игла откроет доступ для проникновения в камеру следующей порции горючего. При заполнении камеры бензином поплавок поднимется, а игла при этом параллельно перекроет горючему доступ.
В нижней части поплавковой камеры находится следующий элемент под названием жиклер. Жиклер выполняет функцию калибратора и обеспечивает дозирование подачи горючего. Через жиклер топливо попадает в распылитель. Так происходит перемещение нужного количества горючего из поплавковой камеры в смесительную камеру. В смесительной камере происходит процесс приготовления рабочей топливно-воздушной смеси.
Конструктивно смесительная камера имеет диффузор. Указанный элемент создан для того, чтобы увеличивать скорость воздушного потока. Диффузор отвечает за создание разрежения воздуха в непосредственной близости от распылителя. Это помогает вытягивать топливо из поплавковой камеры, а также способствует лучшему его распылению в смесительной камере. Таково базовое устройство простого поплавкового карбюратора.
Дроссельная заслонка : холодный пуск и холостой ход
То количество рабочей топливно-воздушной смеси, которое поступит в цилиндры двигателя, будет зависеть от положения дроссельной заслонки. Заслонка имеет прямую связь с педалью газа. Но это еще не все.
Некоторые автомобили с карбюратором имели дополнительное устройство для управления дроссельной заслонкой. Этот элемент хорошо знаком любителям старой «классики» от ВАЗ. В народе это устройство автомобилисты прозвали «подсос», а само устройство создано для холодного запуска. Элемент выполнен в виде специального рычага, который находится в нижней части торпедо со стороны водителя.
Рычаг позволяет дополнительно управлять дроссельной заслонкой. Если вытянуть «подсос» на себя, в таком случае заслонка прикрывается. Это позволяет ограничить доступ воздуха и увеличить уровень разрежения в смесительной камере карбюратора.
Бензин из поплавковой камеры при повышенном разрежении вытягивается в смесительную камеру намного интенсивнее, а недостаточное количество поступившего воздуха заставляет карбюратор готовить для двигателя обогащенную рабочую смесь. Именно такая смесь лучше всего подходит для уверенного запуска холодного мотора.
Стоит отметить, что первым во всей конструкции подвергся последующей модернизации именно холодный пуск, уже знакомый нам под названием «подсос». К простейшим же карбюраторам заслуженно относится некогда распространенный и популярный карбюратор «Солекс», которому многим обязана линейка классических автомобилей ВАЗ.
Работа карбюраторного двигателя в режиме холостого хода осуществляется следующим образом:
- карбюратор оборудован специальными дополнительными воздушными жиклерами. Эти жиклеры отвечают за подачу строго дозированного количества воздуха;
- воздух проходит под дроссельной заслонкой и далее по рабочему алгоритму смешивается с бензином. При этом весь процесс происходит тогда, когда педаль газа не выжата и отпущена;
Вот так и выглядит базовое устройство и принцип работы карбюратора поплавкового типа.
Сильные и слабые стороны устройства
Главным достоинством карбюратора является его доступная по цене ремонтопригодность. В свободной продаже по сей день существуют специальные ремонтные комплекты, которые позволяют вернуть карбюратор в строй достаточно быстро. Для ремонта карбюратора не требуется арсенал какого-либо специального оборудования, а отремонтировать устройство при наличии определенных умений и навыков под силу практически любому автомобилисту.
Механический карбюратор не так сильно боится загрязнений и воды, так как их попадание не может окончательно вывести его из строя. В этом одновременно кроется как сильная, так и слабая сторона устройства. Карбюратор нужно достаточно часто подстраивать и обязательно чистить по сравнению с инжекторным впрыском, но он выносливее электронных решений при возникновении ряда таких условий, которые относятся к тяжелым или даже экстремальным условиям эксплуатации.
К дополнительным плюсам карбюратора относят его меньшую чувствительность к топливу низкого качества, а процесс чистки не представляется сложным. Хотя карбюратор и является относительно сложным устройством, но диагностировать неисправности и обслуживать его определенно проще сравнительно с забитой или неисправной инжекторной системой.
К главным минусам карбюратора можно отнести необходимость его регулярной чистки и подстройки. Карбюратор может преподнести сюрпризы в процессе эксплуатации, так как наблюдается зависимость от внешних погодных условий. В зимний период в корпусе карбюратора может накапливаться и затем замерзать конденсат. В жару карбюратор склонен к перегреву, что ведет к интенсивному испарению горючего и падению мощности ДВС.
Последним аргументом против карбюратора является повышенная токсичность выхлопа, что и привело к отказу от его использования на современных авто по всему миру. Сегодня карбюратор оправданно считается безнадежно устаревшим «классическим» решением.
Читайте также
Устройство и работа простейшего карбюратора
Категория:
Ремонт топливной аппаратуры автомобилей
Публикация:
Устройство и работа простейшего карбюратора
Читать далее:
Устройство и работа простейшего карбюратора
Устройство
Простейший карбюратор состоит из двух основных частей: смесеобразующего устройства и поплавковой камеры. В смесеобразующем устройстве происходит приготовление горючей смеси, а поплавковая камера является резервуаром, откуда топливо подается для смешения с воздухом.
Смесеобразующее устройство карбюратора имеет входной воздушный патрубок, диффузор, смесительную камеру, дроссельную заслонку, выходной патрубок. Выходной патрубок обычно заканчивается фланцем, которым карбюратор крепится к впускному трубопроводу двигателя.
Рекламные предложения на основе ваших интересов:
На входном патрубке устанавливают шланг для подвода воздуха или непосредственно воздушный фильтр. Диффузор является местным уменьшением сечения смесеобразующего устройства. Благодаря диффузору улучшаются условия распыливания топлива, так как при работе двигателя в самом узком сечении диффузора создается максимальная скорость воздушного потока. В этом месте устанавливают распылитель, представляющий собой трубку, выведенную в диффузор. Через распылитель происходит истечение и распыление топлива.
Поплавковая камера содержит поплавковый механизм, состоящий из поплавка и игольчатого клапана. Поплавок закреплен шарнирно на стенке поплавковой камеры. На рычаг поплавка опирается запорная игла игольчатого клапана.
При подаче топлива через штуцер в поплавковую камеру поплавок всплывает и своим рычагом поднимает запорную иглу, закрывая игольчатый клапан. Как только уровень топлива в поплавковой камере достигнет заданного предела, игольчатый клапан закроется полностью и поступление топлива в камеру прекратится. При расходовании топлива из поплавковой камеры поплавок опускается и приоткрывает игольчатый клапан. В поплавковую камеру вновь начинает поступать топливо до момента достижения заданного уровня. Таким образом, поплавковая камера с помощью поплавкового механизма обеспечивает поддержание заданного уровня топлива при всех режимах работы двигателя.
В нижней части поплавковой камеры располагают главный жиклер. Его основное назначение состоит в дозировании топлива для получения горючей смеси нужного состава. Жиклер представляет собой пробку с центральным калиброванным отверстием. Диаметр калиброванного отверстия жиклера выбирается в зависимости от требуемого расхода топлива. Большое значение для образования горючих смесей имеет также длина калиброванного отверстия жиклера, углы входных и выходных фасок, диаметры каналов в теле жиклера. Главный жиклер может быть установлен в нижней или верхней части распылителя.
Работа
При вращении коленчатого вала двигателя во время тактов впуска и при открытой дроссельной заслонке через смесительную камеру карбюратора проходит воздух. Внутри диффузора скорость потока воздуха значительно возрастает, и на выходе рыспылителя создается разрежение. При этом в поплавковой камере вследствие наличия отверстия давление остается равным атмосферному. Из-за разности давлений в поплавковой камере и в распылителе топливо начинает перетекать через главный жиклер и распылитель в виде фонтанчика, попадая в горловину диффузора. Здесь струя поступающего воздуха дробит вытекающее топливо на мелкие капельки, которые перемешиваются с воздухом, испаряются и образуют горючую смесь.
Образование горючей смеси в смесительной камере карбюратора происходит не в полном объеме. Часть топлива в виде капелек не успевает испариться и перемешаться с воздухом. Неиспарив-шиеся капельки топлива движутся в потоке воздуха и оседают на стенках смесительной камеры и впускного трубопровода. Топливо, осевшее на стенки, образует пленку, которая движется с малой скоростью. Чтобы испарить пленку топлива, впускной трубопровод при работе двигателя подогревается. Чаще всего используется жидкостный подогрев (от системы охлаждения двигателя) или подогрев теплом отработавших газов. Таким образом, можно считать, что образование горючей смеси заканчивается в конце впускного трубопровода двигателя.
Рекламные предложения:
Читать далее: Образование горючей смеси и влияние ее состава на работу двигателя
Категория: — Ремонт топливной аппаратуры автомобилей
Главная → Справочник → Статьи → Форум
Карбюраторы-смесители
Категория:
Газобалонное оборудование
Публикация:
Карбюраторы-смесители
Читать далее:
Карбюраторы-смесители
Для приготовления горючей смеси при работе двигателя как на природном газе, так и на бензине используют карбюраторы-смесители. Поэтому за основу взяты карбюраторы базовых моделей двигателей, которые дополнены системами питания газом при работе как на холостом хоДу, так и на частичных и полной нагрузках.
Рис. 1. Схема работы карбюратора-смесителя К-91.
1 — верхний корпус; 2 — клапан подачи топлива; 3 — сетчатый фильтр; 4 — пробка фильтра; 5—7 — жиклеры; 5 — системы холостого хода, 6 — полной мощности, 7 — воздушный; 8— малый диффузор; 9 — кольцевой распылитель; 10 — распылитель форсунки; 11 — смесительная полость; 12 — форсунка ускорительного насоса; 13 — воздушная заслонка; 14 — клапан воздушной заслонки; 15 — прокладка верхнего корпуса; 16 — балансировочный канал; 17 — корпус поплавковой камеры; 18 — пружина штока экономайзера; 19 — шток экономайзера; 20— пружина штока ускорительного насоса; 21 — шток ускорительного насоса; 22 — планка; 23 — шток привода экономайзера и насоса; 24 — манжета поршня; 25 — втулка; 26 — пружина манжеты; 27 — поршень насоса; 28 — толкатель экономайзера; 29 — впускной клапан ускорительного насоса; 30 — клапан экономайзера; 31 — тяга привода; 32 — пробка экономайзера; 33 — рычаг привода экономайзера и насоса; 34 — главный жиклер; 35 — канал ускорительного насоса; 36 — прокладка корпуса поплавковой камеры; 37 — корпус смесительной камеры; 38 — дроссельная заслонка; 39 — канал системы холостого хода; 40 — нагнетательный клапан ускорительного насоса; 41 — уплотнительная шайба; 42 — обойма шайбы; 43 — винт качественной регулировки состава смеси в режиме холостого хода при работе на бензине; 44 — пружина иглы; 45, 46 — отверстия системы холостого хода; 47 — ось дроссельных заслонок; 48 — поплавковая камера; 49 — пружина рычага поплавка; 50, 55 — отверстия системы холостого хода при использовании газового топлива; 51 — патрубок подвода газа в систему холостого хода; 52 — уплотнитель; 53, 54 — винты регулировки работы двигателя на газе при малых частотах вращения коленчатого вала; I — к вакуумному регулятору опережения значения; II — подвод газа; III — к газовому редуктору.
Рекламные предложения на основе ваших интересов:
Конструкция и схема работы карбюратора-смесителя К-91 показаны на рис. 1. От карбюратора К-88АЕ, применяемого для автомобиля ЗИЛ-130, он отличается расположенными внизу специальной проставкой для подачи газа при работе двигателя на холостом ходу и вверху смесительной камерой (переходником-смесителем) для работы двигателя на нагрузочных режимах. Смесительная камера имеет постоянную кольцевую щель.
Подача газа в смеситель осуществляется через обратный тарельчатый клапан, размещенный в корпусе. Он крепится винтами к подводящей трубе переходника-смесителя. На верхнем фланце переходника имеется воздушный фильтр. В систему холостого хода газ подводится (через обратный клапан) по специальному шлангу. Регулирование подачи газа при работе двигателя на холостом ходу для обеспечения минимально устойчивой частоты вращения коленчатого вала, плавного перехода к нагрузочным режимам и минимальной токсичности отработанных газов осуществляется регулировочными винтами. Открытие тарельчатого клапана происходит за счет разности давления газа и разрежения в пускном трубопроводе двигателя. На холостом ходу, когда Дроссельная заслонка приоткрыта, разрежение из выпускной трубы через систему холостого хода передается под клапан. Давления газа при этом недостаточно, чтобы «приподнять» тарелку клапана. Газ в смеситель и, следовательно, в главную дозирующую систему карбюратора не поступает. По мере открытия дроссельной заслонки разрежение под клапаном уменьшается и клапан приоткрывается, газ подается в смесительную камеру. Каких-либо специальных регулирующих устройств смесительная камера не имеет, так как количество подаваемого газа в зависимости от нагрузки и частоты вращения двигателя регулируется дозирующе-эконо-майзерным устройством, расположенным на корпусе редуктора низкого давления. Степень закрытия дроссельной заслонки регулируется с помощью упорного винта.
Рис. 2. Карбюратор-смеситель К-126Д автомобиля ГАЗ-52-27 (ГАЗ-52-28).
1 — корпус; 2 — проставка холостого хода; 3 — прокладки; 4 — винт качественной регулировки холостого хода; 5 — угловой штуцер; 6 — трубка холостого хода; 7 — прямой штуцер.
Рис. 3. Карбюратор-смеситель К-126БГ автомобиля ГАЗ-53-27.
1 — проставка холостого хода; 2 — винт регулировки минимальной частоты холостого хода; 3 — наружный фланец карбюратора-смесителя; 4 — штуцер; 5 — винт качественной регулировки холостого хода; 6 — прокладки; 7 — рычаг перевода дроссельной заслонки.
Карбюраторы-смесители для ГБА, выпускаемых Горьковским автозаводом, подобно карбюратору К-91, имеют дополнительную проставку холостого хода с одним регулировочным винтом и смесительное устройство для работы с двигателем.
Рекламные предложения:
Читать далее: Устройство и принцип действия газовых двигателей внутреннего сгорания
Категория: — Газобалонное оборудование
Главная → Справочник → Статьи → Форум
устройство, принцип работы, типы, преимущества и недостатки
В объявлениях о продаже автомобиля можно встретить немало предложений неновых, но вполне приличных машин в нормальном состоянии. Как говорится, «ездить и ездить». Но вот незадача – на выбранной машине установлен карбюратор. Довольно старое по своему типу устройство, которое отпугивает современных автолюбителей, особенно молодых людей, своей сложностью, возможным отсутствием ремонтных запчастей и возможными поломками. Покупать ли автомобиль с карбюратором, или найти более современную конструкцию с инжекторной топливной системой – принять решение можно только после того, как разберешься в нюансах работы и конструкции этого устройства.
Что такое карбюратор и для чего он нужен?
Чтобы двигатель внутреннего сгорания работал в оптимальном режиме, необходимо смешать топливо и воздух в определенной пропорции и подать эту смесь в камеру сгорания. Параметры смеси могут меняться в зависимости от режима работы ДВС, потребление топлива – тоже, а значит, необходимо устройство, которое в автоматическом режиме будет всё это делать.
Карбюратор – устройство для смешивания воздуха с топливом. В результате его работы в нужный момент в камеру сгорания двигателя поступает смешанный с воздухом распыленный бензин, готовый к воспламенению. Несмотря на то, что карбюратор один на несколько цилиндров, смесь через впускной коллектор всегда попадает в нужное место благодаря слаженной системе работы всех элементов ДВС.
Устройство карбюратора
До сегодняшних дней к нам добрались в основном поплавковые модели – самые последние и максимально усовершенствованные. Так что на большинстве автомобилей можно встретить именно их.
Устройство поплавкового карбюратора: 1 — регулировочный винт пускового устройства; 2 — штифт рычага 24, входящий в паз рычага 3; 3 — рычаг управления воздушной заслонкой; 4 — винт крепления тяги привода воздушной заслонки; 5 — регулировочный винт приоткрывания дроссельной заслонки первой камеры; 6 — рычаг дроссельной заслонки первой камеры; 7 — ось дроссельной заслонки первой камеры; 8 — рычаг привода дроссельной заслонки второй камеры; 9 — регулировочный винт количества смеси холостого хода; 10 — ось дроссельной заслонки второй камеры; 11 — рычаг дроссельной заслонки второй камеры; 12 — патрубок отсоса картерных газов в задроссельное пространство карбюратора; 13 — дроссельная заслонка второй камеры; 14 — выходные отверстия переходной системы второй камеры; 15 — корпус дроссельных заслонок; 16 — распылитель главной дозирующей системы второй камеры; 17 — малый диффузор; 18 — корпус топливного жиклера переходной системы второй камеры; 19 — распылитель ускорительного насоса; 20 — патрубок подачи топлива в карбюратор; 21 — распылитель эконостата; 22 — воздушная заслонка; 23 — шток пускового устройства; 24 — рычаг воздушной заслонки; 25 — крышка пускового устройства; 26 — штифт рычага 24, действующий от штока 23 пускового устройства; 27 — ось воздушной заслонки; 28 — крышка карбюратора; 29 — трубка с топливным жиклером эконостата; 30 — топливный фильтр; 31 — игольчатый клапан; 32 — эмульсионная трубка второй камеры; 33 — поплавок; 34 — главный топливный жиклер второй камеры; 35 — перепускной жиклер ускорительного насоса; 36 — рычаг привода дроссельных заслонок; 37 — рычаг привода ускорительного насоса; 38 — диафрагма ускорительного насоса; 39 — регулировочный винт качества (состава) смеси холостого хода; 40 — патрубок забора разрежения вакуумного регулятора опережения зажигания. 41 — корпус карбюраторов. 42 — электромагнитный запорный клапан; 43 — регулировочный винт добавочного воздуха заводской подрегулировки системы холостого хода; 44 — диафрагма пускового устройства.Поплавковый карбюратор состоит из множества элементов.
- Поплавковая камера, которая отвечает за поддержание определенного уровня топлива.
- Поплавок с запорной иглой, предназначенный для автоматического дозирования уровня топлива в поплавковой камере.
- Смесительная камера, в которой происходит основное смешивание распыленного (мелкодисперсного) топлива и воздуха
- Диффузор – суженный участок, проходя через который воздушный поток ускоряет свое движение.
- Распылитель с жиклером, соединяющий поплавковую и смесительную камеры, через который проходит топливо прямо к диффузору.
- Дроссельная заслонка – регулирует поток смеси, поступающий в цилиндры.
- Воздушная заслонка – регулирует поток воздуха, поступающий в карбюратор. Благодаря ей можно сделать смесь «бедной», нормальной или «обогащенной».
Схема зависимости мощности от количества воздуха в топливной смеси
Из схемы видно, что нормальная смесь — это когда воздуха в примерно в 15 раз больше чем топлива. При таких условиях будет полное сгорание бензина и максимальная мощность.
- Система холостого хода – подает топливо в обход смесительной камеры, когда дроссельная заслонка полностью закрыта. По специальным каналам бензин и воздух проходят в задроссельное пространство.
- Экономайзеры и эконостаты – устройства для дополнительной подачи топлива, когда двигатель работает на максимальных нагрузках. При этом экономайзеры имеют принудительное управление, а эконостаты работают от разрежения воздуха.
- Подсос топлива – система принудительного обогащения топливной смеси. Потянув за рычаг, водитель приоткрывал дроссельную заслонку, в результате чего воздух интенсивней проходил через смесительную камеру и забирал большее количество топлива. Получается обогащенная смесь, удобная для запуска холодного двигателя.
Принцип работы карбюратора
Посмотрев видео, ниже, Вы наглядно увидите устройство и принцип работы карбюратора на разных режимах работы. Видео хоть и старенькое, но актуальное по сей день. Не поленитесь и досмотрите до конца, если хотите полностью разобраться в теме.
Ну а ниже подытожим — работа всех поплавковых карбюраторов осуществляется по типичной схеме.
- В поплавковую камеру через топливную магистраль из бака закачивается бензин на нужный уровень, который регулируется и поддерживается поплавком и запорной иглой.
- Распылитель, находящийся в нижней части поплавковой камеры, с помощью жиклера передает строго дозированную порцию топлива в смесительную камеру. Одновременно поток топлива распыляется для лучшего перемешивания с воздухом и сгорания.
- Топливо из распылителя рассеивается над диффузором, который предназначен для создания быстрого потока воздуха и лучшего его смешивания с уже распыленным бензином.
- Смесь топлива и воздуха поступает к дроссельной заслонке, которая напрямую связана с педалью газа. Чем больше топлива нужно двигателю, тем больше открыта заслонка и тем активней работает карбюратор.
- Из карбюратора топливно-воздушная смесь проходит через впускной коллектор к тому цилиндру, в котором в данный момент опускается поршень с одновременным открытием впускного клапана.
- Поршень работает как насос, втягивая уже приготовленную в карбюраторе смесь.
Несмотря на довольно простой принцип работы, хорошо настроенный карбюратор обеспечивает отличную отдачу мощности двигателем, неплохую экономию топлива и надежность системы.
Типы карбюраторов
Предшественниками уже рассмотренного поплавкового карбюратора были мембранно-игольчатый и барботажный. Это уже устаревшие конструкции, которые сегодня и не встретишь на машинах повседневного использования (а вот на «олдкарах» эти редкости еще есть).
Мембранно-игольчатый карбюратор состоит из нескольких камер, разделенных мембранами. Мембраны опираются на пружины заданной жесткости и соединены между собой штоком. Мембранные камеры имеют выход в камеру смешивания, а также соединены с каналом подачи топлива. Движение штока приводило в действие мембраны камер, заставляя их качать топливо в полость смешивания. Да, система несколько громоздкая и медленно реагирующая на изменение режима работы двигателя, но при этом надежная до такой степени, что устанавливалась на авиационные двигатели.
Схема мембранно-игольчатого карбюратораБарботажный карбюратор – первая конструкция и первая попытка создать подобное устройство. Представлял собой глухую крышку, которая накрывала бензобак на некотором расстоянии от топлива. К крышке подводились два патрубка: один входной для воздуха, второй к двигателю. Воздух, проходя под крышкой, насыщался парами бензина и в таком виде направлялся в камеру сгорания. Это первое устройство, которое рассчитано на работу с испарениями топлива.
Схема барботажного карбюратора: 1 — трубопровод; 2 — отверстие в поплавковой камере; 3 — диффузор; 4 — распылитель; 5 — дроссельная заслонка; 6 — смесительная камера; 7 — жиклер; 8 — поплавковая камера; 9 — поплавок; 10 — игольчатый клапан.Классификация других типов карбюраторов зависит от особенностей конструкции. По сечению распылителя различают устройства с постоянным разрежением (модели производства Японии с высочайшими эксплуатационными характеристиками), с постоянным сечением распылителя (карбюраторы производства СССР и РФ) и с золотниковым дросселированием (горизонтальные карбюраторы, предназначенные в основном для мототехники).
По направлению движения готовой смеси различают конструкции с горизонтальным и вертикальным потоком (из последних самой эффективной оказалась система с нисходящим потоком).
Поплавковые карбюраторы могут иметь одну или несколько смесительных камер. Однокамерные устройства были в ходу до 1960-х годов, пока развитие двигателей не потребовало увеличения пропускной способности карбюратора.
Создание многокамерных карбюраторов с несколькими дроссельными заслонками позволило решить эту проблему. Появились разновидности: карбюраторы с одновременным открытием двух дроссельных заслонок, от каждой из которых питались определенные цилиндры, и карбюраторы с последовательным открытием двух заслонок, которые подключались на весь двигатель и работали в соответствии с его режимом.
По мере того, как росла мощность двигателей, развивались и карбюраторы. Появились трех- и четырехкамерные виды, на автомобиль устанавливалось несколько карбюраторов, настраивались различные варианты приготовления топливной смеси (например, в одной камере делалась переобогащенная смесь, в двух других – обедненная).
Преимущества и недостатки карбюраторов
Про ужасы вечного ремонта карбюратора не слышал только глухой. А что на самом деле? Какие же плюсы у этого устройства и есть ли смысл вообще с ним иметь дело? Как ни странно прозвучит это в наш технологичный век, но карбюратор имеет несколько серьезных преимуществ.
- Простота конструкции. Нет, речь не о том, что это очень уж простой механизм. Но по сравнению с электронной начинкой сегодняшних автомобилей, карбюратор на порядок проще для ремонта, обслуживания и даже эксплуатации. В большинстве карбюраторов нет никакой электроники, только механические устройства, а значит, человек с «прямыми руками» может и сам заниматься его ремонтом и обслуживанием. Об этом хорошо помнит «старая гвардия» — наши родители, привыкшие копаться в своих «ненаглядных» Жигулях и Запорожцах.
- Ремонтопригодность. Всё, что ломается в карбюраторе, можно починить без «лишней крови». Необходимые запчасти можно купить (есть производители, до сих пор выпускающие ремкомплекты. А почему бы и нет?).
- При работе с некачественным топливом карбюратор оказывается гораздо живучей и стабильней, чем инжектор. И вообще, он не слишком требователен к чистоте, а если и засоряется, то подлежит простой чистке в домашних («гаражных») условиях.
- Небольшое количество воды, попавшее в карбюратор, не причинит ему вреда, в отличие от инжектора. Правда, со временем он потребует чистки и калибровки.
- И, наконец, карбюратор не требует подключения к электросети, датчикам, процессору и прочим «радостям» цивилизации. Он работает исключительно от энергии всасываемого двигателем воздуха, а значит, был оптимальным вариантом для установки на старые автомобили, где вообще не было электроники.
Но есть и недостатки иза которых карбюраторные автомобили в конце концов сошли с мировой арены автомобилестроения.
- Технологии требовали систему подачи топлива с гибкой подстройкой, а не с постоянными параметрами, чтобы минимизировать потребление топлива (которое раньше никто особо не считал). Поэтому на смену карбюратору пришла инжекторная система, которая до сих пор развивается и совершенствуется.
- Второй значительный минус – зависимость карбюратора от погодных условий. В холодное время года внутри собирается конденсат, мешающий работе, в зимний период есть риск обледенения внутренней части. При этом летняя жара тоже не дает ему работать стабильно из-за активного испарения – начинаются сбои в подаче смеси.
- Ну и третий недостаток — это значительно ниже экологические показатели, по сравнению с инжектором. В современной борьбе за экологию карбюраторные автомобили просто не выдерживают никакой критики, так как вредные выбросы у них значительно выше.
Основные неисправности карбюраторов и их причины
Неисправности в карбюраторе отражаются на режиме работы двигателя, и именно по нему можно определить, что с системой подачи топлива не всё нормально.
- Тяжело запускается непрогретый двигатель – скорей всего, проблемы в регулировке дроссельной заслонки. Необходимо отрегулировать привод заслонки, чтобы при вытянутом подсосе она полностью закрывалась, либо отрегулировать пусковые зазоры.
- Непрогретый двигатель заводится и сразу глохнет при полностью вытянутом подсосе – проблема опять-таки в приводе дроссельной заслонки. Либо неправильно отрегулированы зазоры, либо не работает телескопическая тяга и заслонка не открывается.
- Прогретый двигатель сложно запускается – не отрегулирован уровень топлива в поплавковой камере, вышел из строя поплавковый механизм или клапанная игла, в результате чего уровень топлива выше нормы.
- Неустойчивая работа двигателя на холостых оборотах – причин может быть несколько, и основная это регулировка системы холостого хода. Другие причины – не работает привод эконостата холостого хода или не срабатывает запорный клапан, засорились жиклеры, идет подсос воздуха, ненормально работает поплавок в поплавковой камере
- При открытии дроссельной заслонки нет прироста мощности – слишком обогащенная или обедненная смесь из-за негерметичной фиксации распылителя ускорительного насоса.
- Низкая динамика разгона – недостаток топлива из-за обедненной смеси или отключения вторичной камеры.
Заключение
Несмотря на свою несколько громоздкую конструкцию, карбюраторы верой и правдой служат владельцам старых автомобилей. И, возможно, ремонт и чистка, которую автолюбители делают самостоятельно, обходится в разы дешевле, чем промывка форсунок, к которой вынуждены прибегать владельцы инжекторных автомобилей.
Покупать ли машину, если на ней установлен карбюратор? Если судить по схеме работы, он далеко не самое слабое звено в автомобиле, и может долгое время вообще не тревожить никакими поломками. Так что карбюраторы, хоть и устарели, но всё еще готовы послужить тем, кто ценит простоту и надежность.
Устройство и принцип работы карбюратора ВАЗ
Дорогие друзья, в данном мануале мы попытаемся на пальцах объяснить основные принципы работы любого карбюратора, о его устройстве, с иллюстрациями и достаточно подробными комметариями. Особенно полезной будет эта статья для новичков, которые хотят разобраться в теме. В статье мы рассмотрим следующие моменты:
Режимы работы двигателя и состав горючей смеси, систему холостого хода и переходную систему, устройство поплавковой камеры и принципы ее работы, главную дозирующую систему карбюратора, систему пуска, принцип работы эконостата и многое другое. Ведь от правильной работы всех этих узлов напрямую зависит аппетит вашего авто. Он может быть как выше так и ниже того, который указан в технических характеристиках вашей машины. К примеру расходы Ваз — 2114, 2110, 2112 можете узнать пройдя по ссылке, паспортные расходы семерки ВАЗ-2107 можете глянуть здесь, и т.д. В общем запаситесь терпением, попкорном и приготовьтесь к интересному чтиву.
Режимы работы двигателя и состав горючей смеси
СОСТАВ ГОРЮЧЕЙ СМЕСИ Для работы двигателя внутреннего сгорания необходима смесь топлива с воздухом. В карбюраторных двигателях топливо (бензин) смешивается с воздухом в определенной пропорции вне цилиндров и, частично испарившись, образует горючую смесь. Этот процесс называется карбюрацией, а прибор, приготавливающий такую смесь, — карбюратором. Смесь, пройдя по впускному трубопроводу, попадает в цилиндры двигателя, где смешивается с остатками горячих отработавших газов, образуя рабочую смесь. Частички распыленного топлива при этом испаряются. Для пуска двигателя и его работы на разных режимах, необходим различный состав горючей смеси. Поэтому карбюратор устроен так, что позволяет изменять количественное соотношение распыленного топлива и воздуха в смеси, поступающей в цилиндры двигателя. Для полного сгорания 1 кг топлива необходимо около 15 кг воздуха. Топливовоздушная смесь в такой пропорции называется нормальной. Режим работы двигателя на этой смеси имеет удовлетворительные показатели по экономичности и развиваемой мощности. Незначительное увеличение количества воздуха в топливовоздушной смеси по сравнению с его нормальным содержанием (но не более 17 кг) приводит к обеднению смеси. На обедненной смеси двигатель работает в наиболее экономичном режиме, т.е. расход топлива на единицу развиваемой мощности минимален. Полную мощность на такой смеси двигатель не разовьет. При избытке воздуха (17 кг и более) образуется бедная смесь. Двигатель на такой смеси работает неустойчиво, при этом расход топлива на единицу вырабатываемой мощности возрастает. На смеси переобедненной, содержащей более 19 кг воздуха на 1 кг топлива, работа двигателя невозможна, так как смесь не воспламеняется от искры. Небольшой недостаток воздуха в топливовоздушной смеси по сравнению с нормальным (от 15 до 13 кг) способствует образованию обогащенной смеси. Такая смесь позволяет двигателю развивать максимальную мощность при несколько повышенном расходе топлива. Если воздуха в смеси меньше 13 кг на 1 кг топлива, смесь богатая. Из-за недостатка кислорода топливо сгорает не полностью. Двигатель на богатой смеси работает в неэкономичном режиме, с перебоями и при этом не развивает полной мощности. Переобогащенная смесь, содержащая менее 5 кг воздуха на 1 кг топлива, не воспламеняется — работа двигателя на ней невозможна. ПУСК ДВИГАТЕЛЯ При пуске холодного двигателя часть распыляемого топлива оседает на стенках впускного трубопровода, а часть испарившегося топлива, попав в цилиндры, конденсируется на стенках. К тому же при низкой температуре воздуха смесеобразование ухудшается, т. к. замедляется испарение бензина. Поэтому для пуска холодного двигателя необходимо, чтобы карбюратор приготовил переобогащенную топливовоздушную смесь. РАБОТА НА ХОЛОСТОМ ХОДУ На холостом ходу частота вращения коленчатого вала двигателя невелика, а дроссельные заслонки карбюратора почти полностью закрыты. Из-за этого вентиляция цилиндров не столь эффективна, по сравнению с работой на средней и высокой частотах вращения коленчатого вала и мало количество горючей смеси, поступающей в двигатель. В рабочей смеси содержится большое количество отработавших (остаточных) газов. Поэтому для устойчивой работы двигателя на холостом ходу необходима обогащенная смесь. РЕЖИМ ЧАСТИЧНЫХ НАГРУЗОК На режиме частичных нагрузок от двигателя не требуется полная мощность. Дроссельные заслонки открыты не полностью, но вентиляция цилиндров хорошая. Поэтому на этом режиме достаточно обедненной горючей смеси. Соотношение развиваемой двигателем мощности к количеству потребляемого топлива позволяет считать режим частичных нагрузок самым экономичным. РЕЖИМ ПОЛНОЙ НАГРУЗКИ На режиме полной нагрузки от двигателя требуется максимальная или близкая к максимальной мощность. Двигатель при этом работает на высоких оборотах, а дроссельные заслонки полностью (или почти полностью) открыты. Для этого режима требуется обогащенная смесь, обладающая повышенной скоростью сгорания. РЕЖИМ РЕЗКОГО УВЕЛИЧЕНИЯ НАГРУЗКИ При работе двигателя в режиме резкого увеличения нагрузки, например при разгоне автомобиля, необходима обогащенная смесь. Но поскольку процесс смесеобразования обладает некоторой инертностью, чтобы предотвратить возникновение «провала» при наборе скорости, требуется дополнительное кратковременное обогащение горючей смеси. Для этого дополнительное топливо впрыскивается непосредственно в смесительную камеру карбюратора.
ОСНОВНЫЕ СИСТЕМЫ КАРБЮРАТОРА
Современные карбюраторы оснащены десятком различных систем и устройств, которые имеют разветвленную сеть каналов, многочисленные калиброванные отверстия, сложные рычажные передачи и пневматические камеры. Сразу разобраться в этом хитросплетении непросто. Поэтому полезно рассмотреть все основные системы по отдельности на примере упрощенных схем. И начать следует с принципа работы и устройства простейшего карбюратора.
Конструкция простейшего карбюратораДля работы бензинового двигателя необходимо во всасываемый воздух добавлять топливо, которое затем сгорает в цилиндре при рабочем ходе поршня. Чтобы топливо надежно воспламенялось и полностью сгорало, необходимо тщательно перемешивать его с воздухом и при этом выдерживать оптимальный со-став горючей смеси на всех режимах работы двигателя. Эти функции выполняет карбюратор, соединенный впускным трубо-проводом с цилиндрами двигателя. Простейший карбюратор состоит из двух камер: поплавковой и смесительной. Процесс приготовления горючей смеси продолжается на всем пути движения топлива и воздуха по впускному тракту, вплоть до цилиндров, но начинается с распы-ления топлива в смесительной ка-мере карбюратора. Для этого в смесительной камере установлен распылитель в виде трубки. Срез трубки выведен в центр диффузора камеры. Диффузор — это участок сужения смесительной камеры. Скорость воздушного потока в диффузоре возрастает, и у распылителя возникает разрежение. Под действием этого разрежения топливо вытекает из распылителя и интенсивно перемешивается с воздухом. В распылитель топливо поступает из поплавковой камеры, с которой он связан каналом. В канале установлен жиклер — пробка со сквозным отверстием определенных размеров и формы. Жиклер ограничивает поступление топлива в рас-пылитель. Одно из условий нормальной работы карбюратора — правильная установка уровня топлива в поплавковой камере. Поддерживается уровень топлива в камере при помощи поплавкового механизма с игольчатым клапаном. Топливо подается в поплавковую камеру по топливо-проводу. По мере заполнения камеры поплавок поднимается, а игла запирает отверстие клапана, при этом вытесняемый топливом воздух выводится наружу через специальное отверстие. Поплавковая камера и распылитель представляют собой сообщающиеся сосуды. Уровень топлива в поплавковой камере устанавливается так, чтобы он находился чуть ниже среза распылителя. При повышенном уровне топливо будет выходить из распылителя, переобогащая смесь, при пониженном — поступление топлива в распылитель недостаточно, в результате чего образуется сильно обедненная горючая смесь. Для того чтобы изменять состав смеси, в смесительной камере над диффузором установлена воздушная заслонка. По мере закрывания воздушной заслонки смесь будет обогащаться. Чрезмерное прикрывание заслонки приведет к переобогащению смеси и остановке двигателя. Для регулировки количества топливовоздушной смеси, поступающей в цилиндры, в нижней части смесительной камеры установлена дроссельная заслонка. Когда воздушная и дроссельная заслонки полностью открыты, сопротивление потоку воздуха минимально. Простейший карбюратор готовит горючую смесь оптимального состава только в определенном диапазоне частот вращения коленчатого вала. Диапазон зависит от пропускной способности жиклера, сечения диффузора, уровня топлива и положения дроссельной заслонки. Автомобильный двигатель должен работать в широком диапазоне частот вращения коленчатого вала и при постоянно изменяющейся нагрузке. Для приготовления смеси оптимального состава на всех возможных режимах работы автомобильные карбюраторы оборудованы дополнительными системами.
Главная дозирующая системаГлавная дозирующая система карбюратора предназначена для подачи основного количества топлива на всех режимах работы двигателя, кроме режима холостого хода. При этом на средних нагрузках она должна обеспечивать приготовление требуемого количества обедненной смеси приблизительно постоянного состава. В простейшем карбюраторе по мере открытия дроссельной заслонки увеличение расхода воздуха, проходящего через диффузор, про-водит медленнее, чем увеличение расхода топлива, вытекающего из распылителя. Горючая смесь становится богатой. Чтобы исключить переобогащение смеси, необходимо компенсировать ее состав воздухом в зависимости от степени открытия дроссельной заслонки. В карбюраторе такое возмещение осуществляет главная дозирующая система. В карбюраторах «Солекс» компенсация осуществляется пневматическим торможением: топливо в распылитель поступает не непосредственно из поплавковой камеры, а через эмульсионный колодец — вертикальный канал, в котором установлена эмульсионная трубка. Стенки трубки имеют отверстия для выхода воздуха, поступающего в нее сверху через воздушный жиклер. Поступление топлива в эмульсионный колодец определяется топливным жиклером. В эмульсионном колодце топливо смешивается с воздухом, выходящим из отверстий эмульсионной трубки. В результате в распылитель попадает топливная эмульсия, а не чистое топливо. По мере открытия дроссельной заслонки в диффузоре увеличивается разрежение и возрастает истечение эмульсии из распылителя. Одновременно растет поступление воздуха в эмульсионный колодец через воздушный жиклер, из за чего уменьшается поступление топлива из поплавковой камеры через топливный жиклер. Количество топлива, проходящего через жиклер, соответствует поступающему в диффузор количеству воздуха, что и обеспечивает компенсацию состава смеси. Требуемый состав горючей смеси задается подбором проходных сечений топливного и воздушного жиклеров, а также типом эмульсионной трубки.
СБАЛАНСИРОВАННАЯ ПОПЛАВКОВАЯ КАМЕРАВ простейшем карбюраторе поплавковая камера связана с атмосферой через отверстие в крышке. В процессе эксплуатации по мере загрязнения воздушного фильтра в диффузоре такого карбюратора будет возрастать разрежение и, следовательно, смесь начнет обогащаться. Чтобы исключить влияние загрязнения воздушного фильтра на состав горючей смеси, внутренняя полость поплавковой камеры соединена ка-налом с горловиной карбюратора.
Система холостого хода и переходная системаДля. работы двигателя на холостом ходу с минимальной частотой вращения коленчатого вала требуется малое количество горючей смеси. Следовательно, дроссельная заслонка должна быть почти полностью закрыта. При этом разрежение в диффузоре недостаточно для вступления в работу главной дозирующей системы. Поэтому карбюратор дополнительно оборудован системой холостого хода, которая готовит топливовоздушную смесь в количестве, обеспечивающем устойчивую работу двигателя при закрытой дроссельной заслонке. Каналы системы холостого хода связывают задроссельное пространство (полость впускного трубопровода) с эмульсионным ней частью смесительной камеры. При работе двигателя на холостом ходу под дроссельной заслонкой об-разуется высокое разрежение. Под действием разрежения топливо из эмульсионного колодца проходит в топливный канал холостого хода, где смешивается с воздухом, поступающим по воздушному каналу из верхней части смесительной камеры. Соотношение топлива и воздуха в эмульсии определяется пропускной способностью топливного и воздушного жиклеров, которые установлены в каналах холостого хода. Далееэмульсия поступает в задроссельное пространство, где смешивается с воздухом, проходящим через зазор между стенкой камеры и заслонкой. Зазор регулируется упорным винтом «количества»(SOLEX). Количество топливной эмульсии, проходящее по каналу в задросельное пространство, регулируется винтом с конусообразным наконечником (винтом «качества»). При заворачивании винта проходное сечение канала уменьшается. И наоборот. При плавном открытии дроссельной заслонки расход воздуха через смесительную камеру увеличивается, а количество поступающей эмульсии остается на прежнем уровне. Разрежение в диффузоре при этом еще недостаточно для вступления в работу главной дозирующей системы. В результате смесь обедняется и в работе двигателя наблюдается «провал». Для обеспечения плавного перехода от холостого хода к режиму средней нагрузки служит переходная система, которая объединена с системой холостого хода. Канал переходной системы соединяет эмульсионный канал системы холостого хода снаддроссельным пространством смесительной камеры. Выходное отверстие канала расположено таким образом, что, после приоткрытия дроссельной заслонки, оно оказывается в зоне разрежения; через него поступает дополнительное количество эмульсии в смесительную камеру, сглаживая переход от одного режима работы двигателя к другому. На холостом ходу, когда дроссельная заслонка закрыта, часть воздуха через канал переходной системы подмешивается к топливной эмульсии. Изменение состава смеси компенсируется подбором жиклеров. При заворачивании винта «количества» дроссельная заслонка приоткрывается. В результате расход воздуха через канал переход ной системы уменьшается, а через зазор между стенками смесительной камеры и заслонкой увеличивается. Количество горючей смеси, поступающей в двигатель, увеличивается, и частота вращения коленчатого вала возрастает. При отворачивании винта заслонка закрывается и частота вращения коленчатого вала снижается.
Ускорительный насосГлавная дозирующая система обеспечивает бесперебойную работу двигателя только при очень плавном открытии дроссельной заслонки. При резком открытии заслонки (например, для интенсивного разгона автомобиля) в первый момент процесс смесеобразования нарушается. Чтобы исключить «провал» в работе двигателя на этом режиме, карбюратор оснащен специальным устройством — ускорительным насосом. Он предназначен для кратковременного обогащения горючей смеси при резком открытии дроссельной заслонки. На карбюраторах широко применяется ускорительный насос диафрагменного типа с приводом от оси дроссельной заслонки. При открытии заслонки кулачок, механически связанный с ее осью, поворачивается и нажимает толкатель диафрагмы. Когда дроссельная заслонка закрывается, кулачок перестает воздействовать на толкатель. Диафрагма под действием возвратной пружины перемещается в исходное положение, создавая разрежение в полости насоса. Шарик нагнетательного клапана при этом закрывает отверстие в колодце под распылителем, шарик всасывающего клапана пропускает топливо в насос. Бензин из поплавковой камеры проходит через всасывающий клапан, заполняя полость насоса. При резком нажатии педали «газа», кулачок давит на телескопический толкатель, сжимая его пружину. При этом шарик нагнетательного клапана под давлением топлива приподнимается, открывая путь топливу из полости насоса в распылитель. Резкого перемещения диафрагмы не происходит, т.к. топливо не может быстро пройти через малое выходное отверстие распылителя. Поскольку пружина толкателя жестче возвратной пружины диафрагмы, первая, преодолевая сопротивление последней, перемещает диафрагму, вытесняя порцию топлива через нагнетательный клапан и распылитель в смесительную камеру карбюратора. Процесс впрыскивания получается растянутым по времени до нескольких секунд. Этим обеспечивается устойчивая работа двигателя при ускорении автомобиля, и, кроме того, диафрагма предохраняется от разрыва под действием давления топлива.
Система пускаПри пуске двигателя частота вращения коленчатого вала невелика, разрежение во впускной системе мало, и бензин плохо испаряется. К тому же, как уже было отмечено ранее, на холодном двигателе, особенно при низкой температуре окружающего воздуха, большая часть образовавшихся паров топлива конденсируется во впускном тракте. Поэтому для стабильного пуска двигателя необходимо приготовить в карбюраторе заведомо переобогащенную топливовоздушную смесь. Для этого следует закрыть воздушную заслонку и приоткрыть дроссельную. Тогда в диффузоре создается разрежение, достаточное для вытекания необходимого количества топлива из распылителя даже при медленном вращении коленчатого вала. Образуется рабочая смесь, пригодная для пуска двигателя. Но как только в цилиндрах появятся первые вспышки, чтобы двигатель не заглох от пере-обогащения, необходимо приоткрыть воздушную заслонку, открывая путь воздуху в диффузор. Для выполнения этих операций карбюратор дополнен специальным пусковым устройством. На карбюраторах двигателей отечественных автомобилей широко применяется пусковое устройство с ручным управлением. Оно состоит из воздушной заслонки, автоматического устройства ее приоткрывания и элементов привода. Воздушную заслонку водитель закрывает из салона автомобиля при помощи рукоятки, которая связана тягой с приводом заслонки. Привод обеспечивает заслонке возможность слегка приоткрываться, а возвратная пружина стремится удержать ее в закрытом положении. На карбюраторе установлено устройство, автоматически приоткрывающее воздушную заслонку на необходимую величину, что предотвращает переобогащение горючей смеси сразу после пуска. Устройство состоит из камеры с диафрагмой, пружины и тяги. Камера каналом связана с задроссельным пространством карбюратора. С началом устойчивой работы двигателя за дроссельной заслонкой происходит резкое увеличение разрежения, откуда по каналу оно передается в камеру. Диафрагма, преодолевая сопротивление пружины, перемещается и через тягу приоткрывает воздушную заслонку, обедняя смесь. Благодаря тому что заслонка закреплена на оси несимметрично, под действием разрежения, в смесительной камере она стремится открыться, «помогая» пусковому устройству. Воздушная заслонка связана с дроссельной заслонкой механизмом, обеспечивающим приоткрывание дроссельной заслонки при полном закрытии воздушной. Величина приоткрывания дроссельной заслонки должна обеспечить стабильную работу холодного двигателя при прогреве. По мере прогрева двигателя водитель вручную открывает воздушную заслонку и прикрывает дроссельную, снижая частоту вращения коленчатого вала до минимально устойчивой.
Экономайзер мощностных режимовДля получения от двигателя максимальной мощности необходима обогащенная горючая смесь. Для ее приготовления карбюратор оборудован специальной системой, называемой экономайзером мощностных режимов. Система обеспечивает поступление дополнительного топлива в распылитель, минуя главный топливный жиклер. Для включения экономайзера мощностных режимов применяется пневматический или механический привод. Пневматическийпривод срабатывает при падении разрежения в смесительной камере, а не по мере открывания дроссельной заслонки. Это дает возможность в нужной степени обогащать смесь при разгоне автомобиля, обеспечивая хорошую приемистость, и сохранять обедненную смесь при равномерном движении, обеспечивая экономичность. При прикрытой дроссельной заслонке разрежение из задроссельного пространства поступает по каналу к диафрагме экономайзера. При этом диафрагма сжимает возвратную пружину, а ее толкатель не касается шарика клапана экономайзера, и клапан закрыт. При открытии дроссельной заслонки разрежение под ней (соответственно и у диафрагмы) уменьшается. Под действием пружины диафрагма смещается, и ее толкатель, утапливая шарик клапана, открывает канал экономайзера. Дополнительное топливо из поплавковой камеры поступает в распылитель главной дозирующей системы, обогащая смесь.
ЭконостатЭконостат предназначен для дополнительного обогащения горючей смеси на режимах максимальных нагрузок при высокой частоте вращения коленчатого вала. Эконостат — это распылитель, установленный в самой верхней части смесительной камеры, над диффузором. Топливо в него подается непосредственно из поплавковой камеры по каналу, в котором установлен топливный жиклер, предотвращающий переобогащение горючей смеси. Иногда, для более тонкой настройки экономайзера, в верхнюю часть канала дополнительно устанавливается воздушный жиклер. Через него подводится воздух, который смешивается в канале с топливом. Поскольку выходное отверстие распылителя расположено в зоне низкого разрежения, экономайзер вступает в работу только при полном открывании дроссельной заслонки. При этом частота вращения коленчатого вала должна быть достаточно высокой, чтобы в зоне выходного отверстия распылителя возникло разрежение, достаточное для подъема топлива в канале до уровня распылителя. Поступающее через распылитель топливо смешивается с потоком топливо-воздушной смеси, дополнительно обогащая ее.
Двухкамерный карбюраторДля улучшения смесеобразования и распределения горючей смеси по цилиндрам необходимо обеспечить низкое сопротивление движению воздуха через диффузор карбюратора при больших нагрузках и поддерживать достаточное разрежение в нем при малых нагрузках. Этим требованиям в наибольшей степени удовлетворяет конструкция двухкамерного карбюратора с последовательным включением камер. Первая камера — основная — обеспечивает работу двигателя на режимах холостого хода, а также при малых и средних нагрузках. Вторая — дополнительная — включается в работу при больших нагрузках. Привод дроссельной заслонки второй камеры может быть механическим или пневматическим. В первом случае начало открывания заслонки второй камеры происходит при определенном угле открытия дроссельной заслонки первой камеры. Во втором случае момент открывания зависит от величины разрежения в смесительных камерах.
УСТРОЙСТВО И РАБОТА КАРБЮРАТОРА К-88А
На современных автомобильных двигателях преимущественно устанавливаются карбюраторы с падающим потоком, которые позволяют применять более короткие впускные трубопроводы, обладающие малым сопротивлением, что улучшает наполнение двигателя и, следовательно, повышает его литровую мощность. Кроме того, в этом случае состав смеси в отдельных цилиндрах получается более одинаковым, а карбюратор — доступнее для обслужив ания.
На рис. 104 показана схема двухкамерного карбюратора К-88А, устанавливаемого на V-образном двигателе ЗИЛ-130. Карбюратор имеет один общий входной патрубок 10 с воздушной заслонкой 11, на которой установлен клапан 12 с пружиной.
Балансировочный канал 9 обеспечивает неизменность состава смеси при засорении воздухоочистителя. Топливо поступает в поплавковую камеру через входное отверстие 2 и топливный фильтр 3. Общими для обеих камер являются ускорительный насос и экономайзер с механическим приводом.
Входной патрубок 10 разветвляется на две одинаковые камеры, в которых размещены малые диффузоры 8, большие диффузоры 30 и дроссельные заслонки 31.
Малые диффузоры установлены в тракте карбюратора на симметричных перемычках 7, что способствует более равномерному распределению смеси по цилиндрам двигателя.
Главная дозирующая система состоит из главных жиклеров 33, расположенных в поплавковой камере, жиклеров полной мощности 4, которые находятся в каналах 6, переходящих в верхней части в кольцевые выходы малых диффузоров, и воздушных жиклеров 5.
Система холостого хода включает в себя воздушный 16 и топливный 15 жиклеры, каналы 26, выходные отверстия 27 и 28 с регулировочными винтами 29.
Ускорительный насос имеет механический привод. При открытии дроссельной заслонки с помощью рычага 25 и тяги 24 перемещается поршень 19 с манжетой 20. При этом под поршнем повышается давление топлива. Впускной шариковый клапан 21 препятствует выходу топлива в поплавковую камеру, а выпускной игольчатый клапан 14 пропускает топливо к выходным распиливающим отверстиям 13 ускорительного насоса. Таким образом подается дополнительное количество топлива, необходимое для обогащения смеси и предотвращения «провала» мощности при быстром открытии дроссельной заслонки.
Поскольку впрыск дополнительного количества топлива необходим только при резком открытии дроссельных заслонок, то полный ход поршня совершается примерно за первую треть угла поворота дроссельных заслонок. Дальнейшее их открытие происходит уже при неподвижном поршне 19 и сжатой пружине 18. Пружина 18 служит также для того, чтобы увеличить впрыск топлива по времени и обеспечить тем самым лучшую приемистость автомобиля.
Экономайзер с механическим приводом управляется через толкатель 17 той же системой рычагов и тяг, что и ускорительный насос. При значительном открытии дроссельной заслонки толкатель 17 открывает клапан 23. Дополнительное количество топлива поступает из поплавковой камеры помимо главных жиклеров к жиклерам полной мощности, а через наклонные каналы — к кольцевым выходам малых диффузоров.
Карбюратор К-88А имеет встроенный механизм ограничителя числа оборотов пневмоцентробежного типа, описание которого приведено ниже.
Теория работы карбюратора автомобиля [устройство и основные детали]
Карбюраторы смешивают топливо и воздух и управляют количеством топливовоздушной смеси, поступающим в двигатель. Расскажем простыми словами про работу карбюратора машины — устройство и основные детали.
Какие основные детали
Поплавковая камера
Поддерживает постоянным уровень топлива в поплавковой камере карбюратора. Работает следующим образом. Когда уровень топлива понижается, поплавок опускается, открывает игольчатый клапан и позволяет топливу поступать в поплавковую камеру. Путем поддержания уровня топлива в определенных рамках соотношение воздух/топливо в смеси поддерживается более точно.Воздушная заслонка
Позволяет заводить холодный двигатель путем обогащения топливовоздушной смеси. Воздушная заслонка перекрывает подачу воздуха в карбюратор и, соответственно, в двигатель поступает больше топлива, при этом обороты холостого хода уменьшаются. Поэтому к системе привода дроссельной заслонки добавляется система увеличения оборотов холостого хода для их повышения при прогреве мотора.Система холостого хода
Обеспечивает подачу топлива, необходимого для работы двигателя на низких оборотах, когда главная дозирующая система не работает. Регулировочные винты позволяют изменять соотношение воздух/топливо в режиме холостого хода. Многие механики считают, что эта регулировка изменяет состав смеси во всем диапазоне оборотов, но это не так.Ускорительный насос
Обеспечивает впрыск дополнительного топлива при резком открывании дроссельной заслонки для предотвращения остановки двигателя и перебоев в его работе при разгоне автомобиля. Если посмотреть внутрь горловины карбюратора и быстро передвинуть тяги привода дроссельной заслонки, топливо должно брызнуть из выходных отверстий ускорительного насоса.Переходная система
Обеспечивает переходный режим между холостым ходом и работой главной дозирующей системы. Многие карбюраторы имеют каналы или отверстия переходной системы рядом с пластинами дроссельных заслонок, которые подают топливо при их открывании во время открывания дроссельных заслонок.Главная дозирующая система
Дозирует подачу топлива к двигателю при движении автомобиля со средними скоростями. Состоит из главных топливных жиклеров, главного распределителя и диффузора. Главный топливный жиклер расположен в канале между поплавковой камерой карбюратора и главным распылителем. Главный распылитель обычно состоит из трубки с маленькими отверстиями для воздуха. Воздух здесь смешивается с топливом для образования распыленного топливовоздушного «тумана».Главный топливный жиклер определяет, сколько топлива будет смешано с заданным количеством воздуха.
Механики используют главные топливные жиклеры различных размеров для калибровки карбюратора в различных режимах работы. Путем использования жиклеров большего размера смесь обогащается. И наоборот, установка жиклеров меньшего размера обедняет смесь.Что такое экономайзер
Обеспечивает подачу дополнительного топлива, когда машина работает под нагрузкой и при полном открывании дроссельной заслонки. Наиболее распространенными являются экономайзеры диафрагменного типа. Когда вакуум во впускном коллекторе достигает определенного значения, клапан открывается, позволяя дополнительному топливу поступать к двигателю.Клапаны экономайзера подбираются в соответствии с величиной давления открывания, измеряемой в миллиметрах рт. ст. Двигатели с низким вакуумом должны оснащаться экономайзерами, которые открываются при малых значениях вакуума. Дозирующие стержни движутся внутрь и наружу в калиброванных отверстиях в соответствии с вакуумом впускного коллектора. Когда двигатель находится под нагрузкой, и вакуум снижается, то стержни выдвигаются из главных топливных жиклеров для увеличения подачи топлива.
Байпасные жиклеры выполняют функции, что и дозирующие стержни, за исключением, что имеют свой собственный жиклер или клапан экономайзера.
Как работает карбюратор вашего автомобиля
Карбюраторы отвечают за смешивание воздуха с топливом, чтобы получить правильное соотношение для двигателя горючего транспортного средства. Карбюратор также помогает контролировать скорость двигателя при нажатии педали газа. Однако в наши дни, когда появились двигатели с впрыском топлива, о карбюраторах в автомобилях не так много слышно. Но это не значит, что они ушли полностью. Вы по-прежнему найдете карбюраторы на машинах с малым двигателем, таких как газонокосилки, мотокультиваторы и другое подобное оборудование.Это приводит нас к вопросу, какова функция карбюратора и в чем отличие от впрыска топлива?
Как работают карбюраторы
Карбюратор — это труба над цилиндрами двигателя, к которой подсоединены воздуховод и топливопровод. Воздуховод забирает наружный воздух сначала через воздушный фильтр для удаления грязи и другого мусора, а затем в карбюратор. Карбюратор, также известный как карбюратор, имеет два клапана, которые улучшают соотношение воздух-топливо. Первый клапан, известный как воздушная заслонка, регулирует поток воздуха в карбюратор для смешивания с топливом и используется только при холодном двигателе.Второй клапан открывается и закрывается, когда вы нажимаете педаль газа, и регулирует, какая часть комбинации выходит из карбюратора и попадает в двигатель. Когда клапан открывается, он всасывает воздух через трубку Вентури и втягивает топливо для смешивания с воздухом. Топливо подается через небольшой топливный бак, называемый поплавковой камерой подачи или поплавковой чашей. По мере того, как топливо в этом баке уменьшается, поплавок опускается, что открывает клапан на впускной трубе для пополнения или поддержания уровня топлива в баке.
Богатая или обедненная
Если вы когда-нибудь слышали о машине, движущейся на слишком богатой или обедненной смеси, это связано с несбалансированным соотношением воздух-топливо.Когда воздуха для заправки слишком много, двигатель будет работать на обедненной смеси. И наоборот, когда соотношение топлива к воздуху выключено, двигатель горит богатым. Когда двигатель работает на обедненной смеси, автомобиль обеспечивает лучшую экономию топлива, в то время как богатое горение обеспечивает лучшую производительность. Хотя любая из этих ситуаций может показаться идеальной, слишком мало или слишком много воздуха вредно для двигателя. Богатая смесь приемлема только тогда, когда автомобиль запускается с холодного пуска. Нажатие на педаль газа позволяет клапану открыться, пропуская больше воздуха, позволяя смешивать большее количество газа, увеличивая скорость автомобиля.Как только транспортное средство достигает крейсерской скорости, смесь может вернуться в более обедненное и более экономичное состояние.
Ушли, но не забыты
Еще в 1888 году, когда Карл Бенц, основатель Mercedes, изобрел первый карбюратор, это было блестящее достижение для автомобильной промышленности, и этот процесс использовался почти столетие. Тем не менее, по мере появления более совершенных технологий карбюраторы были заменены системами впрыска топлива в современных автомобилях.
Новый ребенок
Несмотря на то, что двигатели с впрыском топлива были представлены в начале 1900-х годов, автомобильная промышленность не применяла эту технологию до начала 1980-х годов, когда компьютеры для двигателей приобрели популярность.Ранние системы впрыска топлива назывались системами впрыска дроссельной заслонки, центрального впрыска топлива, PGM-CARB или EGI.
Системы впрыска топлива оснащены компьютером, который управляет топливными форсунками, в прежних системах топливо распылялось непосредственно в воздух, поступающий во впускной коллектор двигателя, а новый способ — распылять топливо непосредственно в цилиндры. Чтобы получить правильное соотношение воздуха и топлива, требуется массовый расход воздуха (MAF), датчик положения дроссельной заслонки, датчик температуры охлаждающей жидкости, абсолютное давление в коллекторе и датчик кислорода.Топливо поступает непосредственно из топливного бака с помощью топливного насоса, давление которого регулируется регулятором давления топлива.
Работа топливной форсунки в ее названии! Под давлением он впрыскивает топливную смесь в камеру сгорания в определенный момент поршневого цикла. Наряду с датчиками и компьютером система впрыска топлива обеспечивает наилучший и наиболее точный контроль за топливно-воздушной смесью. Кроме того, впрыск топлива обеспечивает более плавный и последовательный отклик дроссельной заслонки, облегчая холодный запуск и улучшая топливную экономичность и колебания температуры окружающей среды.
Конструкция и принцип работы простого карбюратора
🔗Что такое карбюрация? Какие факторы влияют на карбюрацию?
🔗Типы топливовоздушной смеси — стехиометрическая смесь, богатая смесь и обедненная смесь
Конструкция простого карбюратора
Карбюратор — это устройство, которое используется для смешивания воздуха и топлива в двигателе внутреннего сгорания. Основная цель карбюратора — обеспечить качественную топливно-воздушную смесь для диапазона плавности хода и для других особых требований, таких как запуск, холостой ход, ускорение, переменная нагрузка и режим работы на скорости.На рисунке выше показан простой карбюратор. Основными частями простого карбюратора являются воздушный фильтр карбюратора, поплавковая камера, форсунка для выпуска топлива, дозирующее отверстие, дроссельная заслонка, дроссельная заслонка и трубка Вентури.🔗Основные части современного карбюратора и их функции
Поплавковая камера вентилируется на входе в трубку Вентури или в атмосферу. Поплавковый и игольчатый клапан поддерживает постоянный уровень бензина / бензина внутри поплавковой камеры. Поплавок опускается из-за уменьшения количества топлива внутри камеры.Когда уровень топлива опускается до проектного, поплавки опускаются, приводят в действие клапан подачи топлива и впускают топливо в камеру. Когда топливо достигает проектного уровня, поплавок закрывает кран подачи топлива. Наконечник топливного патрубка из поплавковой камеры расположен в горловине трубки Вентури. Наконечник будет немного выше уровня топлива в поплавковой камере, чтобы избежать перелива. Дроссельная заслонка регулируется механической связью (тросом) или пневматической связью с педалью акселератора транспортного средства.
Принцип работы простого карбюратора
Простой карбюратор работает по принципу Бернулли . Во время такта всасывания воздух втягивается в цилиндр через трубку Вентури (также известную как штуцер). Трубка Вентури сконструирована таким образом, чтобы оказывать минимальное сопротивление воздушному потоку. Когда воздух проходит через трубку Вентури, скорость воздуха увеличивается, а давление уменьшается [см. Принцип работы расходомера Вентури]. В горловине Вентури скорость воздуха достигает максимума, а давление минимума.Между поплавковой камерой и горловиной Вентури будет разница давлений. Этот перепад давления известен как депрессия карбюратора. [ Что означает депрессия карбюратора? ]. Из-за этого перепада давления топливо выбрасывается в воздушный поток через форсунку слива топлива. Количество выгружаемого топлива зависит от размера топливной форсунки / топливной форсунки.🔗Достоинства и недостатки простого карбюратора
Как простой карбюратор дает разное соотношение воздух-топливо?
Ускоритель (дроссельная заслонка) автомобиля не контролирует подачу топлива напрямую.Вместо этого он приводит в действие механизм, контролирующий поток воздуха в двигатель. Скорость всасываемого в цилиндр воздуха определяет количество топлива, смешанного с воздухом. Количество заряда, подаваемого в цилиндр бензинового двигателя, зависит от выходной мощности (двигатель регулируется количеством). Это достигается за счет использования дроссельной заслонки после трубки Вентури. При изменении открытия дроссельной заслонки изменяется и расход воздуха. Увеличение расхода воздуха снижает давление в горловине (увеличивает перепад давления), что заставляет расход топлива изменяться аналогичным образом.Однако по мере уменьшения давления в горловине уменьшается плотность воздуха, тогда как плотность топлива остается неизменной. Это приводит к тому, что простой карбюратор производит постепенно обогащенную смесь с увеличением открытия дроссельной заслонки.Почему атмосферное давление влияет на работу простого карбюратора?
Простой карбюратор, работающий по принципу Бернулли. Количество топлива, всасываемого в воздушный поток, будет изменяться в зависимости от перепада давления на выпускном сопле для топлива. Если давление на одной стороне (атмосферное давление) изменяется, перепад давления также изменяется.Плотность воздуха также зависит от атмосферного давления.Что такое карбюратор? Что означает процесс карбюрации?
Карбюратор — это устройство, которое смешивает определенное количество топлива с определенным количеством воздуха для быстрого и полного сгорания, которое генерирует импульс, подаваемый на поршень двигателя в начале рабочего такта. Смесь создается в строгих условиях и при соблюдении точных пропорций. Весь этот процесс известен как процесс карбюрации .
Карбюратор питается от системы подачи бензина, в которую атмосферный воздух всасывается за счет вакуума, создаваемого движением поршня вниз во время такта впуска. Топливо, приводимое в движение воздушным потоком, разделяется на мелкие капли, которые затем распыляются при ударе о воздух, который способствует испарению топлива, тем самым подготавливая образование гомогенной смеси.
Условия процесса карбюрацииДля правильного выполнения процесса карбюрации он должен соответствовать следующим условиям:
- Смесь нужного количества топлива с нужным количеством воздуха для быстрого и тщательного сгорания; Соотношение количества топлива и воздуха в смеси называется отношением количества топлива к воздуху.
- Топливо и воздух должны смешиваться в одном физическом состоянии (газообразном). Следовательно, если топливо жидкое, его необходимо превратить в газ: этот процесс называется испарением .
- Так как молекулы кислорода должны окружать каждую молекулу топлива, чтобы гореть; смесь должна быть идеально однородной .
- Соотношение топливо / воздух должно быть адаптировано для всех оборотов двигателя без внешнего воздействия, адаптируется автоматически .
- Карбюраторная смесь должна быть равномерно распределена по всем цилиндрам .
Чтобы топливо и воздух смешались, они должны находиться в одном физическом состоянии: в газообразном состоянии. Если топливо жидкое, его нужно заменить на газ; это преобразование называется испарение .
Следующие факторы участвуют в испарении бензина:
- Поверхность контакта «воздух / бензин» . Поверхность контакта воздух / бензин должна быть как можно большей; для этого бензин подается с высокой скоростью через очень маленькое отверстие и сталкивается с воздушным потоком, в котором он распыляется на мелкие капли «распыления».”
- Давление . При заданной температуре жидкость испаряется быстрее при низком давлении «вакуум».
- Температура . При заданном давлении испарению способствует нагревание жидкостей; при температуре кипения испарение является особенно быстрым «повторным нагревом».
- Тепло отпущено . Испарение поглощает тепло; повторный нагрев необходим для поддержания температуры.
Как было сказано выше, давление должно быть низким; это создает решающий вакуум в карбюраторе.Чем больше объем, создаваемый поршнями двигателя, и чем меньше площадь поперечного сечения канала для всасывания воздуха, тем больше разрежение. При значительном понижении давления начинается испарение.
Вентури помещают в карбюратор для увеличения скорости воздушного потока и облегчения испарения.
Вторая функция карбюратора — снизить давление и, таким образом, обеспечить распыление и распыление бензина через калиброванный порт, называемый жиклер.
Детали конструкции и функции карбюратораКарбюратор предназначен для смешивания воздуха и бензина в условиях, позволяющих обеспечить правильную карбюрацию на всех оборотах двигателя.В дополнение к карбюрации карбюратор обеспечивает регулировку, что означает согласование мощности, развиваемой двигателем, с требуемой мощностью.
Базовый карбюратор, разделенный на три узла:
- Резервуар постоянного уровня.
- Самолет.
- Карбюраторная камера.
1: Впуск воздуха — 2: Цилиндр — 3: Жиклер — 4: Вентури — 5: Смесь воздуха и бензина в цилиндры — 6: Дроссельный клапан, управляемый ускорителем — 7: Бак постоянного уровня — 8: Поплавок — 9: Впуск бензина — 10: Игла
Карбюратор Бак постоянного уровняРезервуар, называемый резервуаром постоянного уровня, обеспечивается игольчатым клапаном, приводимым в действие поплавком.Бензин подается из бака самотеком или через насос низкого давления.
Когда бензин в баке достигает необходимого уровня, поднимающийся поплавок приводит в действие иглу, закрывающую впускное отверстие.
Как только топливо израсходовано, игла открывается до тех пор, пока не будет достигнут требуемый уровень в баке. Вентиляционное отверстие в баке позволяет сливать бензин под действием атмосферного давления.
Карбюратор ЖиклерЖиклер питается от бака постоянного уровня.Он снабжен калиброванным портом; на выходе из этого порта струя бензина распыляется в воздушном потоке; это проходное отверстие расположено на несколько миллиметров выше уровня резервуара.
Камера карбюратораВ камеру карбюрации входят:
- Вентури: Вентури спроектировано для уменьшения давления циркулирующего воздуха в камере карбюратора до падения на уровне струи. Это создает область вакуума, который пропорционален скорости воздушного потока.Самый сильный вакуум регистрируется немного ниже по потоку от самой узкой точки, на расстоянии, которое соответствует одной трети диаметра трубки Вентури. Трубка Вентури имеет особый профиль, причем угол на входе больше, чем на выходе.
- Газовый дроссельный клапан: Запорный или дроссельный клапан расположен ниже по потоку от камеры карбюрации; он предназначен для регулирования мощности двигателя путем ограничения количества газа, разрешенного путем изменения площади поперечного сечения потока газа.
- Участок трубы: Участок трубы, проходящий между форсункой и впускным клапаном.
По положению цилиндра карбюратора и направлению потока газа можно выделить три типа карбюраторов:
- Карбюратор Updraft для восходящего потока.
- Карбюратор с поперечной тягой для горизонтального потока.
- Нисходящий карбюратор для нисходящего потока.
Бензин подается в бак постоянного уровня самотеком или с помощью насоса. По мере того, как бензин сливается в бак, плавучесть под поплавком увеличивается. Когда он равен весу поплавка, последний находится в равновесии и плавает: бензин продолжает течь. Уровень увеличивается, и поплавок поднимается, пока игла не коснется своего седла. Бензин продолжает поступать в бак из-за давления «напора» или «напора» насоса.”
По мере повышения уровня бензина в баке давление под поплавком увеличивается до тех пор, пока не превысит давление бензина на входе. В этот момент игла, которая прилегает к своему гнезду, закрывает впускное отверстие для бензина. Когда форсунка питает карбюратор, уровень бензина в баке снижается, поплавок опускается, позволяя бензину снова течь в бак, пока не будет достигнут требуемый уровень, а впускное отверстие для бензина не закроется.
Газовый дроссельный клапан приводится в действие для уменьшения или увеличения мощности, развиваемой двигателем.Давление перед этим клапаном остается равным атмосферному давлению, когда воздушная заслонка закрыта. Чем больше воздушная заслонка препятствует прохождению газа, тем ниже по потоку давление; запирающее действие этого устройства вызывает потерю напора в потоке газа.
Следовательно, всасываемые газы допускаются под различным давлением и, следовательно, с различной массой. Контроль количественный. Мощность изменяется, воздействуя на индекс наполнения, а затем на давление сжатия.
При остановке двигателя
Впускной трубопровод и бак находятся под атмосферным давлением; бензин подается до тех пор, пока игла не закроет входное отверстие.Как и в баке, уровень в жиклере постоянный.
При работающем двигателе
Блокировка газовой дроссельной заслонки в среднем положении создает воздушный поток во впускной трубе. Подача газа в один цилиндр периодическая: в четырехтактном двигателе она происходит за один такт из четырех.
Питание нескольких цилиндров от одного карбюратора; следовательно, по всей общей части камеры сгорания поток газа во время работы существенно не меняется.
Автоматический карбюраторАвтоматический карбюратор — это карбюратор, обеспечивающий постоянное соотношение смеси, когда двигатель работает на экономичных оборотах, и изменяющееся соотношение для обогащения смеси, когда необходимо увеличить мощность двигателя.
Соотношение компонентов смеси можно изменять, воздействуя на расход воздуха или расход бензина. Поскольку расход бензина увеличивается быстрее, чем расход воздуха, можно:
- Уменьшите расход бензина.
- Увеличьте скорость воздушного потока.
Три метода коррекции изменений соотношения воздух / бензиновая смесь:
- Методы регулировки воздуха; «Воздействуя на воздух (необходимо увеличить расход воздуха)».
Метод регулировки воздуха также называется принципом вторичного воздуха. Больше не используется. Дополнительное количество воздуха с регулируемым вакуумом подается для корректировки избыточного обогащения смеси. Он управляется утяжеленным клапаном, который открывается, когда вакуум достигает определенного значения, когда смесь воздуха / бензина содержит слишком много бензина.
- Методы регулировки бензина; «Воздействуя на бензин (необходимо уменьшить расход бензина)».
Этот результат достигается за счет комбинации следующих устройств:
- Затопленный жиклер.
- Отводная струя и эмульсионная трубка.
- Добавление компенсатора жиклера.
Затопленная форсунка
Поскольку расход воздуха и бензина изменяется в зависимости от вакуума, главный контур карбюратора должен быть снабжен автоматическим дозирующим устройством, включающим залитый жиклер.
Последний играет важную роль при работе двигателя на малых оборотах. Жиклер располагается ниже уровня поплавковой камеры карбюратора (на практике — внизу поплавковой камеры). Под действием вакуума, который суммируется с разницей уровней, он подает бензин. Когда скорость увеличивается, вакуум увеличивается, и влияние разницы уровней становится незначительным.
Отводная струйная и эмульсионная трубка
Поскольку расход воздуха и бензина меняется в зависимости от вакуума, главный контур карбюратора должен быть оборудован автоматическим дозирующим устройством, включая систему отводного жиклера и эмульсионную трубку.
Система с отводной струей предназначена для уменьшения вакуума, влияющего на струю, когда вакуум средний или большой, для уменьшения расхода бензина. При небольшом вакууме струя работает по принципу затопленной струи: смесь богатая.
Созданная эмульсия увеличивает площадь поперечного сечения воздушного канала в системе с отклоняемой струей по сравнению с вакуумом. Таким образом, расход бензина можно контролировать по отношению к расходу воздуха, чтобы соответствовать кривой идеального соотношения.
Добавление жиклера компенсатора.
В базовом карбюраторе расход бензина увеличивается быстрее, чем расход воздуха. Таким образом, можно связать струю, называемую компенсирующей струей, с основной струей. Его расход корректирует обогащающий эффект основного карбюратора. Таким образом можно получить адекватное передаточное число на всех скоростях.
Скорость струи должна ослаблять соотношение воздух / бензиновая смесь при увеличении скорости.
Для этого расход струи компенсатора должен изменяться в направлении, противоположном направлению основной струи.
- Комбинированные методы; «Действуя на бензин и воздух».
Многие типы карбюраторов Solex; характеризуются возможностью регулировки таких компонентов, как главный жиклер или рабочий жиклер, система отклоняемых жиклеров (переменная), вентиляция и контур холостого хода.
КарбюраторыSolex работают по принципу залитой отводной струйной системы с многоступенчатой эмульсией. По мере увеличения вакуума:
- Бензин на уровне эмульсионной трубки поступает в камеру карбюратора в виде богатой смеси.
- Уровень снижается, открывая самые высокие отверстия эмульсионной трубки.
- Смесь постепенно ослабевает, и поперечное сечение воздушного канала в отводной системе увеличивается.
Когда все отверстия открыты, действие струйно-отводной системы максимально, а богатство смеси поддерживается на уровне, близком к соотношению воздух / бензин, что обеспечивает наивысшую эффективность.
Карбюратор StrombergВ карбюраторах Stromberg дозирование смеси обеспечивается на различных скоростях через:
- Затопленный главный жиклер.
- Перфорированная эмульсионная трубка.
- Калиброванное отверстие для отвода воздуха.
Холостой ход обеспечивается дополнительным воздушным жиклером. Регулировка осуществляется винтом, действующим на воздушную струю. Поршневой насос с механическим управлением обеспечивает всасывание.Этот насос позволяет карбюратору работать на двух скоростях: очень высокой или экономичной.
Это устройство позволяет двигателю развивать дополнительную мощность на высоких оборотах за счет обогащения смеси, получаемой за счет одновременной подачи двух струй.
Карбюратор WeberЧтобы преодолеть проблемы, с которыми сталкиваются все более мощные двигатели (несовместимость работы на высоких и низких оборотах), двухцилиндровые карбюраторы заменяют обычные карбюраторы.Они бывают двух типов: карбюраторы с одновременным открытием дросселей и карбюраторы с шахматным открытием дросселей.
Карбюраторы с одновременным открытием дросселей
Карбюраторы с одновременным открытием дросселей можно сравнить с отдельными карбюраторами, работающими одновременно и идентичным образом. Преимущество этой системы — лучшее заполнение цилиндров, лучшее распределение смеси и, следовательно, улучшенные подборщики и более высокие скорости.
Недостаток гибкости карбюратора этого типа является недостатком, которого нет у карбюратора другого типа.
Карбюраторы с шахматным открытием дросселей
Карбюраторы с шахматным открытием дросселей включают:
- Главный ствол, характеристики которого позволяют двигателю работать на низких экономичных оборотах.
- Вторичный ствол открывается только тогда, когда акселератор находится в определенном положении и позволяет двигателю развивать максимальную мощность.
Ряд рычагов открывают этот газовый дроссель.
(Ступенчатое открытие дросселей) Зенит КарбюраторИзменения в соотношении компонентов смеси можно скорректировать, воздействуя на поток бензина. Это осуществляется с помощью автоматического дозатора, снабженного компенсирующей струей и встроенного в главный контур.
Регулирующими элементами являются главный жиклер, холостой жиклер, сопло и компенсационный жиклер, который погружен в воду и, следовательно, не подвергается действию вакуума, преобладающего внутри трубки Вентури.Поскольку скорость потока одинакова при всех оборотах двигателя, насыщенность смеси изменяется обратно пропорционально скорости.
Карбюратор постоянного вакуумаЧтобы приблизиться к кривой идеального соотношения воздух / топливо, частичный вакуум может поддерживаться постоянным путем изменения степени открытия дроссельной заслонки или площади горловины Вентури. Таким образом, используется карбюратор с постоянным вакуумом или с регулируемым жиклером.
При постоянном расходе скорость воздушного потока обратно пропорциональна площади воздушного канала.
Для постоянной скорости потока необходимо увеличивать площадь прохода для воздуха пропорционально расходу газообразной жидкости. Результирующий частичный вакуум остается постоянным при любой скорости.
Золотниковый клапан или скользящий поршень движется перпендикулярно потоку газа. Его движение напрямую контролируется вакуумом в горловине Вентури и достигается за счет пружины и диафрагмы.
Карбюратор и впрыск топливаКарбюраторы имеют следующие недостатки:
- Кривая идеального соотношения топливо (бензин) / воздух не соблюдается точно.
- Когда молекулы воздуха и бензина проходят через коллекторы для смешивания, они расширяются, снижая объемный КПД карбюратора.
- Испарение из-за падения давления на дроссельной заслонке вызывает замерзание карбюратора.
- При низкой температуре часть газа конденсируется по бокам коллектора. Следовательно, требуется гораздо более богатая смесь.
- Неравномерная однородность смеси увеличивает расход топлива и уровень загрязнения.
- Когда имеется только один карбюратор, наблюдается неравномерное распределение смеси между различными цилиндрами.
В системе впрыска воздух попадает в двигатель через впускной коллектор с большим поперечным сечением. Механический или электрический насос нагнетает топливо под давлением, и точное количество топлива подается в коллектор с помощью форсунок на каждом цилиндре.
Система впрыска топлива принесла много улучшений, таких как:
- Топливно-воздушная смесь создается с учетом большего количества параметров, таких как нагрузка двигателя, температура воды, воздуха и т. Д.
- Карбюраторная смесь очень однородная и плотная.В основном это связано с системой распыления топлива, уменьшенным временем контакта между воздухом и распыляемым топливом и более низкими температурами нагрева.
- Горение на любой скорости улучшается за счет более точного соотношения смеси воздух / топливо.
- Лучшая объемная эффективность приводит к увеличению крутящего момента и мощности.
- Снижение расхода топлива и уровня загрязнения.
- Гибкость двигателя улучшена за счет равномерного сгорания в различных цилиндрах.
Прочтите: Что нужно знать о турбокомпрессоре и нагнетателе
Каталожные номера:
Руководство по выбору карбюраторов: типы, характеристики, применение
Карбюратор — это механическое устройство, которое является частью вспомогательной надстройки двигателя внутреннего сгорания.Специальная функция карбюратора обеспечивает подачу топлива в камеру сгорания, где происходит взрыв. Карбюраторы смешивают неочищенное топливо с воздухом, чтобы получить более летучую и легковоспламеняемую смесь топлива. Ход поршня двигателя вниз создает естественный вакуум, втягивая смесь из карбюратора в стенки цилиндра. Отдельный процесс вызывает искру в нужный момент и воспламеняет свежее смешанное топливо, вызывая его возгорание. Взрыв толкает поршень вниз и производит энергию.
Технологические достижения в автомобилестроении и электронике привели к развитию системы впрыска топлива. Впрыск топлива является сегодня основной альтернативой карбюратору в автомобилях. Система топливных форсунок работает по тому же принципу, что и карбюратор. Хотя впрыск топлива обеспечивает более быструю реакцию и топливную экономичность, карбюратор по-прежнему используется в классических автомобилях, а также во многих машинах с газовым двигателем и альтернативных транспортных средствах. К ним относятся самолеты, генераторы, тракторы, газонная и садовая техника и мотоциклы.
Изображение предоставлено Wikimedia Commons
Луиджи де Кристофорис упоминается как первый изобретатель карбюратора в 1876 году. Энрико Бернарди создал первую рабочую модель карбюратора в Падуанском университете в 1882 году.
На начальном этапе проектирования и производства двигателей внутреннего сгорания Карл Бенц (Mercedes-Benz) первым ввел в коммерческое использование карбюратор.Эта тенденция продолжалась до конца 1980-х годов в США и начала 1990-х годов в Европе. Ужесточение правил по выбросам транспортных средств наряду с экономией топлива и увеличением мощности привело к тому, что впрыск топлива стал стандартом.
Типы
Карбюраторы выпускаются нескольких типоразмеров и конфигураций. Есть два типа карбюраторов:
Фиксированная трубка Вентури — скорость воздушного потока используется для регулирования потока топлива
Регулируемая трубка Вентури — поток сырого топлива регулируется механически, а поток воздуха регулируется потоком топлива
Как работают карбюраторы
Карбюратор находится между впускным коллектором (источником воздуха) и впускным коллектором (путь к цилиндру двигателя).В стандартных безнаддувных двигателях воздух попадает в карбюратор из впускного коллектора. Двигатели с наддувом нагнетают воздух в карбюратор.
Первичной частью карбюратора является трубка Вентури с узкой средней частью. Эта узкая секция заставляет поток воздуха быстро увеличиваться. На нижнем конце трубки Вентури находится простой клапан, называемый дроссельной заслонкой, который регулирует воздушный поток через трубу. Дроссельная заслонка работает вместе с отдельным клапаном, называемым дроссельной заслонкой.Дроссельная заслонка регулирует расход топлива.
Комбинация регулируемого потока воздуха и топлива определяет объем и состав получаемой смеси, производимой карбюратором. При увеличении дроссельной заслонки смесь впрыскивается во впускной коллектор и сам цилиндр, позволяя произойти сгоранию.
Когда двигатель работает на холостом ходу, давление во впускном коллекторе очень низкое. Следовательно, для предотвращения остановки двигателя выполняется другой механический процесс.Серия небольших металлических трубок, называемых топливными форсунками, предназначена для поддержания минимального потока топлива. Эти форсунки выходят из зацепления после открытия дроссельной заслонки, позволяя инициировать первичный процесс.
Материалы
Карбюратор состоит из множества частей, работающих вместе для облегчения его основной функции. Основная конструкция и самый крупный компонент карбюратора — это литой корпус из легкого сплава или алюминия. Неподвижное тело испытывает небольшое напряжение и давление, поэтому более прочные металлы не нужны.
Движущиеся части карбюратора изготавливаются из стали или нержавеющей стали. Некоторые более мелкие детали, такие как топливные жиклеры и винты, которые устанавливают элементы или регулируют настройки, требуют металла, который обрабатывается плавно и точно. Эти детали также должны оставаться незапятнанными и препятствовать накоплению мусора. Латунь лучше всего отвечает этим требованиям и является предпочтительным металлом для топливных жиклеров и крошечных винтов.
Видео предоставлено: AuttoSource / CC BY-SA 4.0
Выбор карбюратора
Каждый двигатель внутреннего сгорания разработан для определенной системы впуска топлива. Двигатели, работающие с карбюраторами, имеют определенный впускной и впускной коллекторы, предназначенные для работы с карбюратором дискретного типа. Проверьте размер и тип карбюратора, который поддерживает двигатель, чтобы убедиться, что он физически подходит и работает правильно.
Менее сложные конфигурации коллектора позволяют заменять аналогичные продукты разными производителями.Автомобили, произведенные между 1940-ми и 1970-ми годами, были самыми популярными моделями карбюраторов на вторичном рынке из-за простоты и модульной конструкции двигателей в то время. Установка альтернативного карбюратора может изменить динамику всех компонентов, работающих вместе, гармонично. Особое внимание уделяется размеру топливного жиклера и дроссельной заслонке.
Изображение предоставлено: Flickr
Характеристики
Фиксированные карбюраторы Вентури и регулируемые карбюраторы Вентури имеют несколько опций, которые изменяют значения производительности, но при этом соответствуют эксплуатационным требованиям.Основные характеристики включают следующее:
Силовой клапан — отдельный подпружиненный клапан, который помогает производить более богатую смесь топлива и воздуха при больших объемах. Смесь предотвращает ухудшение характеристик двигателя, такое как преждевременное воспламенение топлива при более высоких оборотах
Дроссель — специальное механическое устройство, которое позволяет карбюратору работать с более бедной топливно-воздушной смесью. Эффект представляет собой смесь с более высокими воспламеняющими свойствами, которая легко воспламеняется.Обычно требуется при запуске двигателей внутреннего сгорания в холодных условиях
Насос ускорителя — Воздух течет более свободно, чем топливо. Проблемы возникают, когда дроссельная заслонка открывается быстро. Поток топлива отстает от воздушного потока, что приводит к снижению производительности двигателя до тех пор, пока потоки не достигнут паритета. Насосы ускорителя помогают поддерживать постоянный поток топлива
Примером специальных функций, разработанных для двигателей, работающих в экстремальных условиях, является устройство контроля нагрева карбюратора самолета.Устройство действует, чтобы противодействовать воздействию условий замерзания на больших высотах, сохраняя трубку Вентури свободной ото льда.
Стандарты
Размер отверстия топливного жиклера является стандартным измерением для всех карбюраторов. Размер отверстия измеряет отверстие жиклера в долях дюйма, например 0,58. Размер отверстия жиклера напрямую связан с потенциальным максимальным потоком топлива через карбюратор. Кроме того, впускной и впускной коллекторы должны соответствовать стандартам, применимым к карбюраторным растворам.Детали карбюраторов должны соответствовать диапазонам работы каждого коллектора для обеспечения надлежащей работоспособности.
Производители запчастей публикуют спецификации, касающиеся совместимости полных комплектов карбюраторов, надстроек, аксессуаров и замен всей топливной системы.
SAE — AS63 — Фланец карбюратора, самолет 4 болта — одинарный ствол — № 2, 3, 4, 5, 7 и 9 (стабилизированный тип)
JIS D 3701 — Размеры фланцев карбюратора для автомобилей
Кредиты изображений:
Викискладе | Flickr
Понимание того, как работают карбюраторы
АВТО ТЕОРИЯ
Все бензиновые двигатели для работы должны сжигать топливо.Вопреки распространенному мнению, жидкий бензин не горит — горит только пар, поэтому жидкость должна быть преобразована в пар, прежде чем она попадет в камеру сгорания. Газовые двигатели должны работать с соотношением воздух-топливо где-то между 9: 1 и 16: 1, в зависимости от температуры, скорости и нагрузки. В новых автомобилях эту работу выполняют системы впрыска топлива, но в течение первых 75 лет (или около того) прошлого века карбюратор был устройством, которое подавало пары топлива в цилиндры.
Многие люди думают, что карбюраторы безнадежно сложны и с ними невозможно работать, но это потому, что они не понимают теории работы.Поэтому в этой статье мы построим карбюратор. Пойдем!
Автомобильный двигатель — это не что иное, как воздушный насос. Поскольку он может создавать сжатие, когда клапаны закрыты, он также может создавать вакуум, когда поршень опускается и впускной клапан открыт. Когда двигатель проворачивается, движущийся поток воздуха входит через впускной коллектор, который проходит от каждого цилиндра к верхней части двигателя. Мы будем использовать этот воздушный поток, чтобы заставить карбюратор работать.
Рупор, поплавковая чаша и вентиляционное отверстие
Во-первых, нам нужна простая круглая металлическая трубка, которую мы назовем воздушным рожком.Затем мы прикрепляем к рогу таз, в котором будет запас газа. Внутри унитаза мы должны предусмотреть поплавок (как в унитазе). Этот поплавок будет управлять игольчатым клапаном, так что, когда чаша заполняется, движение поплавка вверх перекрывает поток газа. Поплавковая чаша должна быть выпущена в атмосферу, чтобы газ выходил наружу при повышении давления, потому что невентилируемая чаша, когда она горячая, может вызвать проблемы с запуском.
Затем нам нужно соединить чашу с воздушным рожком с помощью небольшой трубки, называемой выпускной трубкой, и сопло на конце трубки должно быть расположено выше уровня газа в чаше.Газ не будет выходить, если мы не создадим вакуум в воздушном рожке. Создавая сужение (ограничение) в воздушном рупоре, движущийся воздух будет ускоряться, создавая дополнительный локализованный вакуум. В физике это называется «принципом Вентури». Это сужение карбюратора поэтому называется трубкой Вентури. Во многих современных карбюраторах используется трубка Вентури внутри трубки Вентури, чтобы еще больше ускорить поток воздуха и помочь распылить газ. Газоразрядная трубка помещена во «вторичную» трубку Вентури на нашем чертеже.
Наша трубка теперь оснащена трубкой Вентури и выпускной трубкой.
На этом этапе нашей конструкции бензин будет втягиваться в трубку и выходить из сопла, но капли будут несколько большими. Поскольку нам нужно сделать капли как можно меньше — для распыления — нам нужно добавлять воздух в топливо, когда оно движется через сопло. Для этой цели к основной газоразрядной трубке присоединяется небольшая трубка, называемая «отводом воздуха».
Добавление стравливающего воздуха приводит к тому, что капли топлива становятся намного меньше.
Тем не менее, наш двигатель не работает должным образом, потому что мы ничего не сделали для поддержания надлежащего соотношения воздух-топливо (помните?).Однако это легко исправить, поскольку все, что нам нужно сделать, это обеспечить дозирующее отверстие — «жиклер» — в газоразрядной трубке. Размер сопла рассчитывается инженерами, проектировавшими двигатель, в соответствии с внутренней динамикой двигателя. С этим жиклером двигатель сможет работать с постоянной скоростью 2500 или более оборотов в минуту.
Главный нагнетательный жиклер контролирует количество топлива, поступающего в нагнетательную трубку.
К сожалению, на этом этапе конструкции нашего карбюратора двигатель не запускается! В холодном состоянии двигателю нужна смесь, богатая бензином, чтобы было произведено достаточно пара для запуска.Решение простое, поскольку нам нужно лишь частично перекрыть подачу воздуха в двигатель. Если мы поместим пластину на верхнюю часть воздушного рожка, вакуум от такта впуска будет вытягивать больше газа из выпускной трубки, обеспечивая правильную стартовую смесь. Эта пластина называется «дроссельной заслонкой», и ею можно управлять вручную или автоматически. Теперь наш двигатель запустится, но по-прежнему не будет работать ни на чем, кроме широко открытого, потому что мы не предусмотрели никакого способа регулирования его скорости. Не беспокоиться!
Дроссель: A.Дроссельная заслонка открыта, воздух проходит через воздушный рожок. B. Дроссельная заслонка закрыта. Вакуум из всасывающего патрубка нагнетательного патрубка.
Если мы поместим пластину в нижнюю часть трубы — под трубкой Вентури и над ее креплением к двигателю — повернем ее от центральной линии и подключим к ней надлежащее соединение, теперь мы можем контролировать количество воздушно-топливной смеси, достигающей цилиндров в любой момент времени. Это наша дроссельная заслонка, широко известная как дроссельная заслонка или акселератор. На этом этапе наш базовый карбюратор еще не готов.Мы не можем простаивать без остановки; у него будет небольшая мощность на оборотах чуть выше холостого хода; и всякий раз, когда дроссельная заслонка быстро открывается, будет «плоская точка», пока двигатель не наберет обороты.
Дроссельная заслонка регулирует подачу топливной смеси. Показаны в широко открытом, полуоткрытом и закрытом положениях.
Вернуться к работе. К настоящему времени должно быть ясно, что правильный карбюратор должен содержать ряд отдельных устройств топливной системы. Поплавок, воздушная заслонка и дроссельная заслонка — это три из них, но нам все еще нужны другие, чтобы обеспечить необходимое соотношение воздух / топливо для работы двигателя в других условиях.Разберем их по категориям:
1. Холостой ход. Соотношение 12: 1 является обычным для нормального холостого хода.
2. Низкая скорость. Передаточное число 16: 1 необходимо для работы с неполным дросселем (30-65 миль в час).
3. Высокая скорость. Передаточное число 13: 1 необходимо для работы на полном газу.
4. Полное ускорение: необходимо соотношение 14: 1.
5. Холодный пуск. Требуется соотношение 8: 1.
Мы позаботились о двигателях для запуска и работы на полностью открытой дроссельной заслонке. Теперь давайте создадим несколько схем для решения других проблем.
Контур холостого хода: если мы создадим дополнительный проход от основной выпускной трубки и проведем его ниже дроссельной заслонки и выйдем через отверстие в воздушном роге, вакуум двигателя будет втягивать топливо для холостого хода. Обычно карбюраторы построены с регулирующим клапаном, так что количество топлива может варьироваться для обеспечения наилучшего холостого хода, обычно называемого винтом (винтами) «смеси холостого хода». Без такой регулировки двигатель на холостом ходу работал бы слишком богато, поскольку происходит то, что топливо капает в двигатель в процессе «контролируемой утечки».«
Теперь нам нужно заставить двигатель работать плавно при частичном открытии дроссельной заслонки. Как только дроссельная заслонка открывается после положения холостого хода, требуется больше топливной смеси. Однако воздушного потока через трубку Вентури по-прежнему не хватает, чтобы топливо вытягивалось через главное выпускное сопло. Если мы воспользуемся тем проходом, который мы разработали для контура холостого хода, и просверлим несколько отверстий чуть выше закрытого положения дроссельной заслонки, дополнительное топливо будет вытягиваться из них при открытии пластины. По мере того, как каждое отверстие открывается, течет больше топлива, обеспечивая питание до тех пор, пока не заработает основное нагнетательное сопло.Дела налаживаются, но —
У нашего карбюратора теперь есть цепь холостого хода, и когда дроссельная заслонка частично открыта, дополнительное топливо всасывается через отверстие низкой скорости.
У нас осталась одна дополнительная проблема — «ровная точка» при резком ускорении. Это происходит из-за кратковременного отсутствия вакуума, когда дроссельная заслонка внезапно открывается. Чтобы компенсировать это, в большинстве карбюраторов была разработана схема ускорительного насоса. Этот контур обычно приводится в действие соединением с насосной камерой в карбюраторе.Когда акселератор опускается, топливо распыляется в воздушный рупор или трубку Вентури. Другой, несвязанный тип цепи ускорения — это схема реактивного двигателя. В этой системе используется поршень, удерживаемый под вакуумом, который при уменьшении вакуума сжимается пружиной, тем самым перекачивая топливо.
Наконец-то у нас есть карбюратор, который очень хорошо управляет двигателем, но только относительно маленьким. Здесь мы показали карбюратор с одним цилиндром Вентури. По мере того, как двигатели становились более крупными, производители модифицировали системы карбюратора, чтобы лучше распределять топливо по нескольким цилиндрам, тем самым производя больше мощности.К началу 1960-х годов история одноствольного карбюратора практически закончилась.
На многих автомобилях используются двух- и четырехкамерные карбюраторы, а в некоторых других используется несколько карбюраторов (два четырехцилиндровых, три двухцилиндровых и т. Д.) Многоствольные карбюраторы такие же, как и одинарные. Они просто используют обычные поплавковые чаши, штуцеры и другие элементы в одном корпусе для повышения эффективности. В восстановлении любого из них нет ничего загадочного. Все, что вам нужно запомнить, — это распознать каждую цепь в карбюраторе и не забыть ни одной детали! Здесь есть все внешнее оборудование для таких вещей, как быстрый холостой ход, срабатывание дроссельной заслонки, ускорение кондиционера, вакуумный отбор и предварительный нагрев смеси.
Потратьте немного больше времени на изучение руководства по эксплуатации вашего автомобиля, чтобы ознакомиться со всем, а затем перейти к нему. Бояться нечего.
data-matched-content-ui-type = «image_card_stacked» data-matched-content-rows-num = «3» data-matched-content-columns-num = «1» data-ad-format = «autorelaxed»>
Карбюратор — обзор | Темы ScienceDirect
Для реалистичной оценки различных концепций смесеобразования в рабочем цилиндре двухтактного двигателя представлены две крайние модели.
12.3.2 Образование смеси после продувки
Преимущество образования смеси после продувки прямым впрыском топлива в рабочий цилиндр состоит в том, что топливо не включается в потери при продувке (при соответствующем угле впрыска). Однако, поскольку для образования смеси отводится очень короткое время, возникают газодинамические проблемы, вызывающие тенденцию к неполной смеси или недостаточному качеству смеси, что сказывается на сгорании и составе выхлопных газов.
Можно ясно увидеть, почему методы прямого впрыска для двухтактных двигателей поляризованы вокруг двух концепций, а именно:
- •
Формирование частичной смеси из рабочего цилиндра с желаемым количеством топлива, но со значительно уменьшенной долей воздуха и подачей смеси в цилиндр после продувки. В этом устройстве время, отведенное для образования смеси, увеличивается в дополнительном пространстве, где термодинамические условия позволяют получить хорошее перемешивание.
- •
Образование смеси в рабочем цилиндре после продувки за счет прямого впрыска топлива. Для этого метода требуются такие системы впрыска, которые могут обеспечить чрезвычайно короткое время впрыска во всех диапазонах скоростей и достаточное распыление топлива. Такие запросы практически достижимы, если закон впрыска не зависит от частоты вращения двигателя.
Способы расслоения заряда и впрыска жидкого топлива описаны ниже.
12.3.3 Формирование частичной смеси
В этом методе очень богатая смесь готовится из рабочего цилиндра, а процесс продувки осуществляется большей частью свежего воздуха. Эта деталь сначала вводится в цилиндр. Этот метод обеспечивает хорошее распыление топлива в диапазоне от 4 до 12 мкм м SMD (средний диаметр по Заутеру). Предварительная смесь может быть перенесена в рабочий цилиндр после продувки через канал, время открытия которого можно регулировать механически или электронно.Такая концепция была успешно применена в пятидесятых годах компанией Puch / Германия. Простейшим конкретным решением является установка карбюратора для обогащенной смеси, при этом смесь формируется в небольшом дополнительном цилиндре и затем закачивается в рабочий цилиндр через канал с поршневым управлением, как показано на рисунке 12.4. Несмотря на свою простоту, этот метод приводит к интересным результатам, как показано на рисунке.
При такой конструкции соотношение воздух-топливо составляет от 0,48 до 1,18, а предварительная смесь, которая должна быть перенесена в рабочий цилиндр после продувки, имеет давление 0.3–0,6 МПа. Объемное соотношение обычно составляет 1: 3, а сокращение выбросов bsfc и углеводородов составляет около 30 процентов.
Несмотря на многообещающие результаты при высоких оборотах двигателя и крутящем моменте, Рисунок 12.5 показывает другую тенденцию в режиме низких оборотов и крутящего момента двигателя. Причина связана с тем, что два компонента предварительной смеси (жидкость и газ) имеют разное поведение текучести при поступлении в рабочий цилиндр.
Рис. 12.5. Двигатель MZ с впрыском премикса производства Цвиккауского университета.
12.3.4 Прямой впрыск жидкого топлива
Эта концепция может показаться более простой и многообещающей, чем формирование предварительной смеси, обычно применяемой в дизельных двигателях. Проблема состоит в том, что обычные системы впрыска, подобные тем, что используются в дизельных двигателях, не могут быть применены в их нынешнем виде к системам впрыска топлива в двухтактных двигателях SI, имеющих широкий диапазон скоростей, из-за сильной зависимости закона впрыска от скорости двигателя. На Рисунке 12.6 показаны зависящие от времени и угловые скорости закачки.
Рис. 12.6. Зависящая от времени и угловая скорость впрыска механического впрыскивающего насоса с плунжером с кулачковым приводом.
В дизельных двигателях скорость впрыска в зависимости от угла является обычным способом определения поведения топливных насосов. В такой интерпретации скорость впрыска уменьшается, а время впрыска увеличивается с частотой вращения двигателя, как показано на рисунке. Для высокоскоростных двухтактных двигателей временная диаграмма показывает, что скорость впрыска выше для высокой скорости, а это означает, что скорость топлива при низких оборотах двигателя очень мала.Следовательно, распыление топлива будет плохим только в том диапазоне скоростей, где также снижается энергия свежего воздуха. Кроме того, сильное изменение скорости распыления в зависимости от частоты вращения двигателя означает различную длину проникновения струи в камеру сгорания, что является проблемой для двигателей SI с их фиксированным положением свечи зажигания. Сильное изменение длины проникновения в зависимости от частоты вращения двигателя является причиной того, что насосы высокого давления, которые могут гарантировать хорошее распыление топлива на низкой скорости, также трудно адаптировать к двигателям SI.Недавние испытания с адаптированными плунжерными насосами для двухтактных двигателей SI показали значения bsfc от 400 до 500 г / кВтч и выбросы углеводородов от 68 до 135 г / кВтч в диапазоне скоростей 3000-7500 об / мин, которые все еще не удовлетворяют требованиям будущего. требования.
Вроде бы вполне логичное следствие, что для неизменной длины распыления и распыления топлива во всем диапазоне оборотов двигателя давление в системе впрыска должно быть постоянным на достаточно высоком уровне. Постоянное давление топлива в диапазоне от 6 до 7 МПа, что приводит к размеру капли топлива 5–25 мкм м SMD, может быть обеспечено с помощью различных общих методов.Запрошенная синхронизация форсунки, которая также не зависит от скорости двигателя, но с оптимизированным началом впрыска в каждой точке крутящего момента / скорости, возможна при использовании механических или магнитных устройств. Последний вариант более предпочтителен, поскольку позволяет осуществлять точное электронное управление.
Проблема таких систем, аналогичных современной системе Common Rail в дизельном двигателе, заключается в относительно высокой потребляемой мощности самой системы впрыска, гарантирующей, что уровень высокого давления также должен поддерживаться во время между впрысками.Это означает низкий энергетический КПД, что недопустимо для небольших двухтактных двигателей. Учитывая, например, скорость 3000 об / мин и обычную продолжительность впрыска 0,3 мс, постоянное давление от 6 до 7 МПа будет использоваться только в течение 1,5% времени цикла! Следовательно, для постоянного распыления и длины распыления во всем диапазоне оборотов двигателя максимальное давление топлива, независимо от оборотов двигателя, должно создаваться только в течение периода, охватывающего больше или меньше времени впрыска, чтобы поддерживать высокую энергетическую эффективность.Это означает модуляцию волны давления, которая может осуществляться, например, на основе эффекта гидравлического удара.
Такое решение могло показаться намного более сложным, чем простой и дешевый карбюратор. Двухтактный двигатель должен выжить в относительно простых машинах, таких как скутеры или лодки. Оправдано ли разрабатывать концепции, теории и, наконец, системы такой сложности в этой структуре? Почему бы нам не попытаться улучшить систему очистки? В таблице 12.3 представлены выбросы выхлопных газов и расход топлива двухтактных двигателей с улучшенной системой продувки и устройством для образования смеси после продувки.
Таблица 12.3. Выбросы загрязняющих веществ и bsfc двухтактных двигателей SI с улучшенной продувкой и прямым впрыском топливовоздушной смеси
HC [г / кВтч] | NO x [г / кВтч] | CO [г / кВтч] | bsfc [г / кВтч] |
---|---|---|---|
5–20 | 8–17 | 10–20 | 260–300 |
При сравнении значений в таблицах 12.1 и 12.3 причина становится понятным текущие усилия относительно образования смеси.В этом контексте есть надежда на выживание двухтактного двигателя.
Ориентация на производительность
Обзор
Основная задача карбюраторов — подавать испаренное топливо в двигатель внутреннего сгорания. Испаренное топливо создается, когда воздух проходит через карбюратор и смешивается с топливом с использованием гидродинамики набегающего воздуха. Топливо забирается из топливного колодца (с дозированной скоростью) и смешивается с воздушным потоком, чтобы создать смесь воздуха и топлива в форме, которая может быть быстро и полностью сожжена двигателем.Карбюраторы довольно хороши в этом процессе, учитывая, что в них нет никаких компьютеров, но они работают только так, как тюнер может их настроить. Полное сгорание требует, чтобы топливно-воздушная смесь испарялась без капель жидкости, которые не сгорают.
Топливо подается в карбюратор и удерживается на заданном уровне в двух топливных колодцах каждого корпуса дроссельной заслонки. Уровень топлива поддерживается на постоянном уровне с помощью поплавков в топливных скважинах, которые открывают и закрывают игольчатые клапаны, через которые подается топливо.Когда топливо выкачивается из топливных скважин, поплавки опускаются, открывая иглы, позволяя пополнить запасы топлива. Две топливные скважины на каждый корпус дроссельной заслонки снабжают три отверстия дроссельной заслонки с подачей топлива, разделяемой таким образом: одна топливная скважина питает главные жиклеры для двух цилиндров, а другая топливная скважина подает топливо в главный жиклер для третьего цилиндра, а также подает топливо для цепь ускорительного насоса … эта осведомленность может быть полезна при диагностике проблем с карбюратором.
Трехкамерный карбюратор Weber использует три различных контура для подачи топлива в двигатель; первые два используют поток воздуха для создания перепада давления для смешивания воздуха с топливом, в то время как третий контур подает сырое топливо при каждом нажатии педали дроссельной заслонки, это три контура: контур холостого хода / хода, главный контур и контур ускорителя.Нет устройств, помогающих обогатить смеси для холодного пуска; активация ускорительных насосов — метод, на который полагаются в этой ситуации.
Цепь холостого хода и хода: Цепь холостого хода и прогрессирования предназначена для подачи топлива в двигатель для работы от холостого хода до включения главной цепи и немного выше. Когда дроссельные заслонки почти закрыты (при работе двигателя на низких оборотах), они почти перекрывают основной канал корпуса дроссельной заслонки, за исключением небольшой области в форме полумесяца, через которую должен проходить воздух.Поскольку потребность в воздухе, втягиваемом в двигатель, больше, чем то, что может пройти через полумесяц, давление воздуха под дроссельными заслонками ниже атмосферного. В попытке подать воздух к стороне нижнего давления дроссельных заслонок скорость воздуха резко возрастает, когда он проходит через зазоры в форме полумесяца. Когда воздух движется с высокой скоростью, это приводит к низкому давлению, которое обеспечивает высокую скорость. Именно это результирующее низкое давление затем вытягивает топливо из маленьких отверстий (проходных отверстий) в стенке корпуса дроссельной заслонки, которое подается из основного топливного колодца.Топливо, которое подается в контур холостого хода и нагнетания, эмульгируется или смешивается с атмосферным воздухом перед прохождением через эти выпускные отверстия, чтобы способствовать дальнейшему перемешиванию, которое происходит в зоне низкого давления под дроссельной заслонкой.
Главный контур: По мере того, как дроссельные заслонки продолжают открываться и частота вращения двигателя увеличивается, разница давления между главным отверстием дроссельной заслонки (которая почти равна атмосферному давлению воздуха) и давлением воздуха под дроссельными заслонками уменьшается, что снижает количество топлива, вытекающего из портов прогрессии.В то же время, когда порты прогрессии замедляют подачу топлива, увеличенный поток воздуха в двигатель начинает создавать еще одну область низкого давления внутри отверстия дроссельной заслонки. Эта область низкого давления воздуха возникает из-за высокоскоростного воздушного потока и возникает в «сужении» или уменьшенном диаметре главной трубки Вентури. Вентури — это устройство, которое заставляет жидкость ускоряться в зависимости от ее прохождения через уменьшенную площадь на пути потока. Внутренний уменьшенный диаметр или «сужение» трубки Вентури является точкой максимальной скорости воздушного потока, а также точкой минимального давления.Это пониженное давление используется для всасывания топлива из основного топливного колодца, как при всасывании напитка через соломинку. Как и в контуре холостого хода и прогрессивном контуре, топливо, подаваемое через главный контур, эмульгируется или смешивается с атмосферным воздухом перед его введением в отверстие дроссельной заслонки.
A Цепь ускорителя: Имеется третья система подачи топлива, которая не зависит от потока воздуха для подачи топлива в отверстие дроссельной заслонки карбюратора, эта система называется цепью акселератора.Схема ускорителя впрыскивает сырое топливо в отверстия дроссельной заслонки над дроссельными заслонками, чтобы помочь восполнить недостаток смеси во время быстрого срабатывания дроссельной заслонки. Быстрое открытие дроссельной заслонки приводит к немедленному увеличению расхода воздуха, превышающему мгновенную подачу топлива из контура прогрессии или главного контура; цепь ускорителя вступает в игру, обеспечивая топливом двигатель до тех пор, пока главный контур не сможет подавать топливо, соизмеримое с потоком воздуха.
Подробное описание работыВ предыдущем разделе были представлены вводные обсуждения работы карбюратора и трех основных схем подачи топлива.Следующие ниже обсуждения более подробны и полезны, чтобы помочь понять три схемы и их взаимодействие друг с другом. Это помогает водителю автомобиля понять разницу в способах подачи топлива на разных фазах оборотов двигателя в зависимости от положения дроссельной заслонки. Кроме того, тюнер получит пользу в обсуждениях, чтобы лучше понять, какие компоненты могут быть отрегулированы, чтобы помочь исправить недостатки работы из-за профиля подачи топлива, который не оптимизирован для конкретного двигателя, и ожидаемых от него характеристик.
Контур холостого хода и хода
Контур холостого хода и прогрессии обеспечивает подачу топлива для рабочих скоростей двигателя от холостого хода до 3500 об / мин (приблизительно) при частичном открытии дроссельной заслонки и продолжает обеспечивать подачу топлива до 4500 об / мин. Когда используется широко открытый дроссель (WOT), подача топлива осуществляется «в основном» из главной цепи; «в первую очередь», поскольку есть непрерывная подача топлива из контура прогрессии, но ее вклад минимален.Контур холостого хода и прогрессии состоит из жиклера холостого хода и его держателя, жиклера для отбора воздуха холостого хода (вдавленного в верхнюю часть корпуса основной дроссельной заслонки, винта регулировки смеси холостого хода, винта регулировки воздуха холостого хода и отверстий прогрессии, просверленных в дроссельной заслонке. Все эти отверстия снабжены топливом, подаваемым через главный жиклер и через каналы подачи топлива. Эти продольные отверстия находятся за винтом с шлицевой головкой, непосредственно над винтом управления смесью холостого хода. Путем изменения размера отверстия жиклера холостого хода и жиклера холостого хода жиклер для отвода воздуха на холостом ходу, и, регулируя винт смеси холостого хода и винт коррекции воздуха холостого хода, тюнер может регулировать интенсивность топливной смеси от работы на холостом ходу через прогрессию и до перехода к главной цепи.Обычно винт смеси холостого хода будет открыт на от 1 ½ до 2 ½ оборота, регулировочный винт холостого хода будет открыт от нуля до одного поворота, а стопорный винт дроссельной заслонки будет отрегулирован так, чтобы рычаг дроссельной заслонки открывался на ¾ на 1 оборот после контакта. Это приблизительные настройки, но если окончательные настройки сильно отличаются от этих, то следует подумать о выборе нового впрыскивания или диагностике того, почему требуются отклонения.
Когда двигатель работает на холостом ходу, дроссельные заслонки почти закрыты, что создает сильный вакуум во впускном коллекторе под дроссельной заслонкой, всасывание из этого вакуума втягивает топливо из топливного колодца в отверстие дроссельной заслонки под закрытой дроссельной заслонкой. .Топливо проходит по специальному топливному каналу, расположенному между колодцем эмульсионной трубки и топливным каналом, идущим вниз по внешней стороне корпуса дроссельной заслонки. Затем он проходит через жиклер холостого хода, где атмосферный воздух из жиклера отбора воздуха холостого хода смешивается с ним и превращает его в эмульсию, прежде чем продолжить движение по внешнему топливному каналу. Образовавшаяся эмульгированная воздушно-топливная смесь вытекает из дозирующего отверстия, регулируемого винтом для смеси холостого хода, и отверстий на внутренней стенке корпуса дроссельной заслонки ниже края дроссельной заслонки.Винт смеси холостого хода представляет собой игольчатый клапан, регулирующий поток, с коническим наконечником, который сопрягается с небольшим отверстием в отверстии дроссельной заслонки и после установки фиксируется давлением пружины сжатия, обернутой вокруг него. Когда дроссельные заслонки закрыты во время работы на холостом ходу, первое (нижнее) отверстие контура прогрессии должно быть заблокировано краем дроссельной заслонки, оставляя доступным для работы только топливо из винтового отверстия для смеси холостого хода.
По мере того, как дроссельные заслонки открываются и частота вращения двигателя увеличивается, появляется больше отверстий в цепи прогрессии, подверженных воздействию вакуума ниже края дроссельной заслонки.Дополнительные открытые отверстия подают больше топлива, чтобы соответствовать увеличенному потоку воздуха из открытых дросселей. Однако разрежение под дроссельными заслонками уменьшается с открытием дроссельных заслонок до тех пор, пока в конечном итоге разрежения больше не будет достаточно для продолжения всасывания топлива из контура прогрессии. В конце концов, все проходные отверстия подвергаются воздушному потоку, проходящему мимо открытых дроссельных заслонок, и с большими дроссельными отверстиями поток топлива из этих промежуточных отверстий по существу заканчивается. Перед тем как закончить подачу топлива по контуру прогрессии, главный контур начинает подачу топлива, эта одновременная область действия подачи топлива упоминается как переходная.Более высокие обороты двигателя возможны только при подаче топлива из главного контура.
Помните, что контур холостого хода и нагнетания эмульгирует топливо, подаваемое в двигатель, точно так же, как главный контур делает это со своей струей коррекции воздуха, смешивая воздух с неочищенным топливом под действием эмульсионных трубок. Цепи холостого хода и прогрессии достигают того же результата, используя другой метод; воздух из жиклера для отбора воздуха на холостом ходу смешивается с неочищенным топливом внутри корпуса жиклера холостого хода. В дополнение к этому первоначальному эмульгированию топлива существует дополнительное эмульгирование, которое является гораздо более тонким; Отверстия над закрытой дроссельной заслонкой находятся под атмосферным давлением, а те, которые находятся ниже края дроссельной заслонки, подвергаются воздействию вакуума во впускном тракте.Следовательно, эти отверстия над дроссельной заслонкой фактически обеспечивают дополнительный воздух для эмульгированного топлива в топливном канале, который выдувает смесь, подаваемую в эти отверстия под дроссельной заслонкой. Поскольку дроссельная заслонка открыта и больше отверстий для прогрессии подвергаются воздействию вакуума, становится меньше отверстий, подверженных атмосферному давлению воздуха над дроссельной заслонкой, это уменьшение количества отверстий до атмосферного давления воздуха уменьшает количество воздуха, добавляемого к топливу в топливная галерея. Таким образом, это является обогащающим действием и соответствует потребности в более сильной топливной смеси с увеличенным потоком воздуха через большие дроссельные заслонки.
Регулировочный винт холостого хода позволяет регулировать поток воздуха через каждый цилиндр карбюратора на холостом ходу. Помимо обеспечения уравновешивания воздушных потоков, эти винты выполняют часто упускаемую из виду задачу, поскольку они позволяют устанавливать положения дроссельной заслонки на холостом ходу, чтобы блокировать подачу топлива из отверстий для подачи топлива. Воздух втягивается в зону низкого давления под дроссельными заслонками из атмосферного давления над ними через канал с целью уравновешивания воздушного потока.Винт холостого хода имеет конический наконечник для управления дозированием и после установки фиксируется контргайкой.
Главный контур
Главный контур состоит из главного жиклера и его держателя, главного жиклера для коррекции воздуха (ввинчивается в верхнюю часть корпуса дроссельной заслонки в колодец эмульсионной трубки), эмульсионной трубки, главной Вентури и вспомогательной Вентури. Главный жиклер ввинчивается в наконечник держателя жиклера, а полученный узел ввинчивается в дно поплавковой чаши, где он погружается в топливо.Воздушный поток через главную трубку Вентури создается за счет такта впуска двигателя. Поток всасываемого воздуха создает низкое давление воздуха в сужении главной трубки Вентури, и благодаря низкому давлению воздуха, которое он создает, втягивает топливо через колодец эмульсионной трубки, который определяет работу основного контура. Топливо протекает через отверстие в топливной скважине, где находится узел главного жиклера, и втягивается в полый корпус держателя главного жиклера. Оттуда он проходит через основную струю, а затем вертикально в кольцевое пространство между емкостью эмульсионной трубки и внешним диаметром эмульсионной трубки.Атмосферный воздух также втягивается через основную струю коррекции воздуха в результате всасывания, создаваемого в основной трубке Вентури. Из струи коррекции воздуха он стекает по внутреннему диаметру эмульсионной трубки, где выходит через отверстия в ее корпусе. Этот выходящий воздух хорошо смешивается с неочищенным топливом в кольцевом пространстве эмульсионной трубки, тем самым эмульгируя его при подготовке к сгоранию. Эмульгированное топливо продолжает движение вверх в кольцевом пространстве колодца эмульсионной трубки, пока не достигнет высоты, на которой оно начинает поступать в полый канал в крыле вспомогательной трубки Вентури.Эмульгированное топливо в крыле втягивается в отверстие дроссельной заслонки на сужении вспомогательной трубки Вентури, которая является областью самого низкого давления в этой трубке Вентури. Эмульгированное топливо распыляется под действием низкого давления и высокой скорости потока воздуха через трубку Вентури. Распыленное топливо выходит из нижней части вспомогательной трубки Вентури, совпадая с линией сужения основной трубки Вентури, которая является областью самого низкого давления в основной трубке Вентури. Это еще больше распыляет топливо.
В результате размещения нижней части вспомогательной трубки Вентури на линии сужения основной трубки Вентури появляется усиленный вакуумный сигнал, помогающий всасывать топливо из колодца эмульсионной трубки.Таким образом, использование вспомогательной трубки Вентури обеспечивает более ранний расход топлива, чем то, что можно было бы достичь, используя вакуум из основной трубки Вентури исключительно для этой цели. Отсюда следует, что Вентури большего размера обеспечивает меньший вакуум для всасывания топлива из эмульсионной трубки, чем основные Вентури меньшего размера, что приводит к смягчению реакции дроссельной заслонки в этих ситуациях.
Подача топлива адаптирована к требованиям двигателя за счет регулировки размеров основных и корректирующих воздушных жиклеров и выбора эмульсионной трубки.Выбор главной и вспомогательной трубки Вентури также влияет на синхронизацию основной цепи и выходную мощность двигателя.
Инициирование потока через главный контур начинается в то же самое время, когда эффективность холостого хода и контура прогрессирования начинает снижаться. Подача топлива во время этой переходной фазы подачи топлива представляет собой сумму расхода топлива из обоих контуров. Если подача топлива не соответствует требованиям двигателя, то может возникнуть бедная или богатая ситуация, которая обычно называется «плоской точкой» и возникает в диапазоне от 2500 до 3500 об / мин в зависимости от характеристик двигателя.Проблема может заключаться в любой комбинации следующего: эмульсионная трубка неправильная, размер основного жиклера неправильный, главный корректирующий жиклер воздуха неправильный или холостой ход и контур прогрессии не обеспечивают правильное количество топлива для балансировки того, что доставляется основные компоненты схемы. Регулировка эмульсионных трубок может решить эту проблему, но регулировка впрыска контура холостого хода и прогрессивного контура и / или настройки иглы также могут работать. Кроме того, размер основной трубки Вентури может регулироваться, чтобы влиять на время эффективности действия вспомогательного всасывания Вентури.
Основная трудность в достижении подходящей смеси для главного контура заключается в выборе различных форсунок для измерения расхода топлива в соответствии с входящим потоком воздуха. Хотя это звучит достаточно просто, на самом деле это довольно сложная задача из-за постоянно увеличивающейся скорости воздушного потока по мере увеличения скорости двигателя. Таким образом, по мере увеличения расхода воздуха должен увеличиваться и расход топлива, но поскольку топливо является жидким и плотнее воздуха (отношение удельного веса 557 к 1; топливо к воздуху), расход топлива не будет иметь постоянного отношения. с расходом воздуха.Эмульсионная трубка и главный жиклер для коррекции воздуха предназначены для обеспечения переменного расхода топлива, необходимого для согласования потока воздуха в двигатель. Простое описание этого состоит в том, чтобы рассмотреть ситуацию всасывания жидкости через трубку, как при питье через соломинку. Если у соломинки есть отверстие сбоку, вам нужно будет сильнее сосать, чтобы жидкость поднялась по соломе, и жидкость будет заменена за счет включения воздуха в смесь. Жиклер для коррекции воздуха и отверстия в эмульсионной трубке обеспечивают аналогичный эффект за счет того, что все больше отверстий эмульсионной трубки подвергается воздействию воздуха, топливо становится все труднее всасывать в двигатель и, таким образом, поддерживает постоянную смесь за счет тщательного выбора распылительных и эмульсионных трубок. .
Отверстия для эмульсионных трубок расположены рядом с каждым отверстием дроссельной заслонки и проходят вниз, чтобы топливо могло поступать в них через отверстия для главных жиклеров. Эмульсионные трубки опускаются в верхнюю часть этих колодцев и фиксируются на месте с помощью основных форсунок для коррекции воздуха. Трубки имеют ряд отверстий, расположенных по длине, и различаются по количеству, диаметру и относительной высоте. Дополнительной конструктивной особенностью трубок являются наружные диаметральные вариации, напоминающие хомут. Длина и расположение этого ступенчатого воротника обеспечивают дополнительные тонкости настройки.
Держатель главного жиклера ввинчивается в пробку в нижней части топливного бака, и у главного жиклера нет места для уплотнения с корпусом дроссельной заслонки. Следовательно, единственное уплотнение, которое существует между основным жиклером и топливом, подаваемым в двигатель, — это резьба между держателем главного жиклера и корпусом дроссельной заслонки. Очевидно, что требуется качественная подгонка, чтобы избежать подачи топлива за резьбу, которая в противном случае нарушила бы дозируемый поток топлива через главный жиклер.
Цепь ускорителя
Цепь ускорителя обеспечивает подачу топлива, необходимую для устранения колебаний во время ускорения, когда дроссели быстро открываются из частично закрытого положения.Как упоминалось при обсуждении работы схемы прогрессирования, подача топлива осуществляется постепенно и согласовывается с возрастающими положениями дроссельной заслонки. Быстрое открытие дросселей нарушило бы этот баланс, поскольку топливо не может реагировать достаточно быстро, чтобы поддерживать надлежащую смесь. Когда дроссели быстро открываются, воздушный поток, проходящий через край частично закрытой дроссельной заслонки, заменяется характеристиками потока работы основного контура; прекращается подача топлива из контура холостого хода и дополнительного контура, и поток топлива из основного контура не активен.Поскольку быстро увеличивающееся открытие дроссельной заслонки не соответствует согласованному увеличению числа оборотов двигателя, поток воздуха через главную систему Вентури недостаточен для активации главной цепи из-за задержки во времени, необходимой для реакции главной цепи. Ситуация большого открытия дроссельной заслонки и небольшого расхода топлива вызывает колебания обедненной смеси, если механизм для компенсации этого переходного состояния не доступен. Здесь вступает в игру схема ускорителя, впрыскивая струю сырого топлива в воздушный поток через небольшие струйные форсунки, тем самым перекрывая мгновенное изменение потока топлива через главную трубу Вентури.
Топливо всасывается из топливного бака через обратный клапан в дне бачка и во внешнюю часть корпуса ускорительного насоса и остается готовым к запросу с помощью обратных клапанов, расположенных выше по потоку (один в болте, который фиксирует струйную форсунку и другой — откидной клапан во внутреннем корпусе насоса). По требованию обратный клапан в топливном баке закрывается, и топливо перекачивается во внутреннюю часть корпуса насоса, который открывает откидной клапан, позволяя топливу поступать в незаметные каналы, ведущие к трем струйным форсункам.Обратные клапаны на струйных форсунках открываются под действием перекачиваемого топлива, и затем топливо впрыскивается вниз в кольцевое пространство между сужением основной трубки Вентури и внешним диаметром вспомогательной трубки Вентури.
При каждом приращении вращения вала дроссельной заслонки происходит впрыск топлива; постоянное вращение обеспечивает непрерывную подачу топлива до тех пор, пока доступный объем топлива не будет исчерпан. Соединительный механизм управляет насосом и состоит из плеча рычага, установленного на валу дроссельной заслонки, штока насоса, соединяющего плечо рычага с кулачком рычага, установленного снаружи корпуса дроссельной заслонки, и плеча рычага в крышке узла насоса с роликовый или простой кулачковый толкатель, который перемещается по кулачку рычага.Регулировка системы ускорительного насоса достигается за счет нескольких компонентов, включая: тип струйной форсунки, размер распылительной форсунки, выбор кулачкового рычага и регулировку длины штока ускорительного насоса с помощью регулировочной гайки. Дополнительная регулировка силы и продолжительности впрыска топлива может быть достигнута подбором внутренней пружины за дисковым клапаном в корпусе насоса.
Новые прокладки не позволяют втягивать такой объем топлива в первую камеру корпуса ускорительного насоса, как прокладки с пробегом в несколько километров.Поэтому важно знать, что может быть трудно получить полную дозу топлива после восстановления и что количество впрыска изменится и потребует дополнительной регулировки, как только прокладки достигнут состояния приработки.
Компоненты системы подачи топлива
Все три основных контура подачи топлива снабжаются топливом в топливных баках. Система подачи топлива поддерживает уровень топлива в баках на постоянном уровне, что имеет первостепенное значение для равномерной подачи топлива во все цилиндры и для правильного измерения контуров подачи топлива.Система подачи топлива состоит из следующих компонентов: игольчатого клапана, поплавка и системы топливного насоса.
Топливо перекачивается из топливного бака и фильтруется перед подачей в карбюраторы при постоянном (идеальном) давлении 3,56 фунта на квадратный дюйм. Этому топливу позволяют течь в топливные скважины, когда потребность двигателя снижает уровень топлива в скважинах, тем самым позволяя топливным поплавкам опускаться и уменьшая давление на игольчатых клапанах. Топливные клапаны открываются, что позволяет топливу поступать в скважины для поддержания постоянного уровня топлива.«Постоянный уровень» — это важная рабочая фраза здесь, поскольку постоянный уровень контролирует, когда может быть активирована основная цепь.