Для чего предназначено сцепление – виды, устройство и принцип работы

Содержание

Как устроено сцепление автомобиля, принцип действия и виды

Автомобиль состоит из множества сложных узлов и механизмов. Каждый элемент играет свою незаменимую роль. Если исключить сцепление из общей цепочки, автомобиль будет трогаться с места рывками, а двигатель подвергаться большим нагрузкам. Коробка передач в таких условиях эксплуатации прослужит не более трех дней.

Сцепление: общие сведения и назначение, функции

Сцепление является неотъемлемой частью трансмиссии, а располагается между двигателем и КПП автомобиля, обеспечивая ступенчатое переключение передач, контроль крутящего момента и временное прерывание связи маховика и трансмиссии.

Принцип работы сцепления основывается на силе трения, а если точнее – скольжения. Состоит система сцепления из привода и непосредственного механизма.

При необходимости резкого торможения именно сцепление может уберечь узел от перегрузки.

Управление в автомобилях с механической коробкой передач происходит за счет педали сцепления. С ее помощью удается соединять и разрывать связь между двигателем и КПП. Если педаль отпустить резко, пружина стремительно вернет ее в исходную позицию.

Езда на транспортном средстве с механической коробкой передач при постоянно выжатом сцеплении спровоцирует перегрев и быстрый износ элементов. Езда с пробуксовкой допустима в экстремальных условиях, для поднятия оборотов.

В стандартном виде сцепление отсутствует в гидромеханических КПП и вариаторах. Хотя, в гидромеханических коробках используются фрикционные муфты для плавного переключения передач. Встретить классическую сборку возможно лишь на РКПП, где процессом переключения управляют сервоприводы (гидравлические или электронные). Очень часто в РКПП используются два сцепления для оптимизации процесса и устранения задержек переключения – когда одно сцепление работает, другое в состоянии ожидания для переключения следующей передачи.

Устройство и составляющие сцепления

Устройство сцепления условно можно разделить на две части: механизм и привод. В целом в конструкцию узла входит:

  1. Нажимной диск или корзина. Является основой для других конструктивных элементов сцепления. Имеет непосредственный контакт с выжимными пружинами, которые направлены к центру. Размер площадки пропорционален двум радиусам маховика ДВС. Прижимной участок отличается наличием шлифовки исключительно с одной стороны. Диск имеет плотное соединение с маховиком двигателя.
  2. Ведомый диск. Располагается в зазоре прижимного участка и маховика. Имеет непосредственный контакт с КПП при помощи шлицевой муфты и фрикционных накладок. Вокруг муфты конструктивно находятся демпферные пружины, которые принимают на себя всю вибрацию.
  3. Фрикционные накладки. Находятся в основании и изготавливаются из различных композитных материалов.
  4. Выжимной подшипник. Визуально делится на две части, одна из которых имеет круглую основу для воздействия на пружины корзины. Подшипник расположен на кожухе вала. Существует два типа подшипников: оттягивающего или нажимного принципа. Первый тип нашел свое применение в Peugeot. Иногда подшипник имеет несколько пружин-фиксаторов.
  5. Привод и педаль сцепления. В автоматических коробках сохранен только механизм.

Принцип работы и механизм

Вся работа сцепления построена на трении между дисками. Ведущий диск является частью ДВС, а ведомый диск – элемент трансмиссии. Когда водитель отпускает педаль, то пружины сжимают диски вместе. В итоге за счет фрикционных поверхностей, диски притираются и продолжают вращение с равной угловой скоростью. От силы лепестков пружин зависит показатель абразива диска.

Когда водитель выжимает сцепление, основа привода перемещают вилку, которая впоследствии оказывает влияние на подшипник. Последний перемещается до упора. Пружины в этот момент уже готовы прижать два диска, что значит, что вилка разорвала связь между трансмиссией и маховиком ДВС. Все трансмиссионные удары, когда водитель резко бросает педаль, когда ТС тронулось с места, поглощают и сглаживает отдельный тип пружин.

Принцип работы приводов

Привод напрямую влияет на исправность всего узла и необходим для дистанционного управления из салона. В общей системе выделяют три основных типа:

  • Механический привод сцепления. Является одним из самых распространенных. Усилие передается при помощи троса к вилке. Конструкция находится под покрытием кожуха, который находится перед педалью и вилкой.
  • Гидравлический. Предполагает наличие основного и рабочего цилиндра, которые связаны под большим давлением трубками. После того как водитель нажимает на педаль, активируется шток. Действующий в итоге поршень имеет стойкую манжету и передает давление жидкости к рабочему цилиндру. Последний имеет отдельный шток, который давит на вилку. Используемая в системе жидкость размещается в отдельном бачке.
  • Электрический привод. По принципу действия схожий с механическим приводом. Единственное отличие заключается в срабатывании мотора при давлении на педаль.

Нажатие на педаль сцепления позволяет напрямую оказывать воздействие на нажимной диск автомобиля.

Виды сцепления и классификация

Сегодня автомобилисты выделяют множество классификаций сцепления. Можно встретить однодисковые или многодисковые механизмы. Кроме того, сцепление бывает сухими и мокрым, на это влияет среда, в которой работает узел. Самое большое распространение имеет сухое однодисковое сцепление. Отдельную классификацию выделяют относительно типа рабочего привода и относительно принципа нажатия на корзину.

По характеру силы трения существует два вида: сухое и мокрое. Сухое – обеспечивается за счет функциональной работы передачи вращения между двумя шкивами. Мокрое сцепление работает за счет передачи энергии при помощи сжатия компонентов, находящихся в автомобильном масле.

Отдельно существует различие по количеству шкивов:

  • Однодисковые. Системы, которые характерны как для легкового транспорта, так и для грузового. Элемент применим для автомобилей, у которых крутящий момент попадает в диапазон 0,7–0,8 кНм.
  • Многодисковая система. Применима для тяжелых транспортных средств с высоким крутящим моментом. В конструкции предусмотрено наличие двух рабочих дисков, корзины и системы контроля синхронного нажатия.

Если рассуждать относительно расположения пружин на дисках, то можно отметить, что встречаются два варианта: демпферные пружины помещены по периферии и наличие централизованной диафрагмы.

Особенности сцепления АКПП

Чаще всего автомобили с автоматической коробкой наделенны влажным многодисковым типом сцепления, хотя можно встретить варианты сухого сцепления. Управление выжимной силой, как и переключение передач, происходит за счет работы сервопривода. Актуаторы бывают гидравлические и электрические. Управление сервоприводами происходит при помощи ЭБУ или гидрораспределителя.

Больше всего негодований вызывает работа электрических сервоприводов во время переключения передач. Прежде чем, запустить в работу механизм сцепления, акутатор проводит анализ оборотов двигателя и только потом разъединяет ДВС от трансмиссии. Гидравлический сервопривод реагирует на давление, созданное распределителем и масляным насосом при достижении определенного показателя оборотов. После чего запускает в ход механизм сцепления.

Характеристики керамического и металлокерамического сцепления

В последнее время любители экстремальной быстрой езды открыли для себя керамическое и металлокерамическое сцепление. Керамика значительно выигрывает, если ее установить на мощный агрегат, который любит стартовать с пробуксовкой и сжигать резину. Металлокерамическое сцепление может выдерживать значительные нагрузки и является лучшим выбором гонщиков.

Диски производят с добавление углеродистого волокна, кевлара и керамики. Такой состав позволяет на 10–15% поднять передачу крутящего момента без увеличения прижимной силы, оказываемой на корзину. Живут такие диски, как правило, в четыре раза дольше обычных. Производят 3-х, 4-х, 6-и лепестковые модели, которые отлично справляются с температурными и механическими нагрузками. Некоторые водители жалуются на слишком резкое переключение передач при керамическом сцеплении, но определенного

мнения на этот счет среди автомобилистов пока нет.

Чтобы детально понимать принцип работы сцепления автомобиля теорию необходимо подкреплять практикой. Если такой возможности нет, увидеть наглядный пример можно на роликах в сети:

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

pricurivatel.ru

Назначение и общая характеристика сцепления

Сцепление (главный фрикцион) служит для кратковременного отъединения трансмиссии от двигателя перед включением передач, их плавного соединения после включения передач, а также для предохранения трансмиссии от динамических перегрузок, возникающих при движении транспортной машины.

По принципу действия сцепления подразделяют на фрикционные, гидравлические (гидромуфты) и электромагнитные (порошковые). В зависимости от формы и конструкции трущихся деталей фрикционные сцепления могут быть дисковыми, специальными (колодочные, ленточные) и конусными.

По условиям работы поверхностей трения дисковые сцепления (главные фрикционы) делятся на сухие и работающие в масле.

В зависимости от материала поверхностей трения различают следующие сцепления (главные фрикционы):

  • сталь по фрикционному материалу
  • сталь по стали
  • чугун по oстали
  • чугун по фрикционному материалу

По способу создания силы, сжимающей диски, выделяют следующие сцепления:

  • пружинные (с несколькими периферийными или одной центральной пружиной)
  • полуцентробежные
  • центробежные
  • электромагнитные

В зависимости от типа механизма выключения различают сцепления (главные фрикционы) с рычажным и шариковым механизмами.

По типа привода выключения сцепления (главные фрикционы) бывают с механическим, гидравлическим, пневматическим, гидропневматическим и электромагнитным приводами.

Сцепление обычно устанавливается у маховика двигателя и представляет собой фрикционную муфту, через которую с помощью сил трения вращающий момент от двигателя передается к коробке передач и далее к ведущим колесам.

На изучаемых транспортных машинах применяются, как правило, фрикционные дисковые сухие, постоянно замкнутые сцепления (главные фрикционы у гусеничных машин) с периферийным расположением нажимных пружин и механическим приводом управления. В зависимости от числа ведомых дисков сцепления подразделяются на одно-, двух- и многодисковые.

Сцепление состоит из ведущей и ведомой частей, нажимного механизма и механизма выключения. Детали ведущей части сцепления воспринимают от маховика вращающий момент двигателя, а детали ведомой части сцепления передают этот момент ведущему валу коробки передач.

Ведущая часть сцепления включает в себя маховик 3, установленный на коленчатом валу двигателя, кожух 1 и нажимной диск 2. Маховик имеет обработанную торцевую поверхность, и к нему прикрепляется болтами кожух, соединенный с нажимным диском упругими стальными пластинами 5, что обеспечивает передачу вращающего момента от кожуха на нажимной диск, позволяя последнему перемещаться в осевом направлении при включении и выключении сцепления.

Рис. Схема однодискового сцепления с приводом выключения:
1 — кожух; 2 — нажимной диск; 3 — маховик; 4 — ведомый диск; 5 — упругая пластина; 6 — нажимная пружина; 7 — ведущий вал; 8 — рычаг; 9 — выжимной подшипник; 10, 13 — оттяжные пружины; 11 — вилка; 12 — педаль; 14 — тяга

К ведомой части относится тонкий ведомый диск 4 с прикрепленными к нему фрикционными накладками и ступицей, установленной на шлицах на вал 7, являющийся ведущим валом коробки передач. Нажимной механизм состоит из нажимных пружин 6, сила упругости которых обеспечивает включение сцепления. Механизм выключения состоит из выключающих рычагов 8, муфты выключения с выжимным подшипником 9 и вилки 11, предназначенной для перемещения муфты выключения. К приводу выключения сцепления относят тягу 14 и рычаг 8 с педалью 12 и пружиной 13. Если педаль отпущена, то сцепление включено, так как ведомый диск зажат между маховиком и нажимным диском усилием нажимных пружин, расположенных между нажимным диском и кожухом сцепления. Вращающий момент с помощью сил трения передается от ведущей части на ведомую.

Включение сцепления осуществляется плавным отпусканием педали — нажимной диск перемещается в сторону маховика и прижимает к нему ведомый диск. Пока сила, прижимающая диск к маховику, мала, сила трения между поверхностями ведущих и ведомых частей также мала, и ведомый диск будет вращаться с меньшим числом оборотов, чем маховик. Чем больше сила, прижимающая диск к маховику, тем больше сила трения, а следовательно, и вращающий момент, передаваемый от маховика на вал 7. При полностью отпущенной педали сила трения возрастает настолько, что ведущие и ведомые части вращаются как одно целое, и через сцепление может быть передан полный вращающий момент двигателя. Сцепления рассчитываются на передачу вращающего момента, который в 1,5 — 3 раза больше максимального вращающего момента двигателя, что необходимо для предотвращения буксования сцепления во включенном состоянии при резком изменении усилий на ведущих колесах, торможении, попадании смазки или воды на поверхности трения дисков сцепления.

При нажатии на педаль 12 сцепление выключается, так как муфта выключения, перемещаясь в осевом направлении к маховику, упорным подшипником нажимает на выключающие рычаги и поворачивает их относительно осей, закрепленных в кожухе, а наружные концы выключающих рычагов отодвигают нажимной диск 2 от ведомого диска 4, освобождая его и обеспечивая зазор с каждой стороны ведомого диска примерно по 1 мм. Сила трения между поверхностями ведущих деталей и ведомого диска отсутствует, вследствие чего вращающий момент от маховика на ведомый диск, а следовательно, и к ведущим колесам передаваться не будет.

К сцеплениям предъявляется ряд требований, основными из которых являются плавность включения, чистота и легкость выключения, безотказность работы, малый момент инерции ведомых частей, хороший отвод теплоты и гашение крутильных колебаний. Перечисленные требования определяют рациональную конструкцию элементов сцепления.

ustroistvo-avtomobilya.ru

Сцепление — Энциклопедия журнала «За рулем»

Механическая трансмиссия должна иметь возможность кратковременного разъединения от работающего двигателя. Это необходимо при остановках автомобиля и при переключении передач в механической ступенчатой коробке передач. Кроме того, при троганье автомобиля с места и переключении передач соединение вала двигателя и трансмиссии должно происходить плавно, без резких рывков. В связи с этим возникает необходимость в специальном устройстве, обеспечивающем постепенное нагружение двигателя. В качестве такого устройства обычно применяется сцепление. Использование сцепления необходимо для переключения передач т.к. если трансмиссия находится под нагрузкой крутящим моментом, переключение невозможно. Прежде чем переключить передачу, сцепление необходимо выключить.
В принципе, в качестве сцепления может быть использована любая управляемая муфта. Первые автомобили были оборудованы ленточным сцеплением, в котором металлическая лента охватывала снаружи металлический барабан или прижималась к нему изнутри при помощи различных рычажных элементов. Ленточные сцепления в обычном положении были выключены и включались путем перемещения рычага в определенное положение. Основным недостатком ленточных сцеплений была необходимость в использовании сложных регулировочных узлов, компенсирующих изнашивание рабочих поверхностей.

Конусное сцепление

С появлением коробок передач со скользящими шестернями появляются сцепления конусного типа. В отличие от постоянно выключенных ленточных сцеплений конусные сцепления удерживались во включенном состоянии пружиной, а выключались, когда водитель, нажимая педаль, сжимал пружину. Именно с первых конструкций конусных пружин в практику автомобилестроения вошел принцип включения сцепления пружинами.

Сцепление конусного типа:
1 — фланец коленчатого вала;
2 — маховик;
3 — муфта выключения сцепления;
4 — педаль сцепления;
5 — рычаг выключения сцепления;
6 — вал сцепления;
7 — кожух сцепления;
8 — пружина;
9 — конус сцепления;
10 — фрикционная накладка

В конусных сцеплениях поверхности трения составляли угол 15° с осью конуса. Конус, представляющий собой ведомый элемент, первоначально покрывался кожей, которая требовала тщательного и трудоемкого ухода, но даже при этом быстро изнашивалась. Поэтому впоследствии стали применяться прокладки из фрикционных материалов с асбестовой основой. Маховик двигателя служил ведущим элементом сцепления — его обод изнутри имел коническую поверхность, соответствующую поверхности ведомого элемента сцепления. Ведомый элемент устанавливался на шлицах (продольных выступах) вала коробки передач с возможностью осевого перемещения для выключения сцепления. В рабочем положении конусные поверхности трения были сжаты усилием пружины. Нажатие педали сопровождалось отводом ведомой части от маховика и выключением сцепления. При работе любого сцепления важно, чтобы при его выключении ведомая часть быстро останавливалась. Главным недостатком конусного сцепления было то, что обладающий большим моментом инерции ведомый элемент долго вращался после выключения сцепления, затрудняя переключение передач.

Многодисковое сцепление

На смену конусному сцеплению пришло многодисковое сцепление, работающее в масле. Оно состояло из чередующихся стальных и бронзовых дисков, закрепленных на шлицах с ведомым и ведущим барабанами. Ведомый барабан с многочисленными ведомыми дисками также обладал большим моментом инерции, что в значительной степени затрудняло переключение передач. Кроме того, при загустевании масла в холодную погоду диски слипались и сцепление не выключалось.
Следующей ступенью в развитии конструкции сцепления явилось сухое многодисковое сцепление. Ведущие диски его были снабжены накладками из фрикционного материала, приклепанного к ним с обеих сторон. Но и в этом сцеплении сохранился основной недостаток многодисковых сцеплений — большой момент инерции ведомых частей сцепления, затрудняющий переключение передач. Другим недостатком такого сцепления было то, что ведомые металлические диски, расположенные между фрикционными обшивками, обладающими низкой теплопроводностью, сильно нагревались при пробуксовке, что ускоряло износ накладок, а иногда возникало сильное коробление дисков, приводившее к нарушению чистоты выключения сцепления.
С 1910 г. на автомобилях начинают применять однодисковые сцепления. Однако первые конструкции не имели фрикционных накладок, диски изготавливались из чугуна и бронзы или из чугуна и стали. Постепенно преимущества однодискового фрикционного сцепления получили всеобщее признание, и к середине 20-х гг. оно уже практически вытесняет прочие конструкции фрикционных муфт.
Сейчас в трансмиссиях автомобилей все чаще применяются также сцепления, построенные на иных принципах действия: гидравлические и электромагнитные.

Гидравлическое сцепление

В гидравлическом сцеплении (гидромуфте) ведущее (насосное) лопастное колесо связано с двигателем, а ведомое (турбинное) лопастное колесо — с трансмиссией. В поперечной плоскости колеса гидромуфты имеют форму тора. В колесах имеются радиальные лопасти. Оба колеса помещены в корпусе, заполненном маслом. При вращении насосного колеса кинетическая энергия жидкости, расположенной между его лопастями и движущейся под действием центробежных сил, передается турбинному колесу. При достижении определенного числа оборотов эта энергия становится достаточной для того, чтобы автомобиль тронулся с места, а при дальнейшем увеличении числа оборотов колеса гидромуфты начинают вращаться практически с одинаковой скоростью.
Гидромуфта в качестве самостоятельного агрегата, выполняющего функции сцепления в трансмиссии автомобиля, не используется, так как для обеспечения ее выключения при переключении передач необходимо создавать сложную систему ее опорожнения. Поэтому гидромуфта применяется вместе с обычным фрикционным сцеплением, которое устанавливается за ней последовательно и служит лишь для переключения передач.

Электромагнитное порошковое сцепление

Электромагнитное порошковое сцепление:
А, Б, В — зазоры;
1 — ведущая часть;
2 — неподвижный корпус;
3 — обмотка возбуждения;
4 — ведомая часть

Электромагнитное порошковое сцепление получило некоторое распространение на автомобилях малого класса. Ведущим элементом сцепления является маховик с закрепленными на нем магнитопроводами с обмотками возбуждения. Ведомый диск закреплен на ведущем вале коробки передач. Между магнитопроводами и ведомым диском имеется воздушный зазор, в который вводится специальный фрикционный порошок, обладающий высокими магнитными свойствами. При отсутствии тока в обмотках возбуждения между ведущими и ведомыми элементами сцепления силовой связи нет — сцепление выключено. Если к обмоткам возбуждения подводится электрический ток, то за счет образования магнитного поля, частицы порошка выстраиваются по силовым линиям магнитного поля, и создается силовое взаимодействие между ведущими и ведомыми элементами сцепления. Силовая связь зависит от силы тока, поступающего в обмотку возбуждения. Основное достоинство такой конструкции заключается в том, что управление сцеплением можно перенести с педали сцепления на ручной, кнопочный вариант управления, что актуально для водителей с ограниченными физическими возможностями.

Однодисковое сцепление

Однодисковое сцепление:
1 — картер сцепления;
2 — маховик;
3 — фрикционные накладки ведомого диска;
4 — нажимной диск;
5 — опорные кольца;
6 — диафрагменная пружина;
7 — подшипник выключения сцепления;
8 — первичный вал коробки передач;
9 — поролоновые кольца;
10 — муфта выключения;
11 — шаровая опора вилки;
12 — кожух;
13 — вилка;
14 — шток рабочего цилиндра;
15 — соединительная пластина;
16 — рабочий цилиндр;
17 — штуцер прокачки;
18 — демпферная пружина;
19 — ступица ведомого диска

Фрикционное однодисковое сцепление в большинстве случаев является оптимальным конструктивным решением для рассматриваемого узла трансмиссии. Оно состоит из ведущих частей: маховика, кожуха, нажимного диска, вращающегося с частотой коленчатого вала двигателя, и ведомого диска, расположенного на шлицах ведущего вала коробки передач.
Кроме того, во фрикционном сцеплении выделяют группу деталей, осуществляющих включение-выключение и привод сцепления. Включение сцепления осуществляется под действием силы, создаваемой пружинами, а выключение — в результате преодоления этой силы при воздействии на педаль сцепления, которая обеспечивает перемещение выжимного подшипника.
В зависимости от типа пружин, создающих сжимающие силы, фрикционные сцепления разделяются на:
— сцепления с периферийными пружинами;
— сцепления с центральной конической пружиной;
— сцепления с диафрагменной пружиной.
Большинство механических трансмиссий современных легковых автомобилей имеют сцепления с диафрагменной пружиной.
На грузовых автомобилях нашли применение двухдисковые сцепления, использование которых вызвано необходимостью увеличения площади поверхностей трения без увеличения внешних размеров сцепления.

Требования к конструкции сцепления

К конструкции сцепления предъявляются определенные требования.
Плавность включения. Это требование диктуется необходимостью снижения динамических нагрузок в трансмиссии при троганьи автомобиля с места и переключении передач. До недавнего времени для фрикционных сцеплений применялись в основном фрикционные накладки, в состав которых входили асбест, наполнители и связующие материалы. В настоящее время все большее распространение получают фрикционные накладки без асбеста или с минимальным его содержанием. Это связано с тем, что асбестовая пыль признана опасной для здоровья человека.
Конструктивно плавность включения сцепления достигается обеспечением податливости ведомого диска. С этой целью ведомые диски легковых автомобилей выполняются разрезными, с некоторой конусностью или выпуклостью секторов. В этом случае секторы работают как пластинчатые пружины между ведомым диском и одной из фрикционных накладок. Также на плавность включения оказывает влияние упругость элементов в механизме выключения. С этих позиций сцепление с диафрагменной пружиной, у которой податливые лепестки выполняют функции рычагов выключения, предпочтительнее, чем сцепление с периферийными пружинами, у которого выключение осуществляется жесткими рычагами.

Устройство, обеспечивающее гарантированный зазор между поверхностями трения:
a — рычажное;
б, в — со штоком и пружиной;
S — рабочий зазор

Чистота выключения. Полное отсоединение двигателя от трансмиссии достигается получением гарантированного зазора между поверхностями трения при полностью выжатой педали сцепления. Для двухдискового сцепления имеется специальное устройство для принудительного перемещения внутреннего ведущего диска в положение, при котором оба ведомых диска находятся в свободном состоянии.

Предохранение трансмиссии от динамических нагрузок. Динамические нагрузки в трансмиссии могут быть единичными (пиковыми) и периодическими. Пиковые нагрузки возникают при резком изменении угловой скорости трансмиссии, например при включении сцепления броском педали, при наезде на неровность. Чтобы не произошло поломки в трансмиссии, сцепление должно ограничить предельное значение нагрузки путем пробуксовки.

Гаситель крутильных колебаний:
1 — диск;
2 — ступица;
3 — сухарь;
4 — пружина;
5 — стальная шайба;
6 — фрикционная шайба

Периодические нагрузки (крутильные колебания) возникают в результате неравномерности крутящего момента двигателя. Для гашения крутильных колебаний трансмиссии в ведомом диске сцепления устанавливают гаситель крутильных колебаний. Ступица ведомого диска и сам ведомый диск связаны между собой не жестко, а через пружины гасителя. Колебания, возникающие в трансмиссии, вызывают относительное угловое смещение ведомого диска и его ступицы за счет деформации пружин гасителя, а это смещение сопровождается трением фрикционных элементов гасителя. Таким образом, гашение крутильных колебаний происходит за счет сил трения. Кроме того, гаситель, изменяя жесткость трансмиссии, не допускает возможности наступления резонанса в трансмиссии, выводя резонансные частоты за область рабочих частот двигателя.
Применение двухмассовых маховиков в конструкции двигателя позволило перенести гаситель крутильных колебаний из ведомого диска в маховик. Такое конструктивное решение позволяет упростить сцепление, снизить момент инерции ведомого диска и, следовательно, уменьшить нагрузки на элементы управления коробкой передач. Впервые подобные сцепления появились в 1985 г.

Графики упругих характеристик пружин:
1 — сцепление с периферийными пружинами;
2 — сцепление с диафрагменными пружинами

Поддержание нажимного усилия в заданных пределах в процессе эксплуатации. В процессе эксплуатации в результате износа фрикционных накладок нажимной диск перемещается в сторону маховика, изменяя жесткость пружин сцепления. В сцеплении с периферийными пружинами, которые имеют линейную упругую характеристику, это приводит к снижению нажимного усилия и передаваемого момента трения вплоть до наступления пробуксовывания сцепления.
В сцеплениях с диафрагменной пружиной, которая имеет нелинейную упругую характеристику, усилие при износе накладок поддерживается примерно постоянным.
Применение диафрагменной пружины позволяет упростить конструкцию, так как примерно вдвое сокращается число деталей, уменьшается размер сцепления, а пружина выполняет еще и функцию рычагов выключения. Диафрагменная пружина обеспечивает равномерное распределение усилия по всей накладке. Важным преимуществом диафрагменной пружины, по сравнению с периферийными, является то, что при повышении угловой скорости маховика центробежные силы не искажают ее характеристику. Кроме того, как видно из графика, при выключении сцепления усилие пружины снижается, что облегчает управление сцеплением. В некоторых конструкциях с диафрагменной пружиной выпуклая сторона пружины направлена внутрь сцепления. Это позволяет несколько уменьшить ширину агрегата, но усложняет конструкцию выжимного элемента и привода.
Первоначально диафрагменная пружина появилась в сцеплениях легковых автомобилей. Долгое время применение ее в сцеплениях грузовых автомобилей сдерживалось технологической сложностью изготовления пружины большого диаметра.

Смотрите также:
Устройство сцепления
Привод сцепления

wiki.zr.ru

Сцепление автомобиля — назначение, типы и классификация. Требования к сцеплениям. Устройство однодискового фрикционного сцепления. Привод

Назначение и типы

Сцеплением называется силовая муфта, в которой передача крутящего момента обеспечивается силами трения, гидродинамическими силами или электромагнитным полем. Такие муфты называются соответственно фрикционными, гидравлическими и электромагнитными.

Сцепление служит для временного разъединения двигателя и трансмиссии и плавного их соединения. Временное разъединение двигателя и трансмиссии необходимо при переключении передач, торможении и остановке автомобиля, а плавное соединение – после переключения передач и при трогании автомобиля с места. При движении автомобиля сцепление во включенном состоянии передает крутящий момент от двигателя к коробке передач и предохраняет механизмы трансмиссии от динамических нагрузок, возникающих в трансмиссии. Так, нагрузки в трансмиссии возрастают при резком торможении с двигателем, пре резком включении сцепления, неравномерной работе двигателя и резком снижении частоты вращения коленчатого вала, наезде колес на неровности дороги и т.д.

На автомобилях применяют различные типы сцеплений (схема 1).

Схема 1 – Типы сцеплений, классифицированных по различным признакам.

Все указанные сцепления, кроме центробежных, являются постоянно замкнутыми, т.е. постоянно включенными и выключаемыми водителем при переключении передач, торможении и остановке автомобиля.

На автомобилях наибольшее применение получили фрикционные сцепления. Однодисковые сцепления применяются на легковых автомобилях, автобусах и грузовых автомобилях малой и средней грузоподъемности, а иногда и большой грузоподъемности.

Двухдисковые сцепления устанавливают на грузовых автомобилях большой грузоподъемности и автобусах большой вместимости.

Многодисковые сцепления используются очень редко – только на автомобилях большой грузоподъемности.

Гидравлические сцепления, или гидромуфты, в качестве отдельного механизма на современных автомобилях не применяются. Ранее они использовались в трансмиссии автомобилей, но только совместно с последовательно установленным фрикционным сцеплением.

Электромагнитные сцепления имели некоторое применение на автомобилях, но широкого распространения не получили в связи со сложностью их конструкции.

Требования к сцеплениям

Одним из основных показателей сцепления является его способность к передаче крутящего момента. Для ее оценки используется понятие величины коэффициента запаса сцепления ß, определяемой следующим образом:

ß = МСЦ / Мmax

где МСЦ – максимальный крутящий момент, который может передать сцепление,

Мmax – максимальный крутящий момент двигателя.

Помимо общих требований, касающихся каждого узла автомобиля, к сцеплению предъявляется ряд специфических требований, среди которых:

  1. Плавность включения. В эксплуатации она обеспечивается квалифицированным управлением, но некоторые элементы конструкции предназначены для повышения плавности включения сцепления даже при низкой квалификации водителя.
  2. Чистота выключения. Абсолютное выключение, при котором крутящий момент на выходном вале сцепления равен нулю, труднодостижимо, но если момент, передаваемый выключенным сцеплением, достаточно мал и не мешает включать передачи, то можно считать, что такое сцепление выключено практически чисто.
  3. Надежная передача крутящего момента при любых условиях эксплуатации. Слишком низкое значение коэффициента запаса приводит к увеличению времени буксования сцепления при трогании автомобиля (особенно в тяжелых эксплуатационных условиях), повышенному его нагреву и износу. Излишне большая величина коэффициента запаса сопровождается увеличением размеров и массы сцепления, повышением усилия, необходимого для управления им, и ухудшением предохранения трансмиссии и двигателя от перегрузок. Обычно значение коэффициента запаса сцепления составляют 1,4 – 1,7 для легковых и 1,5 – 2,0 для грузовых автомобилей, увеличиваясь до 2,3 на тяжелых тягачах.
  4. Минимальная величина момента инерции ведомых частей. Нарушение этого требования не скажется на выполнении сцеплением своих функций, однако будет приводить к удлинению процесса переключения передач и снижению срока службы синхронизаторов коробки передач.
  5. Удобство управления. Это общее для всех органов управления требование конкретизируется в виде требований к ходу педали и требуемому для ее нажатию усилию. Действующие в России ограничения в настоящее время составляют 150 Н усилия для автомобилей, имеющих усилители привода сцепления, и 250 Н для автомобилей без усилителей. Ход педали обычно не более 160 мм.

Типовое устройство сцепления — однодисковое, фрикционное

Фрикционным сцеплением называется дисковая муфта, в которой крутящий момент передается за счет силы сухого трения.

Широкое распространение на современных автомобилях получили однодисковые сухие сцепления. Однодисковым сцеплением называется фрикционная муфта, в которой для передачи крутящего момента применяется один ведомый диск.

Однодисковое сцепление (схема 2, а) состоит из ведущих и ведомых деталей, а также из деталей включения и выключения сцепления.

Схема 2 – Однодисковое фрикционное сцепление

а – включено; б – выключено; 1 – кожух; 2 – нажимной диск; 3 – маховик; 4 – ведомый диск; 5 – пластина; 6 – пружина; 7 – подшипник; 8 – педаль; 9 – вал; 10 – тяга; 11 – вилка; 12 – рычаг

Ведущими деталями являются маховик 3 двигателя, кожух 1 и нажимной диск 2, ведомыми – ведомый диск 4, деталями включения – пружины 6, деталями выключения – рычаги 12 и муфта с подшипником 7.

Кожух 1 прикреплен болтами к маховику. Нажимной диск 2 соединен с кожухом упругими пластинами 5. Это обеспечивает передачу крутящего момента от кожуха на нажимной диск и перемещение нажимного диска в осевом направлении при включении и выключении сцепления. Ведомый диск 4 установлен на шлицах первичного (ведущего) вала 9 коробки передач.

Сцепление имеет привод, в который входят педаль 8, тяга 10, вилка 11 и муфта с выжимным подшипником 7.

При отпущенной педали 8 сцепление включено, так как ведомый диск 4 прижат к маховику 3 нажимным диском 2 усилием пружин 6. Сцепление передает крутящий момент от ведущих деталей к ведомым через поверхности трения ведомого диска с маховиком и нажимным диском. При нажатии на педаль 8 (схема 2, б) сцепление выключается, так как муфта с выжимным подшипником 7 перемещается к маховику, поворачивает рычаги 12, которые отодвигают нажимной диск 2 от ведомого диска 4. В этом случает ведущие и ведомые детали сцепления разъединены, и сцепление не передает крутящий момент.

Однодисковые сцепления просты по конструкции, дешевы в изготовлении, надежны в работе, обеспечивают хороший отвод теплоты от трущихся поверхностей, чистоту выключения и плавность включения. Они удобны в обслуживании при эксплуатации и ремонте.

В однодисковых

carspec.info

что это? Что такое сцепление и привод сцепления

Сцепление — назначение и общее устройство

Сцепление служит для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения.

Сцепление состоит из нажимного (ведущего) диска, ведомого диска, выжимного подшипника и привода выключения.

Привод выключения сцепления может быть гидравлическим либо тросовым. В обоих случаях он предназначен для передачи усилия от педали сцепления к выжимному подшипнику.

Нажимной (ведущий) диск закреплен на маховике. Ведомый диск сцепления находится между нажимным диском и маховиком. Ведомый диск соединен с первичным валом коробки передач шлицевым зацеплением.

Сцепление — привод сцепления

Как это все работает? При нажатии педали сцепления сначала ничего не происходит (выбирается свободный ход), затем выжимной подшипник начинает давить на лепестки диафрагменной пружины нажимного диска. В результате нажимной диск незначительно смещается в сторону от маховика. Ведомый диск перестает быть зажатым между маховиком и ведущим диском, начинает проскальзывать между ними. Вращение от коленчатого вала двигателя перестает передаваться на первичный (входной) вал коробки передач, и вал останавливается. Это позволяет водителю включить первую передачу в коробке передач. Что бы ни случилось, в любой ситуации наши специалисты по выездной тех помощи на дорогах москвы приедут и окажут необходимую помощь.

Теперь можно начинать движение. Из следующей главы можно будет узнать общее описание устройства современного легкового автомобиля, основные системы в устройстве автомобиля, конструкции кузова.

Для этого необходимо плавно отпустить педаль. Нажимной диск начнет прижиматься к ведущему, одновременно прижимая его к маховику. А в одной из следующих глав можно будет узнать краткий обзор систем управления автомобиля — органы управления автомобилем.

Сначала ведомый диск будет проскальзывать относительно ведущего, в этот момент первичный вал коробки передач начнет вращаться, но пока его частота вращения меньше частоты вращения коленчатого вала.

Это тот самый момент, когда автомобиль начинает движение с места.

По мере возрастания прижимной силы угловые скорости ведущего и ведомого дисков выравниваются.

Частота вращения первичного вала КП становится равной частоте вращения коленчатого вала. Автомобиль равномерно движется.

Если увеличить частоту вращения коленчатого вала (нажать педаль газа), частота вращения первичного вала КП также увеличится. Автомобиль начнет двигаться быстрее.

Трос одним концом соединен с рычагом педали, а вторым — с рычагом вилки выключения сцепления. Нажатие педали сцепления вызывает перемещение троса в оболочке. В результате трос тянет рычаг, вилка поворачивается на оси и давит на выжимной подшипник. Выжимной подшипник передает это давление на лепестки диафрагменной пружины нажимного диска.

Гидравлический привод состоит из главного и рабочего цилиндров, соединенных трубопроводом. Рабочий цилиндр может быть установлен снаружи картера сцепления и воздействовать на вилку выключения сцепления или может быть установлен внутри картера, в сборе с выжимным подшипником.

При нажатии педали сцепления поршень в главном цилиндре давит на жидкость, находящуюся в трубопроводе. Это давление передается жидкостью на поршень рабочего цилиндра. Поршень смещается вместе со штоком и тем самым поворачивает вилку выключения сцепления. Противоположный конец вилки давит на выжимной подшипник, а подшипник — на диафрагменную пружину. Пружина отжимает нажимной диск и сцепление выключается.

В гидравлическом приводе выключения сцепления используется тормозная жидкость. Жидкость в гидропривод сцепления поступает либо из отдельного бачка, либо из бачка гидропривода тормозов, установленного на главном тормозном цилиндре. Более подробно классификация тормозных жидкостей и их основные свойства будут рассмотрены в описании гидропривода тормозной системы.

В процессе эксплуатации ведомый диск сцепления изнашивается, в результате уменьшается толщина его фрикционных накладок. Это приводит к изменению рабочего хода педали. Для компенсации износа диска требуется периодическая регулировка привода. На многих современных моделях это выполняется автоматически специальным устройством.

Если автоматического устройства нет, то регулировка выполняется вручную, при очередном техническом обслуживании. В случае тросового привода регулировка выполняется путем изменения длины троса.

При гидравлическом приводе выключения сцепления обычно предусмотрена регулировка длины штока одного из цилиндров (главного или рабочего).

kerel.ru

Для чего предназначено сцепление автомобиля. Как работает сцепление

Сегодня трудно представить автомобиль, чья коробка передач была бы напрямую подсоединена к двигателю. При такой конфигурации трогаться с места авто будет рывками, переключение передачи станет невозможным, а для остановки будет необходимо полностью отключить двигатель. При такой работе срок службы коробки передач сократится до нескольких дней или еще сильнее. На двигатель же (ДВС) подобного рода перегрузки тоже окажут сильное влияние: его ресурс сократится в несколько раз. В данной статье мы рассмотрим принцип работы сцепления, а также его классификацию и конструкцию.

Назначение сцепления

Основная цель которой служит сцепление, зачем нужно – плавное соединение вала коробки передач и маховика двигателя внутреннего сгорания в моменты начала движения и переключения передачи. Говоря простым языком, работа сцепления заключается в роли выключателя крутящего момента. Кроме того, оно способно уберечь от перегрузки и механических повреждений трансмиссию в случае резкого торможения.

Виды

Системы сцепления различаются по следующим признакам:

  • по количеству ведомых дисков (однодисковые и многодисковые). Первые имеют большее распространение.
  • по среде работы (сухие и влажные). Первые являются самыми популярными и распространенными. Влажной система называется тогда, когда элементы находятся в масляной ванне.
  • по приводу в действие механизма (механические, электрические, гидравлические, комбинированные).
  • по типу нажатия на прижимной диск (с центральной диафрагмой, с круговым расположением пружин).

Состав узла сцепления

Нажимной диск

Данный элемент, получивший простонародное название «корзина», является основанием выпуклой округлой формы. Выжимные пружины имеют соединение с прижимной площадкой (также округлой).

Ведомый диск

Также имеет округлую форму, конструкция же его состоит из следующих компонентов: о

www.neftyanic.ru

Сцепление и его виды в автомобиле

Сцепление является важным конструктивным элементом трансмиссии автомобиля. Сцепление предназначено для кратковременного отсоединения двигателя от трансмиссии и плавного их соединения при переключении передач, а также предохранения элементов трансмиссии от перегрузок и гашения колебаний. Сцепление автомобиля располагается между двигателем и коробкой передач.

В зависимости от конструкции различают следующие типы сцепления:

• фрикционное сцепление;
• гидравлическое сцепление;
• электромагнитное сцепление.

Фрикционное сцепление передает крутящий момент за счет сил трения. В гидравлическом сцеплении связь обеспечивается за счет потока жидкости. Электромагнитное сцепление управляется магнитным полем.

Самым распространенным типом сцепления является фрикционное сцепление. Различает следующие виды фрикционного сцепления:

• однодисковое сцепление;
• двухдисковое сцепление;
• многодисковое сцепление.

В зависимости от состояния поверхности трения сцепление может быть сухое и мокрое. В сухом сцеплении используется сухое трение между дисками. Мокрое сцепление предполагает работы дисков в жидкости.

На современных автомобилях устанавливается в основном сухое однодисковое сцепление. Однодисковое сцепление имеет следующее устройство:

• маховик;
• картер сцепления;
• нажимной диск;
• ведомый диск;
• диафрагменная пружина;
• подшипник выключения сцепления;
• муфта выключения;
• вилка сцепления.


Схема однодискового сцепления

Схема сцепления

1. Корпус;
2. Тангенциальная пружина;
3. Опорный подшипник;
4. Коленчатый вал;
5. Демпферная пружина;
6. Ведомый диск;
7. Нажимной диск;
8. Маховик;
9. Корзина сцепления;
10. Кольцо;
11. Распорный болт;
12. Диафрагменная пружина;
13. Выжимной подшипник;
14. Направляющая;
15. Первичный вал коробки передач;
16. Вилка выключения сцепления;
17. Рабочий цилиндр

Маховик устанавливается на коленчатом вале двигателя. Он выполняет роль ведущего диска сцепления . На современных автомобилях применяется, как правило, двухмассовый маховик. Такой маховик состоит из двух частей, соединенных пружинами. Одна часть соединена с коленчатым валом, другая — с ведомым диском. Конструкция двухмассового маховика обеспечивает сглаживание рывков и вибраций коленчатого вала. В картере сцепления размещаются конструктивные элементы сцепления. Картер сцепления крепиться болтами к двигателю.

Нажимной диск прижимает ведомый диск к маховику и при необходимости освобождает его от давления. Нажимной диск соединен с корпусом (кожухом) с помощью тангенциальных пластинчатых пружин. Тангенциальные пружины, при выключении сцепления, выполняют роль возвратных пружин.

На нажимной диск воздействует диафрагменная пружина, обеспечивающая необходимое усилие сжатия для передачи крутящего момента. Диафрагменная пружина наружным диаметром опирается на края нажимного диска. Внутренний диаметр пружины представлен упругими металлическими лепестками, на концы которых воздействует подшипник выключения сцепления. Диафрагменная пружина закреплена в корпусе. Для закрепления используются распорные болты или опорные кольца.

Нажимной диск, диафрагменная пружина и корпус образуют единый конструктивный блок, который носит устоявшееся название корзина сцепления. Корзина сцепления имеет жесткое болтовое соединение с маховиком. По характеру работы различают два типа корзин сцепления — нажимного и вытяжного действия. В распространенной корзине сцепления нажимного действия лепестки диафрагменной пружины при выключении сцепления перемещаются к маховику. В вытяжной корзине сцепления наоборот — лепестки диафрагменной пружины перемещаются от маховика. Данный тип корзины сцепления характеризуется минимальной толщиной, поэтому применяется в стесненных условиях.

Ведомый диск располагается между маховиком и нажимным диском. Ступица ведомого диска соединяется шлицами с первичным валом коробки передач и может перемещаться по ним. Для обеспечения плавности включения сцепления в ступице ведомого диска размещены демпферные пружины, выполняющие роль гасителя крутильных колебаний.

На ведомом диске с двух сторон установлены фрикционные накладки. Накладки изготавливаются из стеклянных волокон, медной и латунной проволоки, которые запрессованы в смесь из смолы и каучука. Такой состав может кратковременно выдерживать температуру до 400°С. Накладки ведомого диска могут иметь и более высокую тепловую характеристику. На спортивных автомобилях устанавливают т.н. керамическое сцепление, накладки ведомого диска которого состоят из керамики, кевлара и углеродного волокна. Еще более прочные металлокерамические накладки, выдерживающие температуру до 600°С.

Подшипник выключения сцепления (обиходное название — выжимной подшипник) является передаточным устройством между сцеплением и приводом. Он располагается на оси вращения сцепления и непосредственно воздействует на лепестки диафрагменной пружины. Подшипник располагается на муфте выключения. Перемещение муфты с подшипником обеспечивает вилка сцепления.


Схема двухдискового сцепления

Схема двухдискового сцепления
  1. Крышка корпуса
  2. Двухмассовый маховик
  3. Приводная пластина
  4. Ведомый диск 2 с демпферными пружинами
  5. Проставка
  6. Ведомый диск 1
  7. Нажимной диск
  8. Сенсорная пружина
  9. Регулировочное кольцо
  10. Диафрагменная пружина

На грузовых и легковых автомобилях с мощным двигателем применяется двухдисковое сцепление. Двухдисковое сцепление осуществляет передачу большего крутящего момента при неизменном размере, а также обеспечивает больший ресурс конструкции. Это достигнуто за счет применения двух ведомых дисков, между которыми установлена проставка. В результате получены четыре поверхности трения.


Принцип работы сцепления

Однодисковое сухое сцепление постоянно включено. Работу сцепления обеспечивает привод сцепления.

При нажатии на педаль сцепления привод сцепления перемещает вилку сцепления, которая воздействует на подшипник сцепления. Подшипник нажимает на лепестки диафрагменной пружины нажимного диска. Лепестки диафрагменной пружины прогибаются в сторону маховика, а наружный край пружина отходит от нажимного диска, освобождая его. При этом тангенциальные пружины отжимают нажимной диск. Передача крутящего момента от двигателя к коробке передач прекращается.

При отпускании педали сцепления диафрагменная пружина приводит нажимной диск в контакт с ведомым диском и через него в контакт с маховиком. Крутящий момент за счет сил трения передается от двигателя к коробке передач.

lowcars.net

Отправить ответ

avatar
  Подписаться  
Уведомление о