На что влияет крутящий момент: Что важнее для разгона – мощность или крутящий момент

Содержание

Что важнее для разгона – мощность или крутящий момент

Этот вопрос – одна из главных тем «холиваров» на автомобильных форумах. Оппоненты готовы порвать друг друга, приводя десятки аргументов. А ведь все просто: мощность — это и есть момент! Как так? Сейчас объясним.

В детстве многие люди постарше собирали фантики «Турбо», на них почти обязательно указывались мощность и максимальная скорость машины. Чем больше цифры, тем больше почтения модели авто. Похоже, так и продолжается до сих пор — лишние несколько лошадиных сил часто становятся решающим аргументом «за» или «против» какой-либо машины.

Но вот уже слышны голоса познавших дизельный Дзен о том, что важен только Крутящий Момент, да и подозрительно хорошая динамика более слабых бензиновых моторов со всякими турбинами или разными там системами VVT-i заставляет иногда водителей усомниться в верности принципа «чем мощнее, тем быстрее», а уж про налоги, которые почему-то зависят от мощности, и так все наслышаны.

Так что же такое мощность и как она связана с динамикой?

В паспортных характеристиках машины и на тех самых вкладышах «Турбо» указана максимальная мощность двигателя. Но что она дает машине? И как с ней связан крутящий момент? Постараемся объяснить максимально просто эту важную истину.

Крутящий момент, напомним, есть произведение силы на плечо рычага. А для двигателя — это сила, с которой вращается коленчатый вал двигателя. Измеряется обычно в ньютонах на метр или в килограмм-силах на метр.


График внешней характеристики двигателя

Собственно, момент возникает, если тормозить вращение коленчатого вала каким-то способом — гидротормозом, генератором или заставить тянуть машину. Именно так его и замеряют — тормозят сам двигатель или колеса машины гидротормозом. Для двигателя обычно указывается максимальный крутящий момент, который развивает мотор при полностью нажатой педали газа, с чьей помощью водитель как раз регулирует, какую часть момента может дать двигатель.
Осталось понять, как этот самый момент изменяется. Крутящий момент зависит от величины оборотов двигателя и в начале невелик, потом растет до определенного момента, а затем падает. Почему же?


Пики и спады на графике

В реальной эксплуатации полный момент бывает нужен редко, как раз в тех случаях, когда вы прожимаете педаль газа в пол и надеетесь, что двигатель «вытянет», всё остальное время он меньше максимального на этих оборотах. Но мы уже знаем, что момент меняется не только под воздействием нажатия на педаль газа (механической или электронной), но и с оборотами. На различных оборотах процессы, происходящие в камере сгорания мотора, различны. Дополнительные системы, такие как наддув, системы регулировки фаз ГРМ и прочие, еще сильнее изменяют наполнение камеры сгорания, количество топлива и момент зажигания, и в результате качество и сила рабочего хода зависят от оборотов мотора. Даже если нет никаких систем электронного регулирования, всё равно количество воздуха, попадающего в цилиндр, количество оставшегося выхлопа и оптимальный угол опережения зажигания меняются с оборотами.
На самых малых оборотах в цилиндре слишком много остаточных газов или слишком вероятна детонация, потому крутящий момент на малых оборотах обычно намного меньше максимального. На средних оборотах мотор «оживает» — за счет пульсаций во впускном трубопроводе больше воздуха поступает в цилиндры, меньше остаточных газов, потому и растет крутящий момент. Если у машины есть турбина или нагнетатель, то они начинают работать в полную силу. Но с ростом оборотов растут и механические потери на трение поршневых колец, трение и инерционные потери в ГРМ, на разогрев масла в подшипниках и т.д. и т.п., а качество рабочего процесса не улучшается или даже начинает падать. В результате на высоких оборотах момент начинает уменьшаться за счет возрастающих потерь. А у турбонаддувного двигателя в какой-то момент перестает хватать производительности турбины и момент тоже начинает снижаться. Теперь взглянем на график типичного атмосферного (то есть безнаддувного) мотора времен 90-х годов, где есть кривые не только момента, но и мощности.


А вот турбомотор схожего объема, у него момент в зоне средних оборотов ограничен электроникой, часто на пределе прочности цилиндро-поршневой группы, и график мощности тоже очень «гладкий». Хорошо заметно, на сколько выше у него мощность в начале и середине графика.


Обратите внимание именно на кривую мощности. Она круто идет вверх там, где момент большой, и почти не растет там, где он падает. Объяснение этому очень простое: Мощность это то, сколько работы может выполнить мотор за секунду. Для двигателя внутреннего сгорания мощность в киловаттах в каждой точке графика можно получить, умножив момент двигателя в ньютонах на число оборотов в минуту и разделив на 9549, то есть примерно так:


Следовательно, мощность мотора на любых оборотах зависит только от крутящего момента на этих оборотах, а максимальная мощность получается в точке, в которой момент уже уменьшается, но при этом произведение мощности и оборотов пока еще увеличивается. И чтобы увеличить максимальную мощность, можно просто увеличить момент на высоких оборотах или сделать так, чтобы он уменьшался не так быстро. Взгляните на типичный график высокооборотного мотора Honda — японцы поступили именно так.


Надеюсь, достаточно понятна точка зрения тех, кто говорит, что «мощность не важна — важен только момент»? Еще раз: мощность как таковая зависит напрямую от момента и сама по себе является математической, расчетной величиной, которую невозможно измерить отдельно от момента. Крутящий момент, по сути, отражает ту мощность, которая будет доступна на «неполных» оборотах двигателя, а просто при нажатии на газ при обгоне. И чем момента больше, тем лучше! Ведь и мощность на этих оборотах будет выше. А чем больше мощности, тем больше энергии можно придать машине, тем лучше динамика разгона.
А максимальная мощность в первую очередь влияет на максимальную скорость машины.
Ведь при правильно рассчитанных передаточных числах главной передачи и КПП получается, что максимальная скорость достигается тогда, когда затрачиваемая мощность будет равна мощности мотора. А мощность всех потерь как раз зависит от скорости движения, в первую очередь от сопротивления воздуха и сопротивления качению колес, и в какой-то момент она обязательно совпадет с мощностью мотора, именно эта скорость и будет максимальной. Бывают, конечно, просчеты, когда двигатель или не может развить обороты максимальной мощности, или уже «упирается» в ограничитель, но это бывает не так уж часто.

Дизельный момент

Теперь отвечу на типичный, но простой вопрос: «Почему на дизельных моторах традиционно большой крутящий момент, но при этом сравнительно с бензиновыми у них невысокая мощность?». Всё потому, что у дизеля ограничены рабочие обороты. Из-за высокой степени сжатия дизельных моторов и более медленно горящего топлива дизели хуже работают на больших оборотах, зато у них нет риска детонации, да и
турбину
можно поставить более эффективную и сложную из-за более низкой температуры газов на выпуске, так что можно подать очень много воздуха и топлива, и момент на малых оборотах получится очень большой. А иногда по мощности они даже будут не так уж далеки от турбонаддувных бензиновых, но момент будет не просто большим, а огромным. Для сравнения приведем характеристики двух трехлитровых моторов от современной BMW 5 series, где будет видно, что дизели эффективны в более низких оборотах. Дизель можно сделать мощнее бензинового мотора, но тогда и так большой момент будет больше еще на четверть, а это означает, что понадобится новая коробка передач и новые карданные валы, способные выдерживать такую мощность. Да и сам двигатель придется сделать еще прочнее и тяжелее. Или можно его «раскрутить», но тогда сложнее будет работать топливной аппаратуре, а допускать дымления и неполного сгорания топлива нельзя.


Так как же правильно разгоняться?

Тут важно уметь работать с коробкой передач. Для максимального разгона нужно переключаться так, чтобы обороты упали примерно на пик крутящего момента или выше него, но чтобы оставался запас по увеличению оборотов — разгон выше оборотов максимальной мощности будет идти медленнее. Идеальный вариант на гражданских машинах — разгон «от пика момента до пика мощности». Впрочем, обычно на современных моторах электроника просто не даст «перекрутить» мотор сильно выше пика мощности — это называется отсечкой. Можно попробовать представить себе это визуально. Посмотрите на график внешней скоростной характеристики. Мотор при разгоне должен как можно больше работать в зоне, где его мощность максимальна, то есть на высоких оборотах вблизи точки максимальной мощности. И при переключении передач попадать в зону с как можно большей достижимой мощностью. Внизу — графики мощности и момента уже знакомых нам атмосферного Honda Accord Type R и турбированного Saab 9-3. На графиках мы выделили диапазоны оборотов, в которых будет работать двигатель, если включить вторую или третью передачу на скорости около 50 км/ч. Чем больше площадь фигуры под кривой мощности, тем эффективнее разгон.


Если коробка умеет переключаться очень быстро, то идеальным случаем будет КПП с очень «короткой» первой передачей с большим-пребольшим передаточным числом для очень высокого момента. А кроме того, очень большим количеством передач «на все случаи жизни». Короткая первая позволит практически сразу со старта поднимать обороты до необходимых для уверенного разгона, а затем мотор всё время будет работать вблизи своего эффективного максимума. Есть одна проблема. К сожалению, таких коробок передач не бывает. Лучше всего была бы электрическая передача, но ее масса и невысокий КПД (то есть потери мощности при «пропускании» через такую трансмиссию) при мощности меньше нескольких тысяч киловатт делают ее применение нерациональным, если только на гибридах, как например на «Мицубиши Аутлендер PHEV». Казалось бы, есть почти идеальный вариатор, где передаточных чисел бесконечное множество, так как они меняются плавно. Но он тоже страдает низким КПД при больших передаточных отношениях и не умеет менять его очень быстро… И в итоге разгон не лучше, чем у других трансмиссий. Гидротрансформатор на традиционных АКПП еще хуже, но в сочетании с механической коробкой передач обеспечивает и надежность, и приличную скорость. А механические коробки и особенно «роботы», несмотря на неизбежные потери мощности на старте при трении дисков в сцеплении, всё равно оказываются быстрее всех! Нужно лишь очень много передач. Например, десять, как в новой версии коробки DSG. Впрочем, половина из них нужна не для разгона, а для экономичного движения, но об этом в другой раз.


Какой мотор предпочесть — с высоким моментом или высокой мощностью?

Если мощность двух моторов, между которыми вы выбираете, отличается не слишком значительно, то выбирайте более «моментный». Особенно если вы пользуетесь механической коробкой передач. Показатель максимального момента и мощности на промежуточных режимах в данном случае важнее. Если же двигаться приходится постоянно «на пределе», то более тяговитый мотор, да еще и более слабый, преимущества иметь не будет, посмотрите хотя бы на мотоциклы, высокооборотные, но не моментные легко выигрывают у более тяговитых низкооборотных. Но показатели надо оценивать в комплексе. Вернемся к нашим «пятеркам» BMW. Бензиновая 535i разгоняется до 100 км/ч за 5,6 секунды, а дизельная 530d — за 5,7, потому что мощность у бензиновой почти на 50 л.с. выше, причем это — турбонаддувный мотор с хорошей мощностью в зоне средних оборотов тоже и многоступенчатая АКПП, быстрая и современная. Мощности должно быть много, но не только на максимальных оборотах, а величина крутящего момента говорит нам именно о том, на сколько много мощности двигатель выдает при обычном движении. Насколько удобно ускоряться без переключений передач. И абсолютная величина крутящего момента говорит даже меньше, чем указание диапазона оборотов, на которых момент близок к своему максимуму и насколько близки эти обороты к оборотам максимальной мощности. И лучше всего с этим справляется график внешней скоростной характеристики. А вот сама величина момента не толкает вас, ведь у более моментного мотора просто будут другие передаточные числа главной передачи и на колесах будет ровно та же мощность.

<a href=»http://polldaddy.com/poll/8627239/»>Какой мотор предпочтете?</a>


Читайте также:


!—>!—>!—>

мощность или крутящий момент? — журнал За рулем

В технических характеристиках автомобиля присутствуют и максимальная мощность, и максимальный крутящий момент. Рассказываем, какой из показателей «для красоты», а какой — для удобства управления.

Материалы по теме

Конечно, на мощности зациклены все. От знакомых девушек, на которых магия цифр оказывает убийственное влияние, до налоговиков, которые очень радуются каждой ступени повышения мощности после 100 л.с, но особо предпочитают машины с цифрой свыше 250 л.с.

Максимальная мощность определяет возможность транспортного средства достигать максимальной скорости. Здесь зависимость далеко не прямая, но более мощные автомобили при сравнимой массе имеют большую максималку.

А вот на то, как быстро удастся достигнуть максимальной скорости, оказывает влияние характеристика крутящего момента двигателя. Возьмем два мотора с одинаковой максимальной мощностью, но у одного кривая момента имеет форму обычного горба, а другой очень быстро (при небольших оборотах) достигает максимального значения и далее держит полку этого момента вплоть до почти максимальных оборотов. С каким мотором разгон будет лучше? Конечно, со вторым, ведь обычно разгон на каждой передаче происходит в диапазоне оборотов коленвала от 2000 до 4000, ну, возможно, 5000 в минуту. А двигатель все время будет выдавать в этом диапазоне максимальный крутящий момент.

Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.

Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.

Материалы по теме

По такому алгоритму разгоняются на ручных коробках передач, гидромеханических автоматах и роботизированных коробках. Вариаторы стоят несколько особняком. В принципе, более ранние конструкции вариаторов работали честнее современных. На разгоне, особенно в режиме «педаль газа в пол», они обеспечивали в начале разгона самое большое передаточное отношение и позволяли мотору быстро достигнуть оборотов, близких к максимальным. Далее двигатель продолжал работать при максимальных оборотах и мощности, а вариатор, меняя передаточное отношение, обеспечивал самый эффективный разгон. И было почти все равно, моментный мотор или нет. Важна была только максимальная мощность. Хотя не всегда же разгон происходит в режиме кик-дауна.

В последнее время вариаторы, в угоду водительским привычкам, научили имитировать переключение передач. Зачем — непонятно. Я считаю, что водителю важно, чтобы правая педаль обеспечивала максимально ровное, большее или меньшее, в зависимости от ситуации, ускорение.

Итак, моментные моторы обеспечивают более удобное управление ускорением транспортного средства, а, значит, помогают водителю в непростых дорожных условиях. Поэтому моторы с «полкой» крутящего момента нравятся водителям, и такую характеристику им предлагают конструкторы, внедряя прежде всего моторы с турбонаддувом. Высокий, начиная с небольших оборотов крутящий момент повышает удобство управления автомобилем, а потому более важен, чем максимальная мощность, которая не требуется почти никогда.

  • Как улучшить управляемость автомобиля, читайте тут.

Мощность и крутящий момент — что это?

ЧТО ТАКОЕ ЛОШАДИНАЯ СИЛА?

— У тебя сколько сил? — такой вопрос слышал любой, кто хоть немного касался мира автомобилей. Никому даже пояснять не надо, какие силы на самом деле имеются в виду — лошадиные. Именно в них мы привыкли оценивать мощность мотора, одну из важнейших потребительских характеристик машины.

Уже и гужевого транспорта практически не осталось даже в деревнях, а эта единица измерения живёт и здравствует больше ста лет. А ведь лошадиная сила — величина, по сути, нелегальная. Она не входит в международную систему единиц (полагаю, многие со школы помнят, что называется она СИ) и потому не имеет официального статуса. Более того, Международная организация законодательной метрологии требует как можно скорее изъять лошадиную силу из обращения, а директива ЕС 80/181/EEC от 1 января 2010 прямо обязует автопроизводителей использовать традиционные «л.с.» только как вспомогательную величину для обозначения мощности.

Но не зря считается, что привычка — вторая натура. Ведь говорим же мы в обиходе «ксерокс» вместо копир и обзываем клейкую ленту «скотчем». Вот и непризнанные «л.с.» сейчас используют не только обыватели, но и едва ли не все автомобильные компании. Какое им дело до рекомендательных директив? Раз покупателю удобнее — пусть так и будет. Да что там производители — даже государство на поводу идёт. Если кто забыл, в России транспортный налог и тариф ОСАГО именно от лошадиных сил высчитываются, как и стоимость эвакуации неправильно припаркованного транспорта в Москве.

Лошадиная сила родилась в эпоху промышленной революции, когда потребовалось оценить, насколько эффективно механизмы заменяют животную тягу. По наследству от стационарных двигателей эта условная единица измерения мощности со временем перешла и на автомобили

И никто бы к этому не придирался, если не одно весомое «но». Задуманная, чтобы упростить нам жизнь, лошадиная сила на самом деле вносит путаницу. Ведь появилась она в эпоху промышленной революции как совершенно условная величина, которая не то что к автомобильному мотору, даже к лошади имеет достаточно опосредованное отношение. Смысл этой единицы в следующем — 1 л.с. достаточно, чтобы поднять груз массой 75 кг на высоту 1 метр за 1 секунду. Фактически, это сильно усреднённый показатель производительности одной кобылы. И не более того.

Иными словами, новая единица измерения очень пригодилась промышленникам, добывавшим, к примеру, уголь из шахт, и производителям соответствующего оборудования. С её помощью было проще оценить преимущество механизмов над животной силой. А поскольку приводились станки уже паровыми, а позднее и керосиновыми двигателями, то «л.с.» перешли по наследству и к  самобеглым экипажам.

Джеймс Уатт — шотландский инженер, изобретатель, учёный, живший в XVIII — начале XIX века. Именно он ввёл в обращение как «нелегальную» сейчас лошадиную силу, так и официальную единицу измерения мощности, которую назвали его именем

По иронии судьбы изобрёл лошадиную силу человек, именем которого названа официальная единица измерения мощности — Джеймс Уатт. А поскольку ватт (а точнее, применительно к могучим машинам, киловатт — кВт) к началу XIX века тоже активно входил в оборот, пришлось две величины как-то приводить друг к другу. Вот здесь-то и возникли ключевые разногласия. Например, в России и большинстве других европейских стран приняли так называемую метрическую лошадиную силу, которая равна 735,49875 Вт или, что сейчас нам более привычно, 1 кВт = 1,36 л.с. Такие «л.с.» чаще всего обозначают PS (от немецкого Pferdestärke), но есть и другие варианты — cv, hk, pk, ks, ch… При этом в Великобритании и ряде её бывших колоний решили пойти своим путём, организовав «имперскую» систему измерений с её фунтами, футами и прочими прелестями, в которой механическая (или, по-другому, индикаторная) лошадиная сила составляла уже 745,69987158227022 Вт. А дальше — пошло-поехало. К примеру, в США придумали даже электрическую (746 Вт) и котловую (9809,5 Вт) лошадиные силы.

Вот и получается, что один и тот же автомобиль с одним и тем же двигателем в разных странах на бумаге может иметь разную мощность. Возьмём, например, популярный у нас кроссовер Kia Sportage — в России или Германии по паспорту его двухлитровый турбодизель в двух вариантах развивает 136 или 184 л.с., а в Англии — 134 и 181 «лошадку». Хотя на самом деле отдача мотора в международных единицах составляет ровно 100 и 135 кВт — причём в любой точке земного шара. Но, согласитесь, звучит непривычно. Да и цифры уже не такие впечатляющие. Поэтому автопроизводители и не спешат переходить на официальную единицу измерения, объясняя это маркетингом и традициями. Это как же? У конкурентов будет 136 сил, а у нас всего 100 каких-то кВт? Нет, так не пойдёт…

КАК ИЗМЕРЯЮТ МОЩНОСТЬ?

Впрочем, «мощностные» хитрости игрой с единицами измерения не ограничиваются. До последнего времени её не только обозначали, но даже измеряли по-разному. В частности, в Америке долгое время (до начала 1970-х годов) автопроизводители практиковали стендовые испытания двигателей, раздетых догола — без навески вроде генератора, компрессора кондиционера, насоса системы охлаждения и с прямоточной трубой вместо многочисленных глушителей. Само собой, сбросивший оковы мотор легко выдавал процентов на 10-20 больше «л.с.», так необходимых менеджерам по продажам. Ведь в тонкости методики испытаний мало кто из покупателей вдавался.

Другая крайность (но гораздо более приближенная к реальности) — снятие показателей прямо с колёс автомобиля, на беговых барабанах. Так поступают гоночные команды, тюнинговые мастерские и прочие коллективы, которым важно знать отдачу мотора с учётом всех возможных потерь, и трансмиссионных в том числе.

Мощность также зависит от того, как её измерять. Одно дело крутить на стенде «голый» мотор без навесного оборудования и совсем другое — снимать показания с колёс, на беговых барабанах, с учётом трансмиссионных потерь. Современные методики предлагают компромиссный вариант — стендовые испытания двигателя с необходимой для его автономной работы навеской

Но в итоге за образец в различных методиках вроде европейских ECE, DIN или американских SAE приняли компромиссный вариант. Когда двигатель устанавливают на стенде, но со всей необходимой для бесперебойного функционирования навеской, включая стандартный выпускной тракт. Снять можно только оборудование, относящееся к другим системам машины (к примеру, компрессор пневмоподвески или насос гидроусилителя руля). То есть тестируют мотор ровно в том виде, в котором он фактически стоит под капотом автомобиля. Это позволяет исключить из финального результата «качество» трансмиссии и определить мощность на коленвале с учётом потерь на привод основных навесных агрегатов. Так, если говорить о Европе, то эту процедуру регламентирует директива 80/1269/EEC, впервые принятая ещё в 1980 году и с тех пор регулярно обновляемая.

ЧТО ТАКОЕ КРУТЯЩИЙ МОМЕНТ?

Но если мощность, как говорят в Америке, помогает автомобили продавать, то двигает их вперёд крутящий момент. Измеряют его в ньютон-метрах (Н∙м), однако у большинства водителей до сих пор нет чёткого представления об этой характеристике мотора. В лучшем случае обыватели знают одно — чем выше крутящий момент, тем лучше. Почти как с мощностью, не правда ли? Вот только чем тогда «Н∙м» отличаются от «л.с.».?

На самом деле, это связанные величины. Более того, мощность — производная от крутящего момента и оборотов мотора. И рассматривать их по отдельности просто нельзя. Знайте — чтобы получить мощность в ваттах необходимо крутящий момент в ньютон-метрах умножить на текущее число оборотов коленвала и коэффициент 0,1047. Хотите привычные лошадиные силы? Нет проблем! Делите результат на 1000 (таким образом получатся киловатты) и умножайте на коэффициент 1,36.

Чтобы обеспечить дизелю (на фото слева) высокую степень сжатия, инженеры вынуждены делать его длинноходным (это когда ход поршня превышает диаметр цилиндра). Поэтому у таких моторов крутящий момент конструктивно получается большим, но предельное число оборотов приходится ограничивать ради повышения ресурса. Разработчикам бензиновых агрегатов, наоборот, проще получить высокую мощность — детали здесь не такие массивные, степень сжатия меньше, так что двигатель можно сделать короткоходным и высокооборотным. Впрочем, в последнее время различие между дизелями и бензиновыми агрегатами постепенно стирается — они становятся всё более похожими как по конструкции, так и по характеристикам

Выражаясь техническим языком, мощность показывает, сколько работы способен выполнить мотор за единицу времени. А вот крутящий момент характеризует потенциал двигателя к совершению этой самой работы. Показывает сопротивление, которое он может преодолеть. Например, если машина упрётся колёсами в высокий бордюр и не сможет тронуться с места, мощность будет нулевой, так как никакой работы мотор не совершает — движения нет, но крутящий момент при этом развивается. Ведь за то мгновение, пока движок не заглохнет от натуги, в цилиндрах сгорает рабочая смесь, газы давят на поршни, а шатуны стараются привести во вращение коленвал. Иными словами, момент без мощности существовать может, а мощность без момента — нет. То есть именно «Н∙м» являются основной «продукцией» двигателя, которую он производит, превращая тепловую энергию в механическую.

Если проводить аналогии с человеком, «Н∙м» отражают его силу, а «л.с.» — выносливость. Именно поэтому тихоходные дизельные двигатели в силу своих конструктивных особенностей у нас, как правило, тяжелоатлеты — при прочих равных условиях они могут тащить на себе больше и легче преодолевают сопротивление на колёсах, пусть и не так проворно. А вот быстроходные бензиновые моторы скорее относятся к бегунам — нагрузку держат хуже, зато перемещаются быстрее. В общем, действует простое правило рычага — выигрываем в силе, проигрываем в расстоянии или скорости. И наоборот.

Так называемая внешняя скоростная характеристика двигателя отражает зависимость мощности и крутящего момента от оборотов коленвала при полностью открытом дросселе. По идее, чем раньше наступает пик тяги и позже — мощности, тем проще мотору адаптироваться к нагрузкам, его рабочий диапазон увеличивается, что позволяет водителю или электронике реже переключать передачи и почём зря не жечь топливо. На этих графиках видно, что бензиновый двухлитровый турбомотор (справа) выигрывает по этому показателю у турбодизеля аналогичного объёма, но уступает ему в абсолютной величине крутящего момента

Как это выражается на практике? В первую очередь, надо понять, что именно кривые крутящего момента и мощности (вместе, а не по отдельности!) на так называемой внешней скоростной характеристике двигателя будут раскрывать его истинные возможности. Чем раньше достигается пик тяги и позже пик мощности, тем лучше мотор приспособлен к своим задачам. Возьмём простой пример — автомобиль движется по ровной дороге и вдруг начинается подъём. Сопротивление на колёсах возрастает, так что при неизменной подаче топлива обороты станут падать. Но если характеристика двигателя грамотная, крутящий момент при этом наоборот начнёт расти. То есть мотор сам приспособится к увеличению нагрузки и не потребует от водителя или электроники перейти на передачу пониже. Перевал пройден, начинается спуск. Машина пошла на разгон — высокая тяга здесь уже не так важна, критичным становится другой фактор — мотор должен успевать её вырабатывать. То есть на первый план выходит мощность. Которую можно регулировать не только передаточными числами в трансмиссии, а повышением оборотов двигателя.

Здесь уместно вспомнить гоночные автомобильные или мотоциклетные моторы. В силу относительно небольших рабочих объёмов, они не могут развить рекордный крутящий момент, зато способность раскручиваться до 15 тысяч об/мин и выше позволяет им выдавать фантастическую мощность. К примеру, если условный двигатель при 4000 об/мин обеспечивает 250 Н∙м и, соответственно, примерно 143 л.с., то при 18000 об/мин он мог бы выдать уже 640,76 л.с. Впечатляет, не правда ли? Другое дело, что «гражданскими» технологиями это не всегда получается добиться.

И, кстати, в этом плане близкую к идеальной характеристику имеют электродвигатели. Они развивают максимальные «ньютон-метры» прямо со старта, а потом кривая крутящего момента плавно падает с ростом оборотов. График мощности при этом прогрессивно возрастает.

Современные моторы «Формулы 1» имеют скромный объём 1,6 л и относительно невысокий крутящий момент. Но за счёт турбонаддува, а главное — способности раскручиваться до 15000 об/мин, выдают порядка 600 л.с. Кроме того, инженеры грамотно интегрировали в силовой агрегат электродвигатель, который в определённых режимах может добавлять ещё 160 «лошадок». Так что гибридные технологии могут работать не только на экономичность

Думаю, вы уже поняли — в характеристиках автомобиля важны не только максимальные значения мощности и крутящего момента, но и их зависимость от оборотов. Вот почему журналисты так любят повторять слово «полка» — когда, допустим, мотор выдаёт пик тяги не в одной точке, а в диапазоне от 1500 до 4500 об/мин. Ведь если есть запас крутящего момента, мощности тоже, скорее всего, будет хватать.

Но всё же лучший показатель «качества» (назовём его так) отдачи автомобильного двигателя — его эластичность, то есть способность набирать обороты под нагрузкой. Она выражается, например, в разгоне от 60 до 100 км/ч на четвёртой передаче или с 80 до 120 км/ч на пятой — это стандартные тесты в автомобильной индустрии. И может случиться так, что какой-нибудь современный турбомотор с высокой тягой на малых оборотах и широченной полкой момента даёт ощущение отличной динамики в городе, но на трассе при обгоне окажется хуже древнего атмосферника с более выгодной характеристикой не только момента, но и мощности…

Так что пусть в последнее время разница между дизельными и бензиновыми агрегатами становится всё более расплывчатой, пусть развиваются альтернативные моторы, но извечный союз мощности, крутящего момента и оборотов двигателя останется актуальным. Всегда.

Что такое крутящий момент и на что он влияет?

Фото news.herbgordonvolvoofsilverspring.com

Когда автолюбители выбирают автомобиль, некоторые обращают внимание не только на мощность «ласточки» в лошадиных силах, но и на крутящий момент. Почему этот показатель так важен? Как объясняют автоэксперты, он отвечает за динамику разгона.

Вспомните школьную программу по физике. Мы проходили, что крутящий момент является силой, которая приложена к рычагу, и ее умножают на длину этого самого рычага. В моторах крутящий момент — это сила, с которой вращается коленчатый вал. Чем эта сила больше, чем выше крутящий момент. Этот параметр находится в прямой зависимости от скорости вращения коленвала. Нарастают обороты — растет и крутящий момент. Но рост не постоянен: наращивая обороты двигателя, мы увеличиваем и механические потери на трение во всех подвижных элементах. В итоге при езде на максимальных оборотах крутящий момент снижается.

Фото: www.free-wallpapers.su

Мощность — это некая совершённая работа за единицу времени. В двигателях внутреннего сгорания под ней подразумевают именно крутящий момент. Из этого следует, что мощность мотора — это число «крутящих моментов» за единицу времени. Таким образом, обе эти величины неразрывно связаны друг с другом.

Чтобы рассчитать мощность двигателя в киловаттах, умножьте действующий крутящий момент на текущее число оборотов мотора и разделите на 9549. В итоге крутящий момент будет показывать, какая мощность доступна в автомобиле при определённых оборотах. Таким образом, чем выше число крутящего момента, тем лучше.

По словам автоэкспертов, крутящий момент отвечает в машине за то, как она разгоняется и как тянет. Отсюда следует, что когда вы выбираете авто, обращайте внимание не только на «лошадей», но и на крутящий момент. Мощность влияет лишь на то, какую максимальную скорость развивает автомобиль, а не на то, как быстро он до нее разгонится. Если вам требуется тяговитый мотор, тогда выбирайте дизель — крутящего момента больше именно в этом типе двигателя.

При использовании любых материалов необходима активная ссылка на DRIVENN.RU

Мощность и крутящий момент – что важнее? Разбираемся в деталях

Энцо Феррари как-то сказал: «Лошадиные силы продают автомобили, а крутящий момент выигрывает гонки». И наверняка создатель одних из лучших гоночных автомобилей своего времени что-то да знал. Но так ли все однозначно? Неужели и впрямь количество лошадиных сил – не более, чем красивая цифра для маркетологов, в то время как крутящий момент – по-настоящему важный показатель мотора, на который обращают внимание истинные автомобилисты?

Сегодня с этим можно поспорить. Со времен, когда Энцо Феррари начинал создавать свои прекрасные машины, автомобильный мир изменился. Дизельные моторы вышли из тени и неслабо так подвинули бензиновые. Даже несмотря на пресловутый “дизельгейт” моторы на тяжелом топливе продолжают пользоваться популярностью, а для некоторых, в том числе и новых моделей их предложено больше, нежели бензиновых. И каждый второй владелец дизеля (по крайней мере, у нас в стране) готов ткнуть носом своих «бензиновых» коллег в превосходство Ньютоно-метров над лошадиными силами (он, конечно, еще и про расход вспомнит). Получается, теперь крутящий момент продает машины, и он же еще и гонки может выигрывать? А на кой черт нам тогда сдались эти лошадиные силы? Ну что же, будем разбираться!

Энцо Ансельмо Феррари — итальянский конструктор, предприниматель и автогонщик. Основатель автомобильной компании «Феррари» и одноимённой автогоночной команды.

Для начала давайте немного познакомимся с нашими сегодняшними противниками. Крутящий момент измеряется в Ньютоно-метрах (Н·м) или килограмм-силах на метр (кгс·м). 1 килограмм-силы на метр приблизительно равен 10 Ньютоно-метрам. Чтобы понять сколько это, давайте представим, что нам нужно закрутить гайку с усилием, скажем, в те самые десять Ньютоно-метров. Для этого необходимо надеть на нее гаечный ключ и приладить к нему рычаг длиной в один метр, а на его край повесить гирьку массой в 1 кг. Тогда на гайке мы получим крутящий момент равный как раз 10 Н·м. Нетрудно посчитать, что для получения усилия в 1 Н·м нам необходима гирька массой 0,1 кг.

Так создается крутящий момент

С моментом немного разобрались, давайте перейдем к мощности. С ней все несколько сложнее. Согласно определению: «Мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени». Значит, мощность характеризует скорость выполнения работы. Чтобы лучше это понять, давайте немного позанудствуем и взглянем на формулу расчета мощности двигателя:

Ne=(Mk×n)÷9549

где Mk – это крутящий момент в Н·м; n – это количество оборотов двигателя за минуту; а число 9549 помогает нам привести результат к нормальным значениям.

Благодаря этой формуле, мы можем рассчитать мощность при любых оборотах, только для этого необходимо знать значение крутящего момента при этих оборотах. Выходит, эти два показателя взаимосвязаны? Да, так и есть. На движение автомобиля влияет усилие, которое генерирует двигатель (крутящий момент), и частота, с которой он его генерирует (обороты). Соотношение этих показателей характеризуется значением мощности мотора. Мощность измеряют в киловаттах или лошадиных силах. В чем между ними разница мы уже разбирались в одном из наших материалов:

Теперь давайте рассмотрим две крайности двигателестроения: дизель от трактора МТЗ-80 и великолепный бензиновый мотор автомобиля Honda S2000. На тракторе установлен четырехцилиндровый дизель объемом 4,75 л. Его максимальная мощность всего лишь 80 л.с, зато крутящий момент – целых 422 Н·м, которые доступны уже с 1500 об/мин. Максимальные же обороты этого двигателя – скромные 2200 об/мин. Дизели, как мы знаем, вообще не любят высокие обороты.

Эти две машины созданы для совершенно разных задач. Трактор – работяга. Ему важен высокий крутящий момент уже на малом ходу. Хонда же – автомобиль для удовольствия. Здесь нужно, чтобы двигатель вез на все деньги.

Бензиновый же мотор Honda S2000 наоборот – обожает их. Он способен крутиться аж до 9200 об/мин, и при объеме всего в два литра выдает целых 250 л.с при 8300 об/мин и немаленькие 218 Н·м при 7300 об/мин. И это без наддува (долгое время этот агрегат был самым высокофорсированным атмосферным двигателем в мире). Выходит, что мотор Honda при меньшем в 2,37 раза объеме имеет почти в два раза меньший момент, и это вполне логично. При этом он почему-то мощнее тракторного в 3,1 раза. Как так получилось? Ведь мы помним, что мощность зависит от крутящего момента. Но зависит она еще и от оборотов, а у трактора они совсем невысокие. Его задача тягать тяжелые веса, для этого нужно большое усилие на колесах и совсем неважна скорость – трактора неспешные ребята.

И вот мы и подошли к сути вопроса. У трактора двигатель большого объема с большой площадью днища поршня и объемом камеры сгорания, давление в которой у дизельного мотора выше, чем у бензинового. Детали этого двигателя достаточно тяжелые, а кривошипно-шатунный механизм имеет более длинные рычаги. Все это приводит к тому, что дизель уже на невысоких оборотах будет создавать много крутящего момента. Гораздо больше, чем компактный двигатель Хонды. Если провести аналогию, то дизельный мотор трактора – это большой и сильный пауэрлифтер. А двигатель Honda S2000 – это, скорее,  спортивный гимнаст. Он не может поднять за раз большой вес, зато он гораздо более быстрый, проворный и может выполнить много работы в короткий промежуток времени.

Только не нужно эту аналогию считать применимой для любого бензинового и дизельного двигателя. Современные дизели далеко ушли от своих предков. Сегодня хорошо настроенный дизель – это тихий, быстрый и очень тяговитый агрегат. Хорошим примером является четырехлитровый V8 с тремя нагнетателями на 435 л. с. и 900 Нм от концерна VAG. Этот мотор превращает Audi SQ7 в самый мощный дизельный кроссовер на планете и катапультирует его с нуля до первой сотни за 4,8 секунды – проворный, однако, пауэрлифтер!

Этот двигатель делает Audi SQ7 самым мощным серийным дизельным кроссовером в мире

Теперь, когда мы поняли, кто есть кто, давайте разберемся с еще одним обстоятельством. Крутящий момент двигателя, проходя через трансмиссию, изменяется. Например, максимальный крутящий момент мотора ВАЗ-2108 равен 98.4 Н·м. Но на первой передаче на колёсах этот показатель будет увеличен в 14,157 раз (при максимальной нагрузке двигателя и без учета потерь в трансмиссии). Как правило, в традиционных пятиступенчатых коробках передач первые три передачи являются понижающими (т.е они понижают обороты и увеличивают момент), четвертая – прямая, а остальные уже наоборот повышают обороты и понижают момент. Влияние передаточного отношения трансмиссии хорошо известно тем, кому доводилось заниматься доработкой ВАЗовских переднеприводников. Для них доступны различные комплекты рядов КПП и главной пары. При установке «короткого» ряда (с большим передаточным отношением) автомобиль быстрее разгоняется на первых передачах и лучше преодолевает подъемы, но максимальная скорость уменьшается. Если же наоборот установить комплект с меньшим передаточным числом, то можно несколько увеличить “максималку”, но потерять в разгоне на низших передачах.

Понять, насколько хороший двигатель автомобиля, помогут не значения мощности и момента, а ощущения за рулем

Из этого всего можно сделать вывод, что для автомобиля важны не цифры мощности и момента, а сочетание характеристик двигателя (будь то бензиновый мотор, дизельный или даже гибридная силовая установка) и трансмиссии, и то, насколько они подходят конкретной машине. Только по одним цифрам вообще тяжело выбрать двигатель, ведь в них указывают лишь максимальные значения мощности и момента. Возвращаясь к характеристикам Honda S2000, можно отметить, что максимальный момент у нее достигается при 7300 об/мин. Но это же не значит, что, скажем, при 3500 об/мин тяги вообще не будет. Многие журналисты, которым посчастливилось поездить на этой машине, и вовсе отмечают, что несмотря на явно высокооборотистый характер ее двигателя, он приемлемо тянет и на низких оборотах. И это подводит нас к неожиданному выводу. Если вы выбираете трактор, то вам нужно знать не его мощность и крутящий момент, а то сколько он способен потянуть (для этого даже специальная характеристика есть: сила тяги на крюке). Мы же, в первую очередь, говорим про легковые авто. И здесь тоже сами по себе цифры момента и мощности мало что значат. Важно то, как машина едет: хороший мотор может быть испорчен плохой коробкой и наоборот. И все это не будет иметь смысла, если установлено на неудачном шасси. Поэтому наш совет: выбирая машину, не зацикливайтесь на цифрах. Проедьтесь на ней, и вам все станет ясно! А также читайте наши тест-драйвы – в них мы детально разбираемся со всеми важнейшими характеристиками автомобиля в деле!

Крутящий момент, что это и зачем он нужен?

Каждый двигатель внутреннего сгорания рассчитан на определенную максимальную мощность, которую он может выдавать при наборе определенного количества оборотов коленчатого вала. Однако помимо максимальной мощности существует еще и такая величина в характеристике двигателя, как максимальный крутящий момент, достигаемый на оборотах отличных от оборотов максимальной мощности.

Что же означает понятие крутящий момент? Говоря научным языком, крутящий момент равен произведению силы на плечо ее применения и измеряется в ньютон — метрах. Значит если к гаечному ключу длиной 1 метр (плечо), приложить силу в 1 Ньютон (перпендикулярно на конце ключа), то мы получим крутящий момент равный 1 Нм.

Для наглядности: если гайка затянута с усилием 3 кгс, то для ее откручивания придется к ключу с длиной плеча в 1 метр приложить усилие 3 кг. Однако, если на ключ длиной 1 метр надеть дополнительно 2-х метровый отрезок трубы, увеличив тем самым рычаг до 3 метров, то тогда для отворачивания этой гайки потребуется лишь усилие в 1 кг. Так поступают многие автолюбители при откручивании колесных болтов: либо добавляют отрезок трубы, а за неимением такового просто надавливают на ключ ногой, увеличив тем самым силу приложения к баллонному ключу. Так же если на рычаг метровой длины повесить груз равный 10 кг, то появится крутящий момент равный 10 кгм. В системе СИ это значение (перемножается на ускорение свободного падениям) будет соответствовать 98,1 Нм. Результат всегда един — крутящий момент, это произведение силы на длину рычага, стало быть, нужен либо длиннее рычаг, либо большее количество прикладываемой силы.

Все это хорошо, но для чего нужен крутящий момент в автомобиле и как его величина влияет на его поведение на дороге? Мощность двигателя лишь косвенно отражает тяговые возможности мотора, и ее максимальное значение проявляется, как правило, на максимальных оборотах двигателя. В реальной жизни в таких режимах практически никто не ездит, а вот ускорение двигателю требуется всегда и желательно с момента нажатия на педаль газа. На практике одни автомобили уже с низких оборотов ведут себя достаточно резво, другие напротив предпочитают лишь высокие обороты, а на низах показывают вялую динамику. Так у многих возникает масса вопросов, когда они с авто с бензиновым мотором мощностью 105-120 л.с. пересаживаются на 70-80 – сильный дизель, то последний с легкостью обходит машину с бензиновым мотором. Как такое может быть? Связано это с величиной тяги на ведущих колесах, которая различна для этих двух автомобилей. Величина тяги напрямую зависит от произведения таких показателей как, величины крутящего момента, передаточного числа трансмиссии, ее КПД и радиуса качения колеса. Как создается крутящий момент в двигателе. В двигателе нет метровых рычагов и грузов, и их заменяет кривошипно-шатунный механизм с поршнями.

Крутящий момент в двигателе образуется за счет сгорания топлива — воздушной смеси, которая расширяясь в объеме с усилием толкает поршень вниз. Поршень в свою очередь через шатун передает давление на шейку коленчатого вала. В характеристике двигателя нет значения плеча, но есть величина хода поршня (двойное значение радиуса кривошипа коленвала). Для любого мотора крутящий момент рассчитывается следующим образом. Когда поршень с усилием 200 кг двигает шатун на плечо 5 см, появляется крутящий момент 10 кГс или 98,1Нм. В данном случает для увеличения крутящего момента нужно либо увеличить радиус кривошипа, или же увеличить давление расширяющихся газов на поршень. До определенной величины можно увеличить радиус кривошипа, но будут расти и размеры блока цилиндров как в ширину, так и в высоту и увеличивать радиус до бесконечности невозможно. Да и конструкцию двигателя придется значительно упрочнять, так как будут нарастать силы инерции и другие отрицательные факторы. Следовательно, у разработчиков моторов остался второй вариант – нарастить силу, с которой поршень передает усилие для прокручивания коленвала. Для этих целей в камере сгорания нужно сжечь больше горючей смеси и к тому же более качественно. Для этого меняют величину и конфигурацию камеры сгорания, делают «вытеснители» на головках поршней и повышают степень сжатия. Однако максимальный крутящий момент доступен не на всех оборотах мотора и у различных двигателей пик момента достигается на различных режимах. Одни моторы выдают его в диапазоне 1800- 3000 об/мин, другие на 3000-4500 об/мин. Это зависит от конструкции впускного коллектора и фаз газораспределения, когда эффективное наполнение цилиндров рабочей смесью происходит при определенных оборотах.

Наиболее простое решение для увеличения крутящего момента, а следовательно и тяги, это применение турбо или механического наддува, либо применение их в комплексе. Тогда крутящий момент можно уже использовать с 800-1000 об/мин, т.е. практически сразу. К тому же это закрывает такую проблему, как провалы при наборе скорости, так как величина крутящего момента становится практически одинакова во всем диапазоне оборотов двигателя. Достигается это различными путями: увеличивают количество клапанов на цилиндр, делают управляемыми фазы газораспределения для оптимизации сгорания топлива, повышают степень сжатия, применяют выпускной коллектор по формуле 1-4 -2-3, в турбинах применяют крыльчатки с изменяемым и регулируемым углом атаки лопаток и т.д.

Мощность и крутящий момент | Тюнинг ателье VC-TUNING

Мощность и крутящий момент…  Эти термины часто вводят в ступор многих посетителей автомобильных форумов. Энцо Феррари однажды сказал: «Лошадиные силы продают автомобиль, крутящий момент выигрывает гонки».

 

Мы не собираемся представлять здесь все уравнения и формулы, позволяющие рассчитать мощность и крутящий момент: объяснить многие вещи в одной статье достаточно трудно. Да это вам и не понадобится, если, конечно, вы не планируете стать крупным специалистам в данной области. Но мы постараемся доступным языком объяснить, как мощность и крутящий момент соотносятся друг с другом и как они влияют на производительность автомобиля.

 

Лошадиная сила

Термин «лошадиная сила» был впервые использован Джеймсом Уаттом, британским изобретателем, чье имя неразрывно связано с созданием парового двигателя. Строго говоря, лошадиная сила – это скорость, с которой может быть выполнена работа. Уатт использовал этот термин для сравнения мощности парового двигателя с мощью рабочей лошадки. Наравне с лошадиными силами сегодня используется и системная единица измерения мощности – ватт (Вт).

1 л.с. = 746 Вт

Эффективная мощность двигателя измеряется на коленчатом валу с помощью динамометра. Производители автомобилей, как правило, используют для ее обозначения термин «пиковая мощность» (максимальная мощность при определенном числе оборотов в минуту).

 

Мощность рассчитывается путем умножения крутящего момента двигателя на число оборотов и последующего деления на 5252. Откуда взялась последняя цифра? Если вы не хотите скучных и путаных объяснений, просто поверьте на слово и запомните эту константу.

                         крутящий момент * угловая скорость (RPM)

мощность =      —————————————————

                                                    5252

Здесь не мешало бы упомянуть о динамометрических роликовых стендах, но из-за большого разнообразия стендовых динамометров, мы опишем основные из них в другой статье. Следует отметить, что существует немало причин, по которым цифры, наблюдаемые при езде по дороге, оказываются ниже полученных на стенде. Автомобиль на стенде неподвижен, а на открытой дороге свой вклад вносят давление воздуха, перепады температуры и многие другие факторы, которые сложно учесть при испытаниях, хотя многие пытаются компенсировать их отсутствие с помощью вентиляторов и т.д.

 

  

Крутящий момент

Крутящий момент – вращательное усилие, которое будет применено к ведущим колесам автомобиля. Крутящий момент можно рассматривать в качестве меры способности двигателя выполнить работу. Единицы измерения крутящего момента – фунт*фут и Ньютон*метр (Нм). Один фунт*фут крутящего момента представляет собой усилие, необходимое для поворота 1-футовой оси, на конце которой прикреплен груз весом 1 фунт. Если на конце 1-футовой оси находится груз весом 200 фунтов, крутящий момент будет составлять 200 фунтов*фут. Очевидно, что чем больше это число, тем больше вращательное усилие на колесах.

1 фунт*фут = 1.36 Н*м

 

 

Однако важно понимать, что по мере увеличения крутящего момента вашего двигателя возрастает вероятность самопроизвольного поворота колес. Это довольно частое явление у мощных переднеприводных (FWD) автомобилей с большим крутящим моментом. Поскольку в данном случае передние колеса задействованы также и в управлении автомобилем, вы можете столкнуться с эффектом, называемым паразитным силовым подруливанием. В принципе проблема «непослушания» приводных колес свойственна не только переднеприводным машинам, а любым мощным автомобилям с большим крутящим моментом. Однако, разделив крутящий момент на все четыре колеса (в случае полноприводных (4WD) автомобилей), вы можете уменьшить этот эффект и больше мощности передать дороге.  Хотя есть еще много факторов (например, размер и структура шин, настройка подвески и ходовой части, передаточные числа), которые могут помочь переднеприводным (FWD) или заднеприводным (RWD) автомобилям эффективно использовать свою мощность.

 

Сравнение мощности и крутящего момента

(Как мощность и крутящий момент влияют на производительность)

Причина недопонимания ряда вопросов автолюбителями кроется в том, что в качестве характеристики двигателя автомобиля производители, как правило, приводят пиковые показатели мощности. Это ведет к путанице, люди пытаются сравнивать производительность автомобиля с его мощностью. «Моя машина имеет большее количество лошадиных сил, поэтому она будет быстрее вашей» – некорректное, но достаточно распространенное сравнение.

Есть много факторов, влияющих на производительность автомобиля, и крутящий момент, безусловно, один из них. Кроме того, и мощность, и крутящий момент будут зависеть от передаточных чисел. И, конечно же, большую роль играет то, как и для чего используется автомобиль.

Если вы когда-либо управляли машиной с высоким крутящим моментом (например, автомобилем с большим объемом двигателя или турбодизелем), вы, вероятно, заметили, что способны с легкостью ускоряться на большинстве передач. Это является результатом того, что имеется достаточно мощности в виде крутящего момента, чтобы автомобиль двигался при более широком диапазоне оборотов. Ускорение прямо пропорционально крутящему моменту, т.е. машина, будет ускоряться в соответствии с кривой крутящего момента.

Однако, если вы используете численно более высокое передаточное отношение для увеличения крутящего момента, вы на самом деле уменьшаете максимальную скорость вращения привода. Это может привести к тому, что автомобиль с высоким крутящим моментом (допустим, 680 НМ) достигнет своего предела уже при 30 км/ч.

При всем этом разговоры о крутящем моменте не просто игра слов. Следует понять, что лошадиная сила – просто другой способ измерения мощности (вспомните приведенное выше уравнение: лошадиная сила – это крутящий момент, умноженный на угловую скорость и деленный на 5252). Однако двигатель может быть рассчитан на более высокие обороты и более высокую мощность и, таким образом, на создание большего крутящего момента.

Из всего вышесказанного следует, что лошадиные силы и крутящий момент связаны друг с другом, однако это не одно и то же. Автомобиль с большим крутящим моментом будет ускоряться иначе, чем автомобиль с большим числом лошадей под капотом, с разными точками переключения передач и диапазонами оборотов в минуту. Автомобили с меньшим крутящим моментом (большим числом лошадиных сил), как правило, набирают больше оборотов, но максимальная мощность достигается только на больших оборотах. Машины с большим крутящим моментом (меньшим числом лошадиных сил) имеют меньшую мощность, но сравнительно более широкий диапазон оборотов. Все очень запутано: вроде бы крутящий момент и лошадиные силы – это одно и то же, но разгоняют машину по-разному. Хорошим автомобилем можно считать тот, что имеет оптимальное соотношение крутящего момента и лошадиных сил и возможность повышения обоих параметров.

Что еще влияет на ускорение

  • Вес автомобиля. Многие ошибочно полагают, что чем больше весит машина, тем больше нужно энергии, чтобы сдвинуть ее с места.
  • Аэродинамика. Снова требуется много энергии, чтобы машина могла преодолевать сопротивление встречным потокам воздуха.
  • Сопротивление качению. Шины и привод (шестерни, приводные валы, оси и т.д.) требуют энергии, чтобы они могли вращаться с контактирующими поверхностями.
  • Шестерни/передачи. Чтобы автомобиль мог разгоняться и ускорятся, он оборудован коробкой передач. Шестеренки в коробке влияют на крутящий момент, передаваемый на ведущие колеса, но они не могут изменить количество лошадиных сил в машине. В коробке передач все начинается с шестерни, которая запускает крутящий момент. Он позволяет ускоряться в относительно умеренном темпе, но избежать быстрых оборотов двигателя. Каждая последующая передача помогает развить скорость. Вот почему автомобиль, например, может разогнаться от 0 до 96 км/час за 5 секунд, но от 0 до 160 км/час разгон уже займет 13 секунд, поскольку ему нужно еще 8 секунд, чтобы набрать добавочную скорость в 64 км/час. При этом важно учитывать кинетическую энергию и аэродинамику (сопротивление ветру).

Динамометр фиксирует хороший крутящий момент не только на низких оборотах, но и во всем диапазоне оборотов. В сочетании с равномерно возрастающей кривой лошадиных сил, такой двигатель дает возможность машине разгоняться и выжимать педаль газа до упора. Хотя, все зависит от привода и комплектации самой машины. Но в целом, он имеет хорошую мощность и динамику.

Хочется надеяться, что после прочтения статьи о лошадиных силах и крутящем моменте вы не будете путать эти два понятия. Главное – запомнить, что машина с очень хорошим разгоном – это та, у которой двигатель может выдавать постоянно высокую мощность, даже на самых больших оборотах. Например, система газораспределительного механизма VVT-i эффективна для небольших двигателей, она помогает оптимизировать мощность на переменных оборотах. На самом деле не столь важно, с большим количеством лошадей ли машина или с высоким крутящим моментом, потому, что есть много других факторов, влияющих на ее характеристики.

Ускорение
И снова не будем вас утомлять скучными техническими терминами, а просто подсчитаем кое-что. Крутящий момент двигателя зависит от шестерней в коробке передач. Он нарастает по мере того, как вы переключаетесь на другую скорость. На автомобиле с низким крутящим моментом, его можно увеличить путем изменения передаточного числа. В результате этого трансмиссия или коэффициент привода изменяют диапазон оборотов двигателя, а также то, как используется крутящий момент (не оценивайте это в процессе). A V8 и Vtec производят крутящий момент разными способами посредством зубчатой передачи. Эти способы зависят от конструкции двигателя.

При всем этом интересно, как уже упоминалось ранее, что, хорошо набирающая скорость машина, имеет хорошую динамику крутящего момента, которая распространяется в самом широком диапазоне оборотов (высокий диапазон оборотов помогает поддерживать максимальный крутящий момент). Чтобы добиться максимума от машины, нужно знать, как выглядит динамика мощности и какие обороты у двигателя на каждой из передач. Также необходимо знать, как меняются обороты двигателя, когда переключается скорость: повышается или понижается передача. Это поможет вам узнать, что такое динамика крутящего момента на каждой отдельной передаче. Автомобиль разгоняется сильнее всего на пике крутящего момента, но стоит вам переключиться, как падают обороты, и ослабевает крутящий момент. Вся фишка в том, чтобы найти на каких оборотах будет хороший крутящий момент на следующей передаче, без потери динамики на текущей. Конечно, многое зависит от авто и его водителя, но есть наиболее общие рекомендации. Итак, если ваша машина производит максимальный крутящий момент на 4000 оборотах, и вы не хотите переключаться на следующую скорость с этой отметки, поскольку думаете, что потеряете сейчас эти ценные обороты и не сможете сохранить такой же крутящий момент на следующей передаче, а соответственно и скорость движения. Общая рекомендация в этом случае – для максимального ускорения переключаться тогда, когда стрелка тахометра ляжет на красную отметку (у некоторых легковых и гоночных авто есть специальные индикаторы).

Обозначение мощности авто в лошадиных силах
Американские машины

Лошадиные силы (HP Gross)
До 1972 года в Америке мощность двигателя автомобиля измерялась в лошадиных силах следующим образом: на стенде испытывался двигатель, который не оснащен воздушным фильтром, системой выхлопа или системой контроля над выбросами, но иногда оснащенный коллектором. В результате показатели максимальной мощности и крутящего момента отражали только теоретические значения, но не демонстрировали реальную мощность двигателя. Таким образом, измерялась общая мощность двигателя.

Лошадиные силы (HP net)
После 1972 года в Америке стали измерять полезную мощность двигателя. У полностью укомплектованного и установленного двигателя измерялась мощность на маховике, но при этом не учитывались потери при переключении передачи.

Запомните, что американские автомобили оснащены большими двигателями CU, которые выдают высокий крутящий момент и обеспечивают высокую производительность машины.

Лошадиные силы (bhp)
Мощность измеряется в лошадиных силах при помощи динамометра. Замер происходит на испытательном стенде в месте выхода вала из двигателя (коленчатый вал, который соединяется с маховиком). Окончательная цифра получается из крутящего момента, который используется для вычисления мощности в лошадиных силах (bhp).
Обратите внимание, что показатель мощности в лошадиных силах PS, принятый в Германии, отличается от обозначения bhp. Многие производители используют значение PS для лошадиных сил BHP.
Значения приблизительные:

  • 1 Bhp = 1.005 Hp (net) – (разница не существенная)
  • 1 Bhp = 1.0187 PS
  • 1 PS = 0.986 Hp
  • 1 Hp = 1.01387 PS

Иногда происходит путаница потому, что одни говорят о мощности в лошадиных силах, измеренной динамометром, другие об измерении с учетом потерь, а третьи о способе измерения по колесам WHP.


 

6.2: Влияние крутящего момента — Physics LibreTexts

Гироскопическая прецессия

В разделах 1.6 и 1.7 мы обсуждали круговое движение с постоянной скоростью как движение, которое происходит потому, что результирующая сила, притягивающая объект к центральной точке, заставляет вектор скорости объекта изменять только направление, а не величину. В то время мы еще не обсуждали импульс, но теперь ясно, что теперь мы можем заменить «вектор скорости» в предыдущем предложении на «вектор импульса». Мы можем написать второй закон Ньютона (Уравнение 4.1.4) с точки зрения изменения величины и направления импульса:

\ [\ overrightarrow F_ {net} = \ dfrac {d} {dt} \ overrightarrow p = \ dfrac {d} {dt} \ left (p \ widehat p \ right) = \ dfrac {dp} {dt} \ широкая шляпа p + p \ dfrac {d \ widehat p} {dt} \]

Круговое движение с постоянной скоростью не будет показывать изменения величины количества движения — первый член в уравнении 6.2.1 равен нулю — в то время как вся сила пойдет на изменение направления количества движения. Как мы видели в разделе 1.6, два члена в уравнении 6.2.1 всегда перпендикулярны друг другу, что означает, что результирующая сила, действующая на объект, движущийся по кругу с постоянной скоростью, всегда перпендикулярна вектору импульса.

Для нас все это не ново, но, как мы делали в последних двух главах, теперь мы рассмотрим вращательный эквивалент этого поведения. Переключение уравнения 6.2.1 на эквивалент вращения дает:

\ [\ overrightarrow \ tau_ {net} = \ dfrac {d} {dt} \ overrightarrow L = \ dfrac {d} {dt} \ left (L \ widehat L \ right) = \ dfrac {dL} {dt} \ widehat L + L \ dfrac {d \ widehat L} {dt} \]

Мы уже знаем, как чистый крутящий момент может изменить величину углового момента объекта — ускорение и замедление вращения — это то, что мы уже подробно рассмотрели.Но что, если мы настаиваем на том, чтобы величина оставалась постоянной (объект сохраняет ту же инерцию вращения и продолжает вращаться с постоянной скоростью), в то время как изменяется только направление движения? То есть, что, если первый член в уравнении 6.2.2 равен нулю, а второй член — нет? Как мы можем построить физическую систему, которая ведет себя подобным образом? Ответ на этот последний вопрос потребует довольно много усилий с помощью правила правой руки, но вот …

Начнем с вращающегося объекта.Мы будем использовать в качестве нашей модели колесо велосипеда, вращающееся вокруг оси. Вектор углового момента будет указывать вдоль оси колеса согласно правилу правой руки. Теперь нам нужен чистый крутящий момент, который указывает перпендикулярно угловому моменту. Мы можем добиться этого, поместив конец оси колеса на опору и позволив весу колеса тянуть его вниз, когда опора толкает вверх.

Техника — Тенденции левого поворота

Лифт, каким бы волшебным он ни был, не идеален. То, что влечет нас в небо, вызывает у пилотов несколько головных болей.Пропеллер с его быстро вращающейся подъемной силой является прекрасным примером этого. Хотя он создает тягу, которая делает наши самолеты такими, какие они есть, он также создает четыре нежелательных эффекта, которые пилоты должны научиться распознавать и реагировать на них.

Крутящий момент, спиралевидный поток скольжения, P-фактор и гироскопическая прецессия обычно называют четырьмя тенденциями к левому повороту, потому что они заставляют либо нос самолета, либо крылья поворачиваться влево. Хотя они дают одинаковый результат, каждая сила действует по-своему.

Пропеллер создает тягу, которая делает наши самолеты такими, какие они есть, но он также создает четыре нежелательных эффекта, которые необходимо распознать.

Момент

Для физика крутящий момент — это сила вращения вокруг оси. Для пилота крутящий момент — это сила, вызывающая противоположное вращение. Когда пропеллер вращается по часовой стрелке (если смотреть с кресла пилота), самолет испытывает вращающую силу в противоположном направлении. В данном случае это означает, что самолет хочет покатиться влево, и этот эффект подавляется крыльями.Крутящий момент увеличивается с увеличением мощности.

Спиральный поток

Представьте гребной винт лодки и водоворот, закручивающийся по спирали, когда лодка движется вперед. Это спиралевидный поток. Пропеллер создает воздушную спираль, которая вращается вокруг самолета, в конечном итоге контактируя с левой стороной руля направления. По мере увеличения мощности и увеличения скорости вращения гребного винта усилие на руле направления становится сильнее, вызывая большее рыскание влево.

Коэффициент P

Пропеллер представляет собой аэродинамический профиль, мини-«крыло», которое создает подъемную силу так же, как и те, которые прикреплены болтами к фюзеляжу.Поскольку подъемная сила является фактором скорости и угла атаки, больший угол атаки создает большую подъемную силу. Когда самолет летит горизонтально, обе лопасти пропеллера имеют одинаковый угол атаки. Но при наборе высоты опускающаяся лопасть (прямо на самолетах американского производства) имеет больший угол атаки, а значит, создает большую подъемную силу. И это поворачивает самолет влево. P-фактор особенно заметен при высоких настройках мощности и высоком положении носа.

Гироскопическая прецессия

Прецессия означает, что сила, приложенная к гироскопу, проявляется на 90 градусов вперед в направлении вращения.Физика, необходимая для объяснения этого, займет целую страницу, так что просто поверьте нам в этом. Как быстро вращающийся диск пропеллер действует как гироскоп. Когда самолет с хвостовым колесом совершает разбег и хвост поднимается вверх, диск гребного винта вращается вперед. Это похоже на то, как кто-то нажимает на верхнюю часть диска. Сила приводит к 90 градусам вперед или с правой стороны, толкая нос влево. Самолеты с трехопорным шасси не испытывают этой силы почти так же, как самолеты с обычным шасси.

Краткое описание

CFI: крутящий момент — Блог «Научитесь летать»

CFI Краткое описание: Torque

Сообщение от: CFI 12 мая 2016 г.

Сегодняшнее обсуждение крутящего момента.Самолет стандартной конфигурации имеет упорную тенденцию к повороту влево. Эта тенденция называется крутящим моментом и представляет собой комбинацию четырех сил: реактивной силы, спиралевидного потока скольжения, гироскопической прецессии и P-фактора.

Реактивная сила основана на законе действия и противодействия Ньютона. Пропеллер, вращающийся по часовой стрелке (если смотреть сзади), создает силу, которая имеет тенденцию катить самолет против часовой стрелки. См. Рисунок 1.

Рисунок 1

Спиральный поток скольжения — это реакция воздуха на вращающийся пропеллер.(Винт заставляет воздух закручиваться по спирали вокруг фюзеляжа по часовой стрелке.) Этот спиральный поток скольжения ударяет по вертикальному стабилизатору самолета с левой стороны. Это сдвигает хвост самолета вправо, а нос самолета — влево. См. Рисунок 2. Управление смещением веса и приводные парашюты не имеют этого эффекта.

Рисунок 2

Гироскопическая прецессия — это результат отклоняющей силы, приложенной к вращающемуся телу (например, гребному винту). Результирующее действие происходит на 90 ° позже в направлении вращения.См. Рисунок 3.

Рисунок 3

Асимметричная нагрузка на гребной винт, называемая Р-фактором, вызвана движущейся вниз лопастью с правой стороны гребного винта, имеющей больший угол атаки, большее действие и реакцию и, следовательно, большую тягу, чем движущаяся вверх противоположная лопасть. Это приводит к тенденции летательного аппарата к рысканию влево вокруг вертикальной оси. Дополнительная тенденция к левому повороту из-за крутящего момента будет наибольшей, когда самолет будет летать на низкой скорости с установкой высокой мощности.

Теперь давайте посмотрим, сможем ли мы ответить на несколько типовых вопросов проверки знаний FAA. Ответы можно найти в разделе комментариев.

1. Тенденция к левому повороту самолета, вызванная P-фактором, является результатом
A — вращения двигателя по часовой стрелке и винта, вращающего самолет против часовой стрелки.
B — лопасть гребного винта, опускающаяся справа, создает больше тяги, чем восходящая лопасть слева.
C — гироскопические силы, приложенные к вращающимся лопастям гребного винта, действующие на 90 ° перед точкой приложения силы.

2. В каких условиях полета крутящий момент является наибольшим для одномоторного самолета?
A — низкая скорость, большая мощность, большой угол атаки.
B — низкая скорость, малая мощность, малый угол атаки.
C — высокая скорость полета, большая мощность, большой угол атаки.

Ваш автомобиль и эффект крутящего момента!

‘Мощность — иллюзорное уравнение. Корень всего хорошего — крутящий момент ». По крайней мере, так гласит известная автомобильная цитата. Шопан Шарма попадает в толпу и демистифицирует эту сумасшедшую крутящую силу, называемую крутящим моментом.

Когда едешь по шоссе на своем новом комплекте колес, двигатель не нагружен. Тахометр далек от упомянутых пиковых оборотов мощности, поэтому вы решаете открыть дроссельную заслонку. Ваш автомобиль стремительно мчится вперед — ваша голова запрокидывается назад, а дино-динамометрический стенд говорит, что это мощно. Однако то, что вы почувствовали прямо сейчас, было не мощностью двигателя. Это была движущая сила вашей силовой установки — физическая сущность, называемая крутящим моментом.

The Physics


Torque всегда менял мир.Фактически, это вращательный эквивалент силы — просто вместо того, чтобы толкать предметы по прямой линии, когда сила вращает объекты — другими словами, вращающее усилие — оно принимает название крутящий момент.

Однако, в отличие от силы, крутящий момент имеет два аспекта: усилие, прилагаемое при повороте, и расстояние от оси вращения, на которой прилагается усилие. Следовательно, хотя вам всегда потребуется больше мускулов, чтобы толкать более тяжелую тележку для покупок по прямой, то, насколько легко ее можно повернуть, зависит от того, как далеко колеса находятся от опоры для рук — точки, в которой вы будете прилагать усилие поворота.

В то время как сила всегда описывается в виде одной единицы, такой как фунты (фунт) или ньютон (Н), крутящий момент описывается с использованием двух разных значений — приложенной силы и расстояния от оси, к которой приложена сила. Следовательно, крутящий момент описывается с использованием таких единиц, как фунт-фут (фунт-фут) или ньютон-метр (Нм), которые включают меру силы и расстояния.

Поскольку крутящий момент является произведением силы на расстояние, крутящий момент 100 Нм может означать силу в 100 ньютонов, приложенную на расстоянии 1 метра от оси вращения, или силу в 25 ньютонов, приложенную в 4 метрах от оси.Другими словами, допустима меньшая мышца — тот же крутящий момент все еще может быть получен с помощью более длинного рычага.

Вот почему гайку легче затягивать гаечным ключом, чем пальцами — независимо от захвата — большее расстояние, на котором прилагается усилие поворота, приводит к большему крутящему моменту. Продолжайте, и вы увидите, как те же основы применимы к двигателю внутреннего сгорания.

Двигатель

Кривошип двигателя внутреннего сгорания преобразует возвратно-поступательное движение поршня во вращательное движение.В то время как крошечные взрывы в камере сгорания обеспечивают силу, именно длина шатуна между поршнем и кривошипом обеспечивает рычаг. Чтобы получить больший крутящий момент, можно либо сделать челнок большего размера, либо просто увеличить ход поршня.

В качестве примера можно привести такие же большие 6-литровые двигатели на Lamborghini Murcielago и Bentley Brooklands с совершенно разными значениями крутящего момента — 660 Нм для Lambo и огромные 1050 Нм для Bentley.Помимо множества других факторов, влияющих на достижение хорошего крутящего момента, основным фактором, влияющим на эту разницу, является длинный ход Bentley 99 мм по сравнению с ходом Murcielago 89 мм.

Более длинный ход может означать больший крутящий момент, но это также означает более длительное время поворота кривошипа. Это приводит к более грубоватому, но более низкооборотистому двигателю. Поскольку производимая мощность — это не что иное, как крутящий момент, умноженный на число оборотов в минуту, более низкие обороты означают меньшую пиковую мощность при том же крутящем моменте. И хотя большой крутящий момент означает отличное ускорение, вам нужна мощность, чтобы поддерживать эту скорость.Как и везде, в мире движения тоже нет бесплатных обедов.

Реальный мир

Итак, как вся эта теория переносится на автомобили, которые мы используем каждый день? Крутящий момент — это основная движущая сила транспортного средства, но его нельзя рассматривать изолированно, поскольку разные транспортные средства требуют разных форм передачи мощности и совершенно разного крутящего момента.

Как упоминалось ранее, на любую силу (включая крутящий момент) влияют две составляющие — масса и ускорение. Тяговое усилие, обеспечиваемое крутящим моментом, можно использовать для умопомрачительного ускорения или огромной грузоподъемности, в зависимости от ситуации.

Известно, что спортбайки с объемом двигателя 1000 куб. См являются одними из самых быстрорастущих дорожных машин. Honda CBR1000RR 2008 года выпуска, например, разгоняется от 0 до 100 км / ч за 3 секунды — этого достаточно, чтобы улететь с места на стартовой линии. А вот маниакальный крутящий момент вряд ли дает, покорные 107Нм. Разница в том, что заправленная и с наездником она весит всего около 250 килограммов.

На другом конце дорожного спектра находятся тяжелые грузовики, такие как Volvo Fh26, чей высокотехнологичный турбодизельный двигатель развивает чудовищный максимальный крутящий момент в 2800 Нм.Поскольку он весит около 40 000 кг и способен нести еще 10 000 кг полезной нагрузки, мы бы не стали делать ставку на то, что он превзойдет многих на драг-полосе.

Ключевым отличием в том, как крутящий момент преобразуется в ускорение или нагрузку, является передача. Шестерни — это не что иное, как преобразователи крутящего момента, изменяющие время, в течение которого крутящий момент, создаваемый двигателем, передается на колеса. Далее в этой серии мы исследуем этот чудесный мир шестеренок и то, как он влияет на то, как движется автомобиль.Смотрите это пространство!

Влияние тангенциального крутящего момента на контроль сил захвата при удерживании объектов прецизионным захватом

Когда мы манипулируем небольшими предметами, на кончики наших пальцев обычно действуют тангенциальные моменты вращения вокруг оси, перпендикулярной поверхности захвата, в дополнение к линейным силам, касательным к поверхности захвата. Касательные моменты могут возникать из-за того, что нормальная сила распределена по площади контакта, а не сосредоточена в одной точке.Мы исследовали влияние тангенциальных моментов и тангенциальных сил на минимальные нормальные силы, необходимые для предотвращения скольжения (сила скольжения), и на нормальные силы, фактически применяемые испытуемыми для удержания объекта в неподвижном положении с помощью кончиков указательного пальца. и большой палец. Путем изменения положения центра тяжести объекта по отношению к поверхности захвата создавались различные уровни тангенциального крутящего момента (0-50 Н x мм), в то время как субъект противодействовал вращению объекта. Касательная сила (0-3.4 Н) варьировалась за счет изменения веса объекта. Плоские поверхности для захвата были покрыты вискозой, замшей или наждачной бумагой, что обеспечивало различие в трении по отношению к коже. При нулевой тангенциальной силе и применяемая нормальная сила, и сила скольжения увеличиваются пропорционально касательному крутящему моменту с наклоном, который отражает текущее состояние трения. Точно так же при чистой тангенциальной силе эти силы увеличиваются пропорционально тангенциальной силе. Влияние комбинированных тангенциальных моментов и тангенциальных сил на силу скольжения было в основном аддитивным, но между этими переменными было значительное взаимодействие.В частности, увеличение силы скольжения для данного приращения крутящего момента уменьшается как функция тангенциальной силы. Была разработана математическая модель, которая успешно предсказывала силу скольжения на основе тангенциального крутящего момента, касательной силы и оценки коэффициента статического трения в интерфейсе пальца-поверхность. Влияние комбинированных тангенциальных моментов и сил на применяемую нормальную силу продемонстрировало ту же картину, что и влияние на силу скольжения. Запас безопасности против фрикционного скольжения, измеренный как разница между применяемой нормальной силой и силой скольжения, был относительно небольшим и постоянным для всех уровней тангенциальной силы и крутящего момента, за исключением малых крутящих моментов (<10 Н x мм).Разницы в запасе прочности между цифрами не было. В заключение, тангенциальный крутящий момент сильно влияет на нормальную силу, необходимую для устойчивости захвата. При управлении нормальной силой люди точно учитывают силу скольжения, отражающую как тангенциальную силу, так и тангенциальный крутящий момент, и их взаимодействие, а также текущее состояние трения в интерфейсе объект-цифра.

Что такое крутящий момент? | Журнал CAR

► Краткое объяснение CAR: крутящий момент
► Что это такое и как его измерять?
► Мини-справочник по тяговому усилию автомобиля

Тормозная мощность, рабочий объем и время разгона до 100 км / ч — все это ключевые показатели, когда дело доходит до понимания характеристик автомобиля, но есть также и крутящий момент.

Torque — это то, что упоминается во всех обзорах автомобилей с высокими характеристиками, но, возможно, это одна из наиболее неправильно понимаемых областей характеристик автомобилей. Итак, что такое крутящий момент, как он измеряется и почему он так важен? Продолжайте читать, чтобы узнать.

Что такое крутящий момент?

Проще говоря, крутящий момент — это количество «крутящего момента» автомобиля, и это то же усилие, которое требуется, когда вы поворачиваете гаечный ключ. Например, если у вас был крутящий момент 300 фунт-футов (фунт-фут), а ваш гаечный ключ имел длину 1 фут и прикладывал силу в 300 фунтов непосредственно перпендикулярно этому гаечному ключу, вы бы получили такое же количество крутящего момента.Фактически, 300 фунт-фут крутящего момента.

Когда крутящий момент полезен и важен?

В первую очередь крутящий момент используется для ускорения автомобиля, и обычно указывается максимальное значение крутящего момента двигателя внутреннего сгорания на коленчатом валу, которое обычно выше, чем значение на колесах.

Более высокий крутящий момент также означает более быстрое время разгона до 100 км / ч: он позволяет автомобилю ускоряться быстрее на начальных этапах движения, когда автомобиль начинает трогаться с места или набирать скорость.

Но дело не только в скорости, крутящий момент также важен, когда автомобили становятся тяжелее и крупнее. Более тяжелому внедорожнику потребуется больше крутящего момента, чтобы начать движение или продолжить движение. Это одна из причин, наряду с экономичностью, что в большинстве хороших тяжелых транспортных средств используются крутящие, дизельные двигатели.

Итак, в каких двигателях вы найдете больший или меньший крутящий момент?

Дизельные и V-образные двигатели, как правило, развивают больший крутящий момент на более низких оборотах, чем бензиновые двигатели. Например, двигатели с большим крутящим моментом могут двигаться с той же скоростью с большей легкостью на более низких оборотах, что делает движение более плавным.

Когда максимальный крутящий момент достигается ниже диапазона оборотов, вы обнаружите, что вы набираете обороты или работаете с двигателем меньше. Это одна из причин, почему двигатели с большим крутящим моментом часто называют более «тяговыми».

Узнайте больше о новостях CAR Tech здесь

Что такое крутящий момент рулевого управления (и как это происходит)?

Возможно, лучший вопрос:

Что такое крутящий момент?

Крутящий момент — это мера силы, которая может заставить объект (в данном случае колесо) вращаться вокруг оси.Эта вращающая сила может затем создавать линейное ускорение.

Для создания крутящего момента сила должна прилагаться к объекту на расстоянии, как гаечный ключ работает с болтом — сила прилагается к концу гаечного ключа, противоположному концу болта.

Это расстояние имеет решающее значение, поскольку чем больше расстояние между ними, тем больше крутящий момент.

Torque обеспечивает половину потенциальной мощности транспортного средства, а другая половина — это частота вращения двигателя. Умножьте крутящий момент на число оборотов в минуту, и вы получите мощность в лошадиных силах.

Или, другими словами: чем больше крутящий момент и больше оборотов в минуту, тем больше линейное ускорение и тем быстрее вы можете ехать.

В то время как математика, лежащая в основе расчета крутящего момента, заставит плакать среднестатистического участника дорожного движения, принцип можно сократить до:

Чем больше двигатель, чем больше расстояние, тем больше крутящий момент.

По крайней мере теоретически. Вес автомобиля является важным фактором, поэтому ведущие автомобильных шоу регулярно говорят о мощности на тонну, поскольку это влияет на крутящий момент, который можно снизить.

Mercedes Benz SL65 AMG Black разбил сердца, банковские счета и барабанные перепонки в 2010 году своим ошеломляющим 6-литровым двигателем V12, который развивал 1000 лошадиных сил и 959 фунт-фут крутящего момента.

Несмотря на то, что это была дикая инженерная мысль, реальность такова, что если сильно нажать на акселератор, машина не только раскрутит колеса, но и разорвет их в клочья.

Установленная мощность была больше, чем сцепление колес с дорогой, заставляя их вращаться.

Так что же такое Torque Steer?

Установив, что крутящий момент — это сила вращения, которую автомобиль может оказывать на свои колеса; крутящий момент рулевого управления, что неудивительно, когда мощность прилагается неравномерно к ведущим колесам.

Эта проблема в основном затрагивает автомобили с передним приводом, из-за чего рулевое управление тянет в ту или иную сторону. В зависимости от выходной мощности транспортного средства это может быть незначительное усилие или резкое отклонение от курса, которое требует согласованных усилий для исправления.

Что его вызывает?

Рулевое управление с крутящим моментом может быть вызвано рядом причин, в том числе разницей в тяговом усилии между двумя ведущими колесами. Давление протектора или даже давление в шинах могут повлиять на способность автомобиля трогаться с места по прямой.

Самая частая причина в переднеприводных автомобилях — это поперечно расположенный двигатель. В автомобилях этого типа двигатель, трансмиссия и дифференциал монтируются в одном месте — в моторном отсеке.

В этих случаях дифференциал и трансмиссия свешиваются с одной стороны двигателя. Это означает, что полуоси имеют неравную длину, поэтому одно колесо передает больше мощности, чем другое.

Проблема может усугубиться во время резкого ускорения, когда автомобиль раскачивается назад, смещая вес с ведущих колес, уменьшая прижимную силу и заставляя колеса вращаться.

Любой человек с переднеприводным автомобилем, совершивший смелый маневр на Т-образном перекрестке, несомненно, испытает тошнотворное чувство, когда вы пытаетесь отъехать, а колеса борются за сцепление с дорогой в самый неподходящий момент.

В автомобилях с задним приводом редко возникает управляемость по крутящему моменту, потому что конструкция двигателя, дифференциала и трансмиссии является линейной, что означает, что полуоси имеют одинаковую длину.

Можно ли починить?

Строго говоря, нет.

Однако это можно компенсировать. Транспортные средства можно запрограммировать на ограничение мощности, передаваемой на ведущие колеса, до тех пор, пока автомобиль не обнаружит достаточную прижимную силу и тягу, используя различные типы дифференциалов.

Другое распространенное решение — запрограммировать усилитель рулевого управления на обнаружение и компенсацию крутящего момента рулевого управления. Таким образом, пока проблема остается, водитель не делает тяжелой работы по ее устранению.

Это устраняет концентрацию добавок и усталость, которые могут возникнуть при длительных поездках.

В конечном счете, лучший способ ограничить управляемость по крутящему моменту — это проявлять сдержанность при ускорении на первые несколько футов.

MAT FOUNDRY GROUP ЯВЛЯЕТСЯ ВЕДУЩИМ ПРОИЗВОДИТЕЛЕМ КОМПОНЕНТОВ ДЛЯ АВТОМОБИЛЕЙ СЕРЫЙ И ИЗ КРУГКОГО ЧУГУРА, в том числе распредвалов

, , корпусов дифференциала , и компонентов активной безопасности для бытовых и коммерческих автомобилей.

ЧТОБЫ УЗНАТЬ БОЛЬШЕ О НАС ПРОСМОТРЕТЬ НАШИ ПРОДУКТЫ ИЛИ СВЯЗАТЬСЯ С НАМИ СЕГОДНЯ

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *