Почему падает плотность электролита АКБ
Причины падения плотности электролита
В автомобильном аккумуляторе основной состав составляют корпус, со вставленными внутрь канистрами с электролитом, датчик, отслеживающий плотность раствора и клемм. Подключается это все к выходу на электрическую цепь автомобиля.
При заниженном уровне заряда автомобиль не заводится. Если аккумулятор хорошо заряжен, проблема состоит в пониженной плотности электролита и плохой работе АКБ, который не выдает необходимые параметры. Обнаружить проблему удастся благодаря нужному щупу в работающем АКБ или с помощью индикатора, который необходимо вмонтировать в банку.
По каким причинам снижается плотность электролита
Для хорошего функционирования батареи нужно не допускать разрядку ниже 50% и соблюдать высокие температуры, поддерживаемые химическими процессами в электродах и электролитах.
Читайте также: Как срочно и дорого продать авто в Минске
Иначе понижается уровень электролита в банках АКБ. При недостатке он восполняется дистиллированной водой. Самые частые причинами снижения плотности раствора:
- Владелец авто не следит за концентрацией раствора при добавлении дистиллятора. Воды становится с каждый разом больше, а электролита меньше. Также происходит испарениея, в ходе которого испаряется вода и электрическая жидкость.
- При зарядке аккумулятора жидкость закипает и выпаривается, из-за этого понижается уровень электролита, но повышается его насыщенность. При таком процессе трудно проходит ионизация свинца и соответствующих веществ, т.к. количество действующих молекул уменьшается. Также жидкость теряет свою густоту.
- Низкий заряд батареи.
Запомните! Нельзя пользоваться автомобилем длительное время при заниженной плотности электролита в АКБ. Из-за этого начнется сульфитация пластилина и машина перестанет нормально заводиться.
С помощью прибора — ареометра, измеряется насыщенность электролита в банке АКБ. С помощью этого нетрудно выяснить причину низкого заряда. При этом процессе должна быть умеренная температура ( от -20 до +25 °С). При этом плотность электрической жидкости либо занижена, либо повышена. Во втором случае возможно коррозийное разрушение частиц с положительным зарядом. При пониженной плотности электролит может заморозиться. Поэтому очень важно следить за уровнем густоты в зимнее время года.
Готовимся к поднятию плотности электролита
Чтобы правильно измерить концентрацию электролита в батарее аккумулятора, нужно:
- Проследить за качеством покрытия АКБ, корпуса и клемм, не должно быть трещин, сколов и повреждений.
- В каждой банке должен находиться нормальный уровень электролита.
- Электрический раствор должен находиться в диапазоне температур от +20 до +25°С.
- Заряженный аккумулятор.
Если на какой-либо запчасти будут повреждения, данные искажаются. В итоге из-за того, что не выдается нужный разряд для работы автомобиля, плотность электролита занижается. Небольшое количество электролита будет насыщеннее, чем среднее количество жидкости с разбавлением дистилярной водой. Если температура будет ниже нормы, значения также искажаются и индикатор выдаст неправильное значение. Ионы со временем скапливаются на пластинах, поэтому разряженный аккумулятор сопровождается низкой густотой раствора.
Важно! Для повышения плотности электролита можно добавлять серный концентрат. Но делается это предельно осторожно, т.к. при завышенной плотности начинают осыпаться пластины и портится АКБ.
Заряжать аккумулятор до конца нет необходимости, оптимальное значение — 80-90%. Этого хватит на работу прибора для измерения плотности электролита.
Как повысить плотность электролита в АКБ
При работе делайте все аккуратно и соблюдайте технику безопасности. В составе электролита есть действующая серная кислота, которая при попадании на кожу, может ее разъесть.
Повысить плотность раствора можно одним из этих способов:
- Можно полностью заменить электролит на новую жидкость с нормальной концентрацией — 1г/куб.см;
- Также можно залить кислоты аккумулятора в электролит;
- Довести имеющийся раствор до нужной концентрации. Для этого понадобится серная кислота и дистиллированная вода. Заливаем жидкости до необходимой насыщенности.
Как полностью заменить электролит
Действовать таким образом нужно в крайнем случае, если плотность электролита занижена до 1г/куб.см. Ресурс должен полностью выработаться и потерять основные свойства.
Это можно сделать следуя следующему плану:
- Для начала нужно откачать имеющийся раствор и освободить емкость. Для этого используется груша, с помощью которой нужно откачать раствор из самих банок.
- Переверните АКБ и в каждой емкости проделайте отверстия для полного слива остатков электролита.
- Банки и емкости нужно удержать в наклоне и отмыть остатки прошлого раствора с помощью дистилярной воды.
- Далее уже чистые батареи нужно привести в герметичное состояние. Для этого воспользуемся паяльной лампой и кислотной пластмассой, которыми заделаем дырки, сделанные ранее.
- Нужно наполнить емкости дистиллятом в необходимых пропорциях. Количество воды для разбавления зависит от общего объема емкости и необходимого количества кислоты. Концентрация при этом должна рассчитываться на диапазон 1,25-1,27 г/куб.см
- Емкости необходимо хорошо закрыть и встряхнуть аккумуляторную батарею, без сильного наклона.
Запомните! Для начала в банку заливается разбавляющее вещество — дистиллят. Только потом добавляется кислота. Если не соблюдать порядок, жидкости начнет кипеть.
Заливаем аккумуляторную кислоту
Значение электролита не должно быть ниже допустимой нормы — 1,2 г/куб.см. В другом случае нужно исправлять ситуацию, в чем нам поможет аккумуляторная кислота, которая имеет плотность 1,84 г/куб.см. Заливается также, как и обычный раствор. Это поможет электролиту приобрести необходимую концентрацию.
Добавляем дистиллят и серную кислоту
Для начала откачиваем из банок имеющийся электролит. Далее наливаем новый раствор, который вписывается в рамки плотности 1,25 — 1-27 г/куб.см. Заливаем до необходимого количества и плотно закрываем крышки. Потом нужно потрясти аккумулятор.
Важно! Ни в коем случае не переворачивайте банку АКБ.
Из-за такого резкого переворота могут отделиться соль и свинец. От решетки они отправятся прямиком в ближайший электрод, из-за чего может замкнуть всю банку. АКБ после такой манипуляции эксплуатировать не получится.
Почаще проверяйте концентрацию аккумуляторной жидкости. В зависимости от изменения значений, выведите время, через которое нужно будет снова возобновлять электролит. Показатель не должен быть ниже 1, 25 г/куб.см. Повышайте плотность до тех пор, пока не добьетесь значений нормы.
Корректируем зарядку АКБ
После того, как в разных банках залит новый раствор с необходимой концентрацией, значение плотности в каждой емкости разное. Разность не должна превышать 0,01 г/куб.см. Добиться такого значения можно с помощью корректирующей подзарядки. В аккумуляторную батарею на протяжении пары часов нужно подавать ток с зарядом в 3 раза ниже обычного.
Но необходимого значение этим способом не всегда удается добиться. Значит нужно воспользоваться зарядными устройствами, которые имеют свои регуляторы, способные подавать ток. Это метод используется в крайних случаях, если не удалось уровнять значения первым.
План проведения восстановления концентрации с помощью корректирующей подзарядки:
- Аккумулятор заряжается до максимального значения.
- Если при максимальном заряде электролит начинает кипеть, силу тока необходимо понизить до 2 Ампер.
- Начинается процесс кипения и все дистилляты испаряются. Благодаря этому раствор становится гуще.
- Каждая банка выпаривается в разное время. Какой-то хватит 12 часов, а какой-то и суток будет мало.
- Если плотность понизилась до 1,25 г/куб.см. и меньше, электролит нужно долить. В следующий раз концентрация проверяется, когда прибор остывает до +25°С.
- Если результаты были не достаточно эффектные, процедура проводится второй раз.
Эта процедура эффективна, но занимает очень много времени.
Электролит для коррекции
Плотность раствора необходимо корректировать электролитом, плотностью не ниже 1,4 г/куб.см. Просто так, по привычки добавлять раствор ни в коем случае нельзя. Необходимо обязательно измерить уровень концентрации и при надобности, откорректировать. Нужно установить причину изменения плотности электролита, прежде чем возобновлять его ресурсы.
С какой целью может добавляться такой раствор:
- Если обнаружилась утечка электролита, его дефицит необходимо восполнить;
- Если случайно залили дистиллированной воды больше, чем было нужно. Концентрация занижена и ее необходимо повысить.
Запомните! При откачивании электролита оставляйте пластины в жидкости.
Выводы
При подведении итогов, можно сделать вывод, что работать с АКБ и аккумуляторной жидкостью довольно сложно. Если у вас нет опыта с сервисными работами, то лучше доверить это дело профессионалам.
Проверять уровень электролита в АКБ нужно регулярно, в любое время года.
Читайте также
Внешний тюнинг авто — покраска жидкой резиной
11 октября 2018
3563
Покраска жидкой резиной — быстрый способ изменить цвет авто. Красиво! Но…
Альтернативой классической покраски для автомобилей является жидкая резина, резиновая краска, жидкий винил. Резиновая краска (Plasti DipTM) пришла на смену автоэмалям и виниловым пленкам. С приходом этого продукта на рынке возникло много дискуссий по поводу прочности и долговечности резиновой краски.
Подробнее…
Что нужно знать о шумоизоляции авто
08 февраля 2019
1052
Шумоизоляция авто: для чего она нужна и стоит ли ее делать
Большинство современных автомобилей не имеют надлежащего уровня шумоизоляции. Это касается не только дешевых, но и дорогих моделей. Владельцы транспортных средств должны сами позаботиться об устранении этого недостатка. Изолировать салон от внешних шумов не сложно, но эта работа требует терпения и старательности.
Подробнее…
Устройство датчика дождя
11 декабря 2019
810
Устройство электронного датчика осадков в авто
Из-за дождя и прочих погодных неприятностей опасность во время движения по дороге значительно возрастает. Возникают трудности с управлением автомобиля. Машину заносит в сторону, поскольку ослабевает сила сцепления резины с дорожным покрытием. Протяженность тормозного пути становится длиннее. Дождевые капли попадают на кузов и лобовое стекло, мешая водителю совершать маневры и ухудшая видимость. С проблемой позволяет справиться специальный дождевой датчик, который устанавливается на ветровое стекло.
Подробнее…
Как избавиться от сколов на машине с помощью частичной покраски кузова
07 августа 2018
2098
Избавление от сколов методом частичной покраски кузова
Любой автомобиль за недолгий срок эксплуатации может получить незначительные разрушения. Сколы, которые образуются после поездок на высокой скорости от камней, насекомых, могут привести к большим разрушениям, если вовремя не устранить их. Коррозия начинает разрушать авто под краской и заметить это очень трудно. Сколы, которые не закрашены, являются местом «заражения» коррозией, а в последствие разрушения кузова.
Подробнее…
Продать авто — выгодно и быстро
12 августа 2017
1157
Каждый автовладелец, хоть раз, но задумывался о продаже своего «железного коня». Заменить свою «ласточку» на более новый, либо же на более престижный автомобиль можно лишь в том случае, если вы стабильно стоите на ногах в финансовом плане, либо же просто хотите что-то новое.
Подробнее…
Как решить проблему заклинивания замка зажигания
07 августа 2019
5224
Что делать, если замок зажигания заклинило
На протяжении полного срока эксплуатации машины автолюбителю, как правило, приходится встречаться с большим количеством различных неисправностей. Зачастую их просто исправить и они не доставляют больших проблем. Но бывает, происходят такие неисправности, которые ставят автомобилиста в тупик. К примеру, не достаётся и не проворачивается ключ в замке зажигания. Неисправность не очень весомая, но может внести нежелательные изменения в ваши планы на день. С этой бедой вполне можно справиться самим одним из надежных методов.
Подробнее…
Выбор колодок для авто
27 февраля 2019
768
Выбор колодок для авто – надежно и недорого
Эксплуатация любого автомобиля рано или поздно влечет возникновение необходимости обслуживания тормозной системы, в том числе, замены колодок и дисков. При этом выбирать колодки для конкретного авто нужно с учетом определенных требований.
Подробнее…
Плюсы и минусы проставок для увеличения клиренса автомобиля
18 сентября 2019
10787
Увеличиваем клиренс авто за счет проставок. Последствия
Немаловажным фактором, влияющим на выбор транспортного средства, является дорожный просвет, так называемый клиренс автомобиля. Качество наших дорог таково, что проехать по ним на машине с небольшим клиренсом непросто. А часто невозможно. Это одна из причин высокой популярности внедорожников в нашей стране. Существует менее затратный способ приспособить автомобиль к нашим условиям, нежели покупать джип. Это проставки под пружины.
Подробнее…
Вопрос-ответ
Сергей, 08.03.2017
Доброго времени.хотел узнать. Аккумулятор са/са если заряжать меньше чем 16,2 вольта,что случится? У меня зарядник выдаёт 14.8. СПС
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Сергей, благодарим Вас за обращение.
Критерием окончания заряда является достижение плотности электролита 1.27 г/см3 во всех банках, при невозможности контроля плотности, окончанием заряда можно считать падение зарядного тока до 0,5-1А и (либо) его стабилизация в течении 2-х часов.
Рекомендуем
производить заряд в соответствии с инструкцией по эксплуатации, с
выставлением зарядного тока в ручную с величиной 5% от ёмкости АКБ (в
Вашем случае 3А). При таком методе заряда ЗУ автоматически будет
повышать зарядное напряжение при падении тока (приём заряда), достигая
порога в 16В по окончанию заряда. В случае невозможности ЗУ повысить
значение напряжения до 16В, плотность не достигнет значения в 1.27
г/см3, соответственно степень заряженности не будет полной
Александр, 27.01.2017
Доброго времени суток! Приобрел АКБ АКОМ «ULTIMATUM» 60 Ач. А/м Лада Приора, эксплуатируется редко, выезжаю на небольшие расстояния 1-2 раза в неделю. Интересует следующий вопрос: Нужно ли заряжать новый АКБ, если да то, каким током в амперах и как долго по времени. Заранее спасибо за ответ.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Александр, благодарим Вас за обращение.
Необходимость в заряде батареи заключается в её текущем состоянии, а именно в степени заряженности, которую можно определить несколькими способами. Самый простой способ это показания индикатора степени заряженности, который встроен в крышку аккумуляторной батареи, если цвет индикатора зелёный, значит степень заряженности достаточная для полноценной работы, если чёрный — батарею необходимо дозарядить.
Следующий способ требует наличия оборудования, такого как вольтметр и ареометр. При помощи вольтметра необходимо замерить НРЦ (напряжение разомкнутой цепи) на полюсных выводах АКБ без подключенной нагрузки.
Напряжение в 12,8-12,9В означает, что батарея заряжена на 100%, для Вашего удобства таблица степени заряженности находится во вложении к данному письму. Также степень заряженности можно определить по плотности электролита при помощи ареометра.
Рекомендации по заряду аккумуляторной батареи Вы можете найти в инструкции по эксплуатации или на официальном сайте нашей компании по адресу: http://www.akom.su/support/articles/calcium_battery/
Обратите
внимание на то, что зарядное устройство должно быть способно выдавать
напряжение в 16,2В.
Михаил, 23.12.2016
АКБ Аком EFB 60ач, плотность 12,3. ранее было ЗУ, которое не давало больше 14,2. Приобрел Вымпел-55, использую 1 алгоритм, ток 6а,
напряжение выставил 15,9, не смотря на то, что на сайте у Вас рекомендуется 16+. Со старта Напряжение уже практически на выставленном уровне, а снижаются амперы. Но вот только всё это дело немного побулькивает, и спустя несколько часов в таком режиме, электролит стал мутнее, цвет не поменял, просто мутнее, пластины плохо видно. Это нормально? И нормально ли то, что уже со старта ЗУ выдает заданное напряжение, и уменьшаются только амперы, показателем завершения будут упавшие амперы?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Мы не готовы комментировать работу зарядных устройств сторонних производителей без проведения предварительных испытаний. Рекомендуем к применению фирменное зарядное устройство «АКОМ»
Аккумуляторные батареи, изготовленные по технологии EFB (Enhanced Flooded Battery) — это улучшенные аккумуляторные батареи с жидким электролитом, специально разработанные для эксплуатации в условиях нагрузок, связанных с постоянно повторяющимися циклами заряда и разряда. За счёт применения целого ряда конструктивных изменений увеличивается срок службы АКБ и расширяется применяемость.
Исходя из того, что данная батарея конструктивно схожа с батареями изготовленными по технологии Ca/Ca (кальций-кальций), методики заряда данных батарей идентичны. Описание процесса заряда указано в п.2.2. инструкции по эксплуатации АКБ (для Вашего удобства инструкция во вложении).
Обращаем особое внимание на то, что для эффективной и полной зарядки АКБ, изготовленных по технологии Ca/Cа, зарядное устройство должно обеспечивать зарядное напряжение 16,2В.
«Кипение» электролита (выделение пузырьков газа) — естественный процесс, возникающий в момент приближения напряжения к значению в 16В на клеммах батареи при заряде. Является признаком того, что степень заряженности АКБ приближается к максимальному значению. Критерием окончания заряда является достижение плотности электролита 1.27 г/см3 во всех банках, при невозможности контроля плотности, окончанием заряда можно считать падение зарядного тока до 0,5-1А и (либо) его стабилизация в течении 2-х часов.
Рекомендуем производить заряд
в соответствии с инструкцией по эксплуатации, с выставлением зарядного
тока в ручную. При таком методе заряда ЗУ автоматически будет повышать
зарядное напряжение при падении тока (приём заряда), достигая порога в
16В по окончанию заряда.
Максим, 20.12.2016
Планирую приобретение аккумулятора для легкового а/м иностранного производства. На подсознательном уровне имею желание поддержать
отечественного производителя и соответственно приобрести ваш аккумулятор. Но непонятно одно, чем ваш аккумулятор лучше аккумуляторов иностранного производства, при том, что максимальная разница в цене на аналогичные модели всего 500 р., а на некоторые марки и вообще разницы в цене нет. Почему люди должны брать ваш аккумулятор по той же цене, что и импортный, если иностранные производители уже давно зарекомендовали себя хорошим качеством.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Интеграция в мировую автомобильную индустрию требует поддержания высокого уровня качества и конкурентоспособности продукции. На аккумуляторном производстве «АКОМ» эта задача решается путем постоянного развития производства, совершенствования конструкции и технологий, внедрения международных стандартов качества, системы LEAN Production.
Система менеджмента качества АО «АКОМ» сертифицирована на соответствие стандартам ISO 9001-2008, ISO TS 16949-2009. Отклонение по качеству невозможно, т.к. в технологический процесс изготовления аккумуляторных батарей включены посты контроля ключевых параметров, определяющих электрические характеристики батареи. Их уникальность — автоматическая отбраковка продукции, не соответствующей установленным техническим требованиям.
АКОМ — высокотехнологичное предприятие с уникальной многоступенчатой системой контроля качества выпускаемой продукции. Высокое качество продукции является фундаментальной основой нашего бизнеса. Каждый покупатель, приобретая аккумуляторную батарею нашего производства, получает гарантию от производителя и может рассчитывать на квалифицированное гарантийное и послегарантийное обслуживание, получая при этом уверенность в надёжной работе всех потребителей в автономном режиме, а также в гарантированном запуске двигателя автомобиля.
Исходя из того, что вся продукция АО «АКОМ» полностью соответствует заявленным характеристикам, обладает высоким качеством и уровнем сервиса, она априори не может быть дешевой.
Рекомендуем ознакомиться с презентационным фильмом о Группе Компаний АКОМ.
Ильназ, 18.11.2016
Подскажите, пожалуйста, по какой технологии (Ca/Ca и т.д.) изготовлен аккумулятор, устанавливаемый на автомобили LADA Vesta 2016 года? На моей есть лишь обозначения «6CT-62VL Евро», изготовлен 4 апреля 2016 года сменой «С».
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Согласно
нормативной документации, батарея 6СТ-62VL Евро по
конструкторско-технологическому исполнению относится к классу батарей
очень малым (VL) расходом воды, изготавливается по технологии Ca\Ca
(Кальций-Кальций), одним из преимуществ которой является сокращение
потери воды из электролита во время эксплуатации, что в свою очередь
значительно снижает объём обслуживания и повышает уровень безопасности.
Для удобства обслуживания (контроль уровня и плотности электролита),
батарея оснащена заливными отверстиями с пробками.
Алексей, 16.11.2016
Здравствуйте замечательная компания АКОМ! Скажите пожалуйста какие модели аккумуляторов являются обслуживаемыми а какие не обслуживаемые? Для меня это важно знать т.к. я их продаю. Не могу данной корректной информации найти в источнике. Заранее спасибо.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Согласно нормативной документации, батареи легковой группы с ёмкостью от 40Ач до 100Ач, произведённые на аккумуляторном производстве АО «АКОМ», по конструкторско-технологическому исполнению относятся к классу батарей очень малым (VL) расходом воды, изготавливаются по технологии Ca\Ca (Кальций-Кальций), оснащаются крышкой особой конструкции с лабиринтной системой газоотвода для сокращения потери воды из электролита во время эксплуатации, что в свою очередь значительно снижает объём обслуживания и повышает уровень безопасности. Для удобства обслуживания (контроль уровня и плотности электролита), все производственные линейки АКБ оснащены заливными отверстиями с пробками. Тяжелая группа батарей с ёмкостью от 140Ач до 225Ач по конструкторско-технологическому исполнению относятся к классу батарей малым (L) расходом воды и так же являются обслуживаемыми. Вышеперечисленные батареи относятся к свинцово-кислотным аккумуляторам с жидким электролитом, понятие обслуживания заключается в контроле расхода воды из электролита и при необходимости добавлении дистиллированной воды. Величина расхода воды зависит от применяемой технологии и особенностей конструкции. Любая батарея с жидким электролитом является обслуживаемой.
Так называемые
необслуживаемые батареи — это батареи не имеющие свободного электролита.
Электролит в таких батареях находится во связанном состоянии. Одной из
технологий производства таких батарей является технология GEL (Gelled
Electrolite) с гелеобразным электролитом. Так же на рынке представлены
батареи AGM (Absorptive Glass Mat ), в которых такой элемент
конструкции, как сепаратор изготовлен из стекловолокна. При
использовании такого материала нет нужды превращать электролит в гель,
весь электролит впитывается стекловолоконным сепаратором, и надежно в
нем удерживается. Обе технологии подразумевают наличие герметизированной
конструкции моноблока без доступа во внутрь. Необслуживаемые —
означает, что в АКБ этого вида не требуется следить за уровнем
электролита и доливать воду.
Евгений, 15.10.2016
Здравствуйте, у вас на сайте есть статья про зарядку кальциевого АКБ. там сказано что нужно 16В. У меня Лада Приора и стоит ваша батарея. Напряжение заряда в Приоре менее 16В. Получается она всегда недозаряжается?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Евгений, благодарим Вас за обращение.
Рекомендуем Вам заряжать аккумуляторную батарею на стационарном зарядном устройстве постоянным током 0,1 от её емкости до напряжения 14,4В, а когда значение тока упадет до 1-1,5 ампера продолжить зарядку таким током до достижения значений напряжения в 16,5В. Именно поэтому мы рекомендуем зарядное устройство, способное выдать напряжение 16,25-16,5В.
Маленький совет. Заряжать током 0,1С20 можно только при комнатной температуре и никогда не стремиться заряжать аккумулятор до 100%, т.к. такие заряды значительно изнашивают активные массы аккумуляторных пластин. После установки батареи на автомобиль степень заряженности фактически за один день упадет до 80%, это абсолютная норма.
Напряжение АКБ, установленной на автомобиль должно находиться в пределах 12,4-12,8В. Замерять не раньше 3-х часов после того, как двигатель будет заглушен.
Для того чтобы обеспечить нормальный заряд аккумуляторной батареи, изготовленной по технологии Са/Са, каковыми и являются наши АКБ, напряжение в бортовой цепи автомобиля зимой должно быть 14,5В, летом 14,2В. Если данное условие будет соблюдено, Вы не должны иметь проблем с исправной аккумуляторной батареей.
Очень важно в зимнее время ежедневно эксплуатировать автомобиль при времени одной поездки не менее 30 минут, этого достаточно для подогрева подкапотного пространства автомобиля и возвращения в АКБ израсходованного заряда на запуск двигателя и при стоянке. Разряд происходит за счет естественных токов утечки в бортовых системах автомобиля не отключаемых при вынутом ключе зажигания.
Надеемся на Ваше понимание вышеизложенного.
Желаем
удачи на дорогах!
Алексей, 24.09.2016
Доброго времени суток! У меня стоит АКБ 90 А/ч машина работает на ДТ специалисты замеряли пусковой ток и говорят, что он низкий, пробывал заряжал АКБ, плотность во всех банках 1,25 в связи с этим вопрос есть ли возможность поднять пусковой ток? За ранее спасибо с Уважением Алексей
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Алексей, благодарим Вас за обращение.
В соответствии с ГОСТ Р 53165-2008 «БАТАРЕИ АККУМУЛЯТОРНЫЕ СВИНЦОВЫЕ СТАРТЕРНЫЕ ДЛЯ АВТОТРАКТОРНОЙ ТЕХНИКИ»‘ и ТУ АКОМ 3481-001-57586209-2010 ток холодной прокрутки (Ix.n.) это ток разряда, указанный изготовителем, который может обеспечить батарея для пуска двигателя в заданных условиях. В соответствии с данными нормативными документами аккумуляторные батареи подвергаются испытанию на ток холодной прокрутки по строго определенной методике, обязательными условиями которой являются:
1) Проведение испытаний на батареях, с момента изготовления которых прошло не более 30 дней;
2) Предварительное испытание на номинальную или резервную емкость перед испытанием на ток холодной прокрутки;
3) Полный заряд аккумуляторной батареи после испытания на номинальную или резервную емкость в соответствии с методикой, определенной в этих же документах;
4) Проведение испытания на ток холодной прокрутки при температуре минус (18±1) °С;
5) Разряд аккумуляторной батареи при проведении данного испытания в две ступени: током Ix.n. на первой, и током 0.6 Iх.п. на второй ступени.
Также предусмотрено проведение трех циклов испытаний на номинальную или резервную емкость и ток холодной прокрутки. Результаты испытаний считаются положительными, если они достигнуты хотя бы на одном из трех циклов.
Любые иные методы
испытаний и проверок на ток холодной прокрутки аккумуляторных батарей
(в том числе на аккумуляторных батареях без предварительного заряда и с
помощью портативных тестеров, использующих расчетный метод для
определения величины тока холодной прокрутки) не соответствуют ГОСТ Р
53165-2008 и ТУ АКОМ 3481-001-57586209- 2010 и не могут являться
основанием для предъявления претензий заводу-изготовителю.
Алексей, 27.08.2016
Добрый день. Может ли «высохнуть» аккумулятор в летний период (до +35) с учетом эксплуатации в выходные (будни авто стоит на стоянке)?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Алексей, благодарим Вас за обращение.
Выкипание воды из электролита и, как следствие, снижение его уровня происходит под влиянием нескольких факторов, главными из которых являются применяемая технология изготовления АКБ, условия эксплуатации и температура.
В любом
случае, батарея, не находящаяся в эксплуатации, «выкипеть» не может.
Виктор, 23.07.2016
Добрый день, в марте 2016 купил Ниву Шевроле, стоит ваш штатный аккумулятор. При проверке: напряжение-12.50, плотность-1.21. Что делать?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Виктор, благодарим Вас за обращение.
В виду того, что аккумуляторная батарея была приобретена Вами в составе автомобиля, все гарантийные обязательства перед Вами несет производитель авто (ЗАО «Джи Эм-АВТОВАЗ») в лице своего дилера, у которого был приобретен автомобиль.
Рекомендуем Вам ознакомиться с условиями предоставления гарантии на АКБ в сервисной книге. Если Ваш автомобиль находится в гарантийном периоде — обратитесь к дилеру для проведения диагностики АКБ и автомобиля.
Претензии к АКБ не удовлетворяются в случае если плотность электролита ниже 1,2г/см3 во всех банках одновременно (не гарантийный случай).
Причина низкой
плотности — низкая степень заряженности, батарею необходимо зарядить.
Евгений Павлович, 30.06.2016
Здравствуйте. Аккумулятор «кальций-кальций» означает, что свинцовые пластины покрыты слоем кальция, или состоят из сплава вышеназванных металлов? А аргентум-кальций — это что, положительные пластины посеребрённые или….?? Что-то не понятно; ответе, пожалуйста, если знаете.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Евгений Павлович, благодарим Вас за обращение.
Технология Ca/Ca предусматривает изготовление электродов (положительных и отрицательных) из свинцового сплава, легированного кальцием для достижения определённых задач, а именно: снижение расхода воды, снижение времени саморазряда, увеличения электрических характеристик и пр.
Основная цель легирования электродов серебром это снижение влияния коррозии.
Сергей, 13.03.2016
Здравствуйте! Допускается ли использование аккумулятора Аком Reactor Са-Са 62 Ач в дежурном режиме, т.е. аккумулятор постоянно находится под напряжением 13.6В. Я использую такой режим в случае длительного простоя автомобиля а гараже, скажем 3..4 недели или вообще всю зиму. Какие есть рекомендации по этому поводу? Возможно ли использование Са-Са аккумулятора в источниках бесперебойного питания?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Сергей, благодарим Вас за обращение.
Хранить батарею под постоянным напряжением в 13,6В не имеет никакого смысла. Достаточно зарядить её до 100% степени заряженности и оставить на хранение, периодически (раз в 2 месяца) проверяя степень заряженности и заряжать при необходимости.
Для работы в ИБП стартерные аккумуляторные батареи не подходят,
т.к. их основная задача — кратковременная отдача высокой мощности, для
ИБП необходимы тяговые батареи, работа которых заключается в длительном
режиме разряда.
Михаил, 11.01.2016
Лада Калина Хэтчбек 1,6 8кл 2012г. штатный аккумулятор на 55а/ч. возможна ли замена на Akom Reactor 55а/ч 550а/ч. Какие еще возможны замены, без ущерба генератора.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Михаил, благодарим Вас за обращение.
Замена штатной АКБ 6СТ-55VL АКОМ Стандарт на батарею 6СТ-55VL REACTOR возможна без негативного влияния на штатное оборудование автомобиля. В случае, если Вы оснащали автомобиль дополнительным электрооборудованием, рекомендуем батарею 6СТ-65VL АКОМ, либо 6СТ-62VL REACTOR.
Нагрузка на генератор не зависит от повышения ёмкости АКБ, следите за
напряжением заряда, которое должно быть в диапазоне от 13,8В до 14,5В.
Антон, 28.12.2015
Добрый день у меня аккумулятор АКОМ REACTOR 750, морозы у нас бывают лютые. Сегодня аккумулятору исполнилось 2 года. За его состоянием следил диллер которому я доверя — и как оказалось зря. Так как они совсем не смотрели и не обслуживали его. Недавно при маленьком морозе у меня не завелся автомобиль. Замеры показали плотность 1.170-1.190 во всехбанках. После длительной зарядке (2 суток) напряжение дошло до 14.7 и сила тока опустилась до 0 ампер (изначально было 3 ампера) вобщем плотность поднялась до 1.220-1.240. Что мало для крайнего севера/ .
Вопроса два:
1) при каком напряжении заряжать аккумулятор (гдето читал что кальциевые нужно заряжать при 15-16)? или я заряжал правильно?
2) как поднять плотность аккумулятора правильно до 1.27 -1.28
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Антон, благодарим Вас за обращение.
Вы совершенно правы, для полного заряда аккумуляторной батареи, изготовленной по технологии кальций-кальций, необходимо напряжение в 16,2В.
Заряд АКБ необходимо проводить при температуре электролита более 0ºС.
Перед началом зарядки необходимо выкрутить заливные пробки и оставить их в посадочных гнездах крышки. По окончанию заряда, прежде чем завернуть пробки, необходимо извлечь их из заливных отверстий для выхода скопившихся газов и выдержать в таком состоянии батарею не менее 20 минут. Во время заряда периодически проверяйте температуру электролита и следите за тем, чтобы она не поднималась выше 45ºС. Начинать заряд рекомендуется током не более 5% от номинальной емкости в течении двух часов, с последующим повышением тока зарядки до 10% от номинальной емкости. Для эффективной и полной зарядки АКБ зарядное устройство должно обеспечивать зарядное напряжение 16,0 В. Критерием окончания заряда является достижение плотности 1.27 г/см3, при невозможности контроля плотности, окончанием заряда можно считать падение зарядного тока до 0,5-1А и его стабилизация в течении 2-х часов.
При заряде выделяется взрывоопасный газ! Помещение, где ведется зарядка должно быть оборудовано приточно-вытяжной вентиляцией или проветриваться, в нем запрещается курить и пользоваться открытым пламенем!
Для проверки напряжения разомкнутой цепи АКБ после заряда
необходимо выключить зарядное устройство, отсоединить наконечники
проводов зарядного устройства от полюсных выводов АКБ, выдержать АКБ не
менее 8 часов при комнатной температуре и затем провести замер.
Булат, 19.12.2015
Добрый день.
На Ладе Приоре стоит штатный акк. АКОМ 55 VL, однако он стал плохо держать заряд (4 года эксплуатации), поэтому планирую поменять на новый и хочу приобрести АКОМ Браво 60 VL. Допускается ли подобная замена? Не будет ли новый аккумулятор ездить недозаряженным?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Булат, благодарим Вас за обращение.
В качестве замены штатной аккумуляторной батареи, рекомендуем Вам АКБ АКОМ 55Ач, либо 60Ач.
Но в случае, даже если Вы приобретёте АКБ BRAVO 60Ач, такого явления как недозаряд возникать не будет, при условии исправности системы заряда АКБ и отсутствии высоких токов утечки (свыше 30-50мА).
Константин, 25.11.2015
Добрый день,аккумулятор аком 65ач ca/ca.В первой и в посл. банке плотность электролита 1.25 и выше не поднимается!В остальных банках во 2,3,4,5 плотность 1.27!Заряжал током 1а и напряж 15в. 24часа. плотность в крайних банках не поднялась выше 1.25!Подскажите как выравнять плотность и поможет ли зарядка 16вольтовым оборудованием?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Константин, благодарим Вас за обращение.
Если батарея не подвергалась глубокому разряду, не перезаряжалась
или долго не эксплуатировалась в недозаряженном состоянии (о чем можно
судить по оплыванию активной массы и цвете электролита) и все банки
кипят при заряде, то все должно быть нормально. Если есть отличие в
уровне электролита, то в показаниях плотности может быть разница. Если
есть возможность, конечно необходимо применить ЗУ, которое способно
выдавать 16В. Для батарей, изготовленных по кальциевой технологии это
идеальный вариант. Продолжайте заряд с напряжением в 16В, плотность
должна выровняться.
Рамиль, 14.10.2015
Разрешается ли путем смешивания электролита в разных банках, выравнивать плотность в банках?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Рамиль, необходимо уточнить какой именно электролит Вы используете и в каких целях, нельзя заливать электролит при потере уровня из-за выкипания воды, в этом случае доливается только дистиллированная вода.
Также не рекомендуем использовать электролит сторонних производителей, т.к. его компоненты (присадки) отличаются.
Игорь, 20.08.2015
Что за аккумулятор Аком ставят на конвейере на Ладу Ларгус?
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Игорь, благодарим Вас за обращение.
Автомобили Ларгус оснащались АКБ 6СТ-70VL (70Ач, 720А, формат L3,
обратная полярность) в период с мая 2014г по январь 2015г. С января
2015г по сегодняшний день данный автомобиль оснащается батареей 6СТ-64VL
(64Ач, 620А, формат L2, обратная полярность). Продукция произведена на
аккумуляторном производстве ЗАО «АКОМ» (г.Жигулёвск).
Сергей, 14.06.2015
Какой завод выпускает аккумуляторы марки Аком?
Евгений Смолькин, менеджер по интернет-маркетингу
Здравствуйте, Сергей. Производством АКБ «Аком» занимается ЗАО «АКОМ» г. Жигулевск
Петр, 12.05.2015
Добрый день!
Купил авто вместе с Вашим АКБ в 2008 г.
и…. вот спустя сколько времени он только начал плохо держать заряд.
Желаю Вам процветания и так же держать МАРКУ.
Геннадий Кольчугин, менеджер по гарантийному обслуживанию
Добрый день!
Пётр, благодарим Вас за тёплые слова в наш адрес.
Залогом безотказной работы аккумуляторной батареи является грамотная эксплуатация.
Надеемся, что и в будущем Вы отдадите предпочтение продукции ЗАО «АКОМ».
Как повысить плотность электролита в аккумуляторе? ― 130.com.ua
Практически все автовладельцы вообще не уделяют внимание аккумулятору до первых проблем. Именно наша безответственность быстрее приближает моменты поломок, когда автомобиль уже просто отказывается заводиться. Наиболее распространенная причина — севший аккумулятор.
Кстати, даже новое АКБ может помешать вашей поездке. Есть же доля вероятности купить не совсем качественное устройство. Что подразумевается под этим? Чаще всего: не доконца заряженный аккумулятор или недостаточность электролита. Такие нюансы никак не проверяют во время покупок.
Основные способы
Как только отказывается работать аккумулятор, мы ставим его на зарядку. Но что видим: цикл зарядки прошел, а батарея все такая же дохлая. Появляется новая проблема — АКБ просто не держит заряд. Тут нужно выяснить причины, почему так происходит.
Чаще всего это случается с батареями, которые были посажены в 0. Здесь уже появляется новая задача — проверить насколько сильно разряжен аккумулятор. Для начала проверьте плотность электролита с помощью специального устройства: кислотомера.
Делаем это следующим образом:
- Кислотомер устанавливаем в любую банку аккумулятора.
- Шкала на ареометре будет показывать плотность электролита.
- Сравниваем полученные значения с табличными параметрами плотности.
Если вы живете в регионе с суровым климатом, то значение будет равно приблизительно 1,25 кг/литр. Тут учитывайте, что разница плотности между двумя банками не должна быть больше 0,01.
Как поднять плотность?
Способ решить эту задачу зависит от того, какие значения вы получили.
Плотность 1,18-1,20 кг/литр
С помощью груши откачиваем старый электролит: как можно больше. Заливаем новый на половину того объема, который вы откачали. Условно для примера: откачали 1 кг., заливаем 0,5 кг. Тут нужно добиться нормы плотности электролита, а остаток доливаем уже дистиллированной водой.
Плотность менее 1,18 кг/литр
В таком случае нужно использовать аккумуляторную кислоту. Все делаем также, как и в первом случае, но вполне вероятно, что процедуру придется повторять. Ваша главная задача остается прежней — получить значение нормы.
Плотность очень низкая
К сожалению, тут придется менять полностью электролит, чтоб спасти аккумулятор. С помощью груши, вам нужно будет максимально откачать старый электролит, а банки закрыть заглушками. И дальше придерживаемся такого плана:
- После закручивания заглушек, аккумулятор кладем на бок. Берем сверло 3 мм. или 3,5 мм. и делаем по одному отверстию внизу банки. Так, мы сможем слить электролит полностью.
- Промываем все банки с помощью дистиллированной воды. Отверстия закрываем кислотостойкой пластмассой. Так, мы сделали все необходимое, чтоб подготовить емкость к новому электролиту.
- Приготовим электролит самостоятельно. Берем дистиллированную воду и наливаем в нее аккумуляторную кислоту. Обратите внимание, что обратный порядок недопустим, то есть воду в кислоту наливать нельзя. Не забудьте надеть резиновые перчатки.
В итоге, вы должны получить необходимые значения электролита для вашего региона. Если по какой-то причине увеличить плотность электролита не удалось, придется выбрать новый аккумулятор. Аккумулятор купить с доставкой по Украине в Харьков, Киев, Одессу можно на 130.com.ua.
ТОП-3 автомобильных аккумулятора
Материалы по теме
Как заряжать и проверить заряд аккумулятора
Как заряжать и проверить заряд аккумулятора
Основное назначение стартерной аккумуляторной батареи (АКБ) указано в ее названии: это источником энергии для работы стартера. То есть, главную свою роль АКБ играет на стадии пуска двигателя, а затем энергия в бортовую электросеть поступает от генератора.
В момент пуска двигателя аккумулятор теряет значительную часть запасенной энергии, и нуждается в зарядке — она выполняется генератором, который, по идее, за относительно короткое время должен восстановить АКБ. Однако это происходит не всегда, вернее — так происходит редко, в основном же аккумуляторы либо постоянно недозаряжаются (в основном, в городе), либо перезаряжаются. В первом случае необходимо довести заряд до нормального уровня, а во втором стоит подумать об обращении в автосервис: перезаряд может говорить о неисправности реле-регулятора. При постоянном перезаряде АКБ просто-напросто выходит из строя, и это, ко всему прочему, не является гарантийным случаем, бесплатно заменить батарею будет невозможно.
Диагностика аккумулятора
Как проверить аккумулятор? Исходя из каких параметров можно сделать вывод, что АКБ действительно нуждается в зарядке и восстановлении?
Таких параметров всего два — напряжение и плотность электролита. Но если с проверкой первого все просто, то со вторым могут возникнуть проблемы — сейчас широко распространены необслуживаемые АКБ, узнать плотность электролита в них просто невозможно. Однако не будем расстраиваться заранее, а посмотрим, что с этим можно сделать.
Сначала нужно измерить напряжение: при 100%-й зарядке на клеммах должно быть 12,7 В, при этом плотность электролита должна составлять 1,265 г/куб.см. Если напряжение ниже, то аккумулятор разряжен: 12,4 В соответствует 75%-ному заряду, 12,2 В — 50%-ному, а напряжение 12,1 В свидетельствует, что заряд составляет всего 25%.
Проверка аккумулятора показала, что он нуждается в зарядке, что делать дальше?
Как зарядить автомобильный аккумулятор классической конструкции
Наиболее просто зарядить АКБ классической конструкции — наличие пробок и возможности видеть электролит позволяет контролировать процесс зарядки и достичь лучшего результата.
Прежде, чем подключить к аккумулятору зарядное устройство, нужно выкрутить пробки, чтобы открыть доступ к электролиту. Далее можно приступать непосредственно к зарядке, выбрав для этого один из нескольких способов.
Наиболее просто аккумулятор классической конструкции заряжать постоянной силой тока. Для этого на зарядном устройстве выбирается ток, равный 10% емкости аккумулятора: если емкость составляет 60 Ач, то ток будет равным 6 А. Устанавливать напряжение в этом случае нет необходимости — оно автоматически отрегулируется зарядным устройством.
А теперь нужно проявить немного терпения — новая АКБ таким способом заряжается до 8 часов, батарея со «стажем» набирает полный заряд за большее время. И все это время (каждые полтора-два часа) нужно проверять напряжение и плотность электролита.
Не удивляйтесь, что напряжение будет выше привычных 12,7 В — именно поэтому аккумулятор и заряжается. Когда напряжение достигнет 14,4 В, стоит вдвое уменьшить силу тока. Плотность электролита также должна постоянно расти, но не слишком быстро.
Сколько заряжать аккумулятор, как понять, что его нужно отключать от зарядного устройства? Это будет видно сразу, так как первый признак полного заряда — «кипение» электролита. Бурная реакция обусловлена тем, что из-за полного заряда батареи изменяется характер протекающих в ней электрохимических реакций. В частности, молекулы воды начинают распадаться на водород и кислород, и эти газы покидают банку, создавая эффект закипания.
В связи с этим помните о безопасности! Заряжайте аккумулятор в хорошо проветриваемом помещении, и не подносите к нему открытый огонь — водород, смешивающийся с воздухом, вспыхивает даже от искры, и может привести к пожару и даже к взрыву аккумулятора!
Отключать зарядное устройство можно через 15 — 20 минут после «закипания» электролита, еще минут через 20 можно закручивать пробки — нужно дать газу полностью выйти.
Но бурлящий электролит — не единственный признак полного заряда. АКБ можно считать заряженной, если в течение одного-двух часов ток, напряжение и плотность электролита не изменяются. Тогда смело можно выключать зарядное устройство, и ставить аккумулятор на место.
Как правильно зарядить автомобильный аккумулятор необслуживаемого типа
Необслуживаемый аккумулятор лучше всего заряжать другим способом (который, впрочем, подходит для любых типов АКБ) — зарядкой постоянным напряжением.
В этом случае на зарядном устройстве устанавливается определенное напряжение, а сила тока уже будет регулироваться автоматически. Точнее, ток будет изменяться вследствие законов электротехники — при увеличении напряжения на аккумуляторе, сила тока будет падать, а при достижении равенства напряжений на АКБ и зарядном устройстве, ток станет нулевым.
Последнее обстоятельство обусловило популярность этого способа зарядки — она происходит в автоматическом режиме, так как по достижении полного заряда дальнейшая зарядка не производится, а значит, нет необходимости следить за процессом.
Однако у этого способа есть недостаток: он требует много времени — не менее 20 — 24 часов. Но даже этого времени будет недостаточно, если установить слишком низкое напряжение заряда. Так, при напряжении 14,4 В АКБ за сутки зарядится на 80%, при 15 В — на 90%, а при 16 В — на 95 — 97%. Полной зарядки можно достичь при напряжении 16,3 — 16,4 В.
Этот способ хорош тем, что позволяет без труда поддерживать аккумулятор в рабочем состоянии, особенно, если автомобиль постоянно работает в режиме «такси». Однако доводить АКБ до полного заряда лучше первым способом.
Как зарядить аккумулятор автомобиля зимой
Зимой аккумулятор работает в наиболее тяжелых условиях, так как при пуске двигателя от него требуется выдавать едва ли не вдвое более высокий пусковой ток. Но это полбеды, ведь из-за морозов уменьшается емкость АКБ, а значит и стартер может нормально работать меньшее время, чем летом. Так, при температуре около нуля емкость аккумулятора снижается примерно на треть, а при температуре минус 18 градусов емкость падает уже вдвое. Теперь понятно, почему разряжается аккумулятор именно в сильные морозы.
Но уровень заряда АКБ влияет не только на способность автомобиля завестись в морозы, но и на физические состояние самой батареи. Дело в том, что чем ниже заряд, тем выше температура замерзания электролита. Если аккумулятор заряжен полностью, он не замерзнет и при минус 60, но при полном разряде замерзание может произойти и при нуле градусов.
В этом случае электролит превращается в лед, и из-за известных свойств воды увеличивается в объеме. Это приводит к «надуванию» АКБ, а иногда стенки батареи и вовсе разрушаются. Нужно сказать, что данный случай не является гарантийным, поэтому в зимнее время необходимо следить за состоянием автомобиля, и использовать специальное зимнее масло — это позволит не разряжать АКБ долгим пуском из-за загустевшего масла.
Если при замерзании аккумулятор не повредился, его необходимо отогреть до полного оттаивания электролита, и зарядить.
Быстрая зарядка АКБ
Иногда требуется зарядить аккумулятор очень быстро, буквально за два-три часа — возможно ли это? Да, возможно, что ежедневно доказывают многие автолюбители. Сокращение времени зарядки достигается простым увеличением зарядного тока — на практике ток выбирается в пределах 10 — 20 А.
Необходимо сказать, что этот способ не самый лучший — слишком высокий ток способствует быстрому износу АКБ. Но иногда просто нет иного выхода, и приходится рисковать батареей ради экономии времени.
Первая зарядка АКБ
Новый аккумулятор в большинстве случаев нежелательно сразу ставить на автомобиль — его нужно зарядить. Но если есть немного времени, но нет желания нести АКБ домой, то ее можно зарядить и от автомобильного генератора — достаточно поездить не менее часа в умеренном режиме.
Не допускается автомобиль с только что установленным аккумулятором сразу ставить на несколько дней в гараж или на стоянку — такой простой, особенно зимой, с большой долей вероятности приведет к разряду АКБ.
Если вы приобрели сухозаряженный аккумулятор, то вам в любом случае придется потратить некоторое время на приведение его в рабочее состояние.
Сколько заряжается аккумулятор, только что купленный в магазине? Как показывает практика — от трех до восьми часов. Зарядить его можно любым из описанных выше способов.
Иное дело — сухозаряженнаый аккумулятор. Сначала в него нужно залить электролит, подождать, пока пропитаются пластины (это длится от 15 минут до часа), затем долить электролит до нужного уровня, и ждать — примерно через полтора часа АКБ зарядится, это можно будет увидеть по «кипящему» электролиту.
Когда газовыделение прекратится, нужно проверить напряжение батареи, и если оно ниже необходимого, провести нормальную зарядку с помощью зарядного устройства. Если АКБ новая, то на все это потребуется 3 — 4 часа, но если аккумулятор пробыл в магазине свыше года, то на зарядку может потребоваться 6 — 10 часов.
Правильная зарядка аккумулятора — гарантия его долгой и стабильной работы, и этому делу нужно уделять большое внимание. Тем более, что при некотором навыке это не будет доставлять проблем и неудобств.
Аккумулятор не набирает плотность при зарядке
Всем привет, как и обещал выкладываю инструкцию как нужно заряжать аккумулятор, Моему аккумулятору (БАРС пр-ва Казахстан) 4 года, заводился в -28 без проблем, до этого был кальциевый Акком, он стоял с завода но по своей глупости я его убил, кальциевые нельзя разряжать полностью иначе все труба, можно попробовать зарядить большим током, но это редко помогает, заряд держать перестает.
Как узнать что сажает аккумулятор читаем Разряжается аккум. Как замерить ток утечки.
В общем мой аккумулятор работал исправно, просто хочу показать как нужно заряжать и обслуживать батарею, а не менять ее каждый год.
Сначала снимаем аккум и несем домой греться.
ВАЖНО! Мерить плотность и заряжать холодный аккум нельзя! Либо греем до комнатной температуры, либо качаем таблицу зависимости плотности электролита от температуры электролита и считаем заряжен ваш аккум или нет.Это все сложно, проще согреть аккумулятор, либо около батареи, либо как я в тазике с слегка горячей водой.
Как поднять и повысить плотность электролита в аккумуляторе самостоятельно?
Правильное обслуживание аккумулятора на всех автомобилях ВАЗ
Как правильно нужно обслуживать аккумулятор? 1) Изначальна подготовка к обслуживанию аккумулятора: 2) Заливание дистиллированной воды в аккумулятор: 3) Замер плотности электролита в аккумуляторе: 4) Зарядка аккумулятора:
Изначальна подготовка к обслуживанию аккумулятора:
1) Сперва оденьте на руки перчатки, так как в аккумуляторе находится кислота, которая при попадании на кожу может вызвать травмы. 2) Далее чистой, или же немного загрязненной небольшой тряпкой, очистите всю поверхность аккумулятора от грязи, для того что бы при выворачивании пробок, в аккумуляторные отсеки не попадала различного рода грязь.
Примечание! При попадании грязи в отсеки аккумулятора, может повредится аккумуляторная батарея!
3) Следом проверьте насколько хорошо сидит аккумулятор на своем месте, если аккумулятор болтается, то в таком случае примите все меры по устранению этой проблемы.
Примечание! Если аккумулятор не прочно сидит на своем месте, то есть болтается, то при езде на автомобиле происходит неприятная вибрация, которая может привести к повреждению аккумулятора!
4) Затем проверьте хорошо ли сидят клемы на аккумуляторе, плохо затянутые клемы могут так же привести к отказам электрооборудования в машине.
Заливание дистиллированной воды в аккумулятор:
1) Сперва при помощи пяти рублевой монеты, или же толстой отвертки, выверните абсолютно все пробки, которые закрывают отсеки аккумулятора.
2) И после чего проверьте уровень дистиллированной воды, в каждом отсеке аккумулятора, но если же уровень в каком либо отсеке аккумулятора слишком мал, то в таком случае долейте в этот отсек дистиллированную воду, до нужного уровня.
Замер плотности электролита в аккумуляторе:
1) Для того что бы произвести такой замер, воспользуйтесь ареометром, для этого: 1. Сперва нажмите руками на верхний резиновый бачок ареометра, и после чего вставьте кончик ареометра в отсек аккумулятора, и затем сразу же отпустите резиновый бачок, и вследствие чего электролит из аккумулятора, перейдет в колбу.
2. После того как электролит окажется в колбе, извлеките колбу аккуратно из отсека аккумулятора, и по ареометру в этой колбе проверьте плотность электролита.
Примечание! Плотность электролита считается хорошей, когда метка на ареометре стоит в зеленой части!
Зарядка аккумулятора:
1) Для того что бы зарядить аккумуляторную батарею, во-первых скиньте обе клемы с клемников аккумулятора. (см. Снятие клем с клемников аккумулятора)
Примечание! После снятие клем, проверьте клемники на наличие окисления, по возможности воспользуйтесь щеткой с металлическими щетинками, или же наждачной бумагой, и аккуратно удалите окисление с клемников аккумулятора!
2) И после чего подсоедините оба зажима от зарядного устройства, к клемникам аккумулятора.
Примечание! Подсоединять зажимы нужно строго плюс к плюсу, а минус к минусу!
Важно! 1) Никогда не заливайте электролит в отсеки аккумулятора, в них нужно заливать лишь дистиллированную воду! 2) Когда вы будете удалять кислоту с клемников аккумулятора, рекомендуется щетку или же наждачную бумагу смочить в воде, причем в этой воде должна быть разведена сода!
Почему при зарядке аккумулятора не кипит одна банка? Бывает, но не часто
Как пользоваться ареометром для измерения плотности электролита?
Измерение плотности жидкости в аккумуляторе — одна из важных стадий тестирования и диагностики батареи. Достаточно провести измерения ареометром, чтобы получить достоверные данные о состоянии электролита. Плотность жидкости важна по многим причинам. Одной из них является возможное прикасание свинцовых пластик друг к другу и их последующее разрешение. Снижается плотность электролита по многим причинам. Первая — это естественное изменение состояния с годами эксплуатации аккумуляторной батареи. Вторая — постоянное доливание дистиллированной воды в банки аккумулятора, что вызывает разжижение электролита, но сохраняет его уровень. Добавлять в банки серную кислоту или готовый электролит с других аккумуляторов не стоит — это только ускорит выход из строя батареи.
Если вы заметили серьезные проблемы с автомобильной батареей, воспользуйтесь диагностическими методами, известными с давних времен. Для диагностики вам потребуется ареометр, который измеряет плотность электролита и расскажет о состоянии аккумуляторной батареи. Ниже в публикации мы рассмотрим, как пользоваться ареометром и как правильно читать данные, которые он предоставляет. Также рассмотрим особенности информации от этого прибора и возможные способы устранения неполадок, которые возникли.
Как пользоваться ареометром для измерения плотности жидкости в аккумуляторе?
Опустить прибор ареометр прямо в банки аккумулятора не представляется возможным, потому придется откачать немного электролита и проверить его плотность. Помните, что каждая банка аккумулятора работает независимо друг от друга, поэтому измерить плотность жидкости придется для всех присутствующих рабочих пространств. Откачать нужное количество жидкости в специальную колбу для последующего измерения можно с помощью любой трубки, один конец которой можно закрыть пальцем. Последовательность действий в данном случае будет следующей:
- убедитесь, что трубка не расплавится под влиянием агрессивной среды — кислоты из аккумулятора;
- вставьте часть трубки в банку, чтобы жидкость набралась внутрь и осталась на одном уровне во всей банке;
- закройте пальцем верхнее отверстие трубки, поднимите набранную жидкость и слейте ее в колбу;
- повторите этот процесс необходимое количество раз, чтобы получить нужное количество жидкости;
- далее в колбу нужно опустить ареометр, дождаться его выравнивания и посмотреть на цифру, которая находится на линии поверхности жидкости;
- эта цифра и будет означать плотность электролита в вашем аккумуляторе, которую вы ищете;
- далее следует проделать эту процедуру со всеми банками аккумулятора, чтобы получить достоверную картину состояния батареи.
Будьте осторожны, выполняя эту процедуру, ведь вам придется работать с агрессивной кислотой, которая не должна попадать на участки кожу, в глаза или рот человека. Если даже небольшая частица попадет на вас, неприятные последствия вам гарантированы. Рекомендуем обезопасить себя качественными перчатками, устойчивыми против кислоты, а также хорошей колбой, которая не расплавится от воздействия агрессивных веществ. С помощью ареометра вы только получите определенные данные о состоянии вашего аккумулятора, а вот правильно интерпретировать и использовать их — это непростая задача, которая требует специализированных знаний.
Уровень и плотность электролита — два важных фактора хорошей работы батареи
Автомобильный аккумулятор работает без перебоев и проблем, если плотность электролита при +25 градусах по Цельсию равна 1.28 г/см3. Это значение имеют все новые батареи, которые не работали на автомобилях и обладают заводской сертификацией. Если же плотность в одной из банок ниже, можно предположить, что в этой части аккумулятора произошло короткое замыкание, свинцовые пластины прикоснулись друг к другу, что вызвало поломку аккумуляторной батареи. Если плотность жидкости ниже нормы во всем аккумуляторе, это свидетельствует о таких возможных проблемах:
- батарея глубоко разряжена, она не может дальше выполнять свои функции в полноценном режиме;
- аккумулятор прошел через стадию сульфитации, получил определенные проблемы в химической реакции;
- батарея прошла через чрезмерный износ при отказе генератора и работе двигателя только на аккумуляторе;
- АКБ просто устарела и нуждается в замене по причине слишком высокого возрасте и большого износа;
- автомобильный аккумулятор был произведен изготовителем, который не проверяет качество продукции;
- перед вами не заводской аккумулятор, а подделка, которая не предоставляет особой надежности.
Любые проблемы можно решить, а самым популярным решением задачи слишком малой плотности электролита является зарядка аккумулятора. Если получится повысить плотность путем зарядки, значит АКБ еще сможет определенное время послужить. После зарядки несколько снижается уровень электролита в банках, потому может понадобится доливка дистиллированной водой после выполнения нескольких этапов заряда. Низкий уровень электролита вызывает прикосновение свинцовых элементов и значительное увеличение риска выхода из строя всей аккумуляторной батареи. Потому следите за уровнем жидкости в банках, если ваш аккумулятор позволяет производить обслуживание.
Когда стоит поменять батарею и не выполнять ее ремонт и попытки зарядки?
Сегодня популярным трендом среди производителей аккумуляторных батарей является изготовление АКБ, которые невозможно обслужить. Речь идет даже о сложности зарядки аккумулятора, не говоря о проблемах с измерением плотности внутренней среды. Такие батареи не обладают отверстиями для изучения внутренней части аккумулятора. Зачастую это не позволяет получить необходимые условия для обнаружения проблем батареи, что вызывает необходимость менять аккумулятор на новый. Конечно, для производителя это наиболее выгодный вариант. Замена автомобильной батареи обязательно в таких случаях:
- разрядился гелевый аккумулятор — такие виды батарей никак не обслуживаются и не заряжаются;
- произошел полный глубокий разряд из-за отказа генератора, аккумулятор перестал брать заряд при подключении устройства;
- жидкость в банках аккумулятора выглядит мутной — посыпались свинцовые пластины, которые невозможно восстановить;
- уровень электролита начал активно и постоянно падать, что вызывает отказ батареи в нормальной работе;
- обслуживание аккумулятора невозможно по причине отсутствия пробок для отвинчивания верхних частей банок;
- аккумулятор разгерметизировался, электролит начал вытекать из него прямо в моторный отсек.
Не допускайте вытекания электролита внутри подкапотного пространства, ведь это может вызвать возгорание проводки или автомобильной резины. Будьте осторожны с любыми проявлениями взаимодействия с кислотой, поскольку во многих АКБ залита невероятно гремучая смесь кислот, которая точно не сделает вашу кожу мягкой и шелковистой. Пользуясь ареометром и другими средствами проверки автомобильной батареи, стоит помнить о возможных проблемах и неполадках, которые нельзя исправить. Потому в любом случае следует готовиться к покупке нового аккумулятора, как только старый начал показывать характер. Смотрите видео с рекомендациями по замеру плотности электролита в аккумуляторе:
Подводим итоги
Качественные аккумуляторы способны предоставить до 8-9 лет службы без проблем и перебоев. Тем не менее, нужно обращать внимание на особенности работы батареи, заряжать ее при необходимости и проводить обслуживание электролита и внутреннего пространства АКБ. Как только вы начнете следить за всеми этими особенностями, вы сможете защитить батарею от непредвиденных проблем с изменением состояния жидкости и прочими проблемами.
Купив качественную аккумуляторную батарею для автомобиля, вы получите отличную работу оборудования и сможете без лишних сложностей пользоваться аккумулятором очень долгое время. Но если вы заметили смертельную неисправность в АКБ вашего автомобиля, следует срочно проехать в специализированный магазин и приобрести новую батарею. Только так можно обезопасить себя от несвоевременного выхода из строя источника питания. А вы когда-нибудь замеряли плотность электролита в аккумуляторе вашего автомобиля?
Плотность обычного тосола
Плотность тосола является чрезвычайно важным показателем при работе с данной охлаждающей жидкостью, которая обычно применяется для уменьшения температуры автомобильного двигателя. В народе этот раствор еще называют «незамерзайкой». Он представляет собой смесь воды, антифриза и особых присадок, которые оберегают внутренние системы двигателя автомобиля от ржавчины и повреждений вследствие активных химических реакций. Его главной характеристикой эксперты считают высокую стабильность работы при больших морозах.
Содержание
- Тосол: характеристики и свойства
- Замер плотности тосола в магазине
- Как узнать плотность?
1 Тосол: характеристики и свойства
Но существует ситуация, когда способность тосола выполнять свои непосредственные функции резко уменьшается и происходит практически полная потеря способности сопротивляться температурам, которые сильнее обычных заморозков. Обычно это является прямым следствием изменения плотности охлаждающего раствора, вот почему важно вовремя ее измерить.
Тосол изначально был названием торговой марки в СССР. Именем нарицательным это слово стало гораздо позже. Существует несколько гипотез относительно происхождения названия. По самой распространенной первые три буквы означают «Технологии органического синтеза», а последние две — «Отдельная Лаборатория», которая и разработала данную смесь. По другой теории «ол» — это обычное окончание большинства спиртов, таких как этанол и метанол.
Для того чтобы узнать плотность тосола, используют специально для этого созданное устройство — ареометр. Сейчас чаще всего в магазинах продаются устройства, которые имеют сразу две шкалы, чтобы узнавать плотность электролитов и иметь возможность определить температуру застывания охлаждающего раствора.
Прибор для измерения плотности электролитов Рекомендуем ознакомиться
- Антидетонационные присадки к бензинам
- Состав тосола – что необходимо знать об охлаждающей жидкости?
- Температура кипения антифриза – как не обжечься на мелочах
- Автосканер для самостоятельной диагностики любой машины
Для проверки плотности тосола или другой охлаждающей жидкости следует открыть капот автомобиля и выкрутить верхнюю часть радиатора. Далее нужно сдавить верхнюю часть ареометра, где находится баллон для того, чтобы избавиться от кислорода и затем вставить устройство в радиатор. После этого нужно нажать на грушу, что приведет к наполнению колбы специальным раствором.
После совершения всех предыдущих действий нужно перевести взгляд на шкалу в верхней части ареометра: черта, образующаяся при касании жидкости к стержню ареометра, считается соответствующей температуре перехода тосола в замерзшее состояние.
Шкала в верхней части ареометра
Если тосол обладает плотностью, которая не препятствует его использованию во время сильных морозов, шкала приобретет зеленый оттенок ( от 29 до 39 °С), если у смеси изменились морозоустойчивые свойства в меньшую сторону, шкала станет красноватой (19-29 °С), при серьезных изменениях характеристик она будет иметь желтый цвет (10-20 °С). Если тосол полностью утратит полезные свойства, шкала станет голубой (0-10 °С). Далее надо сдавить баллон в верхней части ареометра и впрыснуть тосол назад в радиатор. В ситуации, когда плотность смеси уменьшилась, к ней нужно добавить концентрированные добавки. И наоборот, при повышении плотности в охлаждающий раствор нужно добавить чистой отфильтрованной воды, хватит и литра.
После применения устройство нужно помыть обыкновенной водой и высушить.
Не стоит использовать один и тот же ареометр для того, чтобы узнать плотности разных компонентов тосола и других подобных ему жидкостей.
2 Замер плотности тосола в магазине
Покупатель способен узнать плотность тосола прямо в магазине — это необходимо для того, чтобы обнаружить подделку, наиболее элементарной из которых может стать обычная вода из-под крана, покрашенная голубым красителем. Обычно продавец обязан предложить выполнить проверку охлаждающей смеси с помощью особого ареометра: высококачественный тосол обладает плотностью от 1,072 до 1,078 г/см3. Но и такая проверка может ни к чему не привести. В некоторых приборах единицей измерения будут не г/см3, а кг/л.
Не раз происходили ситуации, когда для достижения нужных характеристик нечистые на руку дельцы подмешивали обычную кухонную соль в жидкость, призванную играть роль тосола. Обычно используют соотношение 1 килограмм на 5 литров жидкости.
Разбавленный некачественный тосол
Чтобы не стать жертвой фальшивки, нужно покупать тосол лишь в больших сетевых гипермаркетах проверенных фирм.
Качество тосола на месте покупки лучше всего проверить с помощью лакмусовой бумаги, этот способ считается наиболее достоверным. Для этого необходимо погрузить полоску в тосол и сопоставить результат со шкалой, чтобы узнать рН смеси. Если полоска приобрела красноватый оттенок (рН от 1 до 4), смесь содержит много кислотных компонентов и является фальшивкой, если полоска становится голубой (рН от 9 до 14), в растворе много щелочных составляющих, что свидетельствует либо о фальшивке, либо о низкокачественном тосоле. Зеленоватый оттенок контрольной полоски (рН от 5 до 8) бывает в ситуации, когда тосол имеет отличное качество и не является подделкой.
3 Как узнать плотность?
У каждого автомобилиста должно быть универсальное устройство для диагностики своего автомобиля.
Произвести чтение, сброс, анализ всех датчиков и настройку бортового компьютера автомобиля Вы сможете самостоятельно с помощью специального сканера.
Чтобы найти плотность какого-то объемного тела, нужно узнать его массу с помощью обычных весов и объем методом замеров. Далее следует определить соотношение массы и объема. Чтобы узнать плотность жидкости, надо использовать ареометр, для определения плотности газа подойдет плотномер.
Чтобы определить объем, нужно воспользоваться следующими рекомендациями, в зависимости от формы тела. В случае, если объект обладает формой параллелепипеда (к примеру, строительный кирпич), нужно все его три измерения — ширину, высоту и длину перемножить друг на друга.
Наиболее элементарный вариант для определения объема жидкости — залить ее в особый цилиндр с делениями и по ним узнать объем. Чтобы рассчитать объем твердого цельного объекта, у которого неправильная геометрическая форма, следует залить воду в цилиндр с делениями и погрузить в нее объект, а затем жидкость поднимется на тот уровень, который соответствует объему данного тела.
Вам все еще кажется что диагностика авто это сложно?
Если вы читаете эти строки, значит у вас есть интерес сделать что-то самому в машине и реально сэкономить, потому что вам уже знакомо что:
- СТО ломят большие деньги за простую компьютерную диагностику
- Чтобы узнать ошибку надо ехать к специалистам
- В сервисах работают простые гайковерты, а хорошего спеца не найти
И вы конечно устали выбрасывать деньги на ветер, а о том чтобы кататься по СТО постоянно не может быть и речи, тогда вам нужен простой АВТОСКАНЕР ELM327, который подключается к любому авто и через обычный смартфон вы всегда найдете проблему, погасите CHECK и неплохо сэкономите.
Мы сами протестировали этот сканер на разных машинах и он показал отличные результаты, теперь мы его рекомендуем ВСЕМ! Чтобы вы не попались на китайскую подделку, мы публикуем тут ссылку на официальный сайт Автосканера.
Что главное, как мне кажется, должен знать рядовой владелец “железного коня» об аккумуляторе:
— аккумулятор требует обслуживания. Есть аккумуляторы необслуживаемые. Где, скажем, электролит гелиевый. Но в этом случае нужно руководствоваться инструкцией изготовителя.
— основные причины, по которым аккумулятор приходится менять — потеря емкости.
Это происходит при эксплуатации и не зависит от желания владельца. Расхожая фраза среди автолюбителей: — «. аккумулятор слабый, не держит. «.
— Что же он должен держать? Заряд конечно. Причиной тому может быть, сульфатация пластин, осыпание активной массы. А это отработанный ресурс, старость. Старость можно приблизить неправильной эксплуатацией. Те аккумуляторы, которые выпускались лет 20 назад, отличаются от тех, что мы имеем сейчас. Технологии изменились, то же изготовление пластин, наполнение активной массы в эти пластины, присадки различные к электролиту и т.д. Поэтому, если раньше аккумуляторщику не нужно было читать маркировку, он мог по размеру аккумулятора сказать его емкость, сейчас по размерам определяя емкость можно ошибиться наверняка. И похожий по размерам на 60-ку, может спокойно иметь емкость близкую к 100 Ачас. Да и производители разные. И каждый в борьбе за качество пытается улучшить свое изделие.
Стартерные батареи подвергаются глубоким разрядам
Для того чтобы устранить последствия этих разрядов, аккумулятор должен периодически обслуживаться и заряжаться. Если аккумулятор имеет пробки, значит,
в нем периодически должен проверяться уровень и плотность электролита. Как периодически? Ну, хотя бы при переходе с весенне-летней на осенне-зимнюю эксплуатацию. Иными словами: «сезонное обслуживание». Не мешает так же посматривать и за состоянием аккумулятора, проводить внешний осмотр. Клеммы, верхняя крышка. Ну, по клеммам понятно. По крышке — иногда она «потеет». появляется белый налет, это хорошо видно особенно в теплое время года.
Такое должно насторожить. Многие аккумуляторы сейчас имеют достаточно прозрачный корпус, на некоторых есть даже отметки минимального уровня электролита. Ну, а там, где корпус непрозрачный, придется воспользоваться стеклянной трубочкой.
Пробки банок выкручиваются, трубочка вставляется в банку до момента упора в пластины. Затем верхнее отверстие закрывается пальцем, и трубочка вынимается из банки. Оставшийся столбик электролита в трубочке скажет вам об уровне его выше пластин. Он должен быть 8 -10мм. Если в трубочке меньше уровень — это нехорошо, если вообще нет- это очень плохо, если больше — то это тоже нехорошо, поговорка о каше и масле здесь некорректна. Если с уровнем все ясно — переходим к плотности.
Плотность электролита должна измеряться при температуре 20 град . С Почему именно при этой: потому что все расчетные таблицы сделаны для этой температуры. А дальше есть таблицы, которые вносят поправки, если температура отличается. Я попробую усреднить эти значения по климатическим районам. Условия так определим — электролит в аккумуляторе до зарядки и после. Условно возьмем три климатических зоны:
— Север,- где температура — 40 обычное явление
— Центр,- где может быть до -30
— Юг,- где – 5 скажем уже холодно
Так вот, для Севера Плотность электролита залитого в аккумулятор перед зарядкой -1,27,после -1.29, для Центра это будет 1.25,после1.27, для Юга -1.23, после1.25 г/см. куб.
Плотность электролита после заряда повышается и после заряда ее нужно обязательно проверять. Если плотность в какой – либо из банок после заряда не возросла (даже в одной) — можете готовиться к затратам на покупку нового аккумулятора.
При пониженной плотности аккумулятор не наберет нужную емкость при зарядке и будет быстро разряжаться, а зимой просто замерзнет и даже может лопнуть корпус.
При высокой плотности вроде бы все наоборот, но повышенная сульфатация пластин, быстренько приведет аккумулятор в негодность.
Теперь о заряде аккумулятора. Видов заряда кислотных аккумуляторов существует несколько. И применяются они в зависимости от конкретных условий. Сказать о них можно многое.… Но вот я думаю, нужно ли. Поэтому я скажу об основных, приемлемых для автолюбителя, а об остальном бегло и в общем…
Исхожу из того, что кто-то, прочитав эту информацию, захочет вдруг «оживить» старый аккумулятор, стоящий под верстаком в гараже. Ну, если не получится — ладно, все равно не выбросит.… Но дело в том, что зарядка аккумулятора требует соблюдения мер безопасности.
А некоторые виды зарядки, мягко говоря, далеко не безопасны и при их проведении нужно не только знать, что творишь, но и соблюдать дополнительные меры предосторожности. Да и зарядные устройства разные бывают. Каждый автолюбитель когда-нибудь приобретал новый аккумулятор. О способах и местах приобретения подробно говорить не будем. Но замечу только одно, уже во многих городах продают аккумуляторы, давая гарантию. Но при одном условии — вы приезжаете на своем авто, они проверяют исправность системы зарядки на автомобиле и устанавливают аккумулятор.
Зачем это делается. Есть неисправные. И если напряжение на зарядку аккумулятора будет выдаваться больше или будет обнаружена утечка при выключенном зажигании, (о сигнализации они знают) -гарантии никакой вы не получите. Ну, это на автомобиле, но вы решили обслужить свой аккумулятор, слили старый электролит, промыли, залили новый правильной плотности, и теперь осталось зарядить. Существует в продаже множество видов различных зарядных устройств. Нужно просто подобрать то, которое вам подходит. У нас есть зарядное устройство, которое сочетает в себе ручной и автоматический режим заряда и имеет защиту от перегрузки и короткого замыкания.
Ручной режим используем, когда нужно зарядить либо аккумулятор большой емкости, либо несколько одновременно.
Чем определяется ток нормального заряда аккумулятора. Выходным напряжением с зарядного устройства и внутренним сопротивлением аккумулятора, которое изменяется при его разряде и заряде. Нет, есть еще условия, но я их опускаю и в физику процесса не углубляюсь. Так вот, ток выставляется по прибору, (поскольку сопротивление вашего аккумулятора вы не знаете),- равным десятой части емкости вашего аккумулятора. Иными словами, если емкость равна 45А/ч, то нормальный ток заряда 4,5А. Вот с него вы и начинаете заряд. По мере заряда ток будет уменьшаться, т.к. аккумулятор будет заряжаться, и внутреннее сопротивление его будет возрастать.
Пробки на аккумуляторе должны быть открыты.
По мере зарядки вы заметите, что температура электролита будет повышаться.
Вообще, при зарядке аккумулятор периодически нужно «щупать за бочок», горячим он быть не должен.
В противном случае зарядку нужно немедленно прекратить.
Через некоторое время электролит начинает «закипать».
Закипает он не в прямом смысле (не как вода в чайнике). Начинается процесс электролиза, с выделением водорода и кислорода. Этот процесс напоминает кипение, по звуку. Нужно обратить внимание вот на что:
на «нормальном» аккумуляторе этот процесс в банках начинается одновременно (с небольшой разницей во времени). Но могут быть варианты. Какая-то банка может «закипеть» намного раньше остальных. Вот это и есть баночка, которая потеряла часть емкости, и нормальный зарядный ток для нее становится становится не нормальным, а больше. Может оказаться банка, которая не закипела, а остальные уже готовы. Тоже плохо. Возможная причина понятна. В любом случае после заряда нужно проверять напряжение и плотность электролита.
Были случаи, когда человека отвлекали или просто по невнимательности при замене электролита в одну или несколько банок вместо разбавленного электролита заливалась вода. И последнее, если вы решили это все делать сами, обязательно прочтите меры безопасности. Стеклянные банки, конечно, посуда хорошая и даже многоцелевая, но для приготовления электролита непригодная и опасная. Лучше уж использовать соответствующую пластиковую или эбонитовую тару. После смешивания кислоты с водой электролиту нужно дать остыть, и после этого уже замерять плотность. А лучше всего брать уже готовый расфасованный. Ну, это если есть где взять.
Теперь о напряжении. Автомобильный аккумулятор имеет 6 банок, соединенных последовательно. Напряжение одной заряженной банки 2,4В . Значит общее должно быть 14.4В.
Ну и о недозаряженном аккумуляторе. Вот я сегодня завел утром машину, приехал на работу. Померил напряжение на аккумуляторе — 12,86 В.
Ехать мне 4 км, ну и прогрев около трех минут. Температура воздуха утром была -17. Ночью не знаю. Машина ночует возле дома под открытым небом. Ну, наверное, процентов 85 от заявленной величины все же есть. Как вы считаете – нормальный аккумулятор? Емкость аккумулятора 45Ач. А теперь представим, что у меня стоит аккумулятор с емкостью 60Ач. ток заряда у этого аккумулятора будет другой. И времени на его заряд нужно больше. Да, я получу выигрыш во времени. Будет, разряжается дольше,… а заряжаться. А потом что с ним делать? Нет, можно конечно его снимать и ставить на зарядку… но, а в итоге свой срок он не выслужит, состарится быстро. И емкость он потеряет из-за постоянного недозаряда и сульфатации пластин. Чем опасна сульфатация… да тем, что, покрывая пластины налетом, выводит из процесса часть или полностью активную массу, которой заполнены пластины.
И об активной массе. Она может выпадать из пластин и оседать на дне банки. Этот процесс идет в ходе эксплуатации аккумулятора. И через какое- то время аккумулятор приходит в негодность, так как теряет емкость. Но есть вариант и жестче. Это когда владелец не обслуживает аккумулятор. А на его дне скапливается достаточно большое количество токопроводной грязи. И однажды попав на кочку — машина вдруг глохнет…
Происходит «закорачивание» пластин аккумулятора грязью.
Происходит резкое снижение внутреннего сопротивления аккумулятора, и какие последствия могут быть — зависит не от одного фактора.
Но спрогнозировать можно. И если все «срослось» в этот момент- стоимость ремонта будет значительно выше стоимости нового аккумулятора… и не одного его, обратите внимание. Поэтому, при замене электролита (обслуживании) — аккумулятор нужно мыть, убирать из него эту грязь. Работа скажу вам, требующая терпения.
Далее: аккумулятор, как многие заметили, располагается, как правило, в моторном отсеке, но даже если и в другом месте, он все равно находится внутри кузова. И обязательно имеет крепление. Он не должен болтаться и подпрыгивать при колебаниях кузова автомобиля при движении.
Почему, догадались ?- это будет способствовать осыпанию активной массы, какие бы там технологии при заполнении ею пластин не применялись. Это уже механическое воздействие.
И еще. Если вас просят дать аккумулятор, для того чтобы «пускануть» свою машину, и вы решили помочь — посмотрите что за машина.
Мотор может оказаться дизельным. О «прикуривании» разговор совсем отдельный. Так вот на дизелях аккумуляторы ставят помощнее, а иногда два параллельно,… а иногда два последовательно соединенных.… Да и токи пусковые разные. Так что сократить своему «другу» жизнь можете резко…. Вот теперь про активную массу все.
Теперь о зарядах. То, что было описано в начале, я кое-что не написал, допишу сейчас. Когда вы заряжаете нормальным зарядным током – при понижении тока по мере заряда аккумулятора вы изменяете выходное напряжение, поддерживая нужное значение тока. И так до окончания зарядки аккумулятора. Это будет заряд «нормальным зарядным током» Или как сейчас встречается название «постоянным током». Мне не совсем нравится это определение, поскольку у некоторых может вызвать неправильное толкование…
Данный вид заряда предпочтительно разбить на два этапа. Нормальным током довести напряжение на аккумуляторе до 14.4 В, соответственно и плотность, а затем уменьшить ток заряда в два раза и дать ему «покипеть» 2 часа.
Существует и «восстановительный заряд», опять же говорю, как учили меня, сейчас есть определение «уравнительный заряд». Но дело не терминологии, а в сути. Это тот же нормальный заряд, но по времени он длится больше – три часа. При достижении нормального напряжения и плотности электролита. Этот вид заряда позволяет устранить последствия глубоких разрядов и снизить сульфатацию электродов.
Есть еще другие виды зарядов. Они применяются тогда, когда есть ограничения во времени и требуется решать какие-либо задачи. Когда на срок службы аккумулятора уже никто не смотрит. Токи заряда и время при их проведении совершенно другие. Ток заряда может выбираться из расчета до 70% от емкости аккумулятора, время при этом значительно сокращается… Жизнь аккумулятора тоже. Опасные факторы, возникающие при зарядке, тоже проявляются быстро. Это заряд – «ускоренный», «форсированный». Но рядовому автолюбителю он вряд ли понадобится. Был еще в свое время один вид заряда… но тогда аккумулятор можно было разобрать, вынуть из него более или менее пригодные банки , собрать их в один корпус…. Или хорошенько промыть аккумулятор, развести электролит соответственной плотности, выполнить заряд…
Короче говоря, заставить аккумулятор какое-то время еще «послужить». После этого он просто выбрасывался. Причины, по которым я не описываю эти виды заряда, надеюсь, понятны.
Что же происходит на автомобиле? Заряжается ли там аккумулятор? Думаю, что нет. Подзарядка идет. А вот заряд, в том смысле как он должен быть – нет. Подзарядка это не очень хорошо для аккумулятора. Хотя для обеспечения работоспособности — приемлема. Вот поэтому обслуживание должно быть. Да, не написал, при зарядке температура электролита не должна быть больше 45-50град. Если температура растет — выключать немедленно.
В заключение хочу вот что сказать…
Так уж получилось, что в автомобиле выделились некоторые устройства, которые уверенно зачислили в разряд «пасынков». Аккумулятор тому яркий пример. Ну, стоит он себе там и пускай стоит. Нужен — то всего лишь для запуска.… Ну, музыку послушать на отдыхе.… Ой, ли. Сюда же можно и стартер отнести, и генератор…
Вспомните хоть одного человека, который провел ТО или приехал и попросил провести ТО перечисленных агрегатов. Стартер «ходит»- пока крутит, генератор пока напряжение выдает…
О каких там щетках или чистке коллектора речь… о смазке вообще вспоминают, когда подшипникам конец приходит. Кстати, когда загорается индикация в виде аккумулятора, то сразу говорят – «зарядка пропала». Зарядка-то зарядка, только правильнее будет сказать — «система электропитания автомобиля перешла на питание от аккумулятора» — считай режим аварийный.
И пульсации он сглаживает, и генератору «помогает», а не только запуск и прослушивание музыки. И место в системе электропитания автомобиля у него свое, достойное.
Маркин Александр Васильевич
Таврово мкр 2, пер. Парковый 29Б
Как поднять плотность электролита в аккумуляторе? Как заменить электролит в аккумуляторе? Что такое «плотность аккумулятора»?
Аккумуляторные батареи автомобилей созданы не только для пуска двигателя, но и для питания электрических приборов машины в тот момент, когда зажигание выключено. По невнимательности водитель с легкостью может забыть о включенных в автомобиле фарах или работающей магнитоле, громкость которой сведена к нулю. Вернувшись к машине на следующий день, можно обнаружить, что она не заводится, и причина тому севший источник питания. Завести машину при разряженном аккумуляторе можно, но через раз-два экстренные методы запуска двигателя начинают надоедать, и явно возникает необходимость вернуть в рабочее состояние аккумулятор.
«Плотность аккумулятора» или соотношение серной кислоты и воды в электролите
В простонародье распространен такой термин как «плотность аккумулятора». По сути, он является ошибочным, поскольку никто не измеряет плотность непосредственно источника питания. Любой автомобильный любитель скажет, что под понятием «плотность аккумулятора» подразумевается плотность электролита, который залит в батарею. Именно от того какой плотности электролит находится в аккумуляторе, зависит его возможность заряжаться и сохранять накопленную энергию.
Если аккумулятор разрядился по невнимательности водителя или другим причинам, следует попробовать вернуть ему работоспособное состояние при помощи зарядного устройства. Перед тем как заряжать аккумулятор, в него доливают дистиллированную воду, которая могла испариться в процессе работы источника питания. Вода в аккумуляторе смешивается с готовым электролитом, что приводит к понижению его плотности, то есть к уменьшению процентного содержания серной кислоты в итоговом растворе. Через некоторое время плотность электролита в аккумуляторе, из-за постоянного разбавления его дистиллированной водой, снижается, и опускается ниже комфортного уровня. Эксплуатация батареи становится невозможно, и в таких ситуациях возникает необходимость в повышение плотности электролита в аккумуляторе.
Как поднять плотность электролита в аккумуляторе самостоятельно?
Плотность аккумулятора, а если говорить точнее, то электролита в нем, повысить можно довольно просто без обращения к специалистам сервисного центра. Первым делом необходимо провести ряд подготовительных процедур:
- Подготовьте емкости, которые понадобятся для слива части старого электролита из аккумулятора;
- Обзаведитесь средствами личной защиты – перчатки, очки, одежда (которую не страшно испортить). Помните: Электролит аккумулятора частично состоит из серной кислоты, которая опасна, и при попадании на кожу способна вызвать ожог, а одежду серьезно испортить;
- Возьмите инструменты, которые понадобятся, чтобы поднять плотность электролита в аккумуляторе: ареометр, клизма-груша, мерный стакан, воронка;
- Купите необходимые расходные материалы: дистиллированная воды, аккумуляторная кислота или готовый электролит.
Чтобы поднять плотность электролита в аккумуляторе, придется самостоятельно полностью заменить весь электролит, который уже залит в батарею, на новый раствор. Сделать это довольно просто, если выполнять все по инструкции и соблюдать необходимые меры предосторожности.
Как поменять электролит в аккумуляторе?
Большинство современных аккумуляторов выпускаются разборными, и они предусматривают возможность замены электролита самостоятельно. Неразборные аккумуляторы – большая редкость, и в них нельзя при необходимости отвинтить пробки для удаления старого электролита и заливки нового. При желании можно залить электролит и в неразборную батарею, но для этого необходимо в каждой банке с помощью сверла проделать отверстие. После замены электролита на место отверстий напаивается пластмасса, и аккумулятор вновь становится рабочим.
Сам процесс замены электролита довольно простой, и он состоит из следующих пунктов:
- Первым делом необходимо снять аккумулятор с автомобиля и найти подходящее место для замены электролита в нем и зарядки;
- Далее необходимо снять защиту с аккумулятора, если она имеется, и открутить пробки с банок;
- После этого берем клизму-грушу и вставляем ее конец в одну из банок аккумулятора. Пользуясь данным резиновым прибором, выкачиваем из аккумулятора старый электролит и сливаем его в заранее подготовленную емкость. Внимание: Ни в коем случае не выливайте электролит на землю, если вы выполняете работы на улице;
- Выкачав практически весь старый электролит из всех банок, необходимо почистить пластины аккумулятора от его остатков. Сделать это можно с помощью дистиллированной воды, которая не вызовет внутри аккумулятора нежелательные реакции. Для этого дистиллированную воду заливают в каждую банку аккумулятора, после чего его поднимают и трясут. Хорошо удерживайте аккумулятор, чтобы в процессе тряски он не выпал. После этого сливаем получившийся раствор.
Стоит отметить, что некоторые автолюбители рекомендуют для «чистоты» будущего электролита в батарее не только промыть ее дистиллированной водой, но и использовать различные растворы. К примеру, рекомендуется залить в батарею раствор воды с содой и оставить его там на 4 часа. После этого также рекомендуется заливать на час в аккумулятор раствор поваренной соли.
- Очистив банки аккумулятора от старого электролита, необходимо залить в него новый. Хорошо, если вы приобрели готовый электролит в магазине, тогда достаточно залить его с помощью воротки до указанных граней в каждую банку. В случае если у вас аккумуляторная кислота и дистиллированная вода, требуется предварительно сделать раствор электролита с плотностью в 1,27-1,28 грамм на сантиметр кубический;
- После этого закрываем банки и начинаем процесс зарядки аккумулятора;
- Сменив электролит в батарее, необходимо выполнять процесс заряда батареи по циклу «зарядка-разрядка» с силой тока не более 0,1 Ампер до тех пор, пока плотность аккумулятора (плотность электролита) не достигнет рабочих значений. Внимание: Зарядку можно окончить и начать использовать аккумулятор только после того как на концах клемм аккумулятора удастся замерить 14 Вольт.
Если вы решили поменять электролит в аккумуляторе самостоятельно, настоятельно рекомендуем соблюдать все меры предосторожности. Кислотная среда, которой является электролит, вредна не только при попадании на кожу, но и в дыхательные пути. Менять электролит следует исключительно в хорошо проветриваемых помещениях с предельной осторожностью.
Загрузка…Причины падения плотности электролита в аккумуляторе – Taxi Bolt
Владельцы автомобилей часто сталкиваются с проблемой отказа двигателя от запуска. Подобное случается из-за разрядки аккумулятора и ухудшения свойств электролита. Перед тем как поднять плотность в аккумуляторе, нужно выяснить причину ухудшения качества кислотного раствора.
После этого можно приступать к восстановлению батареи. Действия не представляют особых сложностей.
В процессе эксплуатации снижение плотности аккумулятора обычное явление, особенно при несвоевременной замены старого электролита.
Почему снижается плотность электролита
Снижению плотности способствуют такие факторы:
- Разряд. При потере заряда снижается и плотность наполнителя. Во процессе зарядки этот параметр постепенно увеличивается. Если батарея утрачивает большую часть емкости, речь идет о падении концентрации кислоты.
- Длительная эксплуатация или хранение в условиях низких температур.
- Выкипание электролита при перезаряде. Если зарядное устройство подает слишком высокое напряжение, жидкий электролит переходит в газообразное состояние и выводится наружу через имеющиеся на корпусе отверстия.
- Частое добавление воды. Водители добавляют жидкость для поддержания стабильного уровня электролита. Не все пользуются ареометром, измеряющим плотность. Вместе с водой выкипает и кислота, что приводит к снижению концентрации.
Пример сульфатации пластин автомобильного аккумулятора.
Опасности низкой и высокой концентрации кислоты
Повышенная концентрация электролита становится причиной преждевременного выхода батареи из строя. Кислота разрушает металлические пластины. К воздействию составов на основе серной кислоты чувствительна даже сталь. Низкая концентрация приводит к таким проблемам:
- Сульфатация. На пластинах появляется налет, состоящий из сульфата свинца. Аккумуляторная батарея становится неспособной принимать заряд.
- Повышение порога замерзания. Жидкость кристаллизуется уже при -5°С. Лед сдвигает и повреждает металлические детали. При деформации пластин и коротком замыкании емкостей батарею восстановить невозможно. При плотности 1,28 г/см³ электролит замерзнет только при -58°С.
- Проблемы при запуске двигателя. Наиболее выражен этот признак в зимний период.
Для проверки плотности электролита используют денсиметр (справа).
Проверка плотности электролита
Определить плотность электролита можно в домашних условиях. Процедуру рекомендуется проводить при комнатной температуре. Перед началом работы подготавливают такие инструменты:
- Защитные перчатки, костюм и очки. В состав наполнителя аккумулятора входит кислота. При попадании на кожу вещество вызывает химический ожог. Опасными являются и пары кислоты, поэтому работают только в хорошо проветриваемом помещении.
- Денсиметр. Прибор используется для измерения плотности. Имеет вид стеклянной трубки с грушей и встроенным ареометром.
Самостоятельно измерение плотности выполняют так:
Для проверки плотности электролита конец денсиметра погружают в ёмкость аккумулятора.
- Аккумулятор вынимают из посадочного гнезда. Защитный кожух демонтируют, вывинчивают пробки.
- Проверяют уровень электролита. В свинцово-кальциевых батареях раствор должен на 1,5 см закрывать пластины.
- Батарею полностью заряжают. Проверку плотности начинают через 5-6 часов после завершения зарядки. При нормальном уровне электролита трубку денсиметра погружают в банки, выкачивая небольшое количество жидкого наполнителя.
- Оценивают показатели прибора. Ареометр должен свободно плавать в растворе. Соприкосновение прибора со стенками емкости не допускается. Показания оценивают с учетом температуры окружающей среды.
- Проверяют плотность электролита в остальных банках. Показания записывают и сравнивают с нормальной плотностью.
Такой способ проверки подходит только для разборной батареи, когда имеется доступ к электролиту. Необслуживаемый аккумулятор снабжен индикатором, цвет которого меняется в зависимости от плотности наполнителя.
Как откорректировать плотность раствора
Нормальное показание лежит в диапазоне 1,25-1,29 г/см³. Если при температуре +25°С отмечается более низкое значение, его нужно повышать. Падение концентрации в одной из банок свидетельствует о коротком замыкании.
Высокие значения выявляются после зарядки мощным током, сопровождающейся кипением электролита. Повысить плотность можно путем добавления кислоты, заправки готового состава или использования зарядного устройства.
Плотность раствора в холодный период
В холодное время года плотность наполнителя заряженного аккумулятора должна составлять 1,27 г/см³. Дополнительная корректировка в регионах с суровым климатом при смене сезона не проводится.
Таблица зависимости плотности электролита в аккумуляторе от температуры.
Подготовка к восстановлению батареи
На этапе подготовки выполняют такие действия:
- Замеряется этот основной показатель автомобильной батареи при температуре около 22 градусов. Сделать этом можно при помощи специального прибора – ареометра. При этом работать можно только в перчатках и защитных очках, чтобы избежать возможных ожогов.
- При приготовлении нового электролита кислота добавляется в воду. Если же сделать наоборот, жидкость начнет кипеть, что может привести к кислотным ожогам.
- Переворачивать аккумулятор при работе с ним категорически запрещено, поскольку при этом могут посыпаться его пластины, что приведет к выходу прибора из строя.
- Наперед следует подготовить емкости, в которые будет сливаться старая жидкость и готовиться новая.
- Потребуются точные расчеты необходимого объема кислоты, поскольку в процессе зарядки плотность жидкости в АКБ возрастет.
Повышение плотности электролита
Если плотность составляет более 1,18, доливают готовый состав с нормальной концентрацией серной кислоты. Процедура включает такие этапы:
- Разрядка батареи. Долив электролита проводится только при полном разряде. Для этого АКБ подключают к мощной лампе или другому потребителю энергии.
- Подготовка корректирующего компонента. Уровень кислоты в таком средстве должен составлять не менее 1,4 г/см³.
- Добавление корректирующего состава. Предварительно откачивают часть имеющегося электролита. Густота раствора должна повыситься до 1,25. Действие выполняется для каждой банки. Объем доливаемой жидкости должен составлять не более 50% от откачанного. После добавления жидкости АКБ встряхивают, давая наполнителю перемешаться.
- Зарядка батареи. Аккумулятор оставляют на полчаса, что позволяет концентрации в банках выровняться. Элемент питания подключают к зарядному устройству на 30 минут. Сила тока должна быть минимальной. Через 2 часа после прекращения зарядки замеряют плотность и количество наполнителя. Если концентрация не поднимается, вышеуказанные действия повторяют.
Можно ли повысить минимальную плотность
Если уровень плотности раствора, что проводит ток в АКБ автомобиля упал намного ниже 1,18 г/см3, поднимать ее нет никакого смысла. В таком случае необходимо слить весь раствор, заменив его свежим.
Сначала с банок откачивается с помощью спринцовки как можно больше электролита. Далее батарея помещается в большую емкость, аккуратно переворачивается на бок, в дне каждой банки просверливается небольшое отверстие. Перевернув прибор, с него сливаются все излишки оставшейся жидкости.
Далее через крышки банок заливается дистиллированная вода с целью их промывания. После этого проделанные отверстия запаиваются пластмассой, стойкой к воздействию электролитической жидкости.
Сделав это, в АКБ заливается свежий раствор, после чего прибор будет готов к использованию. Недостатком подобного способа является то, что в конечном результате снижается срок службы устройства, но некоторое время оно все еще поработает до покупки нового.
Почему снижается плотность электролита?
Чаще всего с целью поддерживать на требуемом уровне количество жидкости внутри автомобильной батареи владельцы машины доливают туда дистиллированную воду. При этом редко проверяется плотность получившегося раствора. Вместе с тем, когда количество дистиллированной воды будет достаточно большим, при подзарядке вместе с этой жидкостью будет выкипать и электролит, что и приводит к снижению его плотности.
Рано или поздно этот показатель упадет ниже критического уровня, и завести транспортное средство уже не получиться.
В таком случае возникает необходимость повысить этот параметр раствора в аккумуляторе, что вернет его работоспособность.
Плотность ниже минимального значения
Бывают такие случаи, когда уровень этого показателя опускается ниже отметки 1,18. В таком случае вышеописанный способ ничем не поможет.
Чтобы восстановить работоспособность аккумуляторной батареи, вместо электролитического раствора нужно использовать кислоту, плотность которой выше, чему у электролита. При этом все действия проводятся точно так же, как и в предыдущем случае до того времени, пока показатель не придет в норму.
Как повысить при помощи зарядного устройства
Если концентрация кислоты упала за зиму, ее можно восстановить путем подачи слабого тока. Зарядка занимает не менее 3 суток, она считается эффективной при невозможности восстановления АКБ другими методами. Содержимое набравшей полную мощность батареи при зарядке начинает кипеть. Признаком испарения воды является образование мелких пузырьков на поверхности.
Избыток жидкости испарится, концентрация кислоты увеличится. Общий уровень наполнителя станет маленьким, поэтому придется добавлять готовый аккумуляторный раствор. После завершения процедуры пользуются ареометром. Если показатели прибора слишком низкие, зарядку и добавление электролита повторяют.
Вечно через пять лет? Нет, батарейки под носом поправляются
Увеличить / В каком году снова появится мистер Фьюжн, чтобы составить конкуренцию Tesla и др.?Универсальные картинки
Трудно писать об исследованиях аккумуляторов в отношении этих компонентов, не услышав эха определенных комментариев еще до того, как они будут опубликованы: Он никогда не выйдет на рынок. До холодного синтеза навсегда останется 20 лет, а до новой технологии батарей навсегда останется пять лет.
Этот скептицизм понятен, когда новый дизайн батареи обещает революцию, но он рискует упустить тот факт, что батареи стали лучше . Литий-ионные батареи уже давно воцарились — это правда. Но «литий-ионные» — это батареи категории , которые включают в себя широкий спектр технологий, как с точки зрения аккумуляторов, используемых сегодня, так и тех, которые мы использовали ранее. Многое можно сделать — и много было сделано , — чтобы сделать литий-ионный аккумулятор лучшего качества.Фактически, прирост количества энергии, которое они могут хранить, составляет порядка пяти процентов в год. Это означает, что емкость ваших нынешних аккумуляторов более чем в 1,5 раза выше, чем они были бы десять лет назад.
Литий-ионные батареиэволюционировали, заметили вы это или нет. Вот как.
Почему литий-ионный рев?
Полезно начать с определения того, что делает аккумулятор «литий-ионным». Звезды шоу — это, очевидно, атомы лития, которые легко отдают электрон, образуя ионы.Каждая батарея имеет катод и анод, а между ними находится сепаратор и электролит. На катодной стороне литий находится в составе оксида металла, где он будет оставаться до тех пор, пока каждый атом удерживает этот электрон. После отделения от электрона ионы лития будут перемещаться через сепаратор и собираться на аноде. Освободившиеся электроны не могут пересечь разделитель, поэтому вместо этого они проходят через цепь, подключенную к двум электродам батареи.
Во время зарядки ионы и электроны лития накапливаются в аноде.Во время разряда электроны проходят через цепь, и ионы лития снова проходят через сепаратор, воссоединяясь по мере того, как литий осаждается обратно в структуру материала катода.
Увеличьте / узрите: литий-ионный аккумулятор.Настоящая батарея состоит из трех слоев материалов: катодного материала, нанесенного на металлическую фольгу, разделительного слоя и анодного материала, нанесенного на другую металлическую фольгу. Сложите их вместе, и у вас будет карманный или призматический аккумулятор, который вы можете найти в своем телефоне или Chevy Bolt.Сверните слои в катушку, и у вас будет цилиндрическая батарея, как в электроинструментах или Tesla.
РекламаВы не можете избавиться от лития и по-прежнему называть его литий-ионным аккумулятором, но все остальное — честная игра. Для изготовления катода используется много разных материалов, и вы можете заменить сепаратор или попробовать другой химический состав электролита. Есть даже варианты материала анода, хотя один из них уже давно доминирует.
В первых попытках создания литий-ионных батарей в качестве анода использовался твердый металлический литий, но это приводило к серьезным проблемам со стабильностью. (Проблемы, над которыми до сих пор работают.) Прорывом стало использование графита в качестве анода. Графит занимает ценное пространство, не обеспечивая при этом дополнительной энергоемкости, но его пластинчатая структура обеспечивает безопасное размещение ионов лития, значительно увеличивая срок службы и безопасность. Благодаря этому в 1991 году появились первые литий-ионные аккумуляторы Sony.
Даже первые литий-ионные батареи имели большую плотность энергии, чем никель-металлогидридные батареи, удерживая больший заряд в меньшем пространстве при меньшем весе. Они также работают с более высоким напряжением ячеек, что может быть полезно. Конечно, не только солнце и единороги. Литий-ионные батареи более дорогие, а органический растворитель, используемый для электролита, легко воспламеняется, что создает опасность возгорания, с которой необходимо бороться.
Никель-металлогидридные батареипродолжают использоваться в перезаряжаемых батареях AA и AAA, а также в гибридных транспортных средствах, которые не нуждаются в таком большом накоплении энергии.Но литий-ионная батарея доминирует там, где пространство и вес имеют большое значение, в таких местах, как ноутбук или электромобиль.
Очень специфический набор навыков
Батареиобладают более чем одной или двумя важными характеристиками, поэтому они часто представлены в виде паутины (например, приведенной ниже). «Есть плотность энергии, есть удельная мощность, есть стоимость, есть срок службы, есть календарный срок, есть безопасность», — сказал Ars Венкат Сринивасан из Аргоннской национальной лаборатории.«Что обычно происходит в батареях, так это компромисс между этими разными вещами». Даже просто придерживаясь литий-ионных аккумуляторов, существуют конфигурации и конструкции, которые могут подчеркнуть некоторые из этих характеристик за счет чего-то еще. Например, можно немного повысить плотность энергии, но, возможно, это будет связано с более высокими затратами или с сокращением срока службы.
Реклама Увеличить / Единый общий набор характеристик аккумулятора.Это может быть одной из причин разочарования или скептицизма в отношении новостей об исследованиях аккумуляторов. Исследование может определить способ значительно улучшить одну характеристику, сделав захватывающий вывод о прибылях и убытках. Но дизайн может быть непрактично плохим по-другому. Хотя исследователи аккумуляторов учатся на том, что работает, а что нет, это означает, что многие лабораторные аккумуляторы, о которых вы можете прочитать, никогда не появятся на рынке.
Однако это также означает, что существует множество ручек, которые можно использовать для настройки конкретной конструкции батареи.Даже такие, казалось бы, незначительные вещи, как точная толщина анодного или катодного слоя, который осаждается на металлической фольге, могут повлиять на поведение. Например, чем толще катод по сравнению с его подложкой из фольги, тем выше удельная энергия батареи, поскольку фольга занимает меньшую часть общего объема. Но более толстый слой материала также означает более длительный путь для ионов и электронов лития. Это выделяет больше тепла во время работы от батареи и сокращает срок службы. С другой стороны, держите катод тоньше, и он сможет выдерживать более высокие скорости заряда и разряда, поскольку более короткий путь легче.
В небольших устройствах, где пространство ограничено, предпочтительны более дорогие конструкции с максимальной плотностью энергии. Электромобили отличаются, поскольку стоимость аккумулятора составляет значительную часть общей цены — добавление 20-процентной надбавки к аккумулятору может легко вывести автомобиль за пределы вашего бюджета. Жизненный цикл тоже должен быть намного больше. Уменьшение времени автономной работы телефона через два года в наши дни обычно считается нормой. Значительно уменьшенное время автономной работы в автомобиле через два года стало бы нарушением сделки.
Поскольку электромобили в настоящее время находятся на грани доступности и (по крайней мере, для некоторых) приемлемого диапазона и времени зарядки, небольшие улучшения в батареях здесь гораздо более заметны.
Илон Маск: к 2024 году плотность энергии батареи вырастет на 50%
(Фото Дарио на Unsplash)У Tesla в прошлом месяце были хорошие новости после того, как Panasonic удалось улучшить плотность энергии своих 2170 литий-ионных элементов.Это привело к увеличению дальности полета как для Model 3, так и для Model Y. Однако через четыре года ожидается, что этот прирост будет на 50 процентов выше.
Как сообщает Reuters, Маск намекнул на 50-процентное улучшение плотности энергии в своем твите в понедельник. Он отвечал на твит Сэма Коруса, аналитика ARK Investment Management LLC, который спросил, почему Маск был взволнован электрическим реактивным двигателем, хотя электрический полет требует удельной плотности энергии 400 Вт · ч / кг. Маск ответил, заявив, что «400 Втч / кг с длительным сроком службы, произведенные в больших количествах (а не только в лаборатории), не за горами.Вероятно, от 3 до 4 лет ».
Твитнуть
Если он прав, то мы увидим, что в 2024 году появятся аккумуляторы на 400 Втч, что откроет потенциал для электрических реактивных двигателей, но также значительно улучшит дальность действия электромобилей Tesla. Прямо сейчас Teslas использует батареи на 260 Втч и имеет запас хода от 330 до 400 миль. К 2024 году это улучшение плотности предполагает, что у них будет запас хода в 500-600 миль, и это без учета дальнейшей оптимизации работы электромобилей или какого-либо снижения веса.
Рекомендовано нашими редакторами
Tesla намерена провести День батареи в сентябре.22, после чего мы должны больше узнать о том, как компания и ее партнеры по аккумуляторным батареям, включая Panasonic и Contemporary Amperex Technology Ltd (CATL), намерены улучшить характеристики аккумуляторов в течение следующих нескольких лет. Еще в июне CATL заявила, что у нее есть аккумулятор для электромобиля, рассчитанный на пробег более миллиона миль, «готовый к производству». Panasonic также надеется улучшить свою батарею 2170 в течение следующих пяти лет и увеличить плотность еще на 20 процентов.
Этот информационный бюллетень может содержать рекламу, предложения или партнерские ссылки.Подписка на информационный бюллетень означает ваше согласие с нашими Условиями использования и Политикой конфиденциальности. Вы можете отказаться от подписки на информационные бюллетени в любое время.
Как работает аккумулятор — Любопытно
Представьте себе мир без батарей. Все те портативные устройства, от которых мы так зависим, были бы настолько ограничены! Мы сможем доставить наши ноутбуки и телефоны настолько далеко, насколько это досягаемо для их кабелей, что сделает это новое работающее приложение, которое вы только что загрузили на свой телефон, практически бесполезным.
К счастью, батарейки у нас есть. Еще в 150 г. до н.э. в Месопотамии парфянская культура использовала устройство, известное как багдадская батарея, сделанное из медных и железных электродов с уксусом или лимонной кислотой. Археологи считают, что на самом деле это не батареи, а в основном они использовались для религиозных церемоний.
Изобретение батареи в том виде, в котором мы ее знаем, приписывают итальянскому ученому Алессандро Вольта, который собрал первую батарею, чтобы доказать свою точку зрения другому итальянскому ученому Луиджи Гальвани.В 1780 году Гальвани показал, что лапы лягушек, подвешенных на железных или латунных крючках, подергиваются при прикосновении к зонду из другого металла. Он считал, что это было вызвано электричеством из тканей лягушек, и называл это «животным электричеством».
Луиджи Гальвани обнаружил, что лапы лягушек, подвешенных на латунных крючках, дергались, когда их ткнули зондом из другого металла. Он думал, что эта реакция была вызвана «животным электричеством» внутри лягушки. Источник изображения: Луиджи Гальвани / Wikimedia Commons.Вольта, первоначально впечатленный открытиями Гальвани, пришел к выводу, что электрический ток исходит от двух разных типов металла (крючки, на которых висели лягушки, и другой металл зонда) и просто передается через них, а не через них. из тканей лягушек. Он экспериментировал со стопками слоев серебра и цинка, перемежаемых слоями ткани или бумаги, пропитанной соленой водой, и обнаружил, что электрический ток действительно протекает через провод, приложенный к обоим концам стопки.
Батарея Алессандро Вольта: куча цинковых и серебряных листов, перемежаемых тканью или бумагой, пропитанной соленой водой. Представьте, что вы используете это для питания вашего телефона. Источник изображения: Луиджи Кьеза / Wikimedia Commons.Volta также обнаружил, что, используя различные металлы в свае, можно увеличить количество напряжения. Он описал свои открытия в письме Джозефу Бэнксу, тогдашнему президенту Лондонского королевского общества, в 1800 году. Это было довольно большое дело (Наполеон был весьма впечатлен!), И его изобретение принесло ему устойчивое признание в честь «вольта». ‘(мера электрического потенциала), названная в его честь.
Я сам, шутя в сторону, поражен тем, как мои старые и новые открытия … чистого и простого электричества, вызванного контактом металлов, могли вызвать такое волнение.Алессандро Вольта
Так что же именно происходило с этими слоями цинка и серебра и с дрожащими лягушачьими лапами?
Химия батареи
Батарея — это устройство, которое накапливает химическую энергию и преобразует ее в электричество.Это известно как электрохимия, а система, лежащая в основе батареи, называется электрохимическим элементом. Батарея может состоять из одной или нескольких (как в оригинальной кучке Вольты) электрохимических ячеек. Каждая электрохимическая ячейка состоит из двух электродов, разделенных электролитом.
Итак, откуда электрохимический элемент получает электричество? Чтобы ответить на этот вопрос, нам нужно знать, что такое электричество. Проще говоря, электричество — это тип энергии, производимый потоком электронов.В электрохимической ячейке электроны образуются в результате химической реакции, которая происходит на одном электроде (подробнее об электродах ниже!), А затем они перетекают на другой электрод, где расходуются. Чтобы понять это правильно, нам нужно внимательнее изучить компоненты клетки и то, как они устроены вместе.
Электроды
Чтобы создать поток электронов, вам нужно где-то, чтобы электроны текли из , а где-то электроны текли с на .Это электроды ячейки. Электроны текут от одного электрода, называемого анодом (или отрицательным электродом), к другому электроду, называемому катодом (положительный электрод). Обычно это разные типы металлов или другие химические соединения.
В котле Вольта анодом служил цинк, от которого электроны текли по проволоке (при соединении) с серебром, которое было катодом батареи. Он сложил много этих ячеек вместе, чтобы получилась общая куча, и поднял напряжение.
Но откуда анод вообще берет все эти электроны? И почему они так счастливы, что их отправили в веселый путь к катоду? Все сводится к химии, происходящей внутри клетки.
Нам нужно понять пару химических реакций. На аноде электрод реагирует с электролитом в реакции, в которой образуются электроны. Эти электроны накапливаются на аноде. Между тем, на катоде одновременно происходит другая химическая реакция, которая позволяет этому электроду принимать электроны.
Технический химический термин, обозначающий реакцию, которая включает обмен электронами, — это реакция окисления-восстановления, обычно называемая окислительно-восстановительной реакцией. Вся реакция может быть разделена на две половинные реакции, и в случае электрохимической ячейки одна полуреакция происходит на аноде, а другая — на катоде. Уменьшение — это усиление электронов, и это то, что происходит на катоде; мы говорим, что катод восстанавливается во время реакции. Окисление — это потеря электронов, поэтому мы говорим, что анод окисляется.
Каждая из этих реакций имеет определенный стандартный потенциал. Думайте об этой характеристике как о способности / эффективности реакции либо производить, либо поглощать электроны — ее силу в электронном перетягивании каната.
- Стандартные потенциалы полуреакций
Ниже приведен список половинных реакций, которые включают высвобождение электронов из чистого элемента или химического соединения. Рядом с реакцией указано число (E 0 ), которое сравнивает силу электрохимического потенциала реакции с силой желания водорода расстаться со своим электроном (если вы посмотрите вниз по списку, вы увидите, что водородный полуреактор имеет нулевое значение E 0 ).E 0 измеряется в вольтах.
Причина, по которой этот список настолько интересен, заключается в том, что если вы выберете две реакции из списка и объедините их в электрохимическую ячейку, значения E 0 скажут вам, в каком направлении будет протекать общая реакция: реакция с более отрицательной реакцией. Значение E 0 отдает свои электроны другой реакции, и это определяет анод и катод вашей ячейки. Разница между двумя значениями E 0 говорит вам об электрохимическом потенциале вашей ячейки, который в основном представляет собой напряжение ячейки.
Итак, если вы возьмете литий и фторид и сумеете объединить их, чтобы сделать элемент батареи, у вас будет самое высокое напряжение, теоретически достижимое для электрохимического элемента. Этот список также объясняет, почему в котле Вольта цинк был анодом, а серебро — катодом: полуреакция цинка имеет более низкое (более отрицательное) значение E 0 (-0,7618), чем полуреакция серебра (0,7996). .
Источник: UC Davis ChemWiki
Любые два проводящих материала, которые вступают в реакцию с разными стандартными потенциалами, могут образовывать электрохимическую ячейку, потому что более сильный из них сможет забирать электроны у более слабого.Но идеальным выбором для анода был бы материал, который вызывает реакцию со значительно более низким (более отрицательным) стандартным потенциалом, чем материал, который вы выбираете для своего катода. В итоге мы получаем электроны, притягивающиеся к катоду от анода (и анод не очень сильно пытается бороться), и, когда у нас есть легкий путь, чтобы добраться туда — проводящий провод, мы можем использовать их энергию для обеспечения электрического питание нашего фонарика, телефона или чего-то еще.
Разница в стандартном потенциале между электродами как бы равна силе, с которой электроны перемещаются между двумя электродами.Это известно как общий электрохимический потенциал ячейки, и он определяет напряжение ячейки. Чем больше разница, тем больше электрохимический потенциал и выше напряжение.
Чтобы увеличить напряжение аккумулятора, у нас есть два варианта. Мы могли бы выбрать для наших электродов другие материалы, которые придадут ячейке больший электрохимический потенциал. Или мы можем сложить несколько ячеек вместе. Когда элементы объединяются определенным образом (последовательно), это оказывает аддитивное влияние на напряжение батареи.По сути, силу, с которой электроны движутся через батарею, можно рассматривать как общую силу, когда она движется от анода первого элемента на всем пути, сколько бы ячеек ни содержала батарея, к катоду последней ячейки.
Когда элементы объединяются другим способом (параллельно), это увеличивает возможный ток батареи, который можно рассматривать как общее количество электронов, протекающих через элементы, но не ее напряжение.
Электролит
Но электроды — это всего лишь часть батареи.Помните обрывки бумаги Вольты, пропитанные соленой водой? Соленая вода была электролитом, еще одной важной частью картины. Электролит может быть жидкостью, гелем или твердым веществом, но он должен обеспечивать движение заряженных ионов.
Электронов имеют отрицательный заряд, и поскольку мы посылаем поток отрицательных электронов по нашей цепи, нам нужен способ уравновесить это движение заряда. Электролит обеспечивает среду, через которую могут протекать положительные ионы, уравновешивающие заряд.
Поскольку химическая реакция на аноде производит электроны, для поддержания баланса нейтрального заряда на электроде также производится соответствующее количество положительно заряженных ионов. Они не проходят по внешнему проводу (только для электронов!), А попадают в электролит.
В то же время катод должен также уравновешивать отрицательный заряд электронов, которые он принимает, поэтому реакция, которая здесь происходит, должна втягивать положительно заряженные ионы из электролита (альтернативно, он также может высвобождать отрицательно заряженные ионы из электрода в электролит. электролит).
Итак, в то время как внешний провод обеспечивает путь для потока отрицательно заряженных электронов, электролит обеспечивает путь для переноса положительно заряженных ионов, чтобы уравновесить отрицательный поток. Этот поток положительно заряженных ионов так же важен, как и электроны, обеспечивающие электрический ток во внешней цепи, которую мы используем для питания наших устройств. Роль балансировки заряда, которую они выполняют, необходима для поддержания протекания всей реакции.
Так вот, если бы все ионы, высвобожденные в электролит, могли полностью свободно перемещаться через электролит, они в конечном итоге покрыли бы поверхности электродов и забили бы всю систему.Таким образом, в клетке обычно есть какой-то барьер, чтобы этого не произошло.
Когда аккумулятор используется, мы имеем дело с непрерывным потоком электронов (через внешнюю цепь) и положительно заряженных ионов (через электролит). Если этот непрерывный поток остановлен — если цепь разомкнута, например, когда ваш фонарик выключен — поток электронов остановлен. Заряды будут накапливаться, и химические реакции, приводящие в движение аккумулятор, прекратятся.
По мере использования батареи и протекания реакций на обоих электродах возникают новые химические продукты.Эти продукты реакции могут создавать своего рода сопротивление, которое может помешать продолжению реакции с такой же эффективностью. Когда это сопротивление становится слишком большим, реакция замедляется. Электронное перетягивание каната между катодом и анодом также теряет свою силу, и электроны перестают течь. Аккумулятор медленно разряжается.
Зарядка аккумулятора
Некоторые распространенные батареи предназначены только для одноразового использования (так называемые первичные или одноразовые батареи).Электроны перемещаются от анода к катоду в одну сторону. Либо их электроды истощаются по мере того, как они выделяют свои положительные или отрицательные ионы в электролит, либо накопление продуктов реакции на электродах препятствует продолжению реакции, и это делается и вытирается пыль. Батарея оказывается в мусорном ведре (или, надеюсь, на переработку, но это уже другая тема Nova).
Но. Изящная вещь в этом потоке ионов и электронов, который имеет место в некоторых типах батарей с соответствующими материалами электродов, заключается в том, что он также может двигаться в обратном направлении, возвращая нашу батарею в исходную точку и давая ей совершенно новую жизнь. .Подобно тому, как батареи изменили способ использования различных электрических устройств, аккумуляторные батареи еще больше изменили полезность этих устройств и их продолжительность жизни.
Когда мы подключаем почти разряженную батарею к внешнему источнику электричества и отправляем энергию обратно в батарею, происходит обратная химическая реакция, которая произошла во время разряда. Это отправляет положительные ионы, выпущенные из анода, в электролит, обратно к аноду, а электроны, которые катод принимает, также обратно к аноду.Возврат как положительных ионов, так и электронов обратно в анод подготавливает систему, так что она снова готова к работе: ваша батарея заряжена.
Однако процесс не идеален. Замена отрицательных и положительных ионов электролита обратно на соответствующий электрод при перезарядке аккумулятора не такая аккуратная и не такая хорошо структурированная, как электрод вначале. Каждый цикл зарядки еще больше ухудшает состояние электродов, а это означает, что батарея со временем теряет производительность, поэтому даже аккумуляторные батареи не могут работать вечно.
В течение нескольких циклов зарядки и разрядки форма кристаллов аккумулятора становится менее упорядоченной. Это усугубляется, когда аккумулятор разряжается / заряжается с высокой скоростью — например, если вы едете на электромобиле с большой скоростью, а не с постоянной скоростью. Высокоскоростное переключение приводит к тому, что кристаллическая структура становится более неупорядоченной, что приводит к менее эффективной батарее.
Эффект памяти и саморазряд
Практически, но не полностью обратимые реакции разряда и перезарядки также способствуют так называемому «эффекту памяти».Когда вы перезаряжаете некоторые типы аккумуляторных батарей, не разрядив их сначала, они «запоминают», где находились в предыдущих циклах разрядки, и не перезаряжаются должным образом.
В некоторых элементах это вызвано тем, как металл и электролит реагируют с образованием соли (и тем, как эта соль затем снова растворяется и металл заменяется на электродах при перезарядке). Мы хотим, чтобы наши клетки имели красивые, однородные, маленькие кристаллы соли, покрывающие идеальную металлическую поверхность, но это не то, что мы получаем в реальном мире! Некоторые кристаллы образуются очень сложно, а некоторые металлы откладываются во время перезарядки, поэтому некоторые типы батарей имеют больший эффект памяти, чем другие.Дефекты в основном зависят от первоначального состояния заряда батареи, температуры, напряжения заряда и тока зарядки. Со временем недостатки в одном цикле зарядки могут вызвать то же самое в следующем цикле зарядки и так далее, и наша батарея накапливает некоторые плохие воспоминания. Эффект памяти силен для некоторых типов элементов, таких как батареи на никелевой основе. Другие типы, такие как литий-ионные, не страдают этой проблемой.
Другой аспект аккумуляторных батарей заключается в том, что химический состав, который делает их перезаряжаемыми, также означает, что они имеют более высокую тенденцию к саморазряду.Это когда внутренние реакции происходят внутри аккумуляторного элемента, даже когда электроды не подключены через внешнюю цепь. Это приводит к тому, что клетка со временем теряет часть своей химической энергии. Высокая скорость саморазряда серьезно ограничивает срок службы аккумуляторов — и приводит к их разрядке во время хранения.
Литий-ионные аккумуляторы в наших мобильных телефонах имеют довольно хорошую скорость саморазряда около 2–3 процентов в месяц, и наши свинцово-кислотные автомобильные аккумуляторы также довольно разумны — они, как правило, теряют 4–6 процентов. месяц.Никелевые батареи теряют около 10–15 процентов своего заряда в месяц, что не очень хорошо, если вы планируете хранить фонарик в течение всего сезона, когда он вам не нужен! Неперезаряжаемая щелочная батарея теряет около 2–3% своего заряда в год.
Напряжение, ток, мощность, емкость… в чем разница?
Все эти слова в основном описывают мощность батареи, не так ли? Ну вроде как.Но все они несколько разные.
Напряжение = сила, при которой реакция, приводящая в действие аккумулятор, проталкивает электроны через элемент. Это также известно как электрический потенциал и зависит от разницы потенциалов между реакциями, которые происходят на каждом из электродов, то есть от того, насколько сильно катод будет тянуть электроны (через цепь) от анода. Чем выше напряжение, тем больше работы может совершить то же количество электронов.
Ток = количество электронов, которые проходят через любую точку цепи в данный момент времени.Чем выше ток, тем больше работы он может выполнять при том же напряжении. Внутри ячейки ток можно также рассматривать как количество ионов, проходящих через электролит, умноженное на заряд этих ионов.
Мощность = напряжение x ток. Чем выше мощность, тем быстрее батарея может работать — это соотношение показывает, как напряжение и ток важны для определения того, для чего подходит батарея.
Емкость = мощность батареи как функция времени, которая используется для описания продолжительности времени, в течение которого батарея может обеспечивать питание устройства.Аккумулятор большой емкости сможет проработать более длительный период, прежде чем разрядится / разрядится. У некоторых батарей есть небольшая печальная особенность: если вы слишком быстро попытаетесь извлечь из них слишком много энергии, химические реакции не успеют поспеть, и емкость станет меньше! Итак, мы всегда должны быть осторожны, когда говорим о емкости аккумулятора, и помнить, для чего он будет использоваться.
Еще один популярный термин — «плотность энергии». Это количество энергии, которое устройство может удерживать на единицу объема, другими словами, сколько энергии вы получите за свои деньги с точки зрения мощности по сравнению сразмер. В случае с батареей, как правило, чем выше плотность энергии, тем лучше, поскольку это означает, что батарея может быть меньше и компактнее, что всегда является плюсом, когда вам нужно заряжать то, что вы хотите держать в кармане. Для электромобилей это даже плюс — аккумулятор должен как-то влезать в машину!
Для некоторых приложений, таких как хранение электроэнергии на возобновляемых электростанциях, таких как ветряная или солнечная ферма, высокая плотность энергии не является большой проблемой, поскольку в них, скорее всего, будет достаточно места для хранения батарей.Основная цель такого использования — просто хранить как можно больше электроэнергии, как можно безопаснее и дешевле.
Почему так много типов?
Ряд материалов (раньше это были просто металлы) можно использовать в качестве электродов в батарее. За прошедшие годы было опробовано много-много различных комбинаций, но лишь немногие из них действительно прошли дистанцию.Но зачем вообще использовать разные комбинации металлов? Если у вас есть пара металлов, которые хорошо работают вместе в качестве электродов, зачем возиться с другими?
Различные материалы имеют разные электрохимические свойства, поэтому они дают разные результаты, когда вы соединяете их в аккумуляторном элементе. Например, некоторые комбинации будут производить высокое напряжение очень быстро, но затем быстро падают, не в состоянии поддерживать это напряжение в течение длительного времени. Это хорошо, если вам нужно произвести, скажем, внезапную вспышку света, такую как вспышка фотоаппарата.
Другие комбинации будут производить только тонкую струйку тока, но они будут поддерживать эту струю вечно. Например, нам не нужен большой ток для питания детектора дыма, но мы хотим, чтобы наши детекторы дыма работали долгое время.
Еще одна причина для использования различных комбинаций металлов заключается в том, что часто два или более аккумуляторных элемента необходимо уложить в стопку для получения необходимого напряжения, и оказывается, что некоторые комбинации электродов складываются вместе намного удобнее, чем другие комбинации.Например, литий-железо-фосфатные батареи (тип литий-ионных аккумуляторов), используемые в электромобилях, складываются вместе для создания систем высокого напряжения (100 или даже более вольт), но вы никогда не сделаете этого с теми батареями NiCad Walkman, которые имеют горячий!
Наши различные потребности со временем привели к разработке огромного количества типов батарей. Чтобы узнать больше о них и о том, что ждет аккумулятор в будущем, ознакомьтесь с другими нашими темами о Nova.
Эта тема является частью нашей серии из четырех статей об аккумуляторах.Для дальнейшего чтения ознакомьтесь с типами аккумуляторов, литий-ионных аккумуляторов и аккумуляторов будущего.Как выбрать правильный аккумулятор для вашего приложения? Часть 1. Важные аспекты метрики батареи
При выборе батареи следует помнить о том, что не существует идеальной батареи, подходящей для любого приложения. Выбор правильной батареи для вашего приложения связан с определением наиболее важных показателей батареи и обменом их с другими.Например, если вам требуется большая мощность для вашего приложения, необходимо минимизировать внутреннее сопротивление ячейки, и это часто достигается за счет увеличения площади поверхности электрода. Но это также увеличивает количество неактивных компонентов, таких как токосъемники и проводящие вспомогательные средства, поэтому плотность энергии снижается, чтобы получить мощность.
В то время как ваши фактические цели по дизайну батареи могут быть высокими, вам, возможно, придется отказаться от некоторых вещей, чтобы получить другие, когда дело доходит до фактической производительности батареи (рис. 1).
Свинцово-кислотный аккумулятор отлично работает в автомобильном стартерном аккумуляторе, где он обеспечивает требуемую высокую производительность.Однако из-за его токсичности и низкой плотности энергии он был бы ужасным выбором для применения в портативной электронике. Итак, в этой серии блогов, состоящей из трех частей, мы рассмотрим, как найти подходящую батарею для вашего приложения — это сделать правильный выбор. В части 1 обсуждаются важные соображения при выборе правильной батареи для потребительского приложения. К ним относятся возможность перезарядки, плотность энергии, удельная мощность, срок годности, безопасность, форм-фактор, стоимость и гибкость. Во второй части будет рассмотрено, как химический состав влияет на важные показатели батареи и, следовательно, на выбор батареи для вашего приложения.В части 3 мы рассмотрим общий химический состав вторичных батарей.
Рисунок 1: Конструкция батареи и производительность
Некоторые важные соображения при выборе батареи: : 1. Сравнение первичных и вторичных батарей — Один из первых вариантов выбора батареи — решить, нужны ли приложению первичные (одноразовые) или вторичные (перезаряжаемые) батареи. По большей части это простое решение для дизайнера. Приложения с периодическим периодическим использованием (например, дымовая сигнализация, игрушка или фонарик) и одноразовые приложения, в которых зарядка становится непрактичной, требуют использования первичной батареи.Слуховые аппараты, часы (за исключением умных часов), поздравительные открытки и кардиостимуляторы — хорошие примеры. Если аккумулятор будет использоваться непрерывно и в течение длительного времени, например, в ноутбуке, мобильном телефоне или умных часах, перезаряжаемый аккумулятор более подходит.Первичные батареи имеют гораздо меньшую скорость саморазряда — привлекательная особенность, когда зарядка невозможна или практична перед первым использованием. Вторичные батареи имеют тенденцию терять энергию более быстрыми темпами. Это менее важно для большинства приложений из-за возможности подзарядки.
2. Энергия по сравнению с мощностью — Время работы аккумулятора определяется емкостью аккумулятора, выраженной в мАч или Ач, и представляет собой ток разряда, который аккумулятор может обеспечить с течением времени.
При сравнении батарей разного химического состава полезно посмотреть на их энергоемкость. Чтобы получить энергоемкость батареи, умножьте емкость батареи в Ач на напряжение, чтобы получить энергию в Втч. Например, никель-металлогидридный аккумулятор на 1,2 В и литий-ионный аккумулятор на 3.2 В может иметь такую же емкость, но более высокое напряжение литий-ионного аккумулятора увеличит энергию.
Напряжение холостого хода обычно используется в расчетах энергии (т. Е. Напряжение батареи, когда она не подключена к нагрузке). Однако и емкость, и энергия сильно зависят от скорости слива. Теоретическая емкость определяется только активными электродными материалами (химическим составом) и активной массой. Тем не менее, практические батареи достигают лишь малой части теоретических показателей из-за наличия неактивных материалов и кинетических ограничений, которые не позволяют полностью использовать активные материалы и накапливать продукты разряда на электродах.
Производители аккумуляторов часто указывают емкость при заданной скорости разряда, температуре и напряжении отключения. Указанная мощность будет зависеть от всех трех факторов. Сравнивая номинальные мощности производителей, обращайте особое внимание на скорость слива. Батарея, которая, как указано в спецификации, имеет большую емкость, может на самом деле плохо работать, если ток, потребляемый приложением, выше. Например, батарея с номиналом 2 Ач на 20-часовую разрядку не может выдавать 2 А в течение 1 часа, а будет обеспечивать лишь небольшую часть емкости.
Батареи высокой мощности обеспечивают быструю разрядку при высокой скорости разряда, например, в электроинструментах или автомобильных стартерных батареях. Обычно батареи большой мощности имеют низкую плотность энергии.
Хорошая аналогия между мощностью и энергией — это ведро с носиком. Ведро большего размера может вместить больше воды и похоже на аккумулятор с высокой энергией. Размер отверстия или носика, через который вода выходит из ведра, близок к мощности — чем выше мощность, тем выше скорость слива.Чтобы увеличить энергию, вы обычно увеличиваете размер батареи (для данного химического состава), но для увеличения мощности вы уменьшаете внутреннее сопротивление. Конструкция элементов играет огромную роль в получении аккумуляторов с высокой удельной мощностью.
Рисунок 2: Зависимость энергии батареи от мощности
Вы должны иметь возможность сравнивать теоретические и практические значения плотности энергии для различных химических веществ из учебников по батареям. Однако, поскольку плотность мощности очень сильно зависит от конструкции батареи, вы редко встретите эти значения в списке.
3. Напряжение — Рабочее напряжение аккумулятора — еще один важный фактор, который зависит от используемых материалов электродов. Полезной классификацией аккумуляторов здесь является рассмотрение аккумуляторов на водной или водной основе в сравнении с химическими элементами на основе лития. Свинцово-кислотный, цинк-углеродный и никель-металлогидридный используют электролиты на водной основе и имеют номинальное напряжение от 1,2 до 2 В. Литиевые батареи, с другой стороны, используют органические электролиты и имеют номинальное напряжение 3.От 2 до 4 В (первичная и вторичная).
Многие электронные компоненты работают при минимальном напряжении 3 В. Более высокое рабочее напряжение химических элементов на основе лития позволяет использовать один элемент, а не два или три последовательно соединенных элемента на водной основе, чтобы создать желаемое напряжение.
Также следует отметить, что некоторые химические элементы батарей, такие как цинк MnO2, имеют наклонную кривую разряда, в то время как другие имеют плоский профиль. Это влияет на напряжение отсечки (рис. 3).
Рисунок 3: График напряжения на основе химического состава батареи
4.Температурный диапазон — Химический состав батарей определяет температурный диапазон применения. Например, цинк-угольные элементы на водной основе электролита нельзя использовать при температуре ниже 0 ° C. Щелочные элементы также демонстрируют резкое снижение емкости при этих температурах, хотя и меньше, чем цинк-углеродные. Литиевые первичные батареи с органическим электролитом могут работать при температуре до -40 ° C, но со значительным падением производительности.
В перезаряжаемых устройствах литий-ионные аккумуляторы можно заряжать с максимальной скоростью только в узком интервале от 20 ° до 45 ° C.За пределами этого температурного диапазона необходимо использовать более низкие токи / напряжения, что приводит к увеличению времени зарядки. При температурах ниже 5 ° или 10 ° C может потребоваться постоянный заряд, чтобы предотвратить ужасную проблему дендритного покрытия лития, которая увеличивает риск теплового разгона (все мы слышали о взрывах литиевых батарей, которые могут произойти в результате перезарядки, зарядки при низкой или высокой температуре или короткого замыкания из-за загрязняющих веществ).
Другие соображения включают:5.Срок годности — это относится к тому, как долго батарея будет находиться на складе или на полке, прежде чем она будет использована. Первичные батареи имеют гораздо более длительный срок хранения, чем вторичные. Однако для первичных батарей срок хранения обычно более важен, потому что вторичные батареи могут перезаряжаться. Исключение составляют случаи, когда подзарядка нецелесообразна.
6. Химия — Многие из перечисленных выше свойств продиктованы химией клеток. Мы обсудим обычно доступные химические составы батарей в следующей части этой серии блогов.
7. Физический размер и форма — Батареи обычно доступны в следующих форматах: кнопочные / плоские элементы, цилиндрические элементы, призматические элементы и карманные элементы (большинство из них в стандартных форматах).
8. Стоимость — Бывают случаи, когда вам может потребоваться отказаться от батареи с лучшими характеристиками производительности, потому что приложение очень чувствительно к стоимости. Это особенно актуально для одноразовых изделий большого объема.
9.Правила транспортировки и утилизации — Транспортировка литиевых батарей регулируется. Утилизация батарей определенного химического состава также регулируется. Это может быть рассмотрено для приложений большого объема.
При выборе аккумулятора следует учитывать множество факторов. Некоторые из них связаны с химией, а другие — с конструкцией и конструкцией батарей. Из-за этого становится сложнее, а иногда и бессмысленно сравнивать показатели заряда батареи без более глубокого понимания факторов, влияющих на этот показатель. Эту тему мы рассмотрим во втором блоге этой серии.
Чтобы узнать больше о роли, которую выбор батарей играет в эволюции надежности, качества и долговечности электронного оборудования, часы Дизайн носимых устройств: готовы ли вы к вызову? Нажмите кнопку ниже, чтобы получить доступ к бесплатной презентации.
Электрическим самолетам нужны батареи лучшего качества, которые должны появиться через 30 лет
Каждое видение будущего полета связано с электрическими самолетами — воздушные такси, прыгающие от одного небоскреба к другому, пока авиалайнеры бесшумно летают над океанами.В конце концов, какой будущий путешественник будет полагаться на ископаемое топливо?
Тот, кто хочет пойти куда угодно.
Несмотря на всю шумиху вокруг электрической авиации, концепции, выдвигаемые аэрокосмическими компаниями и стартапами, являются лишь этой стороной невозможного. Полет требует огромного количества энергии, а выполнение этого при использовании электроэнергии требует как минимум одного огромного скачка в области аккумуляторных технологий. Или, как выразился авиационный эксперт Ричард Абулафия, рассматривая еще одну идею летающего автомобиля: «Вставьте чудо.»
Проблема в том, что аккумуляторы просто не обеспечивают такое соотношение мощности и веса или стоимость, которые должны быть осуществимы, и не будут в течение некоторого времени. Технологические достижения, которые позволили Tesla выжать 335 миль от Model S и Chevrolet до получить 200 из Болта недостаточно, чтобы привести в действие что-либо, кроме самого маленького самолета для кратчайшего расстояния.
Тогда возникает вопрос: насколько большое чудо нужно для этого летающего будущего и насколько вероятно его получение?
Наземные исследования дают повод для оптимизма.Самый мощный седан Tesla Model S проедет 335 миль без подзарядки, хотя это будет стоить вам шестизначную сумму. Chevrolet теперь продает Bolt EV, компактный автомобиль за 30 000 долларов с пробегом 238 миль. Этим летом Tesla должна возобновить выпуск Model 3, еще больше укрепив статус аккумуляторного электромобиля. Между тем, ближайшие к взлету безгазовые самолеты — это одно- и двухместные самолеты, которые лучше всего использовать для тренировок, поэтому им даже не нужно рисковать из одного аэропорта в другой.
«Я думаю, что все смотрели на электромобили и думали, что то же самое и с электрическими самолетами», — говорит Ричард Пэт Андерсон, руководитель Центра летных исследований в Университете аэронавтики Эмбри-Риддл.«Но у них другие требования. Автомобилям нужны аккумуляторные батареи, которые должны быть доступными и компактными, но в отношении самолетов нас не заботит такая цена или даже объем. Важен вес.
Критическая плотность
Необходимость снижать вес без ущерба для дальности действия или мощности делает плотность энергии крайне важным показателем. В настоящее время удельная энергия аккумуляторов составляет примерно 2 процента от энергии жидкого топлива. Фактор КПД электрических силовых агрегатов по сравнению с двигателями внутреннего сгорания приближается к 7 процентам. Таким образом, 1000 фунтов реактивного топлива дают примерно в 14 раз больше энергии, чем батарея емкостью 1000 фунтов.
«Уже достигнут большой прогресс», — говорит Венкат Сринивасан, ученый по батареям из Аргоннской национальной лаборатории в Чикаго. Плотность энергии аккумуляторов растет на 2-3 процента в год. Автомобили Tesla идут дальше с каждой итерацией. «Это не то же самое, что прогресс в области закона Мура, потому что это химия, а не электроника, но все же очень хорошо».
Кроме того, батареям не нужно соответствовать фунту жидкого топлива, чтобы его хватило на фунт. По словам Дон Хиллебранда, директора Аргоннского центра транспортных исследований, если он сможет в пять раз увеличить его текущую плотность — это будет 1000 ватт-часов на килограмм, — он будет работать для малой коммерческой авиации.Расчетное время прибытия: 2045.
«Это число в 1000 ватт-часов / кг приблизительно соответствует одной трети плотности энергии бензина, но этого достаточно, — говорит Хиллебранд. «При наших нынешних темпах инноваций и с учетом относительной разницы в эффективности силовых агрегатов именно тогда мы можем ожидать, что аккумуляторы будут достаточно хорошими, чтобы приводить в действие небольшие самолеты для практического использования».
Другие предлагают своего рода ярлык. «Электрическая силовая установка позволяет создавать новые архитектурные конструкции», — говорит Венкат Вишванатан, ученый по батареям из Университета Карнеги-Меллона.«Будущие электрические самолеты не будут похожи на современные, и они смогут летать с гораздо меньшим энергопотреблением — всего 400 ватт-часов / кг — благодаря распределенным двигателям и уменьшенному лобовому сопротивлению. Мы модернизируем самолет с учетом электродвигателей ». Сказано быстрее, чем сделано. Поскольку время разработки самолетов измеряется десятилетиями, маловероятно, что самолеты, которые воображает Висванатан, прибудут раньше, чем эти 1000 ватт-часов / кг батарей.
New Chemistries
Так как же достичь такой плотности энергии? Самый вероятный путь — это новый химический состав батарей, чтобы сместить нынешнего фаворита, литий-ионного.Магниевые батареи превосходны в играх плотности, но технология остается незрелой и через десятилетия до коммерческой готовности. «Твердотельный литий — это тоже круто, потому что он негорючий, но у него нет жизненного цикла», — говорит Хиллебранд. Это означает, что он теряет свою эффективность по мере того, как он истощается и перезаряжается. «Натрий-ионные аккумуляторы очень интересны своим долгим сроком службы, но их удельная энергия не очень вдохновляет».
Srinivasan из Аргонны делает ставку на то, что следующим шагом будет литий-металлический аккумулятор.Это основано на достижениях исследователей в уменьшении «дендритов», которые могут образовываться в батареях в течение многих циклов зарядки и разрядки. Они могут вызвать короткое замыкание, что, в свою очередь, может привести к пожару. «За последние пять лет произошел колоссальный прогресс», — говорит Сринивасан. «Пять лет назад я не был оптимистичен, но теперь я очень оптимистичен, что литий-металлический может работать».
Когда эта проблема будет решена, по его словам, это может открыть дверь для других материалов, включая серу или кислород.Последнее является потенциальным решением, которое наиболее активно преследуют Вишванатан и его коллеги из Карнеги-Меллона, которые ищут литий-кислородную батарею, которая могла бы оказаться идеальной для авиации.
«Литий-воздушная батарея, как ее называют, может достигать плотности энергии 400 ватт-часов / кг, что позволяет совершать полеты на расстояние от 200 до 400 миль», — говорит Вишванатан. Это не поможет вам пересечь океан, но зато покроет множество коротких маршрутов.
Проблема с зарядкой: как работают аккумуляторы в телефоне — и почему некоторые взрываются | Смартфоны
Срок службы батареи — взрывоопасная проблема.Буквально, как Samsung с тревогой обнаруживает. Смартфон Galaxy Note 7 компании после выпуска получил высокую оценку за лучшее в своем классе время автономной работы, намного превосходящий своего основного конкурента, iPhone 6S и 7 Plus. Потом он начал взрываться. Samsung выпустила программу отзыва и замены, и запасные части также начали быстро расти, что вынудило компанию полностью приостановить производство.
Это событие стало очередным препятствием в долгой борьбе за улучшение батарей, питающих нашу электронику.В то время как скорость обработки данных удваивается примерно каждые 18 месяцев, емкость аккумулятора увеличивается в той же степени почти за десять лет. Этот пробел начинает вызывать проблемы, но, как выяснила компания Samsung, его стоимость исправить непросто.
Смартфона часто хватает менее суток, ноутбука — всего несколько часов, а электромобиль изо всех сил пытается проехать 350 миль. Так почему же время автономной работы все еще остается такой проблемой — и когда мы собираемся это исправить?
Что такое аккумулятор?
Внутри этого пластикового и металлического корпуса находится небольшая коробочка с химическими веществами, готовыми вступить в реакцию и создать электричество.Фотография: BitchBuzz / FlickrБатареи — это небольшие емкости с химической энергией. Когда смартфон подключен к электросети, электричество используется для сброса химической реакции в батарее, переносящей электроны с отрицательного анода на катод — положительный конец батареи.
После зарядки аккумулятор может вырабатывать электричество, направляя электроны через цепь, в данном случае смартфон, к аноду, и будет продолжать делать это до тех пор, пока все электроны, содержащиеся в аккумуляторе, не перейдут на анод или встроенный -в выключателе отключает аккумулятор.
Из чего сделан аккумулятор?
Внутри типичной батареи есть анод, катод и электролит — то, через что проходят положительные ионы.
Литий-ионные батареи, используемые в большинстве смартфонов и электроники, имеют катод из оксида металла, состоящий из смеси кобальта, никеля, марганца или железа, анод из пористого графита, который удерживает ионы лития внутри, и электролит из литиевой соли.
Положительно заряженные ионы лития проходят через электролит от анода к катоду, перемещая электроны через смартфон по мере необходимости и обратно к аноду.
Почему этого недостаточно?
Значок низкого заряда батареи на Nokia Lumia 800 в кармане джинсов. Фотография: Martin Abegglen / FlickrПринцип работы батареи может быть простым, но химия и технология, обеспечивающие ее работу, — нет. Основным ограничивающим фактором для батарей является их удельная энергия.
Батарея может вырабатывать столько электроэнергии, сколько ее химические компоненты могут накапливать энергию. Все, что не является активным материалом внутри батареи, фактически является мертвым грузом, включая корпус, микросхемы контроллера, провода для отвода тока — все они добавляют вес, но не усиливают.
Типичный литий-ионный аккумулятор в смартфоне имеет плотность энергии около 150 ватт-часов на килограмм (Втч / кг). Хотя плотность энергии литий-ионных аккумуляторов улучшилась с момента их появления в начале 1990-х годов, она сдерживается их конструкцией и химическим составом.
Единственный способ немедленно увеличить время автономной работы смартфона с помощью современных технологий — это повысить энергоэффективность электроники смартфона и увеличить размер аккумулятора, но для более тонких и тонких смартфонов требуются все более тонкие и тонкие аккумуляторы.
Почему сокращается срок службы батареи?
Полностью заряжен или нет? Со временем аккумулятор не может накапливать столько энергии, как новый. Фотография: Bastian Greshake / FlickrСрок службы батареи не остается постоянным на протяжении всего срока службы смартфона — он медленно уменьшается с течением времени по мере того, как батарея разряжается и заряжается.
Это связано с тем, что химическая реакция, которая производит электричество, вызывает осаждение тонких слоев лития на электродах, что уменьшает количество, доступное для выработки электричества, и увеличивает внутреннее сопротивление батареи.
Чем выше сопротивление, тем тяжелее батарея должна работать, чтобы поддерживать полезное напряжение, и поэтому количество энергии, которое она может производить за одну зарядку, уменьшается. Возможно, вы помните этот отрывок из школы:
Напряжение = Ток x Сопротивление (В = ИК)
Почему некоторые батареи взрываются?
Батарея вылетает из корпуса 17-дюймовой батареи MacBook Pro из-за набухания. Фотография: J Aaron Farr / FlickrБатареи с гораздо более высокой плотностью энергии, чем литиевые элементы, уже доступны, но они недостаточно безопасны для использования в портативной электронике.
«Чем больше энергии вы вложите в коробку, тем опаснее она будет», — говорит доктор Билли Ву, преподаватель Лондонской школы дизайна Дайсона Имперского колледжа. «Безопасность является ключевым моментом, а управление температурным режимом имеет решающее значение. Если аккумулятор нагревается выше 80 ° C, происходит так называемый тепловой разгон, когда компоненты начинают разлагаться, и вот тогда он может взорваться ».
Конкретная причина проблем Samsung с взрывающимися батареями неизвестна, компания просто ссылается на «проблему с аккумуляторными элементами».
Что будет дальше?
На данный момент мы остановились на перезаряжаемой литий-ионной батарее. Фотография: Razor512 / FlickrВ ближайшем будущем развитие аккумуляторов будет связано с приближением существующих литий-ионных технологий к их теоретическим пределам, что увеличит удельную мощность аккумуляторов.
Типичная литий-ионная батарея, в которой используется оксид лития-марганца, имеет теоретическую плотность мощности 280 Втч / кг, но конечный продукт имеет только 150 Втч / кг, поэтому, безусловно, есть возможности для улучшения.
«Речь идет об оптимизации конструкции внутри батареи, — говорит Ву. «Если вы представите себе, что внутри вашей батареи, у вас есть пористая структура, полная активного материала».
«Для более высокой выходной мощности вам нужна более пористая структура, чтобы увеличить площадь поверхности и пропустить больше ионов лития за один раз, но поскольку в ней больше отверстий, она удерживает меньше активного материала, что, в свою очередь, дает вам меньшую емкость. ”
Новые усовершенствованные химические составы батарей, такие как литий-сера и литий-кремний, также разрабатываются компаниями по всей Великобритании, которые в настоящее время разрабатывают эту технологию.
Какое будущее у аккумуляторных технологий?
На комбинированной фотографии показан Samsung Note 7, взрывающийся от давления на полностью заряженную батарею во время испытаний в аккумуляторной лаборатории Applied Energy Hub в Сингапуре, 6 октября. Фотография: Эдгар Су / ReutersТвердотельные батареи — одно из возможных направлений будущего, в котором жидкий электролит в батарее будет заменен твердым веществом, что обеспечит значительное повышение безопасности.
«Основное преимущество твердотельных батарей состоит в том, что вы можете вернуться к использованию лития в качестве материала анода, который имеет действительно хорошую мощность и плотность энергии, но небезопасен с жидкими электролитами», — объясняет Ву.
Твердотельные батареи устраняют необходимость в пористом угольном аноде и, следовательно, снимают с батареи большую часть веса, которая не способствует выработке энергии.
Металлические воздушные батареи, использующие цинк, литий или алюминий, также не за горами, но, по словам Ву, они будут доступны через 20 лет до их коммерческого применения.
Что я могу сделать, чтобы аккумулятор прослужил дольше?
Знакомое зрелище для любого, у кого есть смартфон, планшет или компьютер. Фотография: Сэмюэл Гиббс / The GuardianЕсть несколько вещей, которые вы можете сделать, чтобы продлить срок службы батареи.Характер химической реакции внутри аккумулятора означает, что он должен работать интенсивнее в последние 20% разряда и более 80% заряда.
Содержание литий-ионного аккумулятора примерно между 80% и 20% заряда поможет ему дольше сохранять большую часть своей емкости. В настоящее время разрабатываются интеллектуальные системы управления питанием, которые делают это при подключении к стене на ночь.
Батареи никогда не следует оставлять постоянно подключенными, что особенно актуально для ноутбуков.Они поддерживаются в лучшем рабочем состоянии, если их время от времени разряжать и заряжать. Раз в месяц надо это делать.
Литий-ионные, литий-металлические и альтернативные технологии перезаряжаемых аккумуляторов: одиссея высокой плотности энергии
IEA (2017) https://www.iea.org/ (по состоянию на 12 января 2017 г.)
Nagaura T (1991) Prog Batteries Солнечные элементы 10: 218
CAS Google Scholar
Nishi Y (2001) Литий-ионные аккумуляторные батареи; последние 10 лет и будущее. J Power Sources 100 (1-2): 101–106
CAS Статья Google Scholar
Tarascon JM, Armand M (2001) Проблемы и проблемы, с которыми сталкиваются перезаряжаемые литиевые батареи. Nature 414 (6861): 359–367
CAS Статья Google Scholar
Winter M, Brodd RJ (2004) Что такое батареи, топливные элементы и суперконденсаторы? Chem Rev 104 (10): 4245–4269
CAS Статья Google Scholar
Арманд М., Тараскон Дж. М. (2008) Создание лучших батарей. Nature 451 (7179): 652–657
CAS Статья Google Scholar
Скросати Б., Гарче Дж. (2010) Литиевые батареи: состояние, перспективы и будущее. J Power Sources 195 (9): 2419–2430
CAS Статья Google Scholar
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Проблемы разработки передовых литий-ионных аккумуляторов: обзор.Energy Environ Sci 4 (9): 3243–3262
CAS Статья Google Scholar
Scrosati B, Hassoun J, Sun Y-K (2011) Литий-ионные батареи. Взгляд в будущее. Energy Environ Sci 4 (9): 3287–3295
CAS Статья Google Scholar
Wagner R, Preschitschek N, Passerini S, Leker J, Winter M (2013) Текущие тенденции и перспективы исследований различных материалов и конструкций, используемых в литиевых батареях.J Appl Electrochem 43 (5): 481–496
CAS Статья Google Scholar
Crabtree G, Kócs E, Trahey L (2015) Границы накопления энергии: литий-ионные батареи и не только. MRS Bull 40 (12): 1067–1078
CAS Статья Google Scholar
Ларчер Д., Тараскон Дж. М. (2015) На пути к более экологичным и экологически безопасным батареям для хранения электроэнергии.Nat Chem 7 (1): 19–29
CAS Статья Google Scholar
Schipper F, Aurbach D (2016) Краткий обзор: прошлое, настоящее и будущее литий-ионных батарей. Russ J Electrochem 52 (12): 1095–1121
CAS Статья Google Scholar
Дэн Д. (2015) Литий-ионные аккумуляторы: основы, прогресс и проблемы. Energy Sci Eng 3 (5): 385–418
Статья Google Scholar
Blomgren GE (2017) Развитие и будущее литий-ионных батарей. J Electrochem Soc 164 (1): A5019 – A5025
CAS Статья Google Scholar
Tarascon JM (2016) Литий-ионный аккумулятор: 25 лет увлекательного и полезного опыта. Electrochem Soc Interface 25 (3): 79–83
CAS Статья Google Scholar
Besenhard JO, Winter M (1998) Реакции внедрения в усовершенствованном электрохимическом накоплении энергии.Pure Appl Chem 70 (3): 603–608
CAS Статья Google Scholar
Андре Д., Ким С.Дж., Лампа П, Люкс С.Ф., Маглия Ф., Пашос О., Стиашны Б. (2015) Будущие поколения катодных материалов: перспектива автомобильной промышленности. J Mater Chem A 3: 6709–6732
CAS Статья Google Scholar
Патри Дж., Романьи А., Мартине С., Фрелих Д. (2014) Моделирование затрат на литий-ионные аккумуляторные элементы для автомобильных приложений.Energy Sci Eng 3 (1): 71–82
Статья Google Scholar
Брюс П.Г., Фрейнбергер С.А., Хардвик Л.Дж., Тараскон Дж.М. (2012) Li-O 2 и Li-S батареи с высоким накоплением энергии. Nat Mater 11 (1): 19–29
CAS Статья Google Scholar
Capsoni D, Bini M, Ferrari S, Quartarone E, Mustarelli P (2012) Последние достижения в разработке литий-воздушных аккумуляторов.J Power Sources 220: 253–263
CAS Статья Google Scholar
Кристенсен Дж., Альбертус П., Санчес-Каррера Р.С., Ломанн Т., Козинский Б., Лидтке Р., Ахмед Дж., Койич А. (2012) Критический обзор литиево-воздушных батарей. J Electrochem Soc 159 (2): R1 – R30
CAS Статья Google Scholar
Брессер Д., Пассерини С., Скросати Б. (2013) Недавний прогресс и остающиеся проблемы в области литиевых вторичных батарей на основе серы — обзор.Chem Commun 49 (90): 10545–10562
CAS Статья Google Scholar
Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Литий-серные аккумуляторные батареи. Chem Rev 114 (23): 11751–11787
CAS Статья Google Scholar
Канепа П., Сай Гаутам Дж., Ханна Д.К., Малик Р., Лю М., Галлахер К.Г., Перссон К.А., Седер Дж. (2017) Одиссея поливалентных катодных материалов: открытые вопросы и будущие задачи.Chem Rev 117 (5): 4287–4341
Besenhard JO, Winter M (2002) Достижения в аккумуляторной технологии: перезаряжаемые магниевые батареи и новые материалы отрицательных электродов для литий-ионных батарей. ChemPhysChem 3 (2): 155–159
CAS Статья Google Scholar
Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) Обзор твердотельных батарей на литиевой и нелитиевой основе.J Power Sources 282: 299–322
Janek J, Zeier WG (2016) Надежное будущее для разработки аккумуляторов. Nature Energy 1: 16141
Статья Google Scholar
Нельсон П., Галлахер К., Блум И., Дис Д. (2011) Моделирование производительности и стоимости литий-ионных батарей для транспортных средств с электрическим приводом. Отделение химических наук и инженерии. Аргоннская национальная лаборатория, Аргонн, штат Иллинойс, США
Google Scholar
Теккерей М.М., Волвертон С., Исаакс Э.Д. (2012) Хранение электроэнергии для транспортировки, приближающееся к литий-ионным батареям и выходящее за их пределы. Energy Environ Sci 5 (7): 7854–7863
CAS Статья Google Scholar
Gallagher KG, Goebel S, Greszler T, Mathias M, Oelerich W., Eroglu D, Srinivasan V (2014) Количественная оценка перспективности литий-воздушных батарей для электромобилей. Energy Environ Sci 7 (5): 1555–1563
CAS Статья Google Scholar
Van Noorden R (2014) Лучшая батарея. Nature 507 (7490): 26–28
CAS Статья Google Scholar
Berg EJ, Villevieille C, Streich D, Trabesinger S, Novák P (2015) Аккумуляторные батареи: понимание ограничений химии. J Electrochem Soc 162 (14): A2468 – A2475
CAS Статья Google Scholar
Грёгер О., Гастайгер Х.А., Сусланд Дж.П. (2015) Обзор — электромобильность: батареи или топливные элементы? J Electrochem Soc 162 (14): A2605 – A2622
Артикул CAS Google Scholar
Wood Iii DL, Li J, Daniel C (2015) Перспективы снижения стоимости обработки литий-ионных батарей. J Power Sources 275: 234–242
Статья CAS Google Scholar
Scrosati B (2011) История литиевых батарей. J Solid State Electrochem 15 (7–8): 1623–1630
CAS Статья Google Scholar
Placke T, Winter M (2015) Batterien für medizinische Anwendungen.Z Herz- Thorax- Gefäßchir 29 (2): 139–149
Статья Google Scholar
Бикер П., Winter M (2015) Был ли braucht man für eine Super-Batterie? Chem Unserer Zeit 50 (1): 26–33
Статья CAS Google Scholar
Winter M, Besenhard JO (1999) Wiederaufladbare Batterien. Часть 1: Akkumulatoren mit wäßriger Elektrolytlösung. Chem Unserer Zeit 33 (5): 252–266
CAS Статья Google Scholar
Owens BB (1986) Батареи для имплантируемых биомедицинских устройств. Plenum Press, New York
Книга Google Scholar
Rüdorff W, Hofmann U (1938) Über Graphitsalze. Z Anorg Allg Chem 238 (1): 1
Статья Google Scholar
McCullough FP, Beale AF (1989) Электрод для использования во вторичных накопителях электроэнергии — позволяет избежать каких-либо существенных изменений размеров во время повторяющихся циклов электрического заряда и разряда.Патент США 4: 865 931
Google Scholar
McCullough FP, Levine A, Snelgrove RV (1989) Вторичная батарея. Патент США 4: 830 938
Google Scholar
McCullough FP (1996) Гибкое углеродное волокно, электрод из углеродного волокна и устройства вторичного накопления энергии. Патент США 5: 518,836
Google Scholar
McCullough FP (1996) Гибкий электрод из углеродного волокна с низким модулем упругости и высокой электропроводностью, батарея, в которой используется электрод из углеродного волокна, и способ изготовления. Патент США 5: 532,083
Google Scholar
Carlin RT, Delong HC, Fuller J, Trulove PC (1994) Батареи с двумя интеркалирующими расплавленными электролитами. J Electrochem Soc 141 (7): L73 – L76
CAS Статья Google Scholar
Carlin RT, Fuller J, Kuhn WK, Lysaght MJ, Trulove PC (1996) Электрохимия расплавленных солей хлоралюмината при комнатной температуре на графитовых и неграфитовых электродах. J Appl Electrochem 26 (11): 1147–1160
CAS Статья Google Scholar
Dahn JR, Seel JA (2000) Прогнозы энергии и емкости для практических элементов с двойным графитом. J Electrochem Soc 147 (3): 899–901
CAS Статья Google Scholar
Seel JA, Dahn JR (2000) Электрохимическое внедрение PF 6 в графит. J Electrochem Soc 147 (3): 892–898
CAS Статья Google Scholar
Placke T, Bieker P, Lux SF, Fromm O, Meyer HW, Passerini S, Winter M (2012) Двойные ионные элементы, основанные на внедрении анионов в графит из электролитов на основе ионной жидкости. Z Phys Chem 226: 391–407
CAS Статья Google Scholar
Placke T, Fromm O, Lux SF, Bieker P, Rothermel S, Meyer HW, Passerini S, Winter M (2012) Обратимая интеркаляция анионов бис (трифторметансульфонил) имида из ионного жидкого электролита в графит для высокоэффективных двухионных ячеек . J Electrochem Soc 159 (11): A1755 – A1765
CAS Статья Google Scholar
Rothermel S, Meister P, Schmuelling G, Fromm O, Meyer HW, Nowak S, Winter M, Placke T. (2014) Двойные графитовые ячейки на основе обратимого интеркалирования анионов бис (трифторметансульфонил) имида из ионно-жидкий электролит.Energy Environ Sci 7 (10): 3412–3423
CAS Статья Google Scholar
Рид Дж. А., Кресче А. В., Эрвин М. Х., Сюй К. (2014) Химия двойного графита, обеспечиваемая высоковольтным электролитом. Energy Environ Sci 7 (2): 617–620
CAS Статья Google Scholar
Zhang X, Tang Y, Zhang F, Lee C-S (2016) Новая двухионная батарея из алюминия и графита. Adv Energy Mater 6 (11): 1502588–1502593
Статья CAS Google Scholar
Tong X, Zhang F, Ji B, Sheng M, Tang Y (2016) Пористый анод из алюминиевой фольги с углеродным покрытием для высокоскоростной, долговременной циклической стабильности и двухионных батарей с высокой плотностью энергии. Adv Mater 28 (45): 9979–9985
CAS Статья Google Scholar
Miyoshi S, Nagano H, Fukuda T, Kurihara T, Watanabe M, Ida S, Ishihara T (2016) Двухуглеродный аккумулятор с высокой концентрацией LiPF 6 в диметилкарбонатном (DMC) электролите.J Electrochem Soc 163 (7): A1206 – A1213
CAS Статья Google Scholar
Meister P, Siozios V, Reiter J, Klamor S, Rothermel S, Fromm O, Meyer HW, Winter M, Placke T (2014) Двойные ионные ячейки, основанные на электрохимической интеркаляции асимметричного фторсульфонил- (трифторметансульфонил) ) имидные анионы в графит. Electrochim Acta 130 (0): 625–633
Onagi N, Hibino E, Okada S, Ishihara T (2014) Батарея с неводным электролитом.US20140186696 A1
Winter M, Besenhard JO (1999) Wiederaufladbare Batterien. Часть 2: Akkumulatoren mit nichtwäßriger Elektrolytlösung. Chem Unserer Zeit 33 (6): 320–332
CAS Статья Google Scholar
Пелед Э. (1979) Электрохимическое поведение щелочных и щелочно-земельных металлов в неводных аккумуляторных системах — межфазная модель твердого электролита. J Electrochem Soc 126 (12): 2047–2051
CAS Статья Google Scholar
Besenhard JO, Winter M, Yang J, Biberacher W (1995) Механизм пленки литий-углеродных анодов в органических и неорганических электролитах. J Power Sources 54 (2): 228–231
CAS Статья Google Scholar
Пелед Э., Голодницкий Д., Ардел Г. (1997) Усовершенствованная модель межфазных электродов с твердым электролитом в жидких и полимерных электролитах. J Electrochem Soc 144 (8): L208 – L210
CAS Статья Google Scholar
Winter M, Appel WK, Evers B, Hodal T, Moller KC, Schneider I, Wachtler M, Wagner MR, Wrodnigg GH, Besenhard JO (2001) Исследования на границе раздела анод / электролит в литий-ионных батареях. Chem Mon 132 (4): 473–486
CAS Статья Google Scholar
Эдстрем К., Херстедт М., Абрахам Д.П. (2006) Новый взгляд на межфазную поверхность твердого электролита на графитовых анодах в литий-ионных батареях. J Power Sources 153 (2): 380–384
Статья CAS Google Scholar
Winter M (2009) Твердый электролит между фазами — наиболее важный и наименее изученный твердый электролит в литиевых аккумуляторных батареях. Z Phys Chem 223 (10–11): 1395–1406
CAS Статья Google Scholar
Verma P, Maire P, Novak P (2010) Обзор характеристик и анализ межфазной границы твердого электролита в литий-ионных батареях. Electrochim Acta 55 (22): 6332–6341
CAS Статья Google Scholar
An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood III DL (2016) Состояние понимания межфазной границы твердого электролита (SEI) литий-ионных аккумуляторов и графита и ее связи с цикличностью пласта. Углерод 105: 52–76
CAS Статья Google Scholar
Schranzhofer H, Bugajski J, Santner H, Korepp C, Möller K-C, Besenhard J, Winter M, Sitte W. (2006) Исследование методом электрохимической импедансной спектроскопии образования SEI на графитовых и металлических электродах.J Power Sources 153 (2): 391–395
CAS Статья Google Scholar
Root MJ (2013) Батареи для медицинских устройств. В: Бродд Р.Дж. (ред.) Батареи для устойчивого развития — избранные статьи из Энциклопедии науки и технологий в области устойчивого развития. Springer, New York,
Eichinger G, Semrau G (1990) Lithiumbatterien I. Chemische Grundlagen. Chem Unserer Zeit 24 (1): 32–36
CAS Статья Google Scholar
Eichinger G, Semrau G (1990) Lithiumbatterien II. Entladereaktionen und komplette Zellen. Chem Unserer Zeit 24 (2): 90–96
CAS Статья Google Scholar
Brandt K (1994) Историческое развитие вторичных литиевых батарей. Ионика твердого тела 69 (3–4): 173–183
CAS Статья Google Scholar
Watanabe K, Fukuda M (1970) Первичный элемент для электрических батарей.Патент США № 3: 536,532
. Google Scholar
Schneider AA, Moser JR (1972) Первичные элементы и йодсодержащие катоды, следовательно. Патент США 3: 674,562
. Google Scholar
Julien C, Mauger A, Vijh A, Zaghib K (2016) Литиевые батареи. Наука и технологии, Springer International Publishing, Швейцария
Reddy TB (2010) Справочник Линдена по аккумуляторам, 4-е издание.McGraw-Hill Education, Нью-Йорк
Whittingham MS (1976) Накопление электрической энергии и химия интеркаляции. Наука 192 (4244): 1126–1127
CAS Статья Google Scholar
Whittingham MS (1978) Химия интеркаляционных соединений — металлических гостей в халькогенидных хозяевах. Prog Solid State Chem 12 (1): 41–99
CAS Статья Google Scholar
Whittingham MS (2004) Литиевые батареи и катодные материалы. Chem Rev 104 (10): 4271–4301
CAS Статья Google Scholar
Перейра Н., Аматуччи Г.Г., Уиттингем М.С., Хэмлен Р. (2015) Характеристики перезаряжаемых элементов на основе дисульфида лития и титана после 35 лет хранения. J Power Sources 280: 18–22
CAS Статья Google Scholar
Фушар Д., Тейлор Дж. Б. (1987) Перезаряжаемая литиевая система Molicel — аспекты, связанные с несколькими ячейками.J Power Sources 21 (3-4): 195–205
CAS Статья Google Scholar
Brandt K, Laman FC (1989) Воспроизводимость и надежность перезаряжаемых литий-молибден-дисульфидных батарей. J Power Sources 25 (4): 265–276
CAS Статья Google Scholar
Робиллард С. (2005) Proc Общее собрание энергетического общества IEEE. Сан-Франциско, Калифорния, 12–16 июня: 1223–1227
Google Scholar
Dan P, Mengeritsky E, Aurbach D, Weissman I, Zinigrad E (1997) Более подробная информация о новой технологии перезаряжаемых аккумуляторов LiMnO 2 , разработанной в Tadiran. J Power Sources 68 (2): 443–447
CAS Статья Google Scholar
Mengeritsky E, Dan P, Weissman I, Zaban A, Aurbach D (1996) Безопасность и характеристики аккумуляторных батарей Tadiran TLR-7103. J Electrochem Soc 143 (7): 2110–2116
CAS Статья Google Scholar
Fouchard D, Lechner L (1993) Анализ безопасности и надежности вторичных литиевых батарей. Electrochim Acta 38 (9): 1193–1198
CAS Статья Google Scholar
Winter M, Besenhard JO, Spahr ME, Novak P (1998) Материалы вставных электродов для литиевых аккумуляторных батарей. Adv Mater 10 (10): 725–763
CAS Статья Google Scholar
Heine J, Hilbig P, Qi X, Niehoff P, Winter M, Bieker P (2015) Фторэтиленкарбонат в качестве добавки к электролиту в электролитах на основе диметилового эфира тетраэтиленгликоля для применения в литий-ионных и литий-металлических батареях. J Electrochem Soc 162 (6): A1094 – A1101
CAS Статья Google Scholar
Lazzari M, Scrosati B (1980) Циклическая ячейка с литиево-органическим электролитом на основе 2-х вставочных электродов. J Electrochem Soc 127 (3): 773–774
CAS Статья Google Scholar
Scrosati B (1992) Литиевые батареи для кресел-качалок — старая концепция. J Electrochem Soc 139 (10): 2776–2781
CAS Статья Google Scholar
Мидзусима К., Джонс П.С., Вайзман П.Дж., Гуденаф Дж. Б. (1980) Li x CoO 2 — новый катодный материал для батарей с высокой плотностью энергии. Mater Res Bull 15 (6): 783–789
CAS Статья Google Scholar
Winter M, Besenhard JO (1999) Литированный уголь. В: Besenhard JO (ed) Handbook of Battery Materials. Wiley-VCH Verlag GmbH, Weinheim, pp 383–418
Winter M, Möller K-C, Besenhard JO (2003) Углеродистые и графитовые аноды. В: Nazri G-A, Pistoia G (eds) Литиевые батареи: наука и технологии. Springer US, Boston, pp. 145–194
Глава Google Scholar
Juza R, Wehle V (1965) Lithium-Graphit-Einlagerungsverbindungen.Naturwissenschaften 52 (20): 560
CAS Статья Google Scholar
Багуин М., Герар Д., Герольд А. (1966) Экшен лития на графите. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C 262 (7): 557
CAS Google Scholar
Guerard D, Herold A (1972) Новый метод получения соединений лития с введением в графит.Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C 275 (11): 571
CAS Google Scholar
Guerard D, Herold A (1975) Интеркаляция лития в графит и другие углеродные атомы. Углерод 13 (4): 337–345
CAS Статья Google Scholar
Дей А.Н., Салливан Б.П. (1970) Электрохимическое разложение пропиленкарбоната на графите.J Electrochem Soc 117 (2): 222
CAS Статья Google Scholar
Аракава М., Ямаки Д.И. (1987) Катодное разложение пропиленкарбоната в литиевых батареях. J Electroanal Chem 219 (1-2): 273-280
CAS Статья Google Scholar
Фонг Р., фон Сакен Ю., Дан Дж. Р. (1990) Исследования интеркаляции лития в углерод с использованием неводных электрохимических ячеек.J Electrochem Soc 137 (7): 2009–2013
CAS Статья Google Scholar
Besenhard JO (1976) Электрохимическое получение и свойства ионных соединений щелочного металла и NR 4 -графита интеркалирования в органических электролитах. Углерод 14 (2): 111–115
CAS Статья Google Scholar
Gallus DR, Wagner R, Wiemers-Meyer S, Winter M, Cekic-Laskovic I (2015) Новое понимание взаимосвязи структуры и свойств компонентов высоковольтного электролита для литий-ионных батарей с использованием значения pKa .Electrochim Acta 184: 410–416
CAS Статья Google Scholar
Wagner R, Streipert B, Kraft V, Reyes Jiménez A, Röser S, Kasnatscheew J, Gallus DR, Börner M, Mayer C, Arlinghaus HF (2016) Контраинтуитивная роль солей магния как эффективных электролитных добавок для высоких напряжение литий-ионных аккумуляторов. Adv Mater Interfaces 3 (15)
Wagner R, Korth M, Streipert B, Kasnatscheew J, Gallus DR, Brox S, Amereller M, Cekic-Laskovic I, Winter M (2016) Влияние выбранных продуктов гидролиза LiPF6 о стабильности высокого напряжения литий-ионных аккумуляторных элементов.Интерфейсы приложения ACS Mater 8 (45): 30871–30878
CAS Статья Google Scholar
Язами Р., Тузайн П. (1983) Обратимый графит-литиевый отрицательный электрод для электрохимических генераторов. J Power Sources 9 (3): 365–371
CAS Статья Google Scholar
Basu S (1981) Аккумулятор. Bell Telephone Laboratories, Патент США 4: 304 825
Google Scholar
Murmann P, Streipert B, Kloepsch R, Ignatiev N, Sartori P, Winter M, Cekic-Laskovic I (2015) Литий-цикло-дифторметан-1,1-бис (сульфонил) имид в качестве стабилизирующей добавки к электролиту для повышения высокого напряжения применения в литий-ионных батареях. Phys Chem Chem Phys 17 (14): 9352–9358
CAS Статья Google Scholar
Ozawa K (1994) Литий-ионные аккумуляторные батареи с LiCoO 2 и угольными электродами — система LiCoO 2 / C.Ионика твердого тела 69 (3–4): 212–221
CAS Статья Google Scholar
Megahed S, Scrosati B (1994) Литий-ионные аккумуляторные батареи. J Power Sources 51 (1-2): 79-104
CAS Статья Google Scholar
Bieker P, Winter M (2016) Lithium-Ionen-Technologie und was danach kommen könnte. Chem Unserer Zeit 50 (3): 172–186
CAS Статья Google Scholar
Krämer E, Schedlbauer T, Hoffmann B, Terborg L, Nowak S, Gores HJ, Passerini S, Winter M (2013) Механизм анодного растворения алюминиевого токоприемника в 1 M LiTFSI EC: DEC 3: 7 в перезаряжаемых литиевых батареях . J Electrochem Soc 160 (2): A356 – A360
Артикул CAS Google Scholar
Krämer E, Passerini S, Winter M (2012) Зависимость коррозии алюминиевого коллектора литий-ионных батарей от растворителя электролита.ECS Electrochem Lett 1 (5): C9 – C11
Артикул CAS Google Scholar
Heckmann A, Krott M, Streipert B, Uhlenbruck S, Winter M, Placke T (2017) Подавление растворения алюминиевого токосъемника с помощью защитных керамических покрытий для улучшения характеристик высоковольтной батареи. ChemPhysChem 18 (1): 156–163
CAS Статья Google Scholar
Böttcher T, Duda B, Kalinovich N, Kazakova O, Ponomarenko M, Vlasov K, Winter M, Röschenthaler GV (2014) Синтезы новых делокализованных катионов и фторированных анионов, новые фторированные растворители и добавки для ионно-литиевых батарей .Prog Solid State Chem 42 (4): 202–217
Статья CAS Google Scholar
Schmitz RW, Murmann P, Schmitz R, Müller R, Krämer L, Kasnatscheew J, Isken P, Niehoff P, Nowak S, Röschenthaler GV (2014) Исследования новых электролитов, растворителей и присадок SEI для использования в литий-ионные батареи: систематическая электрохимическая характеристика и детальный анализ спектроскопическими методами. Prog Solid State Chem 42 (4): 65–84
CAS Статья Google Scholar
Amereller M, Schedlbauer T, Moosbauer D, Schreiner C, Stock C, Wudy F, Zugmann S, Hammer H, Maurer A, Gschwind R (2014) Электролиты для литиевых и литий-ионных батарей: из синтеза новых боратов лития и ионных жидкостей разработке новых методов измерения. Prog Solid State Chem 42 (4): 39–56
CAS Google Scholar
Nishi Y (2001) Разработка литий-ионных аккумуляторных батарей. Chem Rec 1 (5): 406–413
CAS Статья Google Scholar
Бруссели М., Арчдейл Г. (2004) Литий-ионные батареи и перспективы портативных источников питания на следующие 5–10 лет. J Power Sources 136 (2): 386–394
CAS Статья Google Scholar
Pillot C (2017) Рынок аккумуляторов и основные тенденции 2016–2025 гг. Доклад на конференции Advanced Automotive Battery Conference (AABC) Europe, Mainz
Whittingham MS (2014) Окончательные пределы реакций интеркаляции для литиевых аккумуляторов.Chem Rev 114 (23): 11414–11443
CAS Статья Google Scholar
Shao YY, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang JG, Wang Y, Liu J (2013) Создание перезаряжаемых литий-воздушных батарей: материальные проблемы. Adv Funct Mater 23 (8): 987–1004
CAS Статья Google Scholar
Чжан С.С. (2013) Литий-серная батарея с жидким электролитом: фундаментальная химия, проблемы и решения.J Power Sources 231: 153–162
CAS Статья Google Scholar
Чен Л., Шоу Л.Л. (2014) Последние достижения в области литий-серных батарей. J Power Sources 267: 770–783
CAS Статья Google Scholar
Grande L, Paillard E, Hassoun J, Park J-B, Lee Y-J, Sun Y-K, Passerini S, Scrosati B (2014) Литиево-воздушная батарея: все еще развивающаяся система или практическая реальность? Адв. Матер. 27 (5): 784-800
Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) Аккумуляторный Li 2 O 2 электрод для литиевых батарей. J Am Chem Soc 128 (4): 1390–1393
CAS Статья Google Scholar
Hagen M, Hanselmann D, Ahlbrecht K, Maça R, Gerber D, Tübke J (2015) Литий-серные элементы: разрыв между современным уровнем техники и требованиями к аккумуляторным элементам с высокой энергией . Adv Energy Mater 5 (16): 1401986
Артикул CAS Google Scholar
Blurton KF, Sammells AF (1979) Металлические / воздушные батареи: их состояние и потенциал — обзор. J Power Sources 4 (4): 263–279
CAS Статья Google Scholar
Abraham KM, Jiang Z (1996) Кислородные батареи на основе твердого полимерного электролита. Патент США 5: 510,209
. Google Scholar
Abraham KM, Jiang Z (1996) Перезаряжаемая литий-кислородная батарея на основе полимерного электролита.J Electrochem Soc 143 (1): 1–5
CAS Статья Google Scholar
Choi JW, Aurbach D (2016) Перспективы и реальность постлитий-ионных аккумуляторов с высокой плотностью энергии. Материалы Nature Reviews 1: 16013
CAS Статья Google Scholar
Данута Х., Юлиуш У. (1962) Сухие электрические элементы и аккумуляторные батареи. Патент США 3: 043,896
. Google Scholar
Rao MLB (1966) Элементы с органическими электролитами. Патент США 3413154 A
Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) Батарея лития / растворенной серы с органическим электролитом. J Electrochem Soc 126 (4): 523–527
CAS Статья Google Scholar
Джи Х, Ли К.Т., Назар Л.Ф. (2009) Высокоупорядоченный наноструктурированный углерод-серный катод для литий-серных батарей. Nat Mater 8 (6): 500–506
CAS Статья Google Scholar
Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) О поверхностных химических аспектах перезаряжаемых литий-серных батарей с очень высокой плотностью энергии. J Electrochem Soc 156 (8): A694 – A702
CAS Статья Google Scholar
Yin Y-X, Xin S, Guo Y-G, Wan L-J (2013) Литий-серные батареи: электрохимия, материалы и перспективы. Angew Chem Int Ed 52 (50): 13186–13200
CAS Статья Google Scholar
SionPower http://www.sionpower.com (по состоянию на 20 января 2017 г.)
Ябуучи Н., Кубота К., Дахби М., Комаба С. (2014) Разработка исследований натриево-ионных аккумуляторов. Chem Rev 114 (23): 11636–11682
CAS Статья Google Scholar
Klein F, Jache B, Bhide A, Adelhelm P (2013) Реакции преобразования для натрий-ионных батарей. Phys Chem Chem Phys 15 (38): 15876–15887
CAS Статья Google Scholar
Эллис Б.Л., Назар Л.Ф. (2012) Натриевые и натриево-ионные аккумуляторные батареи. Curr Opin Solid State Mat Sci 16 (4): 168–177
CAS Статья Google Scholar
Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Неорганическое твердое тело электролиты для литиевых батарей: механизмы и свойства, определяющие ионную проводимость. Chem Rev 116 (1): 140–162
CAS Статья Google Scholar
Hu Y-S (2016) Батареи: становятся твердыми. Nature Energy 1: 16042
CAS Статья Google Scholar
Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH (2011) Проточные окислительно-восстановительные батареи: обзор. J Appl Electrochem 41 (10): 1137–1164
CAS Статья Google Scholar
Aurbach D, Weissman I, Gofer Y, Levi E (2003) Электрохимия неводного магния и ее применение во вторичных батареях.Chem Rec 3 (1): 61–73
CAS Статья Google Scholar
Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Перезаряжаемые магниевые батареи: текущее состояние и ключевые задачи на будущее. Prog Mater Sci 66 (0): 1–86
Jian Z, Luo W, Ji X (2015) Угольные электроды для K-ионных аккумуляторов. J Am Chem Soc 137: 11566–11569
Vaalma C, Giffin GA, Buchholz D, Passerini S (2016) Неводная K-ионная батарея на основе слоистого K 0.3 MnO 2 и твердый углерод / технический углерод. J Electrochem Soc 163 (7): A1295 – A1299
CAS Статья Google Scholar
Ponrouch A, Frontera C, Barde F, Palacin MR (2016) На пути к перезаряжаемой батарее на основе кальция. Nat Mater 15 (2): 169
CAS Статья Google Scholar
Reinsberg P, Bondue CJ, Baltruschat H (2016) Кальций-кислородные батареи как многообещающая альтернатива натриево-кислородным батареям.J Phys Chem C 120 (39): 22179–22185
CAS Статья Google Scholar
Wachtler M, Wagner MR, Schmied M, Winter M, Besenhard JO (2001) Влияние морфологии связующего на циклическую стабильность композитных электродов из сплава Li. J Electroanal Chem 510 (1): 12–19
CAS Статья Google Scholar
Lux S, Schappacher F, Balducci A, Passerini S, Winter M (2010) Недорогие, экологически безопасные связующие для литий-ионных аккумуляторов.J Electrochem Soc 157 (3): A320 – A325
CAS Статья Google Scholar
Qi X, Blizanac B, DuPasquier A, Oljaca M, Li J, Winter M (2013) Понимание влияния площади поверхности проводящих углеродных добавок на быстродействие катодов LiFePO 4 для литий-ионных батарей. Углерод 64: 334–340
CAS Статья Google Scholar
Qi X, Blizanac B, DuPasquier A, Meister P, Placke T., Oljaca M, Li J, Winter M (2014) Исследование внедрения анионов PF 6 — и TFSI — в графитированную сажу и ее влияние на высоковольтных литий-ионных батареях. Phys Chem Chem Phys 16 (46): 25306–25313
CAS Статья Google Scholar
Qi X, Blizanac B, DuPasquier A, Lal A, Niehoff P, Placke T, Oljaca M, Li J, Winter M (2015) Влияние термообработанной проводящей добавки сажи на характеристики высоковольтной шпинели LiNi, легированный хромом 0.5 Mn 1,5 O 4 Композитный катодный электрод . J Electrochem Soc 162 (3): A339 – A343
CAS Статья Google Scholar
Bockholt H, Haselrieder W, Kwade A (2013) Интенсивное сухое и влажное перемешивание, влияющее на структурные и электрохимические свойства вторичных катодов литий-ионных аккумуляторов. ECS Trans 50 (26): 25–35
Артикул CAS Google Scholar
Bockholt H, Haselrieder W, Kwade A (2016) Интенсивное перемешивание порошка для сухого диспергирования сажи и его актуальность для катодов литий-ионных аккумуляторов. Порошок Technol 297: 266–274
CAS Статья Google Scholar
Bauer W, Nötzel D, Wenzel V, Nirschl H (2015) Влияние сухого перемешивания и распределения проводящих добавок в катодах для литий-ионных батарей. J Источники питания 288: 359–367
CAS Статья Google Scholar
Mazouzi D, Karkar Z, Hernandez CR, Manero PJ, Guyomard D, Roue L, Lestriez B (2015) Критические роли связующих и рецептуры в многомасштабных композитных электродах на основе кремния. J Power Sources 280: 533–549
CAS Статья Google Scholar
Porcher W, Lestriez B, Jouanneau S, Guyomard D (2010) Оптимизация поверхностно-активного вещества для водной обработки композитных электродов LiFePO 4 . J Power Sources 195 (9): 2835–2843
CAS Статья Google Scholar
Du Z, Wood III DL, Daniel C, Kalnaus S, Li J (2017) Понимание ограничивающих факторов в характеристиках толстых электродов применительно к литий-ионным батареям с высокой плотностью энергии. J Appl Electrochem 47 (3): 405–415
Bitsch B, Gallasch T, Schroeder M, Börner M, Winter M, Willenbacher N (2016) Капиллярные суспензии как полезная концепция рецептуры литий-ионных аккумуляторов с высокой плотностью энергии аккумуляторные электроды. J Power Sources 328: 114–123
CAS Статья Google Scholar
Новак П., Шайфеле В., Винтер М., Хаас О. (1997) Графитовые электроды с заданной пористостью для аккумуляторных батарей с ионным переносом. J Power Sources 68 (2): 267–270
Статья Google Scholar
Хазелридер В., Иванов С., Кристен Д.К., Бокхольт Х., Кваде А. (2013) Влияние процесса каландрирования на межфазную структуру и соответствующие электрохимические характеристики вторичных литий-ионных батарей. ECS Trans 50 (26): 59–70
Артикул CAS Google Scholar
Antartis D, Dillon S, Chasiotis I (2015) Влияние пористости на электрохимические и механические свойства композитных литий-ионных анодов. J Compos Mater 49 (15): 1849–1862
Zhang W-J (2011) Механизм ввода / извлечения лития в сплавные аноды для литий-ионных батарей. J Power Sources 196 (3): 877–885
CAS Статья Google Scholar
Чжао Х, Юань В., Лю Дж. (2015) Иерархическая конструкция электродов из наноматериалов из сплавов большой емкости для литий-ионных аккумуляторов.Нано сегодня 10 (2): 193–212
CAS Статья Google Scholar
Hochgatterer N, Schweiger M, Koller S, Raimann P, Wöhrle T., Wurm C, Winter M (2008) Кремний / графитовые композитные электроды для анодов большой емкости: влияние химического состава связующего на стабильность циклирования. Electrochem Solid-State Lett 11 (5): A76 – A80
CAS Статья Google Scholar
Vogl U, Das P, Weber A, Winter M, Kostecki R, Lux S (2014) Механизм взаимодействия между связующим CMC и гранями монокристалла Si. Langmuir 30 (34): 10299–10307
CAS Статья Google Scholar
Nelson P, Gallagher K, Bloom I BatPaC (производительность и стоимость батареи), Национальная лаборатория Аргонна, http://www.cse.anl.gov/BatPaC/ (по состоянию на 10 января 2017 г.)
Warner J (2015) Справочник по конструкции литий-ионных аккумуляторных батарей — химия, компоненты, типы и терминология.Elsevier Science, Burlington
3M http://multimedia.3m.com/mws/media/756169O/3mtm-battery-materials.pdf (по состоянию на 20 марта 2017 г.)
Korthauer R ( 2013) Handbuch Lithium-Ionen-Batterien. Springer Vieweg, Wiesbaden
Kasavajjula U, Wang C, Appleby AJ (2007) Вставные аноды на основе нано- и объемного кремния для литий-ионных вторичных элементов. J Power Sources 163 (2): 1003–1039
CAS Статья Google Scholar
Обровац М.Н., Шевриер В.Л. (2014) Отрицательные электроды из сплава для литий-ионных аккумуляторов. Chem Rev 114 (23): 11444–11502
CAS Статья Google Scholar
Zhang W-J (2011) Обзор электрохимических характеристик легированных анодов для литий-ионных батарей. J Power Sources 196 (1): 13–24
CAS Статья Google Scholar
Qiu B, Zhang M, Xia Y, Liu Z, Meng YS (2017) Понимание и контроль анионной электрохимической активности в оксидах большой емкости для литий-ионных аккумуляторов следующего поколения.Chem Mater 29 (3): 908–915
CAS Статья Google Scholar
Noh HJ, Youn S, Yoon CS, Sun YK (2013) Сравнение структурных и электрохимических свойств слоистого Li [Ni x Co y Mn z ] O 2 ( x = 1/3, 0,5, 0,6, 0,7, 0,8 и 0,85) катодный материал для литий-ионных аккумуляторов. J Power Sources 233: 121–130
CAS Статья Google Scholar
Li J, Kloepsch R, Stan MC, Nowak S, Kunze M, Winter M, Passerini S (2011) Синтез и электрохимические характеристики материала катода высокого напряжения Li [Li 0,2 Mn 0,56 Ni 0,16 Co 0,08 ] O 2 с улучшенной производительностью. J Power Sources 196 (10): 4821–4825
CAS Статья Google Scholar
Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey DG, Wei W (2015) A Li-rich Layered @ Spinel @ Углеродный гетероструктурированный катодный материал для высокой емкости и высокой производительности литий-ионные аккумуляторы, изготовленные методом синхронного восстановления карбонизации на месте.J Mater Chem A 3 (7): 3995–4003
CAS Статья Google Scholar
Liu H, Wang J, Zhang X, Zhou D, Qi X, Qiu B, Fang J, Kloepsch R, Schumacher G, Liu Z, Li J (2016) Морфологическая эволюция высоковольтной шпинели LiNi 0,5 Mn 1,5 O 4 катодные материалы для литий-ионных батарей: критические эффекты ориентации поверхности и размера частиц. Интерфейсы ACS Appl Mater 8 (7): 4661–4675
Liu N, Lu Z, Zhao J, McDowell MT, Lee H-W, Zhao W, Cui Y (2014) Наноразмерный дизайн, вдохновленный гранатом, для замены анодов литиевых батарей большого объема. Nat Nano 9 (3): 187–192
CAS Статья Google Scholar
Винтер М., Безенхард Дж., Альберинг Дж. Х., Ян Дж., Вахтлер М. (1998) Литиевые сплавы для хранения в качестве анодных материалов для литий-ионных батарей. Prog Batt Batt Mater 17: 208
CAS Google Scholar
Безенхард Дж., Ян Дж., Винтер М. (1997) Будут ли усовершенствованные аноды из литиевых сплавов использоваться в литий-ионных батареях? J Power Sources 68 (1): 87–90
CAS Статья Google Scholar
Qian J, Adams BD, Zheng J, Xu W, Henderson WA, Wang J, Bowden ME, Xu S, Hu J, Zhang J-G (2016) Безанодные перезаряжаемые литий-металлические батареи. Adv Funct Mater 26 (39): 7094–7102
CAS Статья Google Scholar
Brückner J, Thieme S, Grossmann HT, Dörfler S, Althues H, Kaskel S (2014) Литий-серные батареи: влияние скорости заряда, количества электролита и нагрузки серы на производительность цикла. J Источники энергии 268: 82–87
Статья CAS Google Scholar
Greszler T, Gu W, Goebel S, Masten D, Lakshmanan B (2012) Литий-воздух и литий-сера в контексте автомобильных систем. Выступление на конференции Beyond Lithium Ion 5, Беркли, Калифорния,
Арманд М. (1994) История полимерных электролитов. Ионика твердого тела 69 (3): 309–319
CAS Статья Google Scholar
Greatbatch W, Holmes CF (1992) Литиево-йодная батарея: историческая перспектива. Стимуляция Clin Electrophysiol 15 (11): 2034–2036
CAS Статья Google Scholar
Феттер Дж., Новак П., Вагнер М. Р., Фейт С., Мёллер К. С., Безенхард Дж. О., Винтер М., Вольфарт-Меренс М., Фоглер С., Хаммуш А. (2005) Механизмы старения в литий-ионных батареях.J Power Sources 147 (1-2): 269–281
CAS Статья Google Scholar
Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) Сульфидно-литиевый суперионный проводник превосходит жидкостно-ионные проводники для использования в аккумуляторных батареях. Energy Environ Sci 7 (2): 627–631
CAS Статья Google Scholar
Manthiram A, Yu X, Wang S (2017) Химический состав литиевых батарей обеспечивается твердотельными электролитами.Nat Rev Mater 2: 16103
CAS Статья Google Scholar
Pieczonka NPW, Liu Z, Lu P, Olson KL, Moote J, Powell BR, Kim JH (2013) Понимание поведения растворения переходных металлов в LiNi 0,5 Mn 1,5 O 4 high- шпинель напряжения для литий-ионных аккумуляторов. J Phys Chem C 117 (31): 15947–15957
CAS Статья Google Scholar
Gallus DR, Schmitz R, Wagner R, Hoffmann B, Nowak S, Cekic-Laskovic I, Schmitz RW, Winter M (2014) Влияние различных проводящих солей на растворение металлов и снижение емкости катодного материала NCM. Electrochim Acta 134: 393–398
CAS Статья Google Scholar
Бёрнер М., Кламор С., Хоффманн Б., Шредер М., Новак С., Вюрсиг А., Винтер М., Шаппахер Ф. (2016) Исследования зависимости от скорости углерода и температуры растворения / осаждения марганца в LiMn 2 O 4 / Li 4 Ti 5 O 12 литий-ионные батареи .J Electrochem Soc 163 (6): A831 – A837
Артикул CAS Google Scholar
Evertz M, Horsthemke F, Kasnatscheew J, Börner M, Winter M, Nowak S (2016) Распознавание растворения Li в переходном металле 1,04 Ni 1/3 Co 1/3 Mn 1 / 3 O 2 (NCM 111) в литиево-ионных полных ячейках с использованием метода рентгеновской флуоресценции полного отражения. J Power Sources 329: 364–371
CAS Статья Google Scholar
Jia H, Kloepsch R, He X, Evertz M, Nowak S, Li J, Winter M, Placke T (2016) Наноструктурированный ZnFe 2 O 4 в качестве анодного материала для литий-ионных батарей: синтез с использованием ионной жидкости и оценка производительности с особым вниманием к сравнительному растворению металлов. Acta Chim Slov 63 (3): 470–483
CAS Статья Google Scholar
Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Литий-металлические аноды для аккумуляторных батарей.Energy Environ Sci 7 (2): 513–537
CAS Статья Google Scholar
Kato Y, Kawamoto K, Kanno R, Hirayama M (2012) Разрядные характеристики полностью твердотельной батареи с использованием литиевого суперионного проводника Li 10 GeP 2 S 12 . Электрохимия 80 (10): 749–751
CAS Статья Google Scholar
Gambe Y, Sun Y, Honma I (2015) Разработка биполярной твердотельной литиевой батареи на основе квазитвердотельного электролита, содержащего эквимолярный комплекс тетраглим-LiTFSA.Sci Rep 5: 8869–8872
Kloepsch R, Placke T, Winter M (2017) Festelektrolytbatterien: Sinn, Unsinn, Realitätssinn. Proceedings, Batterieforum Deutschland, 25–27 января, Берлин, Германия
Armand M (1983) Полимерные твердые электролиты — обзор. Ионика твердого тела 9: 745–754
Статья Google Scholar
Арманд М.Б. (1986) Полимерные электролиты. Annu Rev Mater Sci 16 (1): 245–261
CAS Статья Google Scholar
Baril D, Michot C, Armand M (1997) Электрохимия жидкостей и твердых тел: полимерные электролиты. Ионика твердого тела 94 (1): 35–47
CAS Статья Google Scholar
Мурата К., Изути С., Йошихиса Ю. (2000) Обзор исследований и разработок батарей с твердым полимерным электролитом. Electrochim Acta 45 (8–9): 1501–1508
CAS Статья Google Scholar
Рупп Б., Шмук М., Бальдуччи А., Винтер М., Керн В. (2008) Полимерный электролит для литиевых батарей на основе фотохимически сшитого полиэтиленоксида и ионной жидкости. Eur Polym J 44 (9): 2986–2990
CAS Статья Google Scholar
Искен П., Винтер М., Пассерини С., Лекс-Балдуччи А. (2013) Гелевый полимерный электролит на основе метакрилата для литий-ионных аккумуляторов. J Power Sources 225: 157–162
CAS Статья Google Scholar
Шредер М., Искен П., Винтер М., Пассерини С., Лекс-Балдуччи А., Балдуччи А. (2013) Исследование использования гелевого полимерного электролита на основе метакрилата в устройствах большой мощности. J Electrochem Soc 160 (10): A1753 – A1758
CAS Статья Google Scholar
Jankowsky S, Hiller MM, Fromm O, Winter M, Wiemhoefer H-D (2015) Улучшенный литий-ионный транспорт в гелевых полимерных электролитах на основе полифосфазена. Electrochim Acta 155: 364–371
CAS Статья Google Scholar
Брюс П.Г., Западный округ Колумбия (1983) Электропроводность поликристаллического LISICON, Li 2 + 2x Zn 1-x GeO 4, и модель сопротивления межкристаллитному сужению. J Electrochem Soc 130 (3): 662–669
CAS Статья Google Scholar
Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ионная проводимость твердых электролитов на основе фосфата лития-титана. J Electrochem Soc 137 (4): 1023–1027
CAS Статья Google Scholar
Инагума Ю., Чен Л.К., Ито М., Накамура Т., Учида Т., Икута Х., Вакихара М. (1993) Высокая ионная проводимость в титанате лантана лития. Solid State Commun 86 (10): 689–693
CAS Статья Google Scholar
Муруган Р., Тангадурай В., Веппнер В. (2007) Быстрая ионная проводимость лития в гранатах типа Li 7 La 3 Zr 2 O 12 . Angew Chem, Int Ed 46 (41): 7778–7781
CAS Статья Google Scholar
Yu XH, Bates JB, Jellison GE, Hart FX (1997) Стабильный тонкопленочный литиевый электролит: оксинитрид лития-фосфора. J Electrochem Soc 144 (2): 524–532
CAS Статья Google Scholar
Ван И, Ричардс В.Д., Онг С.П., Миара Л.Дж., Ким Дж.С., Мо ИФ, Седер Дж. (2015) Принципы проектирования твердотельных литиевых суперионных проводников. Nat Mater 14 (10): 1026
CAS Статья Google Scholar
Сакуда А., Хаяси А., Тацумисаго М. (2013) Твердый сульфидный электролит с благоприятными механическими свойствами для полностью твердотельной литиевой батареи. Sci Rep 3: 2261
Muramatsu H, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) Структурные изменения Li 2 S – P 2 S 5 сульфидные твердые электролиты в Атмосфера. Ионика твердого тела 182 (1): 116–119
CAS Статья Google Scholar
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) литиевый суперионный проводник. Nat Mater 10 (9): 682–686
CAS Статья Google Scholar
Wenzel S, Randau S, Leichtweiss T, Weber DA, Sann J, Zeier WG, Janek J (2016) Прямое наблюдение межфазной нестабильности быстрого ионного проводника Li 10 GeP 2 S 12 на аноде из металлического лития.Chem Mater 28 (7): 2400–2407
CAS Статья Google Scholar
Wenzel S, Weber DA, Leichtweiss T, Busche MR, Sann J, Janek J (2016) Межфазное образование и деградация кинетики переноса заряда между анодом из металлического лития и высококристаллическим твердым электролитом Li7P3S11. Ионика твердого тела 286: 24–33
CAS Статья Google Scholar
Zhu YZ, He XF, Mo YF (2016) Изучение первых принципов электрохимической и химической стабильности границ раздела твердый электролит-электрод в полностью твердотельных литий-ионных батареях. J Mater Chem A 4 (9): 3253–3266
CAS Статья Google Scholar
Metalary http://metalary.com/lithium-price/. По состоянию на 8 марта 2017 г.
Cekic-Laskovic I, Wagner R, Wiemers-Meyer S, Nowak S, Winter M (2016) Жидкие электролиты — всего лишь товар и модель постепенного отказа? Proceedings, Graz Battery Days, 26–28 сентября, Грац, Австрия
Бикер Г., Винтер М., Бикер П. (2015) Электрохимические исследования in situ SEI и образования дендритов на аноде из металлического лития. Phys Chem Chem Phys 17 (14): 8670–8679
CAS Статья Google Scholar
Ryou MH, Lee YM, Lee Y, Winter M, Bieker P (2015) Обработка поверхности: механическая модификация поверхности металлического лития: улучшение характеристик металлического лития анода за счет направленного литиевого покрытия. Adv Funct Mater 25 (6): 825–825
Статья Google Scholar
Martha SK, Nanda J, Kim Y, Unocic RR, Pannala S, Dudney NJ (2013) Высоковольтный слоистый литиевый композитный катод с покрытием из твердого электролита: Li 1,2 Mn 0,525 Ni 0,175 Co 0,1 О 2 .