Как устроена турбина: Принцип работы турбины – как она работает

Содержание

Принцип работы турбины – как она работает


Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.

Принцип работы ДВС

Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.

Принцип работы турбины

Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели).

После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор. Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.

Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.

Механизм изменяемой геометрии

Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.

Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.

Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.

Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.

Турбина двигателя с изменяемой геометрией (VNT)

Турбина с изменяемой геометрией

Содержание:

 

Турбокомпрессор используется для увеличения мощности двигателя, которая напрямую зависит от объема воздуха и топлива, подаваемого в цилиндр. Ведущими частями любого турбокомпрессора являются турбина и насос, которые соединены между собой жесткой осью. Турбина двигателя с изменяемой геометрией необходима для образования оптимальной мощности двигателя, имеет свойство изменять сечение турбинных колес в зависимости от общей нагрузки. Если двигатель работает на низких оборотах, то турбина может увеличить скорость отвода выхлопных газов. Это позволяет турбине вращаться быстрее, при этом количество топлива остается небольшим.

   

Как устроена турбина и как она работает

Турбина с измененной геометрией отличается от классических турбокомпрессоров тем, что имеет в своей конструкции кольцо и специальные лопасти с аэродинамической формой, которая способствует увеличению эффективности наддува. В автомобилях с двигателями небольшой мощности сечение регулируется посредством изменения ориентации этих лопастей. В двигателях большой мощности лопасти не вращаются, а покрываются специальным кожухом или перемещаются вдоль оси камеры.

Особенностью VNT турбины являются поворотные лопасти, механизм управления и вакуумный привод. Принцип работы основывается на регулировке потока отработавших газов, которые направляются на колесо турбины. Точная регулировка позволяет настроить проходное сечение для потока газов под режим работы двигателя. Если автомобиль двигается на небольшой скорости, то и турбина крутится медленнее, но при этом лепестки устанавливаются в такое положение, чтобы расстояние между ними было минимальным. Газу в малом объеме сложно преодолеть небольшое отверстие, поэтому он будет передвигаться с большей скоростью, за счет чего обороты турбины увеличиваются, увеличивая при этом давление наддува.

При помощи данных лопастей можно существенно увеличить скорость вращения турбины, не меняя объемы поступающих газов. На большой скорости компрессор раздвигает лопасти – это обеспечивает поддержание безопасного давления внутри системы и исключает перегревы. Принцип изменяемой геометрии позволяет не использовать перепускной клапан, так как весь объём выхлопных газов выходит через горячую часть крыльчатки. Изменение положения поворотных предотвращает избыточный наддув.


Преимущества турбины с изменяемой геометрией

  • Автомобили с такими турбинами развивают большую скорость с самых низких оборотов.
  • Существенно снижается объем необходимого топлива, а также количество вредных выбросов в атмосферу.
  • Улучшается прохождение газов через турбину из-за отсутствия клапана Wastegate и уменьшения количества разнонаправленных потоков газа.
  • Улучшается эластичность двигателя.

Возможные неисправности

Турбокомпрессор с изменяемой геометрией представляет собой сложный механизм, поэтому он больше подвержен различным поломкам. Однако, такие турбины сталкиваются лишь с несколькими проблемами:

  • Подклинивание лопастей в движении. Такая ситуация может сложиться из-за сильного износа трущихся пар и образовании нагара. Масляные, а также углеродистые отложения мешают плавному движению регулировочного кольца.
  • Заклинивание лопаток в одном положении. Это может происходить по причине критического нагарообразования, когда силы вакуума не хватает для движения регулировочного кольца.
  • Поломки вакуумного привода поворотных лопастей или клапана управления давлением.

Симптомами поломок считаются подергивание при разгонах, потеря мощности двигателя, увеличение расхода топлива, а также срабатывание индикатора на приборной панели Check Engine.

Как настроить и отрегулировать турбину

Правильная регулировка турбины с изменяемой геометрией крайне важна для эффективной работы, и для того, чтобы предотвратить быстрый износ деталей и снизить потребление топлива. Если отрегулировать турбину неправильно, то в дальнейшем это повлияет на работу всего автомобиля и удобство его управления.

Любой современный автовладелец немного разбирается в устройстве своего автомобиля и даже может устранить определенные небольшие поломки. Однако, чтобы сделать серьезный ремонт автомобиля, необходим специальный инструмент и оборудование, которого у обычного потребителя может и не быть.

Поэтому, если вы хотите, чтобы работа турбины была эффективной и качественной – обращайтесь за помощью к специалистам, которые правильно настроят механизм и расскажут, как лучше всего за ним ухаживать. Также, не стоит забывать о своевременных диагностиках и профилактике.

Как почистить турбину своими руками

Устройство турбины постоянно сталкивается с непрерывной нагрузкой, подвергается воздействиям продуктов горения масла и топлива, поэтому нуждается в регулярной чистке для профилактики различных поломок, которые могут быть с этим связаны. Зачастую, достаточно обработать турбину специальным средством и прогнать его через механизм для качественной очистки. Однако, иногда придется приложить побольше усилий для того, чтобы удалить все загрязнения с устройства. Также стоит помнить о том, что турбина не требует частой чистки, поэтому если она сильно загрязняется за короткое время, значит есть неполадки в ее работе или настройке.

Причинами сильных загрязнений могут выступать:

  • Увеличение нормы давления газов.
  • Износ лопастей турбины.
  • Превышение необходимого срока эксплуатации поршневого отсека.
  • Засора сапуна.
  • Износ прокладок.

Именно поэтому каждый автовладелец должен понимать, что сделать качественную чистку самостоятельно возможно, но далеко не всегда результат таких действий положительно влияет на работу механизма, а в некоторых случаях может и вовсе ухудшать ситуацию.

Отсутствие надлежащего опыта, проверенных чистящих средств, специальных инструментов – все это может негативно сказаться на результате вашей чистки, поэтому лучше всего обращаться в специализированные центры, где такой работой занимаются профессионалы.

Как сделать ремонт турбины?

Ремонт турбин гораздо проще предупредить посредством регулярного обслуживания и диагностики, чем потом пытаться исправить ситуацию самостоятельно. Процесс осложняется еще и тем, что многие автовладельцы боятся высоких цен на профессиональные услуги, забывая о том, что самостоятельное проведение ремонта отнимает также немало денег и времени. К тому же, не все получается с первого раза, и затраты на самостоятельный ремонт могут быть достаточно внушительными.

Поэтому мы настоятельно рекомендуем автовладельцам без опыта, знаний, навыков, а, самое главное, необходимого оборудования, не пытаться ремонтировать сложное устройство турбины самостоятельно, поскольку это может привести к еще более серьезным поломкам, устранить которые не сможет даже опытный специалист. При первых признаках поломки обращайтесь в наш сервисный центр, где наши мастера помогут вам восстановить картридж турбокомпрессора, а также устранить другие неисправности быстро и качественно.


Как работает турбина в авто

Если разговор заходит о мощных гоночных спортивных машинах, как правило, всегда затрагивают тему турбокомпрессоров (турбин). Они значительно увеличивают мощность двигателя без заметного увеличения массы авто. Именно благодаря этому преимуществу турбины стали настолько популярны. Рассмотрим более подробно, как работает турбина в авто.

Принцип работы турбины в авто

Основные элементы практически любого турбокомпрессора – это центробежный насос и турбина. Они соединены между собой жесткой осью. Турбина и насос вращаются с одной и той же скоростью, в одном направлении. Энергия потока отработавших (выхлопных) газов трансформируется в крутящий момент и таким образом приводит в действие агрегат-компрессор. Осуществляется это таким образом:
Отработанные газы, которые выходят из цилиндров поршневого двигателя, передаются на турбинную крыльчатку, и она уже преобразует их в крутящий момент (кинетическую энергию вращения).
Компрессор втягивает воздух, пропускает его через воздушный фильтр, сжимает и затем опять подает в цилиндры двигателя.

  • Таким образом, двигатель внутреннего сгорания развивает большую мощность.
  • Турбиной могут быть оснащены различные двигатели: дизельные, работающие на газу или бензине. На сегодняшний день они широко используются на легковых и на грузовых авто.

Монтаж турбокомпрессоров на двигатели внутреннего сгорания, которые работают на бензине, ускорился благодаря практике их использования на авторалли и автогонках. Расширение ассортимента материалов, которые обладают высокими температурными свойствами, повышение качественного состава моторных масел, использование электронного управления клапанами и жидкостного охлаждения корпуса турбины в авто – эти перечисленные факторы способствовали тому, что турбины уже стали устанавливать на мелкосерийные двигатели внутреннего сгорания (бензиновые). Сегодня на любой двигатель можно установить турбину, однако делать это должен только опытный мастер СТО.

Принцип работы турбины, как работает турбина на дизельном двигателе

Если вам интересно, каков принцип работы турбины на дизельном двигателе, значит вы попали по адресу. О том, что такое дизельный турбокомпрессор и как он работает, вы узнаете в данной статье.

Как работает турбина на дизеле? Как работает турбина в дизельном двигателе?

Итак, турбокомпрессор — это небольшой воздушный насос, которых осуществляет работу всех элементов турбины. Как известно, турбина вращается с помощью особого тока, получаемого от собранных в процессе езды автомобиля газов. Учитывая тот факт, что скорость лопаток турбины разгоняются почти до скорости света, маневренность во время езды на автомобиле с турбиной значительно выше, чем в автомобилях без неё. Во время “зажигания”, турбина соединяется с жесткой осью и подает его в коллектор двигателя. Чем больше воздуха — тем выше мощность двигателя. Такие воздушные подушки позволяют сделать каждую поезду максимально комфортной, эффектной и маневренной. Именно эти причины вынуждают автолюбителей со всего мира покупать турбины высокого класса за доступную цену. Качество работы турбины на дизеле определяется уровнем всасываемого воздуха, уровнем сжатие этого воздуха, соотношении входа и выхода отработанных газов, мощность компрессора и турбины.

Как проверить работает ли турбина на дизеле? Как проверить справность турбины?

Турбина — штука непростая, но стоит всего лишь из корпуса и ротора. Газы, о которых мы говорили выше, попадают в специальных патрубок, проходят по небольшому каналу, ускоряются и приводят в движения лопатки турбокомпрессора. Как видите, принцип работы дизельного двигателя с турбиной заключается в скорости вращения турбины, благодаря переработанному воздуху. Что логично, скорость вращения лопаток напрямую зависит от размеров “улитки” турбины. К примеру, устройство грузовика может в несколько раз превышать размеры устройства легкового автомобиля, так как для полноценной работы турбины в большом агрегате, её корпус должен быть разделен на два отельных канала, которые поочередно перерабатывают воздух. Чтобы максимально облегчить давление воздушного потока, специалисты советуют устанавливать на турбине специальное кольцо. Компрессор, в свою очередь, производится из ротора и корпуса. Лопатки ротора, как правило, изготавливают из надежного алюминия, а форму имеют особую — улиточную. Это необходимо для того, чтобы воздух направлялся строго в центр ротора. Обычный режим работы турбокомпрессора включает в себя большое давление, которое регулярно сжимается. Важно знать, что все динамические прибора работают по принципу разности давлений.

СТО “Центр Турбин” предлагает вашему вниманию услуги по установке, реставрации и ремонту автомобильных турбин. Все наши специалисты имеют колоссальные знания и стаж работы с автомобильными турбинами. Именно поэтому качество наших услуг находится на высоком уровне. Если вы не знаете, какая турбина подходит именно вам, обратите внимание на мобильный номер, указанный на нашем сайте. Наши консультанты с радостью помогут вам выбрать модель турбины, удовлетворяющую все ваши запросы.

Автомобильные турбины и турбокомпрессоры – принцип работы


ПРИНЦИП РАБОТЫ


Для получения более четкого представления о принципе работы турбокомпрессора, необходимо ознакомиться с системой функционирования двигателя внутреннего сгорания. На сегодняшний день, большинство дизельных легковых и грузовых автомобилей оснащаются 4-х тактными поршневыми двигателями, работа контролируется при помощи впускных и выпускных клапанов. Каждый рабочий цикл состоит из 4 тактов при 2 полных оборотах коленвала.

• Впуск – при движении поршня вниз, воздух (в дизельном двигателе) или смесь топлива и воздуха (в бензиновом двигателе) проходит через открытый впускной клапан.
• Компрессия – происходит сжатие горючей массы.
• Расширение – смесь воздуха и топлива воспламеняется при помощи свечей (бензиновый двигатель), дизельное топливо впрыскивается под давлением и воспламенение происходит произвольно.
• Выпуск – при движении поршня вверх, выпускаются выхлопные газы.

Данные принципы работы предоставляют следующие пути увеличения эффективности работы двигателя:
1. Увеличение объема
2. Увеличение скорости работы двигателя
3. Турбокомпрессия

Увеличение объема

Увеличение объема обеспечивает увеличение мощности двигателя, так как увеличение камеры сгорания позволяет нагнетание большего объема воздуха и большее колличество сжигаемого топлива. Увеличение объема может быть достигнуто путем увеличения колличества цилиндров или увеличения объема каждого цилиндра. В целом, увеличения объема приводит к увеличению массы двигателя. Этот способ не обеспечивает значительных преимушеств по уровню выбросов и потреблению топлива.

Увеличение скорости работы двигателя

Другим способом увеличения мощности двигателя является увеличение скорости работы двигателя. Увеличение скорости проводится путем увеличения колличества ходов поршня на единицу времени. Однако, по техническим причинам этот способ имеет жесткие ограничения. Увеличение скорости работы двигателя приводит к увеличению потерь при накачивании и других операциях, что вызывает падение эффективности работы.

Турбокомпрессия

При применении двух первых способов, двигатель обеспечивается только собственным нагнетанием. Воздух для сгорания проходит прямо в цилиндр во время впускного такта. При использовании турбокомпрессора, воздух, поступающий в камеру сгорания предварительно сжимается. В двигатель поступает тот же объем воздуха, однако, более высокое давление обеспечивает прохождение большего колличества воздушной массы, что позволяет увеличить объем сжигаемого топлива. Таким образом, при использовании турбокомпрессора, мощность двигателя увеличивается по отношению к его объему и колличеству потребляемого топлива. 

Охлаждение нагнетаемого воздуха.

В ходе компрессии, нагнетаемый воздух нагревается до 180 С. При охлаждении, плотность воздуха увеличивается,что позволяет увеличить объем нагнетаемого воздуха.
Охлаждение нагнетаемого воздуха является одной из немногих мер по увеличению мощности двигателей внутреннего сгорания, которые положительно влияют на уровень потребления топлива и уровень выброса вредных веществ. Снижение температуры входящего воздуха обеспечивает снижение температуры сгорания и, таким образом, снижение колличества вырабатываемого NO (x). Увеличение плотности воздуха снижает расход топлива и уровень загрязнения окружающей среды.

Существуют два типа турбокомпрессии – механическая турбокомпрессия и компрессия выхлопных газов.

Механическая турбокомпрессия

При механической турбокомпрессии, воздух сжимается при помощи компрессора, приводимого от двигателя. Однако, часть получаемого увеличения мощности уходит на привод компрессора. В зависимости от размера двигателя, мощность, необходимая для привода компрессора составляет от 10 до 15% от общей выработки двигателя. Таким образом, при сравнении с обычным двигателем такой же мощности, двигатель с механической турбокомпрессией имеет повышенный расход топлива.

Турбокомпрессия выхлопных газов

При использовании компрессии выхлопных газов, энергия газа, которая не используется в обычных условиях, направлена на привод турбины. Компрессор находится на одном валу с турбиной и обеспечивает забор, сжатие и подачу воздуха в камеру сгорания. В этом случае механичекие соединения с двигателем отсутствуют.

Преимущества турбокомпрессии выхлопных газов.

• По сравнению с обычным двигателем такой же мощности, турбодвигатель имеет меньший расход топлива, так как часть энергии выхлопных газов способствует увеличению мощности двигателя. Меньший объем двигателя сокращает термические и др. потери.
• Турбодвигатель имеет значительно лучшее соотношение веса к мощности, т.е. Kw / кг.
• Необходимая площадь двигательного отсека турбодвигателя меньше, чем у обычного двигателя.
• При использовании турбодвигателя, возможно дальнейшее улучшение характеристик крутящего момента для поддержания мощности, близкой к максимальной при очень низкой скорости двигателя, что позволяет избежать частого переключения скоростей при езде в гористой местности.
• Турбодвигатели имеют значительно лучшие характеристики работы в условиях высокогорья. В условиях пониженного давления обычный двигатель теряет значительную часть мощности. В противоположность, рабочие характеристики турбодвигателя улучшаются вследствие увеличения разницы между постоянным давлением вверх по соединениям турбины и пониженным внешним давлением у входа турбины. Низкая плотность воздуха у входа компенсируется, обеспечивая почти нулевую потерю мощности.
• Так как турбодвигатель имеет меньшие размеры, а соответственно и площадь шумовыделяющей поверхности, его шумовые характеристики лучше, чем у обычных двигателей. В данном случае, турбокомпрессор действует как добавочный глушитель.

 

ЧЕТЫРЕ ОСНОВНЫХ ПРИЧИНЫ ОТКАЗА ТУРБИНЫ

Вышла из строя турбина? Такое случается, и не обязательно что это проблемы неисправности узлов самой турбины. Практика показывает, что существует ряд причин, по которым турбина выходит из строя и кроются они во внешних факторах. Давайте рассмотрим и обсудим причины выхода турбины  из строя.

ОДНА ИЗ ПРИЧИН ВЫХОДА ИЗ СТРОЯ ТУРБИНЫ — ЭТО ЗАГРЯЗНЕНИЕ МАСЛА

Бывает такое, что масло загрязняется мелкими частицами. Для глаза эти частицы настолько малы настолько, что мы их не видим. Они полируют поверхности подшипников и скругляют тем самым их внешние кромки, что приводит к тому что подшипник на стороне компрессора изнашивается по наружному диаметру.

Более крупные частицы, соответственно могут нанести повреждение более масштабное, царапины и задиры. Как правило, внутренняя поверхность подшипника повреждается в меньшей степени, она как и вал так и центральный корпус подшипников, изготовливается из более крепких материалов.

Еще одной проблемой износа подшипника является химическое воздействие на масло. Признаки выхода из строя похожи на недостаток необходимого количества смазки. Такое происходит из-за разбавления моторного масла топливом. Следовательно, смазывающие свойства масла ухудшаются.

ВТОРАЯ ИЗ ПРИЧИН ВЫХОДА ТУРБИНЫ — НЕДОСТАТОЧНАЯ СМАЗКА.

Бывает, что количество масла, которое подаётся к турбине может уменьшаться. Такое случается, например, когда материал прокладки немного перекрывает канал впуска или отверстие во фланце выпуска. Нехватка смазочного материала визуально проявляется сменой цвета поверхностей вала. Так же причиной плохой смазки турбины может быть – масляный насос, который не создаёт должного давления в системе. В последнее время участились случаи, когда «залипал» клапан в болте крепления трубки подвода масла. А из-за полного отсутствия смазочного материала, повреждение происходит очень быстро!

ТРЕТЬЯ ИЗ ПРИЧИН ВЫХОДА ТУРБИНЫ — ЭТО ИСКЛЮЧИТЕЛЬНЫЕ УСЛОВИЯ ЕЁ РАБОТЫ

Эффект «апельсиновой корки» на задней стороне появляется в следствии преувеличения допустимых оборотов. В этом случае происходит перегрев поверхностей. Смазочный материал возгорается и происходит коксование и в последствии нагар. Эти признаки перекручивания турбины явно скажутся на её работоспособности в последствии.

Так же усиленная эксплуатация турбины может проявляется и в виде отрывания частей крыльчатки турбинного колеса. Визуально будет похоже на попадание посторонних предметов. Еще это может выглядеть в виде трещин на колесе турбины, оно даже может разрушится из- за излишнего перекручивания.

Цикл разрушения этого колеса напоминает арифметическую прогрессию, чем больше эксплуатация с трещинами, тем быстрее выходит из строя турбина. Ведь её эксплуатация с разрушенным колесом не возможна.

ЧЕТВЕРТАЯ ПРИЧИНА ВЫХОДА КРОЕТСЯ В ПОВРЕЖДЕНИИ ПОСТОРОННИМИ ПРЕДМЕТАМИ

Тут рассматривается 2 варианта повреждения. Повреждение жестким предметом и повреждение мягким предметом. Соль, песок эрозируют и вызывают коррозию. Твердые предметы попадая в отверстие патрубка и продвигаясь к входу в компрессор, могут вызвать повреждения.

А такие предметы как части робы или ветошь (бумажные салфетки) и пр, это мягкие предметы. Они могут оказать такое воздействие на лопатки, что те могут загнуться назад, в некоторых случаях происходит даже отрыв кусков, т,к, метал имеет свойство уставать, при работе с посторонними мягкими предметами.

Проникнувший в турбину жесткий предмет разрушает входные кромки лопаток крыльчатки. Даже незначительные частицы ржавчины из коллектора выпуска  могут вызвать большие повреждения компонентов, так как те вращаются с огромной скоростью.

 

 

Как это работает: турбонаддув — Автомобили Гродно

    Сегодня в рубрике «Как это работает» мы расскажем об устройстве, способном увеличивать мощность двигателя, при этом снизив удельный расход топлива. Речь пойдет о турбонаддуве!

 

    Вы узнаете что такое турбина, поймете для чего нужен интеркулер, что такое Twin-turbo и Вi-turbo, а  так же другие тонкости работы этой системы. 

 

 

 


    Турбонаддув – это вид наддува, основанный на использовании отработавших газов. Главной задачей этого устройства является подача под давлением дополнительной порции воздуха в цилиндры, позволяя сжигать в них больше топливно-воздушной смеси, что приводит к увеличению мощности двигателя. Для сравнения, в обычном (нетурбированном) двигателе воздух в цилиндр поступает при движении поршня вниз, то есть пассивно «засасывается». В случае с  турбонаддувом, воздух подается под давлением и оказывает дополнительное усилие на поршень.


    Так как в цилиндр поступает большая порция воздуха, то его необходимо разбавить большим количеством топлива, что приводит к увеличению его фактического расхода. Однако массовая доля топлива, приходящаяся на единицу мощности в час у двигателя, оснащенного турбонаддувом, ниже, чем у схожего по конструкции силового агрегата, лишенного наддува. Получается, что мощность двигателя возрастает на 20-50%, а удельный расход топлива снижается на 5-20%, что говорит о значительном повышении КПД двигателя.

 

 

    Турбонаддув состоит из:


  • Корпус представляет собой сплошную чугунную отливку
  • Регулировочный клапан
  • Улитка  турбины выполнена из чугуна и подогнана плотно по размерам колеса турбины
  • Улитка компрессора представляет собой алюминиевую отливку с механически обработанным местом под колесо компрессора (требует точного изготовления)
  • Колесо турбины
  • Колесо компрессора
  • Подшипники скольжения – наиболее нагруженный элемент устройства

 

 

 

 

 
    Принцип работы:


    Принцип работы устройства достаточно прост, однако его изготовление трудоёмко. Как говорилось выше, работа турбонаддува основана на использовании отработавших газов. Часть этих газов, выходя из цилиндров, направляется в улитку турбины. Перед турбиной установлен регулировочный клапан, который ограничивает газовый поток. Этот поток приводит в движение колесо турбины. Колесо турбины передает крутящий момент на колесо компрессора, так как они жестко сидят на вале ротора. Компрессорное колесо, которое засасывает воздух через центральное отверстие, сжимает и нагнетает его во впускной коллектор через кольцевой канал. Интеркулер предназначен для того, чтобы охлаждать воздух перед его поступлением в цилиндр. Холодный воздух легче сжимается и обладает большей плотностью, что делает его применение более выгодным.

 

 

 

 

 
 

    Компрессорное колесо способно засасывать воздух только при высоких оборотах. На холостом ходу поток отработавших газов не достаточно велик, поэтому колесо вращается с малой частотой и только «перемалывает» воздух, а не засасывает его. При нажатии на педаль газа, поток газов увеличивается, и тогда можно услышать характерный звук работы компрессора. При этом турбонаддув отзывается на нажатие педали акселератора с запаздыванием. Все потому, что турбина инерционна: при резком увеличении оборотов двигателя она некоторое время раскручивается и лишь потом нагнетает дополнительное давление во впуск¬ной коллектор. Чем больше размер турбонаддува, тем «задержка» продолжительней. Такая «пауза» получила название «турбояма» (или «турболаг»).

 

 

       Twin-turbo.

    Для устранения «турбоямы», некоторые производители используют сразу два турбонаддува, отличные по размеру.  «Маленький» работает на низких оборотах, второй вступает в действие на более высоких. В принципе, турбояма не исчезла, она стала практически незаметной для обывателя. Такая схема получила название twin-turbo.

   

 

      Вi-turbo.
Для решения той же проблемы, вместо одного большого турбонаддува, используют два маленьких. Главное отличие от twin-turbo в том, что оба нагнетателя работают одновременно. Такая конструкция называется bi-turbo.
 

 

    Для полной ликвидации «турбоямы» и повышения момента на низких оборотах у некоторых двигателей в дополнение к турбокомпрессору устанавливается механический, который, имея практически мгновенный «отклик», закрывает инерционные провалы турбины. Кроме этого, весьма перспективной в настоящее время выглядит конструкция турбины с изменяемой геометрией, имеющей управляемые поворотные лопатки, что позволяет менять параметры наддува в самом широком диапазоне.

 

 

Далее Вашему вниманию предлагаем наглядно ознакомиться с работой турбины и компрессора на примере ролика про двигатель Фольксвагена TSI, устанавливаемого на Golf GT:

 

 

 

 

Для более детально знакомства с турбиной есть отличное видео от производиеля турбин GARRETT. Видео настоятельно рекомендуем. Из него Вы узнаете много тонкостей работы турбин (например, почему нельзя резко увеличивать обороты холодного двигателя и др.):

 

 

 

 

    Искренне надеемся, что теперь, встретив двигатель «турбодизель с интеркулером» Вы уверенно будете представлять и знать, о чем идет речь.

 

 

 

Устройство турбины | carakoom.com

Как устроена турбина

Устройство системы турбонаддува очень простое. Турбина устанавливается на выпускной коллектор двигателя. Выхопные газы из цилиндров вращают турбину. Турбина соединена валом с компрессором, который находится между воздушным фильтром и впускным коллектором. Компрессор сжимает воздух, который поступает в цилиндры.

Выхлопные газы из цилиндров проходят через крыльчатку турбины и вращают ее. Больше выхлопных газов – быстрее вращается крыльчатка турбины. На другом конце вала распологается крыльчатка компрессора, которая подает воздух к цилиндрам.

Для того, чтобы выдерживать скорости вращения в 150.000 оборотов в минуту, вал турбины должен поддерживаться особыми подшипниками. Большинство обычных подшипников на таких скоростях просто разваливаются, поэтому в турбинах используются особые гидроподшипники. В таких подшипниках осуществлен постоянный подвод масла к валу. Масло выполняет две функции: охлаждает вал и другие детали турбины, а также снижает трение.

Одна из проблем турбонагнетателей заключается в том, что они не дают мгновенной реакции на газ. Турбине необходима секунда или две, чтобы раскрутиться до оптимальной скорости и создать нужное давление. Эта секундная задержка называется турбо-лагом, после которой автомобиль устремляется вперед.

Один из вариантов понизить турбо-лаг – уменьшить инерцию вращающихся деталей, уменьшив их вес. Это позволит турбине и компрессору раскручиваться быстрее и создавать давление раньше. Хотите меньше инерции, выбирайте турбину меньшего размера. Маленькие турбины создают давление быстрее и на более низких оборотах двигателя, но на высоких скоростях, когда необходимо очень много воздуха, маленькие турбины могут не справиться со сжатием воздуха. При больших скоростях двигателя, когда поток выхлопных газов возрастает, создается угроза для маленьких турбин, через которые проходит слишком большой поток и скорость возрастает до огромных показателей.
Кстати, есть такая система, как антилаг. Ее используют на драговых гоночных турбовых авто. Почитайте по ссылке.

У многих систем турбонаддува есть клапан вестгейта (wastegate valve), который позволяет выводить излишние выхлопные газы, дабы турбина не раскручивалась слишком быстро. Пружинка в клапане вестгейта определяет давление в системе, если давление становится выше определенного показателя, это значит, что турбина вращается слишком быстро, тогда излишнее давление сбрасывается через вестгейт, а скорость вращения турбины замедляется.

Некоторые турбины имеют шариковые подшипники, а не гидроподшипники. Но эти шариковые подшипники тоже специфичные – они изготовленные по передовым технологиям с использованием превосходных материалов. Такие подшипники позволяют вращаться валам с меньшим трением, чем при использовании гидроподшипников. Также такие подшипники позволяют использовать более легкие валы меньшего размера.

Также в турбинах используются керамические крыльчатки, которые легче стальных.

В следующий раз я расскажу вам как работают турбины в паре.

Первая часть
Вторая часть
Или все наоборот 😉

Подпишись на наш Telegram-канал

Как работает паровая турбина?

Большая часть электроэнергии в Соединенных Штатах вырабатывается с помощью паротурбинных двигателей — по данным Министерства энергетики США, более 88 процентов энергии в США производится с помощью паротурбинных генераторов на центральных электростанциях, таких как солнечные тепловые электрические, угольные и атомные электростанции. Предлагая более высокий КПД и низкую стоимость, паровые турбины стали неотъемлемой частью многих американских производств электроэнергии.

Первая паровая турбина

Первая современная паровая турбина была разработана сэром Чарльзом А. Парсонсом в 1884 году. Эта турбина использовалась для освещения выставки в Ньюкасле, Англия, и производила всего 7,5 кВт энергии. Теперь паротурбинные генераторы могут производить более 1000 МВт энергии на крупных электростанциях. Несмотря на то, что генерирующие мощности значительно увеличились со времен Парсонса, конструкция осталась прежней. Но, сколь бы интуитивно ни был дизайн Парсонса, он не так прост, как пар, движущийся по лопастям.Он был основан на втором законе термодинамики и теореме Карно (), которая утверждает, что чем выше температура пара, тем выше эффективность электростанции. Давайте рассмотрим, как пар помогает приводить в действие большинство электростанций страны.

Как так много энергии забирают из пара?

Возвращаясь к школьной физике, вода кипит при 100 ° C. В этот момент молекулы расширяются, и мы получаем испаренную воду — пар. Используя энергию, содержащуюся в быстро расширяющихся молекулах, пар обеспечивает замечательную эффективность выработки энергии.

Учитывая высокую температуру и давление пара, неудивительно, что были случаи, когда аварии происходили из-за ненадлежащего использования или установки предохранительных клапанов. Один из самых заметных инцидентов произошел на АЭС Три-Майл-Айленд. Все произошло из-за повышения давления пара, когда перестали работать насосы, подающие воду на парогенераторы.

Как работает паровая турбина?

Проще говоря, паровая турбина работает с использованием источника тепла (газового, угольного, атомного, солнечного) для нагрева воды до чрезвычайно высоких температур до тех пор, пока она не превратится в пар.Когда этот пар проходит мимо вращающихся лопастей турбины, пар расширяется и охлаждается. Таким образом, потенциальная энергия пара во вращающихся лопастях турбины превращается в кинетическую энергию. Поскольку паровые турбины генерируют вращательное движение, они особенно подходят для приведения в действие электрогенераторов для выработки электроэнергии. Турбины соединены с генератором с осью, которая, в свою очередь, вырабатывает энергию через магнитное поле, которое производит электрический ток.

Как работают лопатки турбины?

Лопасти турбины предназначены для управления скоростью, направлением и давлением пара, проходящего через турбину.Для больших турбин к ротору прикреплены десятки лопастей, как правило, в разных наборах. Каждый набор лопастей помогает извлекать энергию из пара, а также поддерживает давление на оптимальном уровне.

Этот многоступенчатый подход означает, что лопатки турбины снижают давление пара очень маленькими шагами на каждой ступени. Это, в свою очередь, снижает силы, действующие на них, и значительно улучшает общую мощность турбины.

Важность гибких средств управления для вращающегося турбинного оборудования

При таком большом количестве энергии, проходящей через паровые турбины, необходимы механизмы управления, которые могут регулировать их скорость, контролировать поток пара и изменять температуру внутри системы. Поскольку большинство паровых турбин находится на крупных электростанциях, которым требуются нагрузки по запросу, возможность регулировать поток пара и общую выработку энергии является необходимостью.

Как системы управления Petrotech могут повысить эффективность паротурбинного генератора

Изобретение паровой турбины изменило нашу способность производить энергию в больших масштабах. И даже с такой, казалось бы, простой задачей, как пар, проходящий через набор лопастей, легко увидеть, что эти механизмы довольно сложны.Таким образом, им нужна рефлексивная интеллектуальная система управления паровой турбиной, в которой можно будет отслеживать и контролировать их работу. Усовершенствованные системы управления паровыми турбинами Petrotech для приводов компрессоров и генераторов имеют интегрированный пакет управления, который обеспечивает управление скоростью и производительностью. Наша продукция включает интегрированные системы управления для газовых и паровых турбин, генераторов, компрессоров, насосов и связанного вспомогательного оборудования. Чтобы узнать больше о наших элементах управления паровой турбиной, ознакомьтесь с нашими техническими документами по усовершенствованным элементам управления паровой турбиной для генераторов и механических приводов.

Гидроэлектроэнергия: как это работает

• Школа водных наук ГЛАВНАЯ • Темы водопользования •

Падающая вода производит гидроэлектроэнергию.

Кредит: Управление долины Теннесси

Так как же нам получить электричество из воды? Фактически, гидроэлектростанции и угольные электростанции производят электроэнергию одинаково. В обоих случаях источник энергии используется для вращения пропеллероподобной части, называемой турбиной, которая затем вращает металлический вал в электрическом генераторе, который является двигателем, вырабатывающим электричество.На угольной электростанции пар вращает лопасти турбины; тогда как гидроэлектростанция использует падающую воду для вращения турбины. Результаты такие же.

Взгляните на эту схему (любезно предоставленную Управлением долины Теннесси) гидроэлектростанции, чтобы увидеть подробности:

Теория состоит в том, чтобы построить плотину на большой реке , которая имеет большой перепад высот (в Канзасе или Флориде не так много гидроэлектростанций). Плотина хранит много воды за собой в резервуаре .У подножия стены дамбы находится водозабор. Гравитация заставляет его проваливаться через напорный водовод внутри дамбы. В конце напорного есть турбина пропеллер, который повернут на двигающейся воду. Вал турбины идет вверх в генератор, который производит мощность. К генератору подключены линии электропередач, по которым электричество доставляется в ваш дом и в мой. Вода проходит мимо гребного винта по отводу в реку мимо плотины. Кстати, играть в воде прямо под плотиной, когда выходит вода, — плохая идея!

Турбина и генератор производят электричество

Схема гидроэлектрической турбины и генератора.

Источник: Инженерный корпус армии США

Что касается того, как работает этот генератор, Инженерный корпус объясняет это следующим образом:
«Гидравлическая турбина преобразует энергию проточной воды в механическую энергию. Гидроэлектрический генератор преобразует эту механическую энергию в электричество. Принцип работы генератора основан на На принципах, открытых Фарадеем, он обнаружил, что когда магнит проходит мимо проводника, он заставляет течь электричество.В большом генераторе электромагниты создаются путем циркуляции постоянного тока через петли из проволоки, намотанные на стопки пластин из магнитной стали. Они называются полевыми полюсами и устанавливаются по периметру ротора. Ротор прикреплен к валу турбины и вращается с фиксированной скоростью. Когда ротор вращается, он заставляет полюса поля (электромагниты) перемещаться мимо проводников, установленных в статоре. Это, в свою очередь, вызывает прохождение электричества и повышение напряжения на выходных клеммах генератора. «

Насосный накопитель: повторное использование воды для пикового спроса на электроэнергию

Спрос на электроэнергию не «плоский», а постоянный. Спрос повышается и понижается в течение дня, и в ночное время потребность в электричестве в домах, на предприятиях и других объектах снижается. Например, здесь, в Атланте, штат Джорджия, в 17:00 в жаркий августовский выходной день можно поспорить, что существует огромный спрос на электричество для работы миллионов кондиционеров! Но 12 часов спустя, в 5:00 … не так уж и много.Гидроэлектростанции более эффективны в обеспечении пиковой потребности в энергии в течение коротких периодов времени, чем электростанции, работающие на ископаемом топливе и атомные электростанции, и один из способов сделать это — использовать «гидроаккумулятор», который повторно использует одну и ту же воду более одного раза.

Насосный накопитель — это метод сохранения воды в резерве на период пиковой нагрузки за счет перекачки воды, которая уже прошла через турбины, в резервный бассейн над электростанцией в то время, когда потребность потребителей в энергии низкая, например, во время полночь. Затем воде позволяют течь обратно через турбогенераторы в то время, когда потребность в ней высока и на систему ложится большая нагрузка.

Гидроаккумулятор: повторное использование воды для пикового потребления электроэнергии

Резервуар действует как аккумулятор, накапливая энергию в виде воды, когда потребности в ней низкие, и вырабатывая максимальную мощность в периоды суточных и сезонных пиковых нагрузок. Преимущество гидроаккумулирующего оборудования состоит в том, что гидроагрегаты могут быстро запускаться и быстро регулировать мощность.Они работают эффективно при использовании в течение одного или нескольких часов. Поскольку гидроаккумулирующие резервуары относительно малы, затраты на строительство, как правило, низкие по сравнению с традиционными гидроэнергетическими сооружениями.

Как работает гидроэнергетика | Компания по улучшению долины Висконсин

Гидроэлектростанции улавливают энергию падающей воды для производства электроэнергии. Турбина преобразует кинетическую энергию падающей воды в механическую. Затем генератор преобразует механическую энергию турбины в электрическую.

Гидравлические станции различаются по размеру от «микрогидро», питающих лишь несколько домов, до гигантских плотин, таких как плотина Гувера, которые обеспечивают электричеством миллионы людей.

На фотографии справа изображена Александровская гидроэлектростанция на реке Висконсин, электростанция среднего размера, которая производит достаточно электроэнергии, чтобы обслуживать около 8000 человек.

Части гидроэлектростанции

Большинство традиционных гидроэлектростанций состоит из четырех основных компонентов (см. Рисунок ниже):

  1. Плотина. Повышает уровень воды в реке для создания падающей воды. Также контролирует поток воды. Образующийся резервуар — это, по сути, запасенная энергия.
  2. Турбина. Сила падающей воды, давящей на лопасти турбины, заставляет турбину вращаться. Водяная турбина очень похожа на ветряную мельницу, за исключением того, что энергия вырабатывается падающей водой, а не ветром. Турбина преобразует кинетическую энергию падающей воды в механическую.
  3. Генератор. Соединен с турбиной валами и, возможно, шестернями, поэтому, когда турбина вращается, она заставляет вращаться и генератор. Преобразует механическую энергию турбины в электрическую. Генераторы на гидроэлектростанциях работают так же, как генераторы на других типах электростанций.
  4. Линии электропередачи . Проведите электричество от гидроэлектростанции до домов и предприятий.
Сколько электроэнергии может производить гидроэлектростанция?

Количество электроэнергии, производимой гидроэлектростанцией, зависит от двух факторов:

  1. Как далеко падает вода. Чем дальше падает вода, тем больше у нее силы. Как правило, расстояние, на которое падает вода, зависит от размера плотины. Чем выше плотина, тем дальше падает вода и тем больше у нее мощности. Ученые сказали бы, что сила падающей воды «прямо пропорциональна» расстоянию, на которое она падает. Другими словами, вода, падающая вдвое дальше, имеет в два раза больше энергии.
  2. Количество падающей воды. Больше воды, проходящей через турбину, дает больше энергии.Количество доступной воды зависит от количества воды, текущей по реке. В более крупных реках больше проточной воды, и они могут производить больше энергии. Мощность также «прямо пропорциональна» расходу реки. Река с вдвое большим объемом проточной воды, чем другая река, может производить вдвое больше энергии.
Могу ли я определить, сколько энергии может производить плотина в моем районе?

Конечно. Это не так уж сложно.

Допустим, в вашем районе есть небольшая плотина, которая не используется для производства электроэнергии. Может быть, плотина используется для подачи воды для орошения сельскохозяйственных угодий, а может быть, она была построена для создания озера для отдыха. Как мы объясняли выше, вам нужно знать две вещи:

  1. Как далеко падает вода. Из разговора с человеком, который управляет плотиной, мы узнаем, что высота плотины 10 футов, поэтому вода падает на 10 футов.
  2. Количество воды, протекающей в реке. Мы связываемся с Геологической службой США, агентством в США, которое измеряет речной сток, и узнаем, что средний объем воды, протекающей в нашей реке, составляет 500 кубических футов в секунду.

Теперь все, что нам нужно сделать, это немного математики. Инженеры обнаружили, что мощность плотины можно рассчитать по следующей формуле:

Мощность = (высота плотины) x (поток реки) x (эффективность) / 11,8

Мощность Электрическая мощность в киловаттах (один киловатт равен 1000 ватт).
Высота плотины Расстояние, на которое падает вода, в футах.
Речной поток Количество воды, текущей в реке, измеряется в кубических футах в секунду.
КПД Насколько хорошо турбина и генератор преобразуют энергию падающей воды в электроэнергию. Для старых, плохо обслуживаемых гидростанций этот показатель может составлять 60% (0,60), в то время как для более новых, хорошо эксплуатируемых заводов он может достигать 90% (0,90).
11.8 Преобразует футы и секунды в киловатты.

Допустим, для плотины в нашем районе мы покупаем турбину и генератор с КПД 80%.

Тогда мощность нашей плотины будет:

Мощность = (10 футов) x (500 кубических футов в секунду) x (0,80) / 11,8 = 339 киловатт

Чтобы понять, что означает 339 киловатт, давайте посмотрим, сколько электроэнергии мы можем произвести за год.

Поскольку электрическая энергия обычно измеряется в киловатт-часах, мы умножаем мощность нашей плотины на количество часов в году.

Электроэнергия = (339 киловатт) x (24 часа в сутки) x (365 дней в году) = 2 969 000 киловатт-часов.

Среднее годовое потребление энергии в жилищах в США составляет около 3000 киловатт-часов на каждого человека. Таким образом, мы можем вычислить, сколько людей могла бы обслуживать наша плотина, разделив годовое производство энергии на 3000.

Обслуженных людей ( = 2 969 000 киловатт-часов / 3 000 киловатт-часов на человека) = 990 человек.

Таким образом, наша местная ирригационная или рекреационная плотина могла бы обеспечить достаточно возобновляемой энергии для удовлетворения жилищных потребностей 990 человек, если бы мы добавили турбину и генератор.

Примечание. Прежде чем вы решите добавить гидроэнергетику к плотине, попросите инженера-гидроэнергетика проверить ваши расчеты и проконсультироваться с местными агентствами ресурсов, чтобы убедиться, что вы можете получить любые необходимые разрешения.

Термодинамика силовой турбины

Самые современные пассажирские и военные самолеты оснащены двигателями газотурбинные двигатели, которые еще называют реактивные двигатели. Есть несколько разных типов реактивных двигателей. Но все реактивные двигатели имеют некоторые общие детали. Все реактивные двигатели имеют приводную турбину. компрессор. Работа турбины для извлечения энергии из нагретого потока, выходящего из горелка. В турбина соединена с валом, который также подключен к компрессору. Поскольку поток проходит через турбины, полное давление pt и температура Tt уменьшаются.Мы измеряем снижение давления на коэффициент давления турбины (TPR), который является отношение давления воздуха на выходе из турбины к давлению воздуха вход в турбину. Это число всегда меньше 1.0. Ссылаясь на нашу станцию нумерация, вход турбины — станция 4 и выход турбины станция 5 . TPR равен pt5 разделить на pt4

TPR = pt5 / pt4

В осевой турбине каскады малых профилей установлены на вал, который вращается с высокой скоростью. ((гамма -1) / гамма)]

что связывает работу, проделанную турбина к соотношению давлений турбины, входящая общая температура, некоторые свойства газа, и коэффициент эффективности нт .Коэффициент полезного действия включен для учета фактических характеристик турбины, а не идеальные, изоэнтропические характеристики. В идеальном мире ценность эффективность будет 1,0. На самом деле всегда меньше 1.0. Из-за механической неэффективности вы не можете получить 100% Доступна работа от турбины.

Лопатки турбины существуют в гораздо более агрессивной среде, чем лопатки компрессора. Находясь сразу после горелки, лопасти испытать температуру потока более тысячи градусов По Фаренгейту.Следовательно, лопатки турбины должны быть изготовлены из специальные материалы которые могут выдерживать жару, либо их необходимо активно охлаждать. Теперь вы можете использовать EngineSim изучить эффекты различных материалов по эксплуатации двигателя.


Действия:

Экскурсии с гидом
  • EngineSim — Симулятор двигателя:
  • Силовая турбина:

Навигация. .


Руководство для начинающих Домашняя страница

Разница между турбиной и генератором

Обновлено 19 ноября 2018 г.

Берт Маркграф

И турбины, и генераторы используются в производстве электроэнергии, но турбина преобразует имеющиеся формы энергии во вращение, а генератор преобразует вращение в электричество. В зависимости от типа используемой энергии электростанции имеют соответствующие типы турбин и используют их для генерации энергии.Турбины имеют много других применений, помимо питания генераторов, но все генераторы производят электричество. Турбины и генераторы не только имеют различное назначение и функции, но и устроены совершенно по-разному. Единственное, что у них общего, это то, что они оба крутятся.

TL; DR (слишком долго; не читал)

Турбины используются для преобразования различных видов энергии во вращение, а генераторы преобразуют вращение в электричество. Турбины имеют много других применений, таких как приводы в действие кораблей и самолетов, но все генераторы производят электричество.

Как работает турбогенератор

Турбинные генераторы используются для выработки электроэнергии. Тип используемой турбины зависит от типа энергии, используемой для питания турбины. Например, в реактивном двигателе для питания турбины используется реактивное топливо, а в ветряной турбине используется энергия ветра. Даже если турбины похожи, они могут использовать разные виды топлива. Например, разница между газовой и паровой турбинами заключается в том, что газовая турбина сжигает природный газ, а паровая турбина приводится в действие паром от котлов.В каждом случае внешний источник энергии заставляет турбину вращаться.

Вал турбины соединен с валом генератора, и турбина заставляет генератор вращаться. Некоторые турбины, например, те, которые используются в генераторах реактивных двигателей, вращаются очень быстро. В этом случае скорость, возможно, придется уменьшить с помощью коробки передач перед подключением к генератору. Когда генератор вращается, катушки с проволокой движутся через магнитное поле, и в проводах возникает электрический ток. Электрический ток проходит по линиям электропередачи в дома, где питает свет, электрические обогреватели и электрические приборы.

Как по-разному строятся турбины и генераторы

Турбины состоят из лопастей, которые вращаются вокруг центрального вала, немного напоминая вентиляторы. Ветряные турбины — хороший пример больших турбин, которые вращаются медленно. Для водяных турбин имеется всего несколько больших лопастей, в то время как для газовых и паровых турбин имеется множество слоев маленьких лопастей, которые быстро вращаются. В любом случае жидкость или газ, например вода или воздух, проходят через лопасти, заставляя их вращаться и приводить в действие вал турбины.

Генераторы тоже имеют центральный вал, но на нем установлены магниты, намотанные проволокой. Вал и магниты составляют ротор генератора. Вокруг вала и магнитов находятся неподвижные мотки проволоки, составляющие статор генератора. Когда вал вращается, магниты ротора создают магнитные поля, которые проходят по виткам проволоки в статоре, создавая в них электрический ток. В некоторых генераторах магниты остаются неподвижными, а катушки с проволокой закреплены на валу.В любом случае у генераторов всегда есть магнитные поля, проходящие через катушки с проволокой, чтобы произвести электрический ток.

Различия в применении турбин и генераторов

Турбины можно использовать для генераторов энергии, но они также используются во многих других приложениях для выработки энергии вращения, в основном для транспортировки. Реактивные двигатели — это турбины, которые работают на керосине и вырабатывают вращающуюся мощность для вращения пропеллеров или ускоряют горячие газы для создания тяги для реактивного самолета.Газовые турбины сжигают природный газ для питания кораблей, а паровые турбины используют давление котлов для производства энергии вращения для промышленности. Вращающую силу от турбин можно использовать везде, где есть потребность в приводе вращающихся валов.

Единственная функция генераторов — производить электричество, но они используются по-разному. Помимо выработки электроэнергии для электросети на электростанциях, они используются на судах, на морских нефтяных платформах и в самолетах для производства электроэнергии, необходимой для освещения и электрических систем управления.В автомобилях есть небольшие генераторы, называемые генераторами переменного тока, которые вырабатывают электричество для зарядки автомобильного аккумулятора, а аварийные генераторы используются при отключении основного питания.

Поскольку турбины и генераторы часто используются вместе в таких областях, как электростанции и ветряные турбины, они кажутся связанными и работают одинаково. Фактически, это две разные машины, которые выполняют разные функции и работают на совершенно разных принципах.

Как работает газовая турбина? Радиальная газовая турбина серии OPRA OP16

Газовая турбина OPRA

Как работает газовая турбина?

Как работает газовая турбина? Вопрос, который задают довольно часто. Газовые турбины — это хорошо зарекомендовавшая себя технология, и ее цикл описывается идеальным циклом Брайтона. На рисунке 1 показаны как диаграмма температура-энтропия, так и схематическое представление цикла Брайтона, числа, используемые на графике, соответствуют числам, используемым в схематическом представлении.

Как работает газовая турбина OPRA Radial OP16?

Воздух всасывается компрессором в точке 1, который затем сжимает воздух до более высокого давления (этап 1-2; сжатие).Тепло не добавляется, но из-за сжатия температура воздуха на стороне нагнетания компрессора увеличивается. После выхода из компрессора воздух попадает в камеру сгорания газовой турбины. Топливо впрыскивается в камеру сгорания (этап 2-3; добавление тепла), и тепло, выделяющееся во время сгорания, увеличивает температуру горючей смеси. Газ под высоким давлением и высокой температурой расширяется через турбину (этап 3-4; Расширение), прежде чем он выбрасывается в атмосферу.Расширение турбины обеспечивает работу. Часть этой работы используется для приведения в действие компрессора (с прямым подключением), а оставшаяся часть произведенной энергии — это полезная мощность. Вал газовой турбины соединен с генератором для передачи механической энергии на электрическую или непосредственно на другое оборудование для приложений с прямым приводом (например, насос, компрессор). Помимо механической мощности, выхлоп газовой турбины содержит большое количество высококачественного тепла, которое можно использовать в последующих процессах, либо для прямой сушки, либо для генерации пара.Пар можно использовать в последующем процессе или в паровой турбине для выработки дополнительной электроэнергии. Последняя относится к установкам комбинированного цикла.

Радиальная газовая турбина OP16

OPRA OP16 — одновальная полностью радиальная газовая турбина для промышленного, коммерческого, морского и нефтегазового применения. С момента выхода на рынок в 2005 году по всему миру было поставлено более 140 генераторных установок на базе газовой турбины OP16. Газовая турбина OP16 оснащена одноступенчатым центробежным компрессором с перепадом давления 6.7: 1. Умеренная степень сжатия снижает необходимость сжатия газа перед подачей топлива в газовую турбину. Радиальное колесо турбины, которое устанавливается спина к спине с компрессором, было аэродинамически оптимизировано для достижения высокого КПД. Компактная конфигурация компрессора / турбины позволяет использовать консольный ротор в сборе, в котором подшипники расположены только на холодной стороне. Полностью радиальная конфигурация делает его прочной конструкцией и нечувствительностью к повреждению посторонними предметами и загрязнению топлива.Кроме того, отсутствие сложной геометрии охлаждения в тракте горячего потока позволяет газовой турбине OP16 работать с топливом, загрязненным твердыми частицами.

Система сгорания OP16

Система сгорания газовой турбины OP16 состоит из четырех камер сгорания, установленных с обратным направлением потока. Это удобно для обслуживания, а также для обеспечения равномерного распределения температуры и потока в турбине, и это полезно для модернизации системы сгорания без модификации сердечника турбины. Усовершенствованные системы сгорания OPRA обеспечивают низкий уровень выбросов и возможность использования двух видов топлива. Газовая турбина OP16 с тремя различными типами сжигания подходит для широкого диапазона жидких и газообразных топлив. OP16-3A — это обычная диффузионная камера сгорания, подходящая для газообразного топлива от 25 до 70 МДж / кг и жидкого топлива от 38 до 43 МДж / кг. OP16-3B — это сухая камера сгорания с низким содержанием NOx, подходящая для газообразного топлива от 30 до 52 МДж / кг и жидкого топлива от 41 до 43 МДж / кг. OP16-3C — это низкокалорийная камера сгорания для газообразного топлива до 5 МДж / кг и жидкого топлива до 16 МДж / кг.

Как работает газовая турбина

Полный ответ на вопрос, как работает газовая турбина, более подробно описан выше. Свяжитесь с нами, если вам нужна дополнительная информация о технических деталях газовой турбины OPRA OP16. Мы рады предоставить вам информацию о нашей турбине.

Газовые турбины


Узнайте об истории и развитии газовой турбины.

The газовая турбина стала важным, распространенным и надежным устройством в области энергетики, транспорта и других приложений.Газовая турбина — это двигатель внутреннего сгорания, она может сжигать самые разные топлива (что способствует его большой универсальности).

Использует газовых турбин:

Есть Есть много видов газовых турбин длиной от 1 до 10+ метров. Газовые турбины бывают самых разных форм для удовлетворения различных потребностей в энергии от управления танками, самолетами и вертолетами до выработки электроэнергии и промышленное использование энергии.

В На этой странице мы обсуждаем газовые турбины , используемые для производства электроэнергии .

Позже вы можете узнать о многих других сложных формах газовой турбины перечислено в вики страница.

1. Как это работает
2. Краткая история газовых турбин
3. Разработка газовых турбин в General Electric, Арне Чердак
4. Системы управления газовой турбиной

1.Как это работает:

Газовая турбина используется для получения механической энергии из горючего топлива. В газе турбины, используемые для превращения промышленной / электрической энергии в механическую. поставляется в виде вращающегося вала (в отличие от находящегося под давлением тяга газотурбинного реактивного двигателя). Этот вал имеет огромное количество мощности и крутящего момента.

Использование газовая турбина с валом:

Вал может быть подключенным к другому оборудованию для выполнения различных видов работ, таких как: поворот винта вертолета, запуск компрессора (который «давит» газ в конденсированную форму для использования в промышленных приложениях) или генерации электроэнергия.

Газовая турбина полезен для нашего современного мира, потому что он относительно компактен по размеру и делает много энергии. Газовые турбины используются в системах резервного питания. например, в Манхэттене, когда сеть выходит из строя из-за стихийного бедствия, газовые турбины включаются и могут вырабатывать энергию для аварийных нужд.

Газовые турбины используются на нефтяных платформах для выработки энергии. Нефтяная платформа похожа на маленький город, изолированный от воды, поэтому требует много энергии и не имеет много места.Газовые турбины также используются в масле. нефтеперерабатывающие заводы, чтобы производить мощность для крекинга процесс.

Обвязка мощность взрыва: Как работает устройство:

Исходный рисунок выше: General Electric.

The газовая турбина сжигает топливо в камере сгорания высокого давления, продукты из них принудительно попадают в турбину. Турбина специально спроектирована лопасти, прикрепленные к центральному валу, и поскольку газы высокого давления протекает, вал вращается.Вал вращается с невероятной силой. Вал часто соединен с генератором, который вырабатывает электроэнергию. Иногда вал соединяют с компрессором. Компрессоры используются для сжатия газа или пара для множества промышленных и коммерческих целей.

Часы видео ниже, чтобы узнать подробности о том, как работает газовая турбина:

2.Краткая история газовой турбины:

Газ турбины, разработанные в двух областях техники: паровая турбина, и двигатель внутреннего сгорания. Работа по обоим этим направлениям помогла привели к «Современной газовой турбине» периода после 1940-х годов.

1500 — 1870-е: Леонардо да Винчи, Джионванни Бранка, Джон Барбер и другие. упоминать или проектировать устройства, в которых для создания движения используется горячий газ или пар.Одновременно работают Сэмюэл Браун, Сади Карно, Сэмюэл Морел, Уильям Барнетт и другие разрабатывают конструкцию двигателя внутреннего сгорания. Основы понимания и теории горения и поведения газов в закрытых помещениях. пространства развита.


Паровая турбина by GE, нажмите на изображение, чтобы увидеть увеличенное фото

Пар и газотурбинный рабочий комбинат:

Сэр Чарльз Парсонс построил первую паровую турбину, используемую в энергетике. станция в Кембридже, Англия.Чарльз Кертис (США) разрабатывает другой дизайн и продает патент E.W. Райс в General Electric. Райс дает Кертису всю рабочую силу и ресурсы, необходимые для создания самого мощного пара в мире турбины, которые продаются по всему континенту. Доктор Сэнфорд Мосс разрабатывает диссертацию по газовым турбинам в 1903 году, он присоединяется к GE в Массачусетсе. Мосс развивает супертурбокомпрессор во время Мировая война 1.В этом устройстве используются горячие выхлопные газы из внутреннего двигатель внутреннего сгорания для привода турбинного колеса, работающего от центробежного компрессор. Это устройство увеличивало выходную мощность двигателя. В 1918 году GE открывает подразделение по производству газовых турбин. Это готовит почву десятилетия спустя GE возглавит индустрию коммерческих газовых турбин. Д-р А.А. Гриффит развивает важные теории относительно газового потока. прошлые аэродинамические поверхности по сравнению с предыдущим методом использования проходов.


Реактивные двигатели использовать газотурбинную технологию. Это применение газовых турбин было разработано сначала сэром Фрэнком Уиттлом, Гансом фон Ойаном, доктором Францем Анслемом и другими с 1930-42 годов. Еще одна тема — разработка реактивных двигателей. обсуждается на отдельной странице.

The первая современная газовая турбина:

BCC Коричневый Бовери & Cie (Швейцария) ведет разработку газовых турбин для коммунального хозяйства. производство электроэнергии, начиная с 1930-х годов.Рауль Патерас де Пескара, Ханс von Ohain, Max Hahn разрабатывают собственные проекты за пределами BCC Brown Boveri. В 1936 году компания BCC Brown Boveri построила велокотел с наддувом для нефтеперерабатывающего завода. в Пенсильвании, который использовался в процессе каталитического крекинга для масло. В 1939 году установлена ​​газовая турбина мощностью 4 МВт. в Невшателе, Швейцария. Теперь вы можете увидеть эту турбину на выставке Бирр, Швейцария. Работал с 1939 по 2002 год.

Первый коммерчески продана газовая турбина в Западном полушарии, используемая для выработки электроэнергии был установлен в 1949 году на станции Белл-Айл, штат Оклахома, США.Основная группа инженеров General Electric разработали эффективный и мощный дизайн, который лег в основу многомиллиардной индустрии. В дизайн привел к взрывному росту продаж газовых турбин во всем мире. Газовые турбины наконец занял прочное место в надежном производстве электроэнергии после 1950.

Пионеры газовые турбины 1949 года в GE включают: Брюса Бакленда «Мистер Газовая турбина», Нил Старки (GT Control Genius), Арне Лофт *, Энди Смит, Боб Крамер, Боб Хендриксон *, Дик Ноэ, Том МакКоун, Аль Бойко, Билл Тейлор, Голди Голдсворт, Фрэнк Йипл, Джордж Фуснер, Эдди Уимет, Энди Дарджис, Рой Линн, Джон Бак, Фил Белл, Фред Каммингс, Фернан Померло.

* Доступны видеолекции Арне Лофт и Боба Хендриксона


Вверху: инженеры по ракетным и газотурбинным двигателям на Мальтийский полигон

3. Инженерный форум:

Газ Разработка турбины в General Electric
, Arne Loft

Брюс Бакленд начал работать в GE в августе 1923 г. и ушел на пенсию в 1966 г. через 42 года служба.Он сыграл важную роль в разработке многих ранних газовых турбины, которые сделали GE одним из ведущих поставщиков газовые турбины. Первая половина его трудовой карьеры прошла в паротурбинный бизнес, а вторая половина — газотурбинный. Следующая информация была извлечена из записанного на пленку интервью. с Брюсом в 1980 году:

Примерно 1937 год, GE Подразделение локомотивного и вагонного оборудования в Эри, штат Пенсильвания, хотели, чтобы компания разработала и изготовила двигатель для своих локомотивов, а не покупать чей-то дизель.А. Р. Смит, который тогда возглавлял Группу турбиностроения ответил, организовав команду людей в Steam Turbine Инженерная секция, включая Кенни Солсбери, Алан Ховард, Джин Хантсигер, Ларри ЛаРек, чтобы изучить возможности. Исследования были прерваны в 1941 году в результате встречи Алекса Стивенсона и Глен Уоррен с доктором Дюраном, главой N.A.C.A. (Предшественник НАСА), и тогда GE было приказано отложить свои планы по локомотивный двигатель и обратим внимание на авиационные двигатели.В этот период Рой Шульц и полковник Дон Керн, которые были в Англии, исследуя реактивный двигатель Уиттла, отправить образец двигателя Whittle в группу нагнетателей.

Доктор Сэнфорд Мосс продолжил исследования нагнетателя в Линне, Массачусетс, после Первой мировой войны, следовательно, у Линн был хороший нагнетатель. отдел, который поставляет нагнетатели типа B почти во все Бомбардировщики и другие самолеты, использовавшиеся во ВОВ.Линнский отдел получил указание разработать реактивный двигатель типа Уиттла. В результатом стал И-16 с тягой 1600 фунтов, использованный для питания Колокол XP-59. И-40 был следующей конструкцией реактивного двигателя с 4000 фунты тяги. Обе разработки двигателей были очень секретными. на ранних стадиях.

Тем временем Алан Ховард и его группа разработали TG-100, винтовой реактивный самолет который развивал 2000 лошадиных сил на винте и примерно 500 лошадиных сил в самолете.Первый полет был на XP-81 Orion. самолет с ТГ-100 в носовой части с пропеллером и реактивный самолет И-40 в хвосте. Удаление стойки и увеличение размера вдвое ТГ-100 производил осевой поток, чисто реактивный двигатель конструкции: ТГ-180 с тягой 4000 фунтов. Это было примерно в это время в 1944 году Брюсу поручили проект по испытаниям ТГ-180, который был построен в Скенектади. Позже ТГ-180 стал двигателем P-84, P-86, B-45 и B-47.

Двигатель локомотива конструкции был перезапущен в середине 1946 года. и протестирован в корп. 49 в следующем году. Затем последовали тесты с локомотивом в Эри, во время которого возникло несколько конструктивных проблем обнаружены, в том числе усталостные разрушения второй ступени ковш в течение первых трехсот часов эксплуатации. После завершение локомотивных испытаний в Эри и некоторые начальные пробеги на никелевая плита и железные дороги Пенсильвании, локомотив был передан в аренду Union Pacific. Union Pacific управлял им около одного год между Шайенном и Лос-Анджелесом до заказа 20 единиц в феврале 1952 г., в основном для перевозки грузов. К тому времени GE произвела два Bangor, два Central Vermont и один Central Локомотив штата Мэн. Затем последовала отгрузка первого газа. турбина для коммунального использования в Texas Power and Light в конце 1952 г., MS3001. Затем GE продала 20 единиц новой двухвальной версии, трубопроводный газ.К декабрю 1979 г. одна из таких установок на Пекосе Речной вокзал отработал 200 000 часов, что побудило Ховарда Перри, чтобы отметить это событие, организовав вечеринку в Эль-Пасо. Тем временем GE начала получать заказы на многие «газоперекачивающие машины».

В начале 1950-х годов GE поставила 10 газовых турбин / компрессоров двигается в Creole Petroleum для повышения давления в пласте в миле под поверхностью озера Маракайбо в Венесуэле. Этот был первый раз, когда кто-либо поставил такую ​​станцию ​​семь или восемь миль от берега в озере. Это было очень успешно. Десять газа турбины и компрессоры были смонтированы на платформе примерно два футбольных поля размером с 364 железобетона сваи, около одного квадратного метра и 120 футов длиной, с нижним половина в грязь, а верхняя половина в озере и по поверхности.

В этот же период у газовых турбин возникли проблемы с сжиганием бункера. Топливо «С». По окончании шестимесячного периода тестирования GE разработала схема обессоливания с использованием центрифугирования ДеЛаваль для удаления натрий и добавить магний, чтобы предотвратить коррозию ванадия. В результате образовался пепел, который сбрасывался при выключении и оказалось удовлетворительным решением при условии, что турбина эксплуатировался с перерывами в обслуживании.

Между тем, Union Pacific все еще искал газовая турбина для замены своих дизелей мощностью 9000 л.с. Локомотив Эри Персонал предположил, что подходящий размер для локомотива двигатель составлял 4500 л.с., а если требовалось больше мощности, то турбины следует укладывать в ряд, аналогично дизелям. Однако Скенектади процитировал газовую турбину мощностью 8500 л.с. в 1952/1953 году, и Union Pacific заказал 30 шт.Это был смелый замысел в том смысле, что он имел большой срок службы. всего с двумя опорными подшипниками. Вдобавок был осевой резонанс потока и некоторые машины «на испытаниях» теряют ведра и потерпели сбои динамических компонентов, что привело к очень много проблем. Они были успешно очищены, в том числе ранние поломки колес, которые удалось преодолеть путем разработки метода горячего растяжения и хладостойкости турбинных колес, которые все еще используется сегодня.

Однако стоимость газовых турбин превышала рыночную. и в начале 60-х годов были приняты две концепции, чтобы для снижения общей стоимости: (1) Поместите турбину в упакованный силовая установка и (2) предварительный заказ на поставку через шесть месяцев цикл (как в соревновании) вместо одного года. К счастью для GE, большое отключение электроэнергии в 1965 году в районе Нью-Йорка произошло в на этот раз и один из газовых баллонов Long Island Light и Power Utility. турбины подхватили систему с «черного старта».Данное мероприятие вкупе с решением технических проблем с Дизайн рамы 5 стал импульсом, необходимым для переворота бизнеса и считается поворотным моментом в бизнесе газовых турбин.

Особая благодарность Арне Лофту за этот раздел. Присоединяйтесь к Эдисону Команда Технического центра в качестве волонтера и создайте свою собственную инженерную разработку история известна.

4.Системы управления газовой турбиной:

Газ турбины — чрезвычайно сложные устройства, требующие точного контроля работать. Инженеры по контролю в General Electric первыми разработать надежную систему управления. Нил Старки разработал механический контроль, который был надежным в 1940-е годы. Нужна была лучшая система используя компьютеры и электронику (которая сама только что была разработана в то время).Эта первая электронная система была разработана Арне Лофтом, инженер-механик / электрик, работающий в GE в Скенектади, Нью-Йорк. Ниже приводится его история разработки первого Speedtronic Control. Система. (Позже Speedtronic превратился в большую линейку продуктов, не только газовые турбины, но паровые турбины и другие устройства).

Видео на первой системе управления Speedtronic ниже:

1980-е годы:

Газ 7 F Турбина General Electric (видео Youtube):


Связанные темы:

Нравится нас на Facebook

Источники:

-История Газовая турбина с Бобом Хендриксоном от Фрэнка Хаккерта и Эдисона Технический центр
-Эдисон представляет: интервью с Арне Лофтом Эдисоном Технический центр
-Википедия (Двигатель внутреннего сгорания, записи газовой турбины)
-О.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *