Поршень двигателя внутреннего сгорания
Поршень — один из основных составных элементов КШМ. Главной задачей детали становится принятие давления активно расширяющихся и сильно разогретых газов, которые образуются в рабочей камере при сгорании топливно-воздушной смеси. Полученная энергия от воздействия указанных газов на поршень далее передается на шатун. Поршень имеет три части, которые отвечают за реализацию различных функций. К таковым частям относят днище поршня, уплотняющую часть и направляющую часть поршня.
Поршень испытывает значительные тепловые и механические нагрузки в процессе работы двигателя. Основным материалом для изготовления поршня сегодня выступают алюминиевые сплавы, ранее активно использовался чугун. Поршень совершает возвратно-поступательные движения в гильзе цилиндра, которая размещена в блоке цилиндров ДВС.
Поршень является цельной деталью цилиндрической формы, которую принято делить на головку поршня и юбку поршня.
Головка поршня бывает плоской, выпуклой, может иметь вогнутую форму и т.п. В различных ДВС форма головки поршня зависит от того, как расположены свечи зажигания, инжекторные форсунки, впускные и выпускные клапаны и т.д. Для бензиновых двигателей камера сгорания выполняется отдельно, но для дизельного мотора данная камера изготовлена прямо в головке поршня.
В зоне головки поршня выполнены специальные канавки. Указанные канавки нарезаются для того, чтобы разместить в них поршневые кольца. Данные кольца выступают уплотняющими элементами. Современные двигатели внутреннего сгорания имеют два типа поршневых колец:
- маслосъемные кольца;
- компрессионные кольца;
Задачей компрессионного кольца становится не допустить того, чтобы газы прорывались в картер мотора. Маслосъемное кольцо служит для того, чтобы удалить излишки моторного масла со стенок цилиндра двигателя. Качественное уплотнение предельно важно для нормальной работы ДВС.
Поршень, шатун и гильза цилиндра образуют цилиндро-поршневую группу (ЦПГ). Одним из основных показателей исправности цилиндропоршневой группы выступает необходимая для того или иного мотора компрессия. Дополнительно состояние ЦПГ оценивают по отсутствию или наличию повышенной дымности выхлопа, а также заметного угара моторного масла в процессе эксплуатации. Исправный ДВС не должен иметь расход масла выше паспортного.
Юбка поршня представляет собой направляющую часть указанной детали, в которой выполнена пара бобышек. Бобышки служат для установки поршневого пальца. Поршневой палец выступает соединяющим элементом поршня с шатуном.
Читайте также
Справочная и техническая информация о деталях двигателей
При расточке блока и установке поршней в блок цилиндров, требуется следовать рекомендациям производителя поршней по обработке цилиндров, монтажу и установке деталей цилиндропоршневой группы. Основная информация нанесена на верней части поршня. Если какая либо информация не указана производителем поршней, ни на упаковке, ни на самом поршне, то необходимо следовать рекомендациям производителя автомобиля. Расшифровка символов и значений приведена ниже.
Информация на верхней части.
- Размер поршня. Некоторые производителей поршней наносят на днище поршня размер самого поршня в сотых долях миллиметра, этот контрольный параметр позволяет проверить качество изготовления поршней и точность размеров, пред непосредственной установкой. Например: 83.93. Это означает, что в измеряемых точках размер поршня не превышает указанного размера (с учетом поля допуска). Измерение следует производить при температуре поршня (+20 градусов), с помощью микрометра или аналогичного измерительного инструмента, с точностью измерения до одной сотой доли миллиметра (0,01мм).
- Монтажный зазор. Для того, что бы обеспечить уплотнение рабочей полости цилиндра и минимальную работу трения поршня, а так же предотвратить горячий поршень от заклинивания, между поршнем и стенкой цилиндра предусматривается монтажный (температурный) зазор
- Товарный знак. Каждый серьезный производитель поршней маркирует свою продукцию своим фирменным товарным знаком. Во первых, это часть борьбы с подделок своей продукции, а во вторых демонтировав при ремонте старый поршень сразу становится возможным идентифицировать его, с помощью номера отливки на днище поршня.
- Направление установки. Поршни современных двигателей имеют строго определенное положение в двигателе, в частности, это связано с тем ось поршневого пальца имеет некоторое смещение, относительно центрально оси симметрии поршня. Это сделано для уменьшения шума при работе двигателя, а точнее ударных нагрузок на стенки цилиндра при перекладке поршня в крайнем положении. Как правило, производители используют два способа изображения направления установки– (для двигателей размещаемых спереди и сзади автомобиля). На днище наносится либо стрелка, указывающее направление передней части автомобиля (направление движения), либо схематично изображается коленчатый вал с маховиком.
Направление установки поршней для двигателя, установленного в передней части автомобиля |
Направление установки поршней для двигателя, установленного в задней части автомобиля |
Номер отливки на внутренней части поршня.
Пример расположения номера отливки для поршней, фирмы Kolbenschmidt
|
Пример расположения номера отливки для поршней,
|
Опытные мотористы часто сталкиваются в своей работе с трудностью, когда в ремонт поступает очень старый автомобиль, и нет какой либо возможности точно идентифицировать тип его двигателя. Часто просто бывает не корректная информация в документах, на автомобиль, например ошибка (опечатка) в VIN коде или в графе «ТИП ДВИГАТЕЛЯ». Но ремонтировать нужно, и необходимо правильно подобрать ремонтные поршни.
Тогда на помощь приходит информация о номере отливки на внутренней части поршня. Следует извлечь поршень из блока цилиндров, очистить от нагара внутреннюю полость и прочесть отлитые цифры и буквы. Подобный способ подходит не для всех поршней, но основные поставщики конвейеров европейских автомобилей MAHLE, Kolbenschmidt, AE, Nural позволяют расшифровать эти данные.
Что же такое «номер отливки»? Поршни, имеющие одинаковые основные параметры изготавливаются на одном и том же технологическом оборудовании (в частности в одной литьевой форме), затем подвергаются последующей механической обработке в зависимости от требуемого ремонтного размера и модификации. То есть для поршней имеющие STD и ремонтные размеры номера отливок совпадают. Как правило, одному номеру отливки соответствуют несколько поршней на один двигатель, это стандартный поршень и его последующие ремонты. Но есть исключения (когда номер отливки совпадет с несколькими модификациями поршня) тогда необходимо замерить контролируемые геометрические параметры.
Следует определить изготовителя старого поршня по торговой маркировке, а затем, используя его каталог (бумажный или электронный) ввести найденный номер. Значение номера отливки необходимо вводить непосредственно в поле поиска по артикулу детали ( Artikel # ) или поиска по замене номера (Reference No:). Не забывайте проверять полученные результаты по основным геометрическим размером со старыми деталями.
Зачем инженеры возвращают встречные поршни — ДРАЙВ
Недавнее известие о том, что миллиардер Билл Гейтс и инвестиционная фирма Khosla Ventures решили вложить миллионы в компанию EcoMotors, проектирующую двигатели со встречным движением поршней, заставило нас детально рассмотреть заокеанскую разработку. У подобных моторов давняя история, но широкого распространения они не получили, во всяком случае на автомобильном транспорте. EcoMotors придала, казалось бы, известному блюду новый вкус.
Свой двигатель с двумя оппозитными цилиндрами, в каждом из которых работает по два встречных поршня, EcoMotors назвала незамысловато — OPOC, что значит Opposed Piston Opposed Cylinder — «оппозитные поршни, оппозитные цилиндры». В принципе, по такой схеме может работать как бензиновый мотор (или ДВС, потребляющий спирт), так и дизельный, но пока компания сосредоточила усилия на втором варианте.
Первый двигатель типа OPOC — дизельную модель EM100 (число означает диаметр цилиндров в миллиметрах) американская компания впервые показала общественности весной 2010 года. По информации EcoMotors, весит агрегат 134 кг, размеры его составляют 58 (длина) х 105 (ширина) х 47 (высота) см, развивает он мощность 325 лошадиных сил и выдаёт крутящий момент 900 Н•м.
Двигатель OPOC — двухтактный, так что за один оборот коленчатого вала встречные поршни каждого из цилиндров совершают рабочий ход. При движении к своим мёртвым точкам они открывают окна в стенках цилиндров. Причём один из поршней заведует впуском, второй — выпуском. На рисунке ниже их легко распознать по цветам — синему и красному соответственно. При этом окна расположены так, что выпускное открывается чуть раньше впускного и закрывается также раньше. Это важно для хорошего газообмена.
Ключевые компоненты OPOC, вид сверху и спереди. Обратите внимание на несимметричное расположение впускных и выпускных патрубков относительно коленвала.
Устранение головок цилиндров, клапанов и механизма их привода упростило мотор, сделало его легче, снизило потери на трение и даже расход масла (по оценке компании, вдвое против обычного дизеля). Но ведь такими преимуществами вроде бы могут похвастать и другие двухтактные моторы со встречными поршнями?
Изюминка новинки в том, что все поршни в ней соединены с единственным центральным коленвалом, в то время как раньше схожие конструкции требовали двух коленчатых валов по краям движка. Соответственно, они были заметно крупнее и тяжелее, и неудивительно, что применение нашли в основном на тепловозах и судах. Ну а OPOC, схема работы которого представлена в ролике ниже, нацелен на куда более широкий спектр машин.
com/embed/—uiE_W25Lw?wmode=opaque&autoplay=0&showinfo=0&HD=1&autohide=1&start=undefined» frameborder=»0″ allowfullscreen=»»/>
Как любой двухтактник, OPOC нуждается во внешнем устройстве, которое продувало бы цилиндры в момент открытия окон. В рассматриваемом случае конструкторы решили возложить эту обязанность на турбонаддув. Но очевидно, он не поможет при запуске мотора, а сами цилиндры «вдохнуть» и «выдохнуть» не способны.
Решение опять же нашлось в давней идее, которую ряд компаний обкатывал, но до ума никто так и не довёл. На вал классической турбинки инженеры поставили электродвигатель. При запуске и до тех пор, пока ДВС не набрал обороты, этот моторчик получает энергию от батарей, обеспечивая «дыхание» OPOC. А далее мотор отключается, и турбонаддув превращается в самый обычный. Более того, на высоких оборотах, когда поток выхлопных газов велик, электромотор в турбине может превращаться в генератор, подпитывающий батареи машины.
Электрический турбонаддув — один из самых спорных элементов новинки. Для его раскрутки нужно приличное количество энергии, что приводит к необходимости ёмких и мощных батарей, а значит, удорожает конструкцию.
Новая схема, по утверждению её создателей, отличается очень хорошей продувкой цилиндров, а потому позволяет извлечь наибольшую выгоду из самого двухтактного цикла, теоретически позволяющего достичь вдвое большей литровой мощности двигателя, по сравнению с четырёхтактным. Хотя на практике такого показателя ещё не достигалось. Система OPOC обладает рядом иных любопытных особенностей.
При новой конфигурации для того, чтобы обеспечить заданный рабочий объём, каждому из поршней за один ход требуется пройти вдвое меньшее расстояние. Это означает и меньшую скорость движения при фиксированных оборотах, следовательно, и меньшие потери на трение. Всеми этими особенностями двигатель OPOC обязан в первую очередь Петеру Хофбауэру. Основатель, председатель и технический директор EcoMotors ранее много лет возглавлял разработку перспективных двигателей в компании Volkswagen. К примеру, на его счету смещённо-рядный мотор VR6 с малым (15 градусов) углом развала цилиндров. И хотя фирма EcoMotors была основана в 2008 году, сам Хофбауэр начал размышлять над OPOC на несколько лет раньше.
Идея Петера Хофбауэра хотя сама по себе и свежа, но корнями уходит в 1930-е годы. Отправной точкой его изысканиям послужили созданный Гуго Юнкерсом авиационный дизель со встречными поршнями Junkers JUMO 205 (вверху) и бензиновые «оппозитники» Фердинанда Порше (внизу), в числе которых мотор автомобиля, получившего после войны всемирную известность под именем «Жук». Фактически Хофбауэр скрестил эти две конструкции.
Компания сообщает, что OPOC в дизельном варианте на 30–50% легче, чем обычный турбодизель той же мощности, содержит на 50% меньше деталей, занимает в два-четыре раза меньше места под капотом и при этом может быть (при определённых условиях) на 45–50% экономичнее. Последняя цифра вызывает у специалистов самые большие сомнения, однако, даже если выигрыш в расходе преувеличен, основания для оптимистичных заявлений у EcoMotors имеются. Первый образец ДВС OPOC, по утверждению фирмы, провёл на динамометрическом стенде свыше 500 часов. Можно констатировать, что схема работает. С характеристиками дело обстоит не так однозначно. Модель EM100, которую ныне испытывают инженеры, выдаёт заявленные параметры по мощности и крутящему моменту только при настройках, не учитывающих токсичность выхлопа. Такую версию OPOC компания предлагает ставить на военную технику, для которой отношение отдачи к весу важнее прочего.
Для обычного транспорта EcoMotors предлагает настраивать те же движки несколько иначе: на 300 л.с. и 746 Н•м. Улучшение экономичности против обычных дизелей в таком случае обещано «всего» 15-процентное, но и оно выглядит огромным шагом вперёд, так как обычно компании борются за каждый процент. Дальнейшая экономия возможна при объединении пары таких моторов в четырёхцилиндровый агрегат. То, что раньше было самостоятельным мотором, превращается в модуль. Между ними EcoMotors намерена ставить управляемую электроникой муфту. При малой нагрузке, мол, будет работать только один модуль, при большой — подключится второй. А так как OPOC хорошо уравновешен, все действующие силы тут компенсируют друг друга и мотор отличается минимумом вибраций, то и активация «спящей» половинки в любой момент пройдёт гладко.
Замысел этот похож на известное отключение цилиндров в больших V-образных двигателях. Вот только там «холостые» поршни всё равно продолжают движение вверх-вниз, здесь же половина мотора останавливается полностью, а вторая продолжает трудиться в выгодном режиме. Кроме того, в такой бинарной схеме инженеры предлагают ещё немного снизить предельную отдачу каждого модуля — до 240 «лошадок» (480 будет развивать весь агрегат). По соотношению мощности и веса это всё ещё будет очень достойный мотор, причём, мол, удастся добиться максимальной экономии горючего (тех самых 45%) и соответствия самым строгим нормам по токсичности выхлопа, уверяют разработчики.
Пока OPOC — система сырая, а её конструкторы больше раздают обещания. Но они оптимисты и приступили к расширению линейки. На чертежах уже вырисовывается 75-сильный двухцилиндровый мотор EM65 чуть меньшего размера и массы, чем EM100. Его, кстати, хотят перевести на бензин. Сферы же применения EM65 вполне очевидны: лёгкие грузовики и легковушки, в том числе гибриды. Определённым залогом, но не стопроцентной гарантией успеха экзотического ДВС является репутация его главного конструктора: Петер отдал Фольксвагену 20 лет жизни. И удивительно ли, к слову, что его нынешняя работа перекликается с проектами Порше, стоявшего у истоков знаменитой немецкой марки?
4162050 Поршень ДВС с кольцами
Доставка по городу бесплатно!
В интернет-магазине цены на детали ниже, чем в розничной продаже. Поэтому акции, скидки и бонусная программа не действуют при покупке на сайте.
С этим товаром также покупают
Хомут Бренд: аксессуары Артикул: 0853815Стук поршня в двигателе — причины и последствия.
На холостых и под нагрузкой | Официальный сайт СУПРОТЕКСимптомы стука ДВС
- При работе двигателя вы обнаружили похожий на частые удары звук, который вы не слышали раньше.
- Стук меняется в зависимости от того на холостых оборотах работает двигатель или под нагрузкой.
- Звук меняется в зависимости от температуры двигателя – стук «на холодную» отличается от стука в прогретом двигателе.
Что делать? Можно ли разобраться в проблеме самостоятельно? Как определить стук поршня ли это, или «шумят» другие узлы?
Диагноз
Стук поршней в двигателе может происходить по разным причинам. Попробуйте определить характер стука по перечисленным ниже признакам и посмотрите, что можно сделать:
- Случай первый – стук при перекладке поршня. В этом случае звук доносится из области верхней части блока двигателя.Стук глухой, лучше всего слышен на холостых оборотах при горячем двигателе. Решение.
- Случай второй – стук поршневого пальца по шатуну. Резкий короткий стук из области блока двигателя. Решение.
- Случай третий – шатунный стук. Звук ударов низкий, доносится из нижней части блока двигателя. Лучше всего слышен, когда автомобиль на подъемнике или на эстакаде. Решение.
Решение для первого случая – стук поршня при перекладке
Что надо исправить?
«Перекладка поршня» — это момент, когда поршень перестает двигаться вверх и начинает двигаться вниз. В этот момент его скорость в продольном направлении цилиндра становиться нулевой, а боковая нагрузка значительной. В нормальном случае перекладка происходит мягко, поршень упирается в масляную пленку, его не перекашивает. Стучать поршень начинает в следующих ситуациях:
- Значительная выработка цилиндра в верхней части. Появляется зазор, который не уплотняется масляной пленкой, и при перемене направления поршень в этом зазоре смещается в боковом направлении и перекашивается, ударяясь о стенку цилиндра.
- Произошла выработка в поршне гнезд крепления поршневого пальца. При этом поршень начинает смещаться относительно пальца и задевает стенки цилиндра.
- Искривление штока поршня. В этом случае поршень движется не строго по оси цилиндра, теряется симметричность механизма. Дополнительным признаком искривления штока является повышенная вибрация при работе двигателя, его ощутимо трясет.
С помощью чего это исправить?
В последнем из описанных случаев поможет только ремонт с заменой поршневой группы.
В случае если проблемой является стук поршня в цилиндре или выработка посадочных гнезд поршневого пальца — поможет применение триботехнического состава серии «Актив», который добавляется в моторное масло. Состав вычищает поверхности трения, а затем под его воздействием на них образуется защитный металлический слой.
- Слой восстанавливает геометрию цилиндра, оптимизирует зазоры и предотвращает качание и перекосы поршня.
- Слой восстанавливает форму посадочных гнезд, предотвращая люфт поршневого пальца.
Важно! Трибосостав окажет воздействие и восстановит изношенные поверхности. Однако он не способен восстановить детали при механических повреждениях.
Состав безопасен для вашего автомобиля. Он химически нейтрален и не меняет свойств моторного масла.
Состав работает в двигателях любых конструкций, поскольку активируется в зонах трения металлических деталей.
Активные частицы состава в десятки раз мельче ячеек масляных фильтров и не способны его забить.
Состав восстанавливает изношенные поверхности, что позволяет деталям работать в рамках заводских допусков даже после замены масла и удаления состава из двигателя.
Бонус! Триботехнический состав оптимизирует зазоры трения. Это выравнивает и поднимает компрессию, снижает потери энергии, и в конечном счете приводит к снижению расхода топлива. Автомобиль вернет вам стоимость состава через 15-18 000 километров пробега.
Решение для второго случая – стук поршневого пальца по шатуну
Что надо исправить?
В случае выработки, износа втулки шатуна, она получает возможность смещаться относительно поршневого пальца, когда шатун идет вверх, в самой высокой точке поршня, между втулкой и пальцем образуется зазор. При начале движения шатуна вниз этот зазор сокращается, и втулка бьет по поршневому пальцу.
С помощью чего это можно исправить?На ранних этапах решить эту проблему можно с помощью триботехнического состава серии «Актив», который добавляется в моторное масло. Состав вычищает поверхности трения, а затем под его воздействием на них образуется защитный металлический слой. Этот слой способен компенсировать возросшие зазоры, смягчить контакты втулки и пальца и существенно замедлить последующий износ.
При значительной выработке, а значит при более громком и выраженном звуке ударов, необходимо произвести ремонт поршневой.
Решение для третьего случая – шатунный стук
Что надо исправить?Шатунный стук возникает по двум причинам:
- Износ вкладышей коленчатого вала. В этом случае появляется зазор и поршень начинает двигаться не синхронно с коленвалом, ударяясь об него при перемене направления движения.
- Недостаточное давление масла в системе. Это может произойти из-за загрязнения масляных каналов, фильтра или износа масляного насоса. В этом случае масло не образует сплошной пленки между вкладышем и коленвалом и позволяет им двигаться относительно друг друга.
С помощью чего это можно исправить?
В случае, если износ вкладышей не является критическим, на них нет повреждений поверхности, поможет триботехнический состав «Актив Плюс». Состав производит очистку всех агрегатов, которые смазываются моторным маслом, в частности он очищает шейки коленвала и детали масляного насоса. Затем под действием состава на поверхностях трения образуется защитный металлический слой, который восстанавливает форму деталей и способен прочнее удерживать более плотную пленку масла.
Восстановление масляного насоса нормализует масляное давление в системе. А более плотная пленка на поверхности шейки коленвала компенсирует зазоры и не дает штоку бить по ней. Таким образом трибосостав способен справиться с обеими причинами шатунного стука.
Если износ вкладышей критичен, то необходима их замена, что приведет к переборке всего двигателя.
ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ОТЛОЖЕНИЯ В ДВИГАТЕЛЕ
ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ОТЛОЖЕНИЯ В ДВИГАТЕЛЕ
Исследование отложений в автомобильных двигателях.
Одним из резервов повышения показателей эксплуатационной надежности ДВС является снижение отложений нагаров, лаков и осадков на поверхностях их деталей, контактирующих с моторным маслом. В основе их образования лежат процессы старения масел (окисление углеводородов, входящих в состав масляной основы). Определяющее влияние на процессы окисления масла в двигателях, на образование отложений и эффективность работы ДВС в целом оказывает тепловой режим теплонагруженных деталей.
Ключевые слова: температура, поршень, цилиндр, моторное масло, отложения, нагар, лак, работоспособность, надежность.
Отложения на поверхностях деталей ДВС делятся на три основных вида – нагары, лаки и осадки (шламы).
Нагар – твердые углеродистые вещества, откладывающиеся во время работы двигателя на поверхностях камеры сгорания (КС). При этом отложения нагаров, главным образом, зависят от температурных условий даже при аналогичном составе смеси и одинаковой конструкции деталей двигателей. Нагар оказывает весьма существенное влияние на протекание процесса сгорания топливовоздушной смеси в двигателе и на долговечность его работы. Почти все виды ненормального сгорания (детонационное сгорание, калильное воспламенение и прочие) сопровождаются тем или иным влиянием нагара на поверхностях деталей, образующих КС.
Лак – продукт изменения (окисления) тонких масляных пленок, растекающихся и покрывающих детали цилиндропоршневой группы (ЦПГ) двигателя под действием высоких температур. Наибольший вред для ДВС наносит лакообразование в зоне поршневых колец, вызывая процессы их закоксовывания (залегания с потерей подвижности). Лаки, откладываясь на поверхностях поршня, контактирующих с маслом, нарушают должную теплопередачу через поршень, ухудшают теплоотвод от него.
На количество осадков (шламов), образующихся в ДВС, решающее влияние оказывает качество моторного масла, температурный режим деталей, конструкционные особенности двигателя и условия эксплуатации. Отложения этого типа наиболее характерны для условий зимней эксплуатации, интенсифицируются при частых пусках и остановках двигателя.
Тепловое состояние ДВС оказывает определяющее влияние на процессы образования различных видов отложений, прочностные показатели материалов деталей, выходные эффективные показатели двигателей, процессы изнашивания поверхностей деталей. В этой связи необходимо знать пороговые значения температур деталей ЦПГ, по крайней мере, в характерных точках, превышение которых приводит к указанным ранее негативным по следствиям.
Температурное состояние деталей ЦПГ ДВС целесообразно анализировать по значениям температур в характерных точках, расположение которых показано на рис. 1 . Значения температур в данных точках следует учитывать при производстве, испытаниях и доводке двигателей для оптимизации конструкций деталей, при выборе моторных масел, при сравнении тепловых состояний различных двигателей, при решении целого ряда других технических проблем конструирования и эксплуатации ДВС.
Рис. 1. Характерные точки цилиндра и поршня ДВС при анализе их температурного состояния для дизельных (а) и бензиновых (б) двигателей
Эти значения имеют критические уровни:
1. Максимальное значение температур в точке 1 (в дизельных двигателях – на кромке КС, в бензиновых – в центре донышка поршня) не должно превышать 350С (кратковременно, 380С) для всех серийно применяемых в автомобильном двигателестроении алюминиевых сплавов, иначе происходит оплавление кромок КС в дизелях и, нередко, прогар поршней в бензиновых двигателях. Ко всему прочему высокие температуры огневой поверхности днища поршня вызывают образование нагаров высокой твердости на этой поверхности. В практике двигателестроения это критическое значение температуры удается повышать путем добавления в поршневой сплав кремния, бериллия, циркония, титана и других элементов.
Недопущение превышения критических значений температур в этой точке, равно как и в объемах деталей ДВС, обеспечивается также путем оптимизации их форм и правильной организацией охлаждения. Превышение температурами деталей ЦПГ двигателей допустимых значений обычно является основным сдерживающим фактором для форсирования их по мощности. По температурным уровням следует иметь определенный запас с учетом возможных экстремальных условий эксплуатации.
2. Критическое значение температур в точке 2 поршня – над верхним компрессионным кольцом (ВКК) – 250…260С (кратковременно, до 290С). При превышении этой величины все массовые моторные масла коксуются (происходит интенсивное лакообразование), что приводит к “залеганию” поршневых колец, то есть потере их подвижности, и в результате – к существенному уменьшению компрессии, увеличению расхода моторного масла и др.
3. Предельное максимальное значение температур в точке 3 поршня (точка расположена симметрично по сечению головки поршня на внутренней его стороне) – 220С. При более высоких температурах на внутренней поверхности поршня происходит интенсивное лакообразование. Лаковые отложения, в свою очередь, являются мощным тепловым барьером, препятствующим теплоотводу через масло. Это автоматически приводит к повышению температур во всем объеме поршня, а значит, и на поверхности зеркала цилиндра.
4. Максимально допустимое значение температур в точке 4 (расположена на поверхности цилиндра, напротив места остановки ВКК в ВМТ) – 200С. При его превышении моторное масло разжижается, что приводит к потере стабильности образования масляной пленки на зеркале цилиндра и «сухому» трению колец по зеркалу. Это вызывает интенсификацию молекулярно-механического изнашивания деталей ЦПГ. С другой стороны, известно, что пониженная температура стенок цилиндра (ниже точки росы отработавших газов) способствует ускорению их коррозионно-механического изнашивания [1,2]. Ухудшается также смесеобразование и уменьшается скорость сгорания топливовоздушной смеси, что снижает эффективность и экономичность работы двигателя, вызывая повышение токсичности отработавших газов. Также следует отметить, что при существенно заниженных температурах поршня и цилиндра сконденсированные водяные пары, проникающие в картерное масло, вызывают интенсивную коагуляцию примесей и гидролиз присадок с образованием осадков – «шламов». Эти осадки, загрязняя масляные каналы, сетки маслоотстойников, масляные фильтры, существенно нарушают нормальную работу смазочной системы.
На интенсивность протекания процессов образования отложений нагаров, лаков и осадков на поверхностях деталей ДВС существенно влияет старение моторных масел при их работе. Старение масел состоит в накоплении примесей (в том числе воды), изменении их физико-химических свойств и окислении углеводородов.
Изменение фракционного состава чистого залитого масла по мере работы двигателя вызывается в основном причинами, изменяющими состав его масляной основы и процентное соотношение присадок по отдельным составляющим (парафиновым, ароматическим, нафтеновым).
К ним относятся:
процессы термического разложения масла в зонах перегрева (например, в клапанных втулках, зонах верхних поршневых колец, на поверхностях верхних поясов зеркала цилиндров). Такие процессы приводят к окислению наиболее легких фракций масляной основы или даже их частичному выкипанию;
добавление к углеводородам основы неиспарившегося топлива, попадающего в начальные периоды пусков (или при резком увеличении подачи топлива в цилиндры для осуществления ускорения автомобиля) в маслосборник картера через зону поршневых уплотнений;
попадание в поддон картера или маслосборник двигателя воды, образующейся при сго-рании топлива в КС цилиндров.
Если система вентиляции картера действует достаточно эффективно, а стенки картера находятся в подогретом состоянии до 90-95°С, вода не конденсируется на них и удаляется в атмосферу системой вентиляции картера. Если температура стенок картера существенно понижена, то попавшая в масло вода будет принимать участие в процессах его окисления. Количество сконденсировавшейся воды при этом может быть весьма значительным [2]. Даже если считать, что только 2% газов могут прорваться через все компрессионные кольца цилиндра, то через картер двигателя с рабочим объемом 2-2,5 л за каждые 1000 км пробега будет прокачиваться по 2 кг воды. Допустим, что 95% воды удаляется системой вентиляции картера, то все равно после пробега в 5000 км на 4,0 л моторного масла будет приходиться около 0,5 л Н2О. Эта вода при работе двигателя преобразуется антиокислительной присадкой, содержащейся в моторном масле, в примеси – кокс и золу.
По указанным ранее причинам необходимо поддерживать при работе двигателя температуру стенок картера достаточно высокой, а в случае необходимости – применять системы смазки с сухим картером и отдельным масляным баком.
Следует отметить, что мероприятия, замедляющие процессы изменения состава масляной основы, существенно замедляют образование нагара, лака и осадков, а также снижают интенсивность изнашивания основных деталей автомобильных двигателей .
Фракционный и химический состав масел может изменяться в достаточно широких
пределах под влиянием различных факторов:
характера сырья, зависящего от месторождения, свойств нефтяной скважины;
Для предварительной оценки свойств нефтепродуктов применяют различные лабораторные методы: определение кривой разгонки, температур вспышки, помутнения и застывания, оценку окисляемости в средах с различной агрессивностью и т.п.
В основе старения автомобильного моторного масла лежат процессы окисления, разложения и полимеризации углеводородов, которые сопровождаются процессами загрязнения масла различными примесями (нагаром, пылью, металлическими частичками, водой, топливом и пр.). Процессы старения существенно изменяют физико-химические свойства масла, приводят к появлению в нѐм разнообразных продуктов окисления и износа, ухудшают его эксплуатационные качества. Различают следующие виды окисления масла в двигателях: в толстом слое – в поддоне картера или в масляном баке; в тонком слое -на поверхностях горячих металлических деталей; в туманообразном (капельном) состоянии – в картере, клапанной коробке и т.п. При этом окисление масла в толстом слое даѐт осадки в виде шлама, а в тонком слое – в виде лака.
Окисление углеводородов подчиняется теории перекисей А.Н. Баха и К.О. Энглера, дополненной П.Н. Черножуковым и С.Э. Крейном. Окисление углеводородов, в частности, в моторных маслах ДВС, может идти по двум основным направлениям, представленным на рис. 2, результаты окисления по которым различны. При этом результатом окисления по первому направлению являются кислые продукты (кислоты, оксикислоты, эстолиды и асфальтогенные кислоты), образующие осадки при пониженных температурах; результатом окисления по второму направлению являются нейтральные продукты (карбены, карбоиды, асфальтены и смолы), из которых образуются в различных пропорциях при повышенных температурах или лаки, или нагары.
Рис. 2. Пути окисления углеводородов в нефтяном продукте (например, в моторном масле для ДВС)
В процессах старения масла весьма значительна роль воды, попадающей в масло при конденсации ее паров из картерных газов или другими путями. В результате этого образуются эмульсии, которые впоследствии усиливают окислительную полимеризацию молекул масла. Взаимодействие оксикислот и других продуктов окисления масла с водомасляными эмульсиями вызывает усиленное образование осадков (шламов) в двигателе.
В свою очередь, образовавшиеся частички шлама, если они не будут нейтрализованы присадкой, служат центрами катализации и ускоряют разложение еще не окислившейся части масла. Если при этом не произвести своевременную замену моторного масла, процесс окисления будет происходить по типу цепной реакции с увеличивающейся скоростью, со всеми вытекающими отсюда последствиями.
Решающее влияние на образование нагаров, лаков и осадков на поверхностях деталей ДВС, контактирующих с моторным маслом, оказывает их тепловое состояние. В свою очередь, конструкционные особенности двигателей, условия их эксплуатации, режимы работы и т.д. определяют тепловое состояние двигателей и влияют, таким образом, на процессы образования отложений.
Не менее важное влияние на образование отложений в ДВС оказывают и характеристики применяемого моторного масла. Для каждого конкретного двигателя важно соответствие рекомендованного заводом-изготовителем масла температуре поверхностей деталей, контактирующих с ним.
В данной работе произведен анализ взаимосвязи температур поверхностей поршней двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 и процессов образования на них отложений нагаров и лаков, а также произведена оценка осадкообразования на поверхностях картера и клапанной крышки двигателей при использовании рекомендованного заводом изготовителем моторного масла М 63/12Г1.
Для исследования зависимостей количественных характеристик отложений в двигателях от их теплового состояния и условий работы можно использовать различные методики, например, Л-4 (Англия), 344-Т (США), ПЗВ (СССР) и др. [2, 3]. В частности, по методике 344-Т, являющейся нормативным документом США, состояние «чистого» неизношенного двигателя оценивается в 0 баллов; состояние предельно изношенного и загрязненного двигателя в 10 баллов. Аналогичной методикой оценки лакообразования на поверхностях поршней является отечественная методика ПЗВ (авторы – К.К. Папок, А.П. Зарубин, А.В. Виппер), цветовая шкала которой имеет баллы от 0 (отсутствие лаковых отложений) до 6 (максимальные отложения лака). Для пересчета баллов шкалы ПЗВ в баллы методики 344-Т показания первой необходимо увеличить в полтора раза. Указанная методика аналогична отечественной методике отрицательной оценки отложений ВНИИ НП (10 балльная шкала).
Для экспериментальных исследований использовались по 10 двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 [2]. Эксперименты по исследованию процессов образования отложений проводились совместно с лабораториями испытаний легковых и грузовых автомобилей УКЭР ГАЗ на моторных стендах. В процессе испытаний, кроме прочего, контролировались расходы воздуха и топлива, давление и температура отработавших газов, температура масла и охлаждающей жидкости. При этом на стендах выдерживались режимы: частота вращения коленчатого вала, соответствующая максимальной мощности (100% нагрузки), и, поочередно, в течение 3,5 часов – 70% нагрузки, 50% нагрузки, 40% нагрузки, 25% нагрузки и без нагрузки (при закрытых дроссельных заслонках), т.е. эксперименты проведены по нагрузочным характеристикам двигателей. При этом температура охлаждающей жидкости выдерживалась в интервале 90…92С, температура масла в главной масляной магистрали – 90…95С. После этого двигатели разбирались и производились необходимые замеры.
Предварительно были проведены исследования по изменению физико-химических параметров моторных масел при испытаниях двигателей ЗМЗ-402.10 в составе автомобилей ГАЗ-3110 на автополигоне УКЭР ГАЗ. При этом выдержаны условия: средняя техническая скорость 30…32 км/ч, температура окружающего воздуха 18…26С, пробег до 5000 км. В результате испытаний получено – при увеличении пробегов автомобилей (времени работы двигателей) увеличивалось количество механических примесей и воды в моторных маслах, его коксовое число и зольность, происходили прочие изменения, что представлено в табл. 1
Нагарообразование на поверхностях днищ поршней двигателей ЗМЗ-5234.10 характеризовалось данными, представленными на рис. 3 (для двигателей ЗМЗ-402.10 результаты подобны). Из анализа рисунка следует, что при повышении температур днищ поршней от 100 до 300С толщина (зона существования) нагара уменьшалась с 0,45…0,50 до 0,10…0,15 мм, что объясняется выжиганием нагара при повышении температуры поверхностей двигателей. Твердость же нагара повышалась с 0,5 до 4,0…4,5 баллов по причине спекания нагара при высоких температурах.
Рис. 3. Зависимости нагарообразования на поверхностях днищ поршней двигателей ЗМЗ-5234.10 от их температур:
а – толщина нагара; б – твердость нагара;
символами нанесены усредненные экспериментальные значения
Оценка величин отложений лаков на боковых поверхностях поршней и их внутренних (нерабочих) поверхностях производилась также по десятибалльной шкале, согласно методике 344-Т, используемой во всех ведущих научно-исследовательских учреждениях страны.
Данные по лакообразованию на поверхностях поршней двигателей представлены на рис. 4 (результаты по исследуемым маркам двигателей совпадают). Режимы испытаний указаны ранее и соответствуют режимам при исследованиях нагарообразования на деталях.
Из анализа рисунка следует, что лакообразование на поверхностях поршней двигателей однозначно увеличивается с увеличением температур их поверхностей. На интенсивность лакообразования влияет не только повышение температур поверхностей деталей, но и длительность ее действия, т.е. продолжительность работы двигателей [3]. При этом, однако, процессы лакообразования на рабочих (трущихся) поверхностях поршней существенно замедляются по сравнению с внутренними (нерабочими) поверхностями, вследствие стирания слоя лака в результате трения.
Рис. 4. Зависимости отложений лака на поверхностях поршней двигателей ЗМЗ-5234.10 от их температур:
а – внутренние поверхности; б – боковые поверхности; символами нанесены усредненные экспериментальные значения
Нагаро- и лакообразование на поверхностях деталей существенно интенсифицируется при применении масел групп «Б» и «В», что подтверждено рядом исследований, проведенных авторами на подобных и других типах автомобильных двигателей.
Планомерное увеличение отложений лаков на внутренних (нерабочих) поверхностях поршней вызывает уменьшение теплоотвода в картерное масло при увеличении наработки двигателей. Это вызывает, например, постепенное увеличение уровня теплового состояния двигателей по мере приближения наработки к смене масла при очередном ТО-2 автомобиля.
Образование осадков (шламов) из моторных масел происходит в наибольшей степени на поверхностях картера и клапанной крышки. Результаты исследований осадкообразования в двигателях ЗМЗ-5234.10 представлены на рис. 5 (для двигателей ЗМЗ-402.10 результаты подобны). Осадкообразование на поверхностях указанных ранее деталей оценивалось в зависимости от их температур, для измерения которых были смонтированы термопары (приварены конденсаторной сваркой): на поверхностях картера по 5 штук у каждого двигателя, на поверхностях клапанных крышек – по 3 штуки.
Как следует из рис. 5, при повышении температур поверхностей деталей двигателей осадкообразование на них уменьшается вследствие уменьшения содержания воды в картерном масле, что не противоречит результатам ранее проведенных экспериментов другими исследователями. Во всех двигателях осадкообразование на поверхностях деталей картера оказались больше, чем на поверхностях клапанных крышек.
На моторных маслах групп форсирования «Б» и «В» осадкообразование на деталях ДВС, контактирующих с моторным маслом, происходит интенсивнее, чем на маслах групп форсирования «Г», что подтверждено рядом исследований [1, 2, 3 и др.].
По сравнению с поверхностями поршней, отложения на зеркалах цилиндров следует считать незначительными. Далее, на рис. 6 приводятся данные по лакообразованию на зеркале цилиндра двигателей ЗМЗ-5234.10 при работе на маслах М-8В («автол») и М6з/12Г1, полученные также по методике 344-Т (для двигателей ЗМЗ-402.10 результаты подобны).
В данной работе исследования отложений на зеркалах цилиндров при эксплуатации двигателей на самых современных маслах не проводилось, однако, можно уверенно предположить, что для исследуемых двигателей они будут не больше, чем при их работе на менее качественных маслах.
Полученные результаты по взаимосвязи изменения температур основных деталей двигателей ЗМЗ-402. 10 и ЗМЗ-5234.10 (поршней, цилиндров, клапанных крышек и масляных картеров) и количества отложений позволили выявить закономерности процессов образования нагаров, лаков и осадков на поверхностях указанных деталей. Для этого результаты аппроксимированы функциональными зависимостями методом наименьших квадратов и представлены на рис. 3-5. Полученные закономерности процессов образования отложений на поверхностях деталей автомобильных карбюраторных двигателей должны учитываться и использоваться конструкторами и инженерно-техническими работниками, занимающимися доводкой и эксплуатацией ДВС.
Двигатель автомобиля работает с наибольшей эффективностью лишь при определенных условиях. Оптимальный температурный режим теплонагруженных деталей является одним из таких условий и обеспечивает высокие технические характеристики двигателя с одновременным снижением износов, отложений и, следовательно, повышением показателей его надежности.
Оптимальное тепловое состояние ДВС характеризуется оптимальными температурами поверхностей их теплонагруженных деталей. Анализируя проведенные исследования процессов образования отложений на деталях исследуемых карбюраторных двигателей ЗМЗ и подобные исследования по бензиновым двигателям [1, 2, 3 и др.], можно с достаточной степенью точности определить интервалы оптимальных и опасных температур поверхностей деталей данного класса двигателей. Полученная информация представлена в табл. 2.
При температурах деталей двигателей в опасной высокотемпературной зоне существенно увеличивается твердость нагара на деталях КС цилиндра, что вызывает процессы калильного зажигания топливовоздушных смесей, количество лаковых отложений на поверхностях поршней и цилиндров, а значит, нарушается нормальный тепловой баланс. Рис. 7.
При температурах деталей двигателей в опасной низкотемпературной зоне увеличивается толщина нагара на поверхностях деталей, образующих КС, что приводит к возникновению детонационного сгорания топливовоздушных смесей, а также при низких температурах поверхностей деталей двигателей на них увеличивается количество осадков из моторных масел. Все это нарушает нормальную работу двигателей. В свою очередь отложения приводят к перераспределению тепловых потоков, проходящих через поршни, и повышению температур поршней в критических точках – в центре огневой поверхности днища поршня и в канавке ВКК. Температурное поле поршня двигателя ЗМЗ-5234.10 с учетом отложений нагаров и лаков на его поверхностях представлено на рис. 7.
Задача теплопроводности методом конечных элементов решалась с ГУ 1-рода, полученными при термометрировании поршня на режиме номинальной мощности при стендовых испытаниях двигателя. Термоэлектрические эксперименты проводились с тем же поршнем, для которого предварительно выполнены исследования температурного состояния без учета отложений. Эксперименты осуществлялись при идентичных условиях. Предварительно двигатель работал на стенде более 80 часов, после чего наступает стабилизация нагаров и лаков. В результате, температура в центре днища поршня повысилась на 24°С, в зоне канавки ВКК – на 26°С в сравнении с моделью поршня без учета отложений. Значение температуры поверхности поршня над ВКК 238°С входит в опасную высокотемпературную зону (табл. 2). Близко к опасной высокотемпературной зоне и значение температуры в центре днища поршня.
На этапе проектирования и доводки двигателей влияние отложений нагаров на тепловоспринимающих поверхностях поршней и лаков на их поверхностях, контактирующих с моторным маслом, учитывается крайне редко. Это обстоятельство в совокупности с эксплуатацией двигателей в составе АТС при повышенных тепловых нагрузках увеличивает вероятность отказов – прогары поршней, закоксовывание поршневых колец и т.д.
Н.А Кузьмин, В.В. Зеленцов, И.О. Донато
Нижегородский государственный технический университет им. Р.Е. Алексеева, Управление автомагистрали “Москва — Н.Новгород»
Классы поршней для двигателей ВАЗ.
На современном рынке присутствует большое количество поршней как отечественных, так и зарубежных производителей. Вне зависимости от места изготовления изделия, поршень ДВС должен соответствовать требованиям каждой конкретной модели двигателя. Так, поршень Ваз, входящий в комплект, не должен отличаться по своей массе более чем на ±2,5 грамма. Именно это обстоятельство снизит вибрацию запущенного двигателя. В розничной торговле принято реализовывать поршни одной весовой категории. При необходимости осуществляется подгонка поршней по массе.
Стоит отметить, что зазор, имеющийся между поверхностью поршня и цилиндром должен быть равен величине, установленной для конкретной модели двигателя. По номинальному размеру поршни подразделяются на 5 классов, различие между ними — 0,01 мм. Все классы маркируют буквами на днище изделия — (А, В, С, D, Е). Как запчасти поставляют только поршни классов — А, С и Е. Этих размеров вполне достаточно для подбора деталей к любому блоку цилиндров и обеспечения необходимых зазоров. Модели поршней ВАЗ 11194 и ВАЗ 21126 выпускаются только в трех классах — (A, B, C), размер шага — 0,01 мм. Помимо номинальных имеются 2 ремонтных размера поршней, которые имеют увеличенный наружный диаметр на 0,4 и 0,8 мм. На их днище имеется маркировка в виде треугольника (1й ремонтный размер) и квадрата (второй). Стоит отметить, что до 1986 г. Ремонтные размеры ничем не отличались от современных. Для двигателя 2101 можно было подобрать изделие на 0,2мм., 0,4мм. и на 0,6 мм., а для 21011 — 0,4 мм. и 0,7 мм.
Изготовление поршней осуществляется из сплавов алюминия. Имеющийся в них кремний позволяет снижать коэффициент теплового расширения, а, следовательно, и увеличивать износостойкость изделия. Сплавы, содержащие 13% кремния именуют эвтектическими, а те, где его содержание выше – заэвтектическими. С увеличением процентного содержания кремния в сплаве увеличиваются теплопроводные характеристики изделия, но, в то же время, происходит ухудшение его литейных и механических свойств. Дабы улучшить их, в сплавы вводят легирующие медь, марганец, хром и никель.
Отметим 2 основных способа изготовления заготовок поршня. Первая – отливка в специальную форму (кокиль) наиболее распространена. Второй – ковка или горячая штамповка.
После механической обработки изделие проходит термическую обработку с целью повышения его твердости, износостойкости, прочности, а так же для снятия остаточного напряжения металлов. Благодаря своей структуре кованый металл повышает прочностные характеристики изделия. Однако классическая конструкция кованых изделий, имеющая высокую юбку, получается достаточно тяжелой. Помимо этого, кованые детали не могут быть использовать в своем составе термокомпенсирующие пластины и кольца. Увеличивается объем, что приводит к росту тепловой деформации, потому происходит необходимость увеличения зазора между поршнем и цилиндром. Следовательно, растет их износ, шум и расход масла. Кованые поршни оправдывают свое применение лишь в той ситуации, когда в большинстве своем двигатель автомобиля эксплуатируют на предельных режимах.
Сегодня прослеживаются несколько основных тенденций в технологическом конструировании поршней: уменьшается их вес, все чаще используются тонкие поршневые кольца, снижается компрессионная высота, используются короткие поршневые пальцы, применяются новейшие защитные покрытия. Все вышеперечисленные характеристики находят свое отражение в Т-образной конструкции поршня. Эти изделия имеют уменьшенную по площади направляющей части и высоту юбку. Изготавливаются из заэвтектических сплавов, имеющих высокое содержание кремния. Поршни, имеющие Т-образную форму, практически всегда изготавливаются методом горячей штамповки.
Прежде чем принять решение об изготовлении определенной конструкции поршня, разработчик в обязательном порядке анализирует поведения узлов шатунно-поршневых групп. Фактически детали современного двигателя рассчитываются на пределе возможностей конструкций и материалов. Здесь предпочтение отдается конструкциям, имеющим минимальную стоимость, способную обеспечить утвержденный ресурс изделия. Именно поэтому отклонения от штатного режима работы двигателя приводит к сокращениям в ресурсе определенных деталей и узлов.
Основы работы поршневого двигателя
Многие люди всю свою жизнь водят машину, даже не понимая, как работают машины. У этих знаний много преимуществ. Курсы обучения водителей отлично подходят для обучения людей правилам дорожного движения, но многие из них даже не охватывают основы механики.
Большинство автомобилей на дорогах сегодня имеют двигатели внутреннего сгорания. Это тип поршневого двигателя, в котором поршни используются для преобразования давления в движение.Хотя это может показаться сложным, самый простой способ понять ваш двигатель — это изучить различные части и то, что они делают во время этих циклов.
Преимущества понимания вашего двигателяЕсть много причин для фундаментального понимания того, как работает двигатель вашего автомобиля. Во-первых, это даст вам преимущество при покупке автомобиля, потому что вы сможете сравнивать разные автомобили в зависимости от того, что находится под капотом. Если вы владеете собственным автомобилем, знание двигателя поможет облегчить обслуживание автомобиля и устранение механических проблем.
Аналогичным образом, если вам когда-нибудь понадобится сдать автомобиль в ремонт, знакомство с двигателем поможет вам понять, какие работы необходимо выполнить и почему. Вы также можете определить, действительно ли в некоторых предлагаемых ремонтах нет необходимости.
Основные элементы двигателя внутреннего сгоранияВ основе двигателя автомобиля лежат цилиндры. У большинства машин их четыре, шесть или восемь штук. Внутри каждого цилиндра находится поршень, который скользит вверх и вниз и при этом вращает коленчатый вал, прикрепленный к коробке передач, которая, в свою очередь, приводит в действие колеса автомобиля.Цилиндры также оснащены клапанами, которые впускают воздух и топливо и позволяют выходить выхлопным газам. Топливо внутри двигателя воспламеняется свечами зажигания, и это сгорание приводит в движение поршни.
Четырехтактный циклДвигатели внутреннего сгорания, которыми оснащены многие современные легковые и грузовые автомобили, обычно работают по четырехтактному циклу, и эти четыре стадии — это впуск, сжатие, сгорание и выпуск. Поскольку в автомобилях обычно есть по крайней мере четыре цилиндра, которые запускаются последовательно, цилиндры всегда проходят разные стадии цикла, а это означает, что всегда есть поршень, приводящий в действие коленчатый вал.
- Цикл впуска : во время цикла впуска впускной клапан цилиндра открывается, когда поршень движется вниз по цилиндру, и вакуум, создаваемый движениями поршня вниз, всасывает воздух и топливо в камеру сгорания цилиндра.
- Цикл сжатия : как только поршень достигает дна цилиндра, впускной клапан закрывается и сжимает воздух и топливо внутри камеры сгорания.
- Цикл сгорания : Поршни всегда движутся вверх и вниз, поскольку поршень движется вверх, он сжимает воздух и топливо в камере сгорания.Как только это происходит, свеча зажигания используется для воспламенения топлива и воздуха, и в результате взрыва поршень снова опускается.
- Выпускной цикл : Во время последней стадии цикла выпускной клапан открывается, когда поршень достигает дна цилиндра, и оставшееся топливо и воздух выпускаются из камеры сгорания.
Знание основ работы двигателя транспортного средства полезно при покупке и обслуживании автомобиля, и это может даже помочь вам диагностировать проблемы, когда что-то идет не так. Изучение двигателя вашего автомобиля — лишь один из компонентов комплексного обучения водителей, но во многих случаях эти знания могут помочь вам выбраться из затора.
Чтобы узнать больше о своей машине и получить навыки вождения, которые обеспечат безопасность вас и окружающих, запишитесь на занятия в школе вождения Western Slope в Литтлтоне. Мы являемся лучшим в регионе институтом вождения как для начинающих, так и для опытных водителей.
Все, что вы когда-либо хотели знать о поршнях — Feature — Car and Driver
РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Кусочки алюминия внутри вашего двигателя живут в огненном аду.При полностью открытой дроссельной заслонке и 6000 об / мин на поршень бензинового двигателя каждые 0,02 секунды воздействует сила почти в 10 тонн, поскольку повторяющиеся взрывы нагревают металл до температуры более 600 градусов по Фаренгейту.
В наши дни этот цилиндрический Аид стал горячее и интенсивнее, чем когда-либо, а с поршнями, вероятно, станет только хуже. По мере того как автопроизводители стремятся к повышению эффективности, производители поршней готовятся к будущему, в котором самые мощные безнаддувные бензиновые двигатели вырабатывают 175 лошадиных сил на литр по сравнению со 130 сегодня.С турбонаддувом и увеличенной мощностью возникают еще более жесткие условия. За последнее десятилетие рабочие температуры поршней поднялись на 120 градусов, а пиковое давление в цилиндрах увеличилось с 1500 фунтов на квадратный дюйм до 2200.
Поршень рассказывает историю двигателя, в котором он находится. На заводной головке можно увидеть отверстие, количество клапанов и то, впрыскивается ли топливо непосредственно в цилиндр. Тем не менее, конструкция и технология поршня могут многое сказать о более широких тенденциях и проблемах, стоящих перед автомобильной промышленностью.Чтобы придумать изречение: «Как автомобиль, так и двигатель; и как движется двигатель, так и поршень. Стремясь повысить экономию топлива и снизить уровень выбросов, автопроизводители требуют более легких поршней с меньшим коэффициентом трения, способных выдерживать более жесткие условия эксплуатации. Именно эти три проблемы — долговечность, трение и масса — отнимают рабочие дни поставщиков поршней.
Во многих отношениях развитие бензиновых двигателей идет по пути, проложенному дизелями 15 лет назад. Чтобы компенсировать 50-процентное увеличение пикового давления в цилиндре, некоторые алюминиевые поршни теперь имеют железную или стальную вставку для поддержки верхнего кольца.Самым горячим бензиновым двигателям скоро потребуется охлаждающая галерея или закрытый канал на нижней стороне головки, который более эффективно отводит тепло, чем современный метод простого распыления масла на нижнюю часть поршня. Сквиртеры выстреливают маслом в небольшое отверстие в нижней части поршня, которое питает галерею. Однако, казалось бы, простую технологию непросто произвести. Создание полого канала означает отливку поршня в виде двух частей и их соединение посредством трения или лазерной сварки.
На поршни приходится не менее 60 процентов трения двигателя, и улучшения здесь напрямую влияют на расход топлива. Снижающие трение, пропитанные графитом пластыри из смолы, нанесенные трафаретной печатью на юбку, теперь стали почти универсальными. Поставщик поршней Federal-Mogul экспериментирует с конической поверхностью масляного кольца, которая позволяет снизить натяжение кольца без увеличения расхода масла. Более низкое трение в кольце может разблокировать до 0,15 лошадиных сил на цилиндр.
Автопроизводители также жаждут новых покрытий, снижающих трение между деталями, которые трутся или вращаются друг о друга.Твердое и скользкое алмазоподобное покрытие, или DLC, перспективно для гильз цилиндров, поршневых колец и пальцев на запястье, где оно может устранить необходимость в подшипниках между пальцем и шатуном. Но это дорого и мало применяется в современных автомобилях.
«[Производители] часто обсуждают DLC, но вопрос о том, попадут ли они в серийные автомобили или нет, — говорит Йоахим Вагенбласт, старший директор по разработке продукции Mahle, немецкого поставщика автозапчастей.
Все более сложное компьютерное моделирование и более точные методы производства также позволяют создавать более сложные формы. В дополнении к чашам, куполам, и абзацам клапанов, необходимые для оформления и для достижения конкретного коэффициента сжатия, асимметричные юбки имеют меньшую, более жесткую область на упорной стороне поршня, чтобы уменьшить трение и концентрацию напряжений. Переверните поршень, и вы увидите конические стенки толщиной чуть более 0,1 дюйма. Более тонкие стенки требуют более жесткого контроля допусков, которые уже измеряются в микронах или тысячных долях миллиметра.
Более тонкие стены также требуют лучшего понимания теплового расширения объекта, который иногда должен нагреваться ниже нуля до нескольких сотен градусов за считанные секунды. Металл в вашем двигателе не расширяется равномерно при нагревании, поэтому для оптимизации допусков требуется опыт проектирования и возможности точной обработки для создания небольших эксцентриситетов в деталях.
«Все, что мы делаем, не бывает прямым или круглым», — говорит Кери Вестбрук, директор по проектированию и технологиям Federal-Mogul.«Мы всегда вносим какую-то компенсацию».
Поршни дизельных двигателей претерпевают собственную эволюцию, поскольку пиковое давление в цилиндрах возрастает до 3600 фунтов на квадратный дюйм. Mahle и Federal-Mogul прогнозируют переход от литого алюминия к поршням из кованой стали. Сталь плотнее алюминия, но в три раза прочнее, что делает поршень более устойчивым к более высоким давлениям и температурам без увеличения веса.
Сталь позволяет заметно изменить геометрию за счет уменьшения высоты сжатия поршня, определяемой как расстояние от центра пальца запястья до вершины заводной головки.На эту площадь приходится 80 процентов веса поршня, поэтому чем короче, тем легче. Важно то, что меньшая высота сжатия приводит не только к усадке поршней. Это также позволяет сделать блок двигателя короче и легче, поскольку высота палубы уменьшается.
Mahle производит стальные поршни для новейших турбодизельных двигателей, таких как четырехкратный призер Ле-Мана Audi R18 TDI и двигатель Mazda LMP2 Skyactiv-D. Компания начнет поставки своих первых стальных поршней для легкового серийного дизельного двигателя Renault 1.5-литровый четырехцилиндровый, позже в этом году.
Неизменная актуальность двигателя внутреннего сгорания обусловлена непрерывной эволюцией его компонентов. Поршни не сексуальны. Они не такие модные, как литий-ионные батареи, такие сложные, как трансмиссия с двойным сцеплением, и не такие интересные, как дифференциал с вектором крутящего момента. Тем не менее, после более чем столетнего автомобильного прогресса поршни возвратно-поступательного действия продолжают вырабатывать большую часть энергии, которая движет нами.
1. Феррари F136РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Применения: Ferrari 458 Italia (показан) , 458 Spider
Тип двигателя: DOHC V-8
Рабочий объем: 274 куб. Дюймов, 4497 куб.
Конкретный выход: 125.0 л.с. / л
Макс.скорость двигателя: 9000 об / мин
Диаметр цилиндра: 3,70 дюйма
Вес: 2,1 фунта
2. Ford FoxРОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Применения: Ford Fiesta (на рисунке) , Focus
Тип двигателя: рядный трехцилиндровый с турбонаддувом DOHC
Рабочий объем: 61 у.е., 999 куб.
Конкретный вывод: 123.1 л.с. / л
Макс.скорость двигателя: 6500 об / мин
Диаметр цилиндра: 2,83 дюйма
Вес: 1,5 фунта
3. Cummins ISB 6,7РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Применения: Ram Heavy Duty (показан)
Тип двигателя: дизельный рядный шестицилиндровый двигатель с турбонаддувом
Рабочий объем: 408 куб. Дюймов, 6690 куб.
Конкретный вывод: 55.3 л.с. / л
Макс.скорость двигателя: 3200 об / мин
Диаметр цилиндра: 4,21 дюйма
Вес: 8,9 фунта
4. Ford CoyoteРОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Применения: Ford F-150, Mustang (на фото)
Тип двигателя: DOHC V-8
Рабочий объем: 302 куб. Дюймов, 4951 куб.
Конкретный вывод: от до 84.8 л.с. / л
Макс.скорость двигателя: 7000 об / мин
Диаметр цилиндра: 3,63 дюйма
Вес: 2,4 фунта
5. Fiat Fire 1,4 л TurboРОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Приложения: Dodge Dart; Fiat 500 Abarth (на рисунке) , 500L, 500 Turbo
Тип двигателя: рядный четырехцилиндровый SOHC с турбонаддувом
Рабочий объем: 83 куб. Дюйма, 1368 куб.
Конкретный вывод: от до 117.0 л.с. / л
Макс.скорость двигателя: 6500 об / мин
Диаметр цилиндра: 2,83 дюйма
Вес: 1,5 фунта
6. Cummins ISX15РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Применения: тяжелых грузовиков (показан International Prostar)
Тип двигателя: SOHC дизельный рядный шестицилиндровый с турбонаддувом
Рабочий объем: 912 куб. Дюймов, 14 948 куб.
Конкретный вывод: от до 40.1 л.с. / л
Макс.скорость двигателя: 2000 об / мин
Диаметр цилиндра: 5,39 дюйма
Вес: 26,4 фунта
7. Chrysler LA-Series Magnum V-10РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Приложения: Dodge Viper (показан)
Тип двигателя: толкатель V-10
Рабочий объем: 512 куб. Дюймов, 8382 куб.
Конкретный вывод: 76.4 л.с. / л
Макс.скорость двигателя: 6400 об / мин
Диаметр цилиндра: 4,06 дюйма
Вес: 2,8 фунта
8. Ford EcoBoost 3.5LРОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Приложения: Ford Expedition, Explorer Sport, F-150 (показан) , Taurus SHO, Transit; Линкольн МКС, МКТ, Навигатор
Тип двигателя: с двойным турбонаддувом DOHC V-6
Рабочий объем: 213 куб. Дюймов, 3496 куб.
Конкретный вывод: от до 105.8 л.с. / л
Макс.скорость двигателя: 6500 об / мин
Диаметр цилиндра: 3,64 дюйма
Вес: 2,6 фунта
9. Toyota 2AR-FEРОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Приложения: Scion tC (показан) ; Тойота Камри, РАВ4
Тип двигателя: рядный четырехцилиндровый DOHC
Рабочий объем: 152 куб. Дюйма, 2494 куб.
Конкретный вывод: от до 72.2 л.с. / л
Макс.скорость двигателя: 6500 об / мин
Диаметр цилиндра: 3,54 дюйма
Вес: 2,5 фунта
10. Цепная пила Stihl MS441РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Применения: MS441 Цепная пила C-M Magnum (на рисунке) , MS441 Цепная пила C-MQ Magnum
Тип двигателя: двухтактный одноцилиндровый
Рабочий объем: 4 куб. Дюйма, 71 куб.
Конкретный вывод: 79.7 л.с. / л
Макс.скорость двигателя: 13500 об / мин
Диаметр цилиндра: 1,97 дюйма
Вес: 0,4 фунта
11. Chrysler Hellcat 6.2LРОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Приложения: Dodge Challenger SRT Hellcat
Тип двигателя: толкатель V-8 с наддувом
Рабочий объем: 376 куб. Дюймов, 6166 куб.
Конкретный вывод: 114.7 л.с. / л
Макс.скорость двигателя: 6200 об / мин
Диаметр цилиндра: 4,09 дюйма
Вес: 3,0 фунта
РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
По мере увеличения нагрузки на поршни возрастают и требования к шатунам. Более высокое давление сгорания приводит к большим нагрузкам на стержни, соединяющие поршни с кривошипом.За редким исключением экзотических деталей из титана, шатуны обычно либо изготавливаются из порошковой стали, сжимаются и нагреваются в форме, либо выковываются из стальной заготовки для более эффективных применений. Главный технологический сдвиг — это треснувшие крышки шатунов как для металлических, так и для кованых шатунов. Раньше шток и крышка шатунной шейки изготавливались как отдельные детали. Стержни с треснувшими крышками выходят из формы как одна деталь в форме гаечного ключа. Конец шатунной шейки протравливается, а затем сжимается надвое.Получающаяся неровная поверхность улучшает выравнивание; обеспечивает более надежное соединение крышки со стержнем; и позволяет получить более тонкий и легкий узел шатуна.
РОЙ РИТЧИ, МАРК БРЭМЛИ, МИХИЛ СИМАРИ, РОБЕРТ КЕРИАН, INTERNATIONAL TRUCKS, STIHL USA, ПРОИЗВОДИТЕЛЬ
Неметаллические поршни: Керамика и композиты обладают привлекательностью меньшего теплового расширения, меньшего веса и большей прочности и жесткости по сравнению с алюминием.В 1980-х годах Mercedes-Benz использовал грант правительства Германии для создания двигателя 190E с поршнями из углеродного композита, который без проблем пробегал 15 000 миль. Несмотря на то, что технология хороша, производство было ограничивающим фактором. Исследование NASA 1990 года показало, что изготовление одного поршня из углеродно-углеродной заготовки стоило 2000 долларов. Альтернативой был трудоемкий процесс ручной укладки.
Роторы Ванкеля: Хорошо, хорошо, мы знаем, что это не возвратно-поступательный поршень, но чугунный треугольный ротор является аналогом поршня двигателя Ванкеля, потому что он преобразует энергию сгорания в крутящий момент.Поскольку на горизонте нет новой Mazda RX, наша единственная надежда на роторное возрождение, похоже, — это Audi, которая дразнила нас расширителем диапазона Ванкеля в своей гибридной концепции Audi A1 e-tron 2010 года.
Овальные поршни: В то время, когда двухтактные двигатели для мотоциклов были нормой, Honda представила четырехтактный двигатель на Мировом Гран-при мотоциклов в 1979 году. Это один из самых странных двигателей в истории. Мотоцикл Honda NR500 GP был оснащен двигателем V-4 с V-образным вырезом под углом 100 градусов, овальными цилиндрами с восемью клапанами на каждом и двумя шатунами на поршень.Герметизация овальных поршней оказалась сложной задачей (первоначально компания Соитиро Хонда поставляла поршневые кольца для Toyota), но это было одной из наименьших проблем команды. Мотоциклы регулярно снимались с гонок World GP и иногда не попадали в квалификацию. В течение трех лет Honda вернулась к традиционному двухтактному гоночному двигателю.
Двигатели с оппозитными поршнями : Дизельный двухтактный двигатель с оппозитными поршнями и оппозитными цилиндрами (OPOC) компании EcoMotors заявляет о повышении эффективности на целых 15 процентов по сравнению с обычным двигателем с воспламенением от сжатия.Поместив камеру сгорания между двумя поршнями, компания устранила головки цилиндров и клапанный механизм, которые являются источниками значительных потерь тепла и трения. Двигатель OPOC с меньшим количеством деталей также должен быть дешевле и легче, если он не окажется на полке с фантастическим карбюратором Fish.
Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино. io
Двигатель внутреннего сгорания — Energy Education
Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и поездах. Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.
Закон идеального газа
Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math]. Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.
Когда в систему добавляется тепло, это заставляет газ внутри расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1).Прикрепив поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Чтобы сжать поршень в двигателе прерывистого внутреннего сгорания, двигатель выпускает газ. Затем используется радиатор, чтобы поддерживать работу системы при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.
Поршни и турбины
Рисунок 1. Схема газотурбинного двигателя. [3]Двигатель, использующий поршень , называется двигателем внутреннего сгорания прерывистого действия , тогда как двигатель, в котором используется турбина , называется двигателем непрерывного внутреннего сгорания . Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.
Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, поскольку они также запускаются быстрее.И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и при низких температурах. Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.
Двигатель четырехтактный
- главная страница
Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных. Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.
- Топливо впрыскивается в камеру.
- Возгорание топлива (в дизельном двигателе это происходит иначе, чем в бензиновом).
- Этот огонь толкает поршень, что является полезным движением.
- Отходы химикатов, по объему (или массе) это в основном водяной пар и диоксид углерода. В результате неполного сгорания могут присутствовать такие загрязнители, как окись углерода.
Двухтактный двигатель
- главная страница
Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на рисунке 3. Сам поршень используется в качестве клапана система вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход.В целом двухтактный двигатель содержит два процесса:
- Воздушно-топливная смесь добавляется, и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в камеру хранения. Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
- Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.
Роторный двигатель (Ванкеля)
- главная страница
В двигателе этого типа имеется ротор (внутренний круг, обозначенный буквой «B» на рисунке 4), который заключен в корпус овальной формы. Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора — создавая три такта мощности за один оборот .
Для дальнейшего чтения
Список литературы
- ↑ 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, глава 19, раздел 2, стр 530
- ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в книге Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр. 93-122
- ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
- ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
- ↑ «Файл: Two-Stroke Engine.gif — Wikimedia Commons», Commons.wikimedia.org, 2018. [Онлайн]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif. [Доступно: 17 мая 2018 г.].
- ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
- ↑ Wikimedia Commons [Online], доступно: http: // upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif
Четырехтактный двигатель внутреннего сгорания
4-тактный двигатель внутреннего сгорания | ГленнИсследовательский центр Центр |
Это анимированный компьютерный рисунок одного цилиндра Райт. авиадвигатель братьев 1903 г.Этот двигатель приводил в действие первый, тяжелее воздушные, самоходные, маневренные, пилотируемые самолеты; Райт Флаер 1903 года. Двигатель состоял из четырех цилиндры как показано выше, с каждый поршень подключен к общему коленчатый вал. Коленчатый вал соединялся с двумя противоположно вращающимися пропеллеры который произвел тяга, необходимая для преодоления сопротивление самолета.
Дизайн братьев очень прост по сегодняшним меркам, так что это хороший двигатель для студентов, чтобы изучить основы работа двигателя.Этот тип внутреннее сгорание двигатель называется четырехтактный двигатель , потому что есть четыре движения, или удары поршня перед повторением всей последовательности запуска двигателя. Четыре штриха описаны ниже с некоторыми неподвижными фигурами. На анимации и на всех рисунках мы раскрасили система впуска топлива / воздуха красный, электрическая система зеленый, а вытяжная система синий. Мы также представляем топливно-воздушную смесь и выхлопные газы небольшими цветные шарики, чтобы показать, как эти газы проходят через двигатель. Поскольку мы будем иметь в виду движение различных частей двигателя, вот рисунок, показывающий названия частей:
Ход на впуске
Двигатель цикл начинается с впускной ход как поршень потянул в сторону коленчатого вала (на рисунке слева).
Впускной клапан открыт, топливо и воздух проходят через клапан. и в камеру сгорания и цилиндр от впускного коллектора, расположенного сверху камеры сгорания.Выпускной клапан закрыт, а электрический контактный выключатель разомкнут. Топливо-воздушная смесь находится на относительно низком уровне. давление (около атмосферного) и окрашен в синий цвет на этом рисунке. В конце такта впуска поршень находится в крайнем левом углу и начинает двигаться назад к верно.
Цилиндр и камера сгорания заполнены топливно-воздушной смесью низкого давления. и, когда поршень начинает двигаться вправо, впускной клапан закрывается.
Историческая справка — Открытие и закрытие впускного клапана двигателя Wright 1903 был назван братьями «автоматическим». Он основан на немного более низком давлении внутри в цилиндре во время такта впуска, чтобы преодолеть силу пружины, удерживающей клапан в закрытом состоянии. Современные двигатели внутреннего сгорания делают не работайте так, а используйте кулачки и коромысла, как выхлопную систему братьев. Кулачки и коромысла обеспечивают лучший контроль и время открытия и закрытие клапанов.
Ход сжатия
Когда оба клапана закрыты, комбинация цилиндра и камеры сгорания образуют полностью закрытую емкость, содержащую топливно-воздушную смесь.Как поршень сдвигается вправо, объем уменьшается, а топливно-воздушная смесь сжатый во время ход сжатия.
Во время сжатия нет высокая температура переходит в топливно-воздушную смесь. Поскольку объем уменьшается из-за движения поршня, давление в газе увеличена, как описано по законам термодинамика. На рисунке смесь окрашена желтый цвет означает умеренное повышение давления. Чтобы произвести повышенное давление, мы должны сделать работай на смеси, просто поскольку вам нужно проделать работу, чтобы накачать велосипедную шину с помощью насоса. Во время такта сжатия электрический контакт остается разомкнутым. Когда объем самый маленький, и давление самое высокое, как показано на рисунке, контакт замкнут, и поток электричество течет через вилку.
Рабочий ход
В начале рабочего хода электрический контакт размыкается. Внезапное размыкание контакта вызывает искру в камере сгорания, которая воспламеняет топливно-воздушную смесь. Стремительный горение топливных выбросов высокая температура, и производит выхлопные газы в камере сгорания.
Поскольку впускные и выпускные клапаны закрыты, сгорание Топливо находится в полностью закрытом сосуде (и почти постоянного объема). В сгорание увеличивает температура выхлопных газов, остаточного воздуха в камере сгорания, и в самой камере сгорания. От закон идеального газа, повышенная температура газов также вызывает повышенное давление в камере сгорания. Мы окрасили газы в красный цвет на рисунке. для обозначения высокого давления.Высокое давление газов, действующих на лицевой стороной поршня заставляет поршень двигаться влево, что инициирует рабочий ход.
В отличие от такта сжатия, горячий газ воздействует на поршень во время рабочего такта. Сила на поршне передается штоком поршня на коленчатый вал, где линейный движение поршня преобразуется в угловое движение коленчатого вала. Работа сделано на поршне, затем используется для вращения вала и гребных винтов, и для сжатия газов в такте сжатия соседнего цилиндра.Имея возникла искра зажигания, электрический контакт остается разомкнутым.
Во время рабочего такта объем, занимаемый газами увеличивается из-за движения поршня и нет высокая температура переходит в топливно-воздушную смесь. Поскольку объем увеличивается из-за движения поршня, давление и температура газа уменьшилось. Мы покрасили выхлопные «молекулы» в желтый цвет, чтобы обозначить умеренное давление. в конце рабочего хода.
Историческая справка — Способ получения электрической искры Братья Райт использовали это понятие как «замыкающий и размыкающий».Там подвижные части, расположенные внутри камеры сгорания. Современное внутреннее сгорание двигатели не используют этот метод, а вместо этого используют свечу зажигания, чтобы произвести искра зажигания. Свеча зажигания не имеет движущихся частей, что намного безопаснее, чем у свечи зажигания. метод, которым пользовались братья.
Ход выхлопа
В конце рабочего хода поршень находится в крайнем левом положении. Нагрейте это осталось от рабочего хода сейчас переведен к воде в водная куртка пока давление не приблизится к атмосферному давление.После этого открывается выпускной клапан. кулачком, нажав на коромысло, чтобы начать такт выпуска.
Назначение выхлопа ход заключается в очистке цилиндра от отработанного выхлопа для подготовки цикл зажигания. Когда начинается такт выпуска, цилиндр и камера сгорания заполнены. продуктов выхлопа при низком давлении (окрашены синим на рисунке выше) Потому что выпускной клапан открыт, выхлопные газы проходят мимо клапана и выходят из двигателя. Впускной клапан закрыт, а электрическая контакт открыт во время этого движения поршня.
В конце такта выпуска выпускной клапан закрывается и двигатель начинается еще один такт впуска.
Историческая справка — Выхлопная система, используемая братьями Райт заставил горячий выхлоп выйти из каждого цилиндра независимо … пилоту. Этот двигатель тоже был очень громким. Коллекционируют современные автомобили выхлоп из всех цилиндров в выпускной коллектор (как и впускной коллектор б / у братьев). Выпускной коллектор проходит через выхлоп до каталитического нейтрализатора для удаления опасных газов, а затем через глушитель, чтобы он не шуметь, и, наконец, выхлопную трубу.
Теперь вы можете понять
анимация вверху этой страницы. Обратите внимание, что коленчатый вал делает два
оборотов за каждый оборот кулачков. Это движение контролируется
временная цепь. Также обратите внимание, как кулачок перемещает выпускной клапан.
в нужный момент и как быстро впускной клапан открывается после выпуска
клапан закрыт. В реальной работе двигателя ход выпуска не может вытолкнуть все
выхлоп из цилиндра, поэтому настоящий двигатель работает не так хорошо, как
идеальный двигатель описан на этой странице. По мере того, как двигатель работает и нагревается, производительность
изменения. Современные автомобильные двигатели регулируют соотношение топливо / воздух с компьютерным управлением.
топливные форсунки для поддержания высокой производительности. Братьям просто нужно было смотреть
мощность их двигателя упала с примерно 16 лошадиных сил, когда двигатель был
сначала начал примерно с 12 лошадиных сил, когда он был горячим.
Деятельность:
Экскурсии с гидом
Навигация ..
- Руководство для начинающих Домашняя страница
Современный двигатель внутреннего сгорания
Современный двигатель внутреннего сгоранияДжоаб Камарена
7 декабря 2015 г.
Представлено как курсовая работа для Ph340, Стэнфордский университет, осень 2015 г.
Введение
Двигатель внутреннего сгорания (ДВС) — вот что движет большинство транспортных средств сегодня и существует уже много лет. ICE имеет подвергся многочисленным изменениям исключительно с целью улучшения выходная мощность и минимизация потерь энергии. Как работает процесс что есть впуск через отверстия портов, который толкает поршень вниз начало цикла сжатия и декомпрессии, с энергией от этого передается на коленчатый вал, позволяя движение автомобиль. Более распространенный двигатель внутреннего сгорания основан на четырех ход поршня для завершения своего цикла и высвобождения энергии для перемещения средство передвижения.[1-3]
Как это работает
В этом цикле четыре этапа: 1) прием, 2) компрессия, 3) сгорание и рабочий ход, и, наконец, 4) выхлоп (Рисунок 1). Вот как это работает:
Впуск: Топливо-воздушная смесь входит в цилиндр, когда поршень опускается и впускной открывается.
Сжатие: При закрытии на входе топливно-воздушная смесь увеличивается по давлению и температура, поскольку поршень сжимает газ, перемещая вверх.
Горение и ударный ход: Энергия выделяется в результате реакции горения, вызванной зажигание свечи зажигания, воспламеняющей топливно-воздушную смесь и доводит до высокой температуры. По мере увеличения смеси по температуре и давлению он толкает поршень, следовательно, вызывая рабочий ход, который вращает коленчатый вал.
Выхлоп: Побочные продукты, образующиеся затем реакция горения выпускается через выхлоп трубу, и цикл повторяется после открытия впускного и выпускного клапан закрывается.[2,3]
Энергетический анализ
Хотя это обычно используемый двигатель в транспортных средствах сегодня это не значит, что он самый эффективный. Горение неэффективность измеряет часть энергии, которая не используется из топливо. Установлено, что тепловые потери теплоносителя и тепловые потери энергии выхлопных газов являются самыми большими источниками тепловых потерь, что способствует отсутствию оборота энергии. Постоянно утверждается, что Второй закон Термодинамика ограничивает все двигатели от достижения максимальной тепловой эффективность, но это не означает, что мы не можем улучшить коэффициент конверсии энергии.Постоянные инновации и модернизация внутреннего сгорания двигатель позволили улучшить преобразование энергии топлива. [4]
Заключение
Знать, как работает двигатель внутреннего сгорания и в чем заключается его неэффективность, правильная технология и дизайн двигатель внутреннего сгорания позволит нам лучше использовать энергию в топливе. Хотя цены на газ постоянно меняются, наиболее вероятной тенденцией в будущем будет повышение цен на газ, что только заставит двигаться к разработке высокоэффективных автомобилей сильнее.Это возможно даже при постоянном диалоге о отказ от ископаемого топлива и последствия изменения климата, что, наряду с нашим нынешним технологическим бумом, мы больше не будем полагаться на двигатель внутреннего сгорания для транспортных средств будущего.
© Жоаб Камарена. Автор дает разрешение копировать, распространять и отображать эту работу в неизменном виде, с ссылка на автора, только в некоммерческих целях. Все остальные права, в том числе коммерческие, принадлежат автору.
Список литературы
[1] J. R. Clarke et al. , «Индукция двигателя Система и метод «Патент США 4860709, 29 августа 89 г.
[2] Д. К. Джанколи, Физика: принципы с Приложения, 7-е изд. (Addison-Wesley, 2013), стр. 421.
[3] Б. Кроу, «Внутренний Двигатель внутреннего сгорания, Physics 240, Стэнфордский университет, осень 2012 г.
[4] М. Баглионе, М.Дьюти и Г. Панноне, «Автомобиль» Методология системного энергетического анализа и инструмент для определения транспортного средства Подсистема энергоснабжения и спроса », Технический документ SAE 2007-01-0398, г. 16 апреля 07.
Оптическое измерение температуры поршня в двигателе внутреннего сгорания
За последние десять лет механическая выходная мощность двигателя автомобиля значительно увеличился. Такой результат был возможен особенно с помощью новых систем впрыска, которые привели к оптимизации сгорание (прямой впрыск, Common Rail) и улучшение турбонаддува.Более того, эти технические устройства привел к сокращению выбросов выхлопных газов и увеличению КПД двигателя. В частности, удельная мощность составляет увеличилась с 34 кВт / л в 1992 г. до 63 кВт / л в 2010 г. Кроме того, давление достигает пика в камере сгорания и давление впрыска топлива увеличено с целью выброса снижение и более высокий КПД двигателя.
В этом сценарии производители автомобилей следуют уменьшения размера двигателя, что означает сохранение той же мощности двигателя меньшим рабочим объемом двигателя.Уменьшение размера является основным последствия термических рисков, особенно для горячих частей камера сгорания (выпускные клапаны, корпус свечи зажигания и поршень) потому что эти детали имеют повышенную высокую тепловую нагрузку и термическую стресс. Эти температуры могли быть основным следствием риск повреждения двигателя из-за нерегулярного сгорания из-за «поверхности» воспламенение »горячим пятном или отложением горения камера.
В этой статье описан метод оптического измерения поршня. температура во время огневой и необожженной работы внутреннего разработан двигатель внутреннего сгорания.
Оптический доступ к камере сгорания обеспечивается оптический элемент из сапфировой линзы, который можно разместить в специальная свеча зажигания или другие детали двигателя (форсунки, цилиндр голова). Тепловое излучение поршня, наблюдаемое при этом оптический элемент подводится к детектору с помощью световодов. Как В детекторе используются InGaAs-фотодиоды, позволяющие детектировать инфракрасное излучение до 2,6 мкм.
Связь между интенсивностью сигнала и температурой поршня определялся вне двигателя в калибровочном узле: поршневой был нагрет до 400 ° C.В калибровочном блоке датчик и поршни расположены в той же геометрии, что и при сгорании камера. Во время охлаждения одновременно происходит тепловое излучение. измеряется температурой поверхности поршня, полученной из термопара.
Компания AVL использует оптические датчики в свечах зажигания для расследования явления горения в двигателях внутреннего сгорания с искровым зажиганием. В недавнем приложении измерение температуры клапана стало было продемонстрировано с использованием этих датчиков.
В этой статье представлена возможность измерения температуры поршня. с этой системой измерения исследуется.Для этого были выполнены следующие задачи: — Диапазон измерения увеличена с 400 ° до 200 ° за счет выбора соответствующей оптики материалы и детекторы. — Калибровочная установка разработана для определить связь между сигналом излучения и поршнем температура. — Температура поршня измерялась для разных поршни в одноцилиндровом исследовательском двигателе.
Двигатель внутреннего сгорания — конструкция двигателя внутреннего сгорания — цилиндр, топливо, коленчатый вал и поршень
В двигателях внутреннего сгоранияобычно используется возвратно-поступательное движение, хотя газовая турбина , , ракетные и роторные двигатели являются примерами других типов двигателей внутреннего сгорания.Однако поршневые двигатели внутреннего сгорания являются наиболее распространенными и используются в большинстве автомобилей, грузовиков, мотоциклов и других машин с приводом от двигателя.
Самыми основными компонентами двигателя внутреннего сгорания являются цилиндр, поршень и коленчатый вал. К ним прикреплены другие компоненты, которые увеличивают эффективность возвратно-поступательного движения и преобразуют это движение во вращательное движение коленчатого вала. Топливо должно поступать в цилиндр, а выхлоп, образованный взрывом топлива, должен обеспечивать выход из цилиндра.Также должно быть произведено зажигание или зажигание топлива. В поршневом двигателе внутреннего сгорания это делается одним из двух способов.
Дизельные двигатели также называют двигателями с компрессором, потому что они используют сжатие для самовоспламенения топлива. Воздух сжимается, то есть выталкивается в небольшое пространство цилиндра. Сжатие вызывает нагревание воздуха; когда топливо попадает в горячий сжатый воздух, топливо взрывается. Давление , создаваемое сжатием, требует, чтобы дизельные двигатели были более прочными и, следовательно, тяжелее, чем бензиновые двигатели, но они более мощные и требуют менее дорогостоящего топлива. Дизельные двигатели обычно используются в больших транспортных средствах, таких как грузовики и тяжелая строительная техника, или в стационарных машинах.
Бензиновые двигатели также называют двигателями с искровым зажиганием, потому что они зависят от искры электричества, которая вызывает взрыв топлива в цилиндре. Этот газовый двигатель легче, чем дизельный двигатель , требует более очищенного топлива.
В двигателе цилиндр расположен внутри блока цилиндров, достаточно прочного, чтобы сдерживать взрывы топлива.Внутри цилиндра находится поршень, который точно соответствует цилиндру. Поршни обычно имеют куполообразную форму сверху и полую внизу. Поршень прикреплен через шатун, установленный в полой нижней части, к коленчатому валу, который преобразует движение поршня вверх и вниз в круговое движение. Это возможно, потому что коленчатый вал не прямой, а имеет изогнутую часть (по одной на каждый цилиндр), называемую кривошипом.
Аналогичная конструкция приводит в движение велосипед. При езде на велосипеде верхняя часть ноги человека похожа на поршень.От колена до ступни нога действует как шатун, который прикрепляется к коленчатому валу с помощью кривошипа или педального узла велосипеда. Когда сила прикладывается к верхней части ноги, эти части начинают двигаться. Возвратно-поступательное движение голени преобразуется во вращательное или вращательное движение коленчатого вала.
Обратите внимание, что при езде на велосипеде нога делает два движения, одно вниз и одно вверх, чтобы завершить цикл вращения педалей. Это так называемые удары. Поскольку двигатель также должен всасывать топливо и снова выпускать топливо, большинство двигателей используют четыре хода для каждого цикла, который совершает поршень.Первый ход начинается, когда поршень оказывается в верхней части цилиндра, называемой головкой цилиндра. По мере его опускания в цилиндре создается вакуум . Это потому, что поршень и цилиндр образуют герметичное пространство. Когда поршень опускается, пространство между ним и головкой цилиндров увеличивается, а количество воздуха остается прежним. Этот вакуум помогает подавать топливо в цилиндр, подобно действию легких. Поэтому этот ход называется тактом впуска.
Следующий ход, называемый тактом сжатия, происходит, когда поршень снова подталкивается вверх внутри цилиндра, сжимая или сжимая топливо в более тесное и тесное пространство. Сжатие топлива в верхней части цилиндра вызывает нагревание воздуха, что также нагревает топливо. Сжатие топлива также облегчает воспламенение и делает взрыв более мощным. У расширяющихся газов взрыва меньше места, а это значит, что они будут сильнее давить на поршень, чтобы уйти.
В верхней части такта сжатия топливо воспламеняется, вызывая взрыв, который толкает поршень вниз. Этот ход называется рабочим ходом, и это ход, при котором вращается коленчатый вал. Последний ход, такт выпуска, снова поднимает поршень вверх, который вытесняет выхлопные газы, образовавшиеся в результате взрыва, из цилиндра через выпускной клапан. Эти четыре удара также обычно называют «сосание, сжатие, удар и удар». Двухтактные двигатели исключают такты впуска и выпуска, комбинируя их с тактами сжатия и увеличения мощности.Это позволяет создать более легкий и мощный двигатель — по сравнению с размером двигателя — требующий менее сложной конструкции. Но двухтактный цикл — менее эффективный метод сжигания топлива. Остаток несгоревшего топлива остается внутри цилиндра, что препятствует сгоранию. Двухтактный двигатель также воспламеняет топливо в два раза чаще, чем четырехтактный, что увеличивает износ деталей двигателя. Поэтому двухтактные двигатели используются в основном там, где требуется двигатель меньшего размера, например, на некоторых мотоциклах, и с небольшими инструментами.
Для горения требуется присутствие кислорода, поэтому топливо должно быть смешано с воздухом, чтобы он воспламенился. В дизельных двигателях топливо подается непосредственно для реакции с горячим воздухом внутри цилиндра. Однако двигатели с искровым зажиганием сначала смешивают топливо с воздухом вне цилиндра. Это делается либо через карбюратор, либо через систему впрыска топлива. Оба устройства испаряют бензин и смешивают его с воздухом в соотношении , составляющем примерно 14 частей воздуха на каждую часть бензина.Дроссельная заслонка в карбюраторе регулирует количество воздуха, смешиваемого с топливом; на другом конце дроссельная заслонка контролирует, сколько топливной смеси будет отправлено в цилиндр.
Вакуум, создаваемый при движении поршня вниз по цилиндру, втягивает топливо в цилиндр. Поршень должен точно входить в цилиндр, чтобы создать этот вакуум. Резиновые компрессионные кольца, вставленные в канавки поршня, обеспечивают герметичность посадки. Бензин поступает в цилиндр через впускной клапан.Затем бензин сжимается в цилиндр следующим движением поршня в ожидании воспламенения.
Двигатель внутреннего сгорания может иметь от одного до двенадцати или более цилиндров, которые действуют вместе в точно рассчитанной по времени последовательности для приведения в движение коленчатого вала. Велосипедиста на велосипеде можно описать как двухцилиндровый двигатель, в котором каждая нога помогает другой создавать мощность для управления велосипедом и подтягивать друг друга в цикле движений. Автомобили обычно имеют четырех-, шести- или восьмицилиндровые двигатели, хотя также доступны двух- и двенадцатицилиндровые двигатели.Количество цилиндров влияет на рабочий объем двигателя, то есть на общий объем топлива, прошедшего через цилиндры. Больший рабочий объем позволяет сжигать больше топлива, создавая больше энергии для привода коленчатого вала.
Искра подается через свечу зажигания, расположенную в головке блока цилиндров. Искра вызывает взрыв бензина. Свечи зажигания содержат два металлических конца , называемых электродами, которые проходят вниз в цилиндр. У каждого цилиндра своя свеча зажигания.Когда электрический ток проходит через свечу зажигания, ток перескакивает с одного электрода на другой, создавая искру.
Этот электрический ток исходит от батареи . Однако ток батареи недостаточно силен, чтобы вызвать искру, необходимую для воспламенения топлива. Поэтому он проходит через трансформатор , который значительно увеличивает его напряжение или силу. Затем ток может быть направлен на свечу зажигания.
Однако в случае двигателя с двумя или более цилиндрами искра должна направляться в каждый цилиндр по очереди.Последовательность срабатывания цилиндров должна быть рассчитана таким образом, чтобы, пока один поршень находится в рабочем такте, другой поршень находится в такте сжатия. Таким образом, сила, действующая на коленчатый вал, может поддерживаться постоянной, что позволяет двигателю работать плавно. Количество цилиндров влияет на плавность работы двигателя; чем больше цилиндров, тем постояннее усилие на коленчатом валу и тем более плавно будет работать двигатель.
Время срабатывания цилиндров регулируется распределителем.Когда ток поступает в распределитель, он направляется к свечам зажигания через провода, по одному на каждую свечу зажигания. Механические распределители — это, по сути, вращающиеся роторы, которые по очереди подают ток в каждый провод. Электронные системы зажигания используют компьютерные компоненты для выполнения этой задачи.
В самых маленьких двигателях используется аккумулятор, который при разряде просто заменяется. Однако в большинстве двигателей предусмотрена возможность перезарядки аккумулятора, используя движение вращающегося коленчатого вала для выработки тока обратно в аккумулятор.
Поршень или поршни толкают коленчатый вал вниз и вверх, вызывая его вращение. Это преобразование из возвратно-поступательного движения поршня во вращательное движение коленчатого вала возможно, потому что для каждого поршня коленчатый вал имеет кривошип, то есть секцию, установленную под углом к движению вверх и вниз положения . На коленчатом валу с двумя или более цилиндрами эти кривошипы также установлены под углом друг к другу, что позволяет им работать согласованно. Когда один поршень толкает кривошип вниз, второй кривошип толкает поршень вверх.
Большое металлическое колесо, похожее на маховик, прикреплено к одному концу коленчатого вала. Он предназначен для поддержания постоянного движения коленчатого вала. Это необходимо для четырехтактного двигателя, потому что поршни совершают рабочий ход только один раз на каждые четыре хода. Маховик обеспечивает импульс для переноса коленчатого вала во время его движения, пока он не получит следующий рабочий ход. Он делает это с помощью инерции, то есть принципа, согласно которому движущийся объект стремится оставаться в движении.Как только маховик приводится в движение поворотом коленчатого вала, он продолжает двигаться и вращать коленчатый вал. Однако чем больше цилиндров у двигателя, тем меньше ему нужно будет полагаться на движение маховика, потому что большее количество поршней будет поддерживать вращение коленчатого вала.
Когда коленчатый вал вращается, его движение можно адаптировать для самых разных целей, прикрепив шестерни, , ремни или другие устройства. Колеса можно заставить вращаться, пропеллеры можно заставить вращаться, или двигатель можно использовать просто для выработки электроэнергии.К коленчатому валу также прикреплен дополнительный вал, называемый распределительным валом, который работает для открытия и закрытия впускных и выпускных клапанов каждого цилиндра в последовательности с четырехтактным циклом поршней. Кулачок — это колесо, имеющее более или менее форму яйца, с длинным и коротким концом. К распределительному валу крепятся несколько кулачков, в зависимости от количества цилиндров двигателя. Сверху кулачков установлены толкатели, по два на каждый цилиндр, которые открывают и закрывают клапаны. Когда распределительный вал вращается, короткие концы позволяют толкателям отодвинуться от клапана, заставляя клапан открываться; длинные концы кулачков толкают стержни назад к клапану, снова закрывая его.В некоторых двигателях, называемых двигателями с верхним расположением кулачка, распределительный вал опирается непосредственно на клапаны, что устраняет необходимость в узле толкателя. Двухтактные двигатели, поскольку впуск и выпуск достигаются за счет движения поршня над портами или отверстиями в стенке цилиндра, не требуют распределительного вала.
Коленчатый вал может управлять еще двумя компонентами: системой охлаждения и смазки. Взрыв топлива создает сильное тепло, которое быстро приведет к перегреву двигателя и даже к расплавлению, если он не будет должным образом рассеян или отведен. Охлаждение достигается двумя способами: через систему охлаждения и, в меньшей степени, через систему смазки.
Есть два типа систем охлаждения. В системе жидкостного охлаждения используется воды, , которую часто смешивают с антифризом, чтобы предотвратить замерзание. Антифриз понижает точку замерзания, а также повышает точку кипения воды. Вода, которая очень хорошо собирает тепло, прокачивается вокруг двигателя через ряд каналов, содержащихся в рубашке.Затем вода циркулирует в радиаторе, который содержит множество трубок и тонких металлических пластин, увеличивающих площадь поверхности воды. Вентилятор, прикрепленный к радиатору, пропускает воздух по трубке, дополнительно понижая температуру воды. И насос, и вентилятор приводятся в действие движением коленчатого вала.
В системах с воздушным охлаждением для отвода тепла от двигателя используется воздух, а не вода. В большинстве мотоциклов, многих небольших самолетов и других машин, движение которых производит большое количество ветра , используется система воздушного охлаждения. В них металлические ребра прикреплены к внешней стороне цилиндров, создавая большую площадь поверхности; когда воздух проходит через ребра, тепло, передаваемое к металлическим ребрам от цилиндра, уносится воздухом.
Смазка двигателя жизненно важна для его работы. Движение деталей друг относительно друга вызывает сильное трение , которое нагревает и вызывает износ деталей. Смазочные материалы, например масло, образуют тонкий слой между движущимися частями. Прохождение масла через двигатель также помогает отводить часть выделяемого тепла.
Коленчатый вал в нижней части двигателя упирается в картер. Он может быть заполнен маслом, или отдельный масляный поддон под картером служит резервуаром для масла. Насос передает масло по каналам и отверстиям к различным частям двигателя. Поршень также снабжен резиновыми маслосъемными кольцами в дополнение к компрессионным кольцам для перемещения масла вверх и вниз по внутренней части цилиндра. В двухтактных двигателях масло используется в составе топливной смеси, что обеспечивает смазку двигателя и устраняет необходимость в отдельной системе.