Назначение турбокомпрессора: Турбокомпрессор: сердце системы наддува воздуха

Содержание

Турбокомпрессор: сердце системы наддува воздуха

Турбокомпрессор: сердце системы наддува воздуха

Для повышения мощности двигателей внутреннего сгорания широкое применение находят специальные агрегаты — турбокомпрессоры. О том, что такое турбокомпрессор, каких типов бывают эти агрегаты, как они устроены и на каких принципах основана их работа, а также об их обслуживании и ремонте читайте в статье.


Что такое турбокомпрессор?

Турбокомпрессор — основной компонент системы агрегатного наддува двигателей внутреннего сгорания, агрегат для повышения давления во впускном тракте двигателя за счет энергии отработавших газов.

Турбокомпрессор применяется для повышения мощности двигателя внутреннего сгорания без коренного вмешательства в его конструкцию. Данный агрегат повышает давление во впускном тракте двигателя, обеспечивая подачу в камеры сгорания увеличенного количества топливно-воздушной смеси. В этом случае сгорание происходит при более высокой температуре с образованием большего объема газов, что приводит к повышению давления на поршень и, как следствие, к росту крутящего момента и мощностных характеристик двигателя.

Применение турбокомпрессора позволяет увеличить мощность двигателя на 20-50% с минимальным увеличением его стоимости (а при более значительных доработках рост мощности может достигать 100-120%). Благодаря своей простоте, надежности и эффективности системы наддува на основе турбокомпрессоров находят самое широкое применение на всех типах транспортных средств с ДВС.


Типы и характеристики турбокомпрессоров

Сегодня существует большое разнообразие турбокомпрессоров, но их можно разделить на группы по назначению и применимости, типу используемой турбины и дополнительному функционалу.

По назначению турбокомпрессоры можно разделить на несколько типов:

  • Для одноступенчатых систем наддува — один турбокомпрессор на двигатель, либо два и более агрегатов, работающих на несколько цилиндров;
  • Для последовательных и последовательно-параллельных систем надува (различные варианты Twin Turbo) — два одинаковых или разных по характеристикам агрегата, работающих на общую группу цилиндров;
  • Для двухступенчатых систем наддува — два турбокомпрессора с различными характеристиками, которые работают в паре (последовательно друг за другом) на одну группу цилиндров.

Наиболее широкое применение находят одноступенчатые системы наддува, построенные на основе одного турбокомпрессора. Однако такой системе может присутствовать два или четыре одинаковых агрегата — например, в V-образных двигателях используются отдельные турбокомпрессоры на каждый ряд цилиндров, в многоцилиндровых моторах (более 8) могут применяться четыре турбокомпрессора, каждый из которых работает на 2, 4 или более цилиндров. Меньшее распространение получили двухступенчатые системы наддува и различные вариации Twin-Turbo, в них используется два турбокомпрессора с различными характеристиками, которые могут работать только в паре.

По применимости турбокомпрессоры можно условно разделить на несколько групп:

  • По типу двигателя — для бензиновых, дизельных и газовых силовых агрегатов;
  • По объему и мощности двигателя — для силовых агрегатов малой, средней и большой мощности; для высокооборотистых двигателей, и т.д.

Турбокомпрессоры могут оснащаться турбиной одного из двух типов:

  • Радиальной (радиально-осевой, центростремительной) — поток отработавших газов подается на периферию крыльчатки турбины, движется к ее центру и выводится в осевом направлении;
  • Осевой — поток отработавших газов подается вдоль оси (к центру) крыльчатки турбины и выводится с ее периферии.

Сегодня применяются обе схемы, но на двигателях небольшого объема чаще можно встретить турбокомпрессоры с радиально-осевой турбиной, а на мощных силовых агрегатах предпочтение отдается осевым турбинам (хотя это и не является правилом). Независимо от типа турбины, все турбокомпрессоры оснащаются центробежным компрессором — в нем воздух подается к центру крыльчатки и отводится от ее периферии.

Современные турбокомпрессоры могут иметь различный функционал:

  • Двойной вход — турбина имеет два входа, на каждый из них поступают отработавшие газы от одной группы цилиндров, такое решение снижает перепады давления в системе и улучшает стабильность наддува;
  • Изменяемая геометрия — турбина имеет подвижные лопасти или скользящее кольцо, посредством которых можно изменять поток отработавших газов на рабочее колесо, это позволяет изменять характеристики турбокомпрессора в зависимости от режима работы двигателя.

Наконец, турбокомпрессоры отличаются основными эксплуатационными характеристиками и возможностями. Из основных характеристик этих агрегатов следует выделить:

  • Степень повышения давления — отношение давления воздуха на выходе компрессора к давлению воздуха на входе, лежит в пределах 1,5-3;
  • Подача компрессора (расход воздуха через компрессор) — масса воздуха, проходящая через компрессор за единицу времени (секунду), лежит в пределах 0,5-2 кг/с;
  • Рабочий диапазон оборотов — лежит в пределах от нескольких сотен (для мощных тепловозных, промышленных и иных дизелей) до десятков тысяч (для современных форсированных двигателей) оборотов в секунду. Максимальная скорость ограничена прочностью рабочих колес турбины и компрессора, при слишком высокой скорости вращения за счет центробежных сил колесо может разрушиться. В современных турбокомпрессорах периферийные точки колес могут вращаться со скоростями 500-600 и более м/с, то есть — в 1,5-2 раза быстрее скорости звука, это и обуславливает возникновение характерного свиста турбины;
  • Рабочая/максимальная температура отработавших газов на входе в турбину — лежит в пределах 650-700°С, в отдельных случаях достигает 1000°С;
  • КПД турбины/компрессора — обычно составляет 0,7-0,8, в одном агрегате КПД турбины обычно меньше КПД компрессора.

Типовая схема системы агрегатного наддува воздуха ДВС

Также агрегаты отличаются размерами, типом монтажа, необходимостью применять вспомогательные компоненты и т.д.


Конструкция турбокомпрессора

В общем случае турбокомпрессор состоит из трех основных узлов:

  1. Турбина;
  2. Компрессор;
  3. Корпус подшипников (центральный корпус).

Турбина — агрегат, преобразующий кинетическую энергию отработавших газов в механическую энергию (в крутящий момент колеса), которая обеспечивает работу компрессора. Компрессор — агрегат для нагнетания воздуха. Корпус подшипников связывает оба агрегата в единую конструкцию, а расположенный в нем вал ротора обеспечивает передачу крутящего момента от колеса турбины на колесо компрессора.


Разрез турбокомпрессора

Турбина и компрессор имеют схожую конструкцию. Основой каждого из этих агрегатов выступает корпус-улитка, в периферийной и центральной части которого расположены патрубки для соединения с системой наддува. У компрессора впускной патрубок всегда находится в центре, выпускной (нагнетательный) — на периферии. Такое же расположение патрубков у осевых турбин, у радиально-осевых турбин расположение патрубков обратное (на периферии — впускной, в центре — выпускной).

Внутри корпуса располагается колесо с лопатками специальной формы. Оба колеса — турбинное и компрессорное — удерживаются общим валом, который проходит через корпус подшипников. Колеса — цельнолитые или составные, форма лопаток турбинного колеса обеспечивает максимально эффективное использование энергии отработавших газов, форма лопаток компрессорного колеса обеспечивает максимальный центробежный эффект. В современных турбинах высокого класса могут использоваться составные колеса с керамическими лопатками, которые имеют низкую массу и обладают лучшими характеристиками. Размер колес турбокомпрессоров автомобильных двигателей — 50-180 мм, мощных тепловозных, промышленных и иных дизелей — 220-500 и более мм.

Оба корпуса монтируются на корпус подшипников с помощью болтов через уплотнения. Здесь располагаются подшипники скольжения (реже — подшипники качения специальной конструкции) и уплотнительные кольца. Также в центральном корпусе выполняются масляные каналы для смазки подшипников и вала, а в некоторых турбокомпрессорах и полости водяной рубашки охлаждения. При монтаже агрегат соединяется с системами смазки и охлаждения двигателя.

В конструкции турбокомпрессора могут быть предусмотрены и различные вспомогательные компоненты, в том числе детали системы рециркуляции отработавших газов, масляные клапаны, элементы для улучшения смазки деталей и их охлаждения, регулировочные клапаны и т.д.

Детали турбокомпрессора изготавливаются из специальных марок стали, для колеса турбины применяются жаропрочные стали. Материалы тщательно подбираются по коэффициенту температурного расширения, что обеспечивает надежность конструкции на различных режимах работы.

Турбокомпрессор включается в систему наддува воздуха, в которую также входят впускной и выпускной коллекторы, а в более сложных системах — интеркулер (радиатор охлаждения наддувного воздуха), различные клапаны, датчики, заслонки и трубопроводы.


Принцип работы турбокомпрессора


Принцип работы турбокомпрессора

Функционирование турбокомпрессора сводится к простым принципам. Турбина агрегата внедряется в выпускную систему двигателя, компрессор — во впускной тракт. Во время работы мотора выхлопные газы поступают в турбину, ударяются о лопатки колеса, отдавая ему часть своей кинетической энергии и заставляя ее вращаться. Крутящий момент от турбины посредством вала напрямую передается на колеса компрессора. При вращении колесо компрессора отбрасывает воздух на периферию, повышая его давление — этот воздух подается во впускной коллектор.

Одиночный турбокомпрессор имеет ряд недостатков, основной из которых — турбозадержка или турбояма. Колеса агрегата имеют массу и некоторую инерцию, поэтому не могут мгновенно раскручиваться при повышении оборотов силового агрегата. Поэтому при резком нажатии на педаль газа турбированный двигатель разгоняется не сразу — возникает короткая пауза, провал мощности. Решением этой проблемы служат специальные системы управления турбиной, турбокомпрессоры с изменяемой геометрией, последовательно-параллельные и двухступенчатые системы наддува, и другие.


Вопросы обслуживания и ремонта турбокомпрессоров

Турбокомпрессор нуждается в минимальном техническом обслуживании. Главное — вовремя производить замену масла и масляного фильтра двигателя. Если мотор еще может какое-то время работать на старом масле, то для турбокомпрессора оно может стать смертельно опасным — даже незначительное ухудшение качества смазочного материала на высоких нагрузках может привести к заклиниванию и разрушению агрегата. Также рекомендуется периодически очищать детали турбины от нагара, что требует ее разбора, однако эту работу следует выполнять только с применением специального инструмента и оборудования.

Неисправный турбокомпрессор в большинстве случаев проще заменить, чем ремонтировать. Для замены необходимо использовать агрегат того же типа и модели, что был установлен на двигателе ранее. Монтаж турбокомпрессора с иными характеристиками может нарушить работу силового агрегата. Подбор, монтаж и настройку агрегата лучше доверять специалистам — это гарантирует правильное выполнение работ и нормальную работу двигателя. При правильной замене турбокомпрессора двигатель снова обретет высокую мощность и сможет решать самые сложные задачи.

Другие статьи

#Палец штанги реактивной

Палец штанги реактивной: прочная основа шарниров штанг

23.06.2021 | Статьи о запасных частях

В подвесках грузовых автомобилей, автобусов и другой техники предусмотрены элементы, компенсирующие реактивный момент — реактивные штанги. Соединение штанг с балками мостов и рамой осуществляется с помощью пальцев — об этих деталях, их типах и конструкции, а также о замене пальцев читайте в статье.

#Клапан МАЗ включения привода сцепления

Клапан МАЗ включения привода сцепления

16.06.2021 | Статьи о запасных частях

Многие модели автомобилей МАЗ оснащаются приводом выключения сцепления с пневматическим усилителем, важную роль в работе которого играет клапан включения привода. Все о клапанах включения привода сцепления МАЗ, их типах и конструкции, а также о подборе, замене и ТО данной детали — узнайте из статьи.

Предназначение турбокомпрессора, как он устроен и принцип его работы

Мощность, развиваемая двигателем внутреннего сгорания, зависит от количества топлива и воздуха, поступающего в двигатель. Мощность двигателя возможно повысить за счет увеличения объема этих составляющих.

Но увеличение подачи топлива бессмысленно, если не увеличивается поступление воздуха, необходимого для его сгорания. Поэтому воздух, поступающий в цилиндры двигателя, приходится сжимать. Система принудительной подачи воздуха может работать, используя энергию отработанных газов или с применением механического привода.

Турбокомпрессор или турбонагнетатель — устройство, предназначенное для нагнетания воздуха в двигатель с помощью энергии выхлопных газов. Основные части турбокомпрессора — турбина и центробежный насос, которые связывает между собой общая жесткая ось. Эти элементы вращаются со скоростью — около 100.000 об/мин, приводя в действие компрессор.

Устройство турбокомпрессора

Устройство турбокомпрессора:
1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.

Турбинное колесо вращается в корпусе, имеющем специальную форму. Оно выполняет функцию передачи энергии отработавших газов компрессору. Турбинное колесо и корпус турбины изготавливают из жаропрочных материалов (керамика, сплавы).

Компрессорное колесо засасывает воздух, сжимает его и затем нагнетает его в цилиндры двигателя. Оно также находится в специальном корпусе.

Компрессорное и турбинное колеса установлены на валу ротора. Вращение вала происходит в подшипниках скольжения. Используются подшипники плавающего типа, то есть зазор имеют со стороны корпуса и вала. Моторное масло для смазки подшипников поступает через каналы в корпусе подшипников. Для герметизации на валу устанавливаются уплотнительные кольца.

Для лучшего охлаждения турбонагнетателей в некоторых бензиновых двигателях применяется дополнительное жидкостное охлаждение.

Для охлаждения сжимаемого воздуха предназначен интеркулер — радиатор жидкостного или воздушного типа. За счет охлаждения увеличивается плотность и соответственно давление воздуха.

В управлении системой турбонаддува основным элементом является регулятор давления. Это перепускной клапан, который ограничивает поток отработавших газов, перенаправляя часть его мимо турбинного колеса, обеспечивая нормальное давление наддува.

Принцип работы

В своей работе турбокомпрессор использует энергию отработавших газов. Эта энергия вращает турбинное колесо. Затем это вращение через вал ротора передается компрессорному колесу. Компрессорное колесо нагнетает воздух в систему, предварительно сжав его. Охлажденный в интеркулере воздух подается в цилиндры двигателя.

Принцип работы турбокомпрессора

Хотя у турбокомпрессора нет жесткой связи с валом двигателя, эффективность работы турбонаддува зависит от частоты его вращения. Чем больше число оборотов двигателя, тем сильнее поток отработавших газов. Соответственно увеличивается скорость вращения турбины и количество поступающего в цилиндры воздуха.

При работе системы турбонаддува возникают некоторые негативные моменты.

  1. Задерживается увеличение мощности при резком надавливании на педаль газа («турбояма»).
  2. После выхода из «турбоямы» резко повышается давление наддува («турбоподхват»).

Явление «турбоямы» обусловлено инерционностью системы. Это влечет за собой несоответствие между производительностью турбокомпрессора и требуемой мощностью двигателя. Для решения этой проблемы существуют следующие способы:

  • использование турбины с изменяемой геометрией;
  • применение двух параллельных или последовательных компрессоров;
  • комбинированный наддув.

Турбина с изменяемой геометрией оптимизирует поток отработавших газов, изменяя площадь входного канала. Широко применяется в дизельных двигателях.

Турбина с изменяемой геометрией:
1 — направляющие лопатки; 2 — кольцо; 3 — рычаг; 4 — тяга вакуумного привода; 5 — турбинное колесо.

Параллельно работающие турбокомпрессоры применяют для мощных V-образных двигателей (по одному на ряд цилиндров). Эта схема помогает решить проблему за счет того, что у двух маленьких турбин инерция меньше, чем у одной большой.

Установка 2-х последовательных турбин позволяет достичь максимальной производительности, используя разные компрессоры при разных оборотах двигателя.

При комбинированном наддуве применяется и механический, и турбонаддув. При работе двигателя на низких оборотах работает механический нагнетатель. При увеличении оборотов включается турбокомпрессор, а механический нагнетатель останавливается.

Преимущества и недостатки применения турбонаддува

1. Турбокомпрессор широко используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя на 20-35%. Двигатель, вырабатывая повышенные крутящие моменты на средних и высоких оборотах, увеличивает скорость и экономичность автомобиля.

2. Турбокомпрессор в большинстве случаев не может быть причиной неисправностей двигателя, так как его работа зависит от работоспособности газораспределительной, воздушной и топливной систем.

3. Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.

4. Происходит экономия топлива на 5-20%. В небольших двигателях энергия сжигаемого топлива используется эффективней, увеличивается КПД.

5. На высокогорных дорогах такие двигатели работают более стабильно и с меньшими потерями мощности, чем их атмосферные аналоги.

6. Турбокомпрессор сам по себе является глушителем шума в системе выпуска.

Как работает турбина — видео:

О недостатках

У турбированных двигателей кроме возникновения явлений «турбояма» и «турбоподхват» есть и другие недостатки.

Обслуживание их дороже в сравнении с «классическими». При эксплуатации приходится применять моторное масло специального назначения — его приходится регулярно менять. Двигатель с турбокомпрессором перед пуском должен несколько минут проработать на холостых оборотах. Также сразу не рекомендуется глушить мотор до остывания турбины.

Загрузка…

Устройство и принцип действия турбокомпрессора авто

Устройство и принцип действия турбокомпрессора направлены на увеличение давления топлива в коллекторе впуска для обеспечения максимального поступление кислорода в камеру, где происходит сгорание. Основное назначение турбины – значительное увеличение мощности двигателя. Даже увеличение давления на 1 атмосферу в коллекторе приводит к попаданию в двигатель двойной порции кислорода. Это позволяет даже небольшому двигателю отдавать такую мощность, как вдвое больший его аналог, но не оснащенный турбонаддувом.


Турбонаддув – принцип работы

Рассмотрим, принцип работы турбины на авто. Поток выхлопных газов поступает из выпускного коллектора в горячую часть турбины, там воздействует на лопасти крыльчатки, приводя ее в движение вместе с валом. На нем закреплена также крыльчатка компрессора, расположенного в холодном отсеке турбины. Она при вращении повышает давление в системе впуска, обеспечивая увеличенное поступление в камеру сжигания топлива и воздуха.

Устройство турбины автомобиля не сложное, она состоит из:
  • Улитки компрессора, которая всасывает воздух, а затем нагнетает его в коллектор впуска;
  • Улитки, расположенной в горячей части – здесь выхлопные газы заставляют вращать турбину, после чего выбрасываются в систему отработанных газов на выход;
  • Крыльчатки компрессора, а также ее аналога в горячей части;
  • Шарикоподшипникового картриджа;
  • Корпуса, соединяющего улитки, имеющего систему охлаждения и системы подшипников.

Во время работы устройство подвергается значительным термодинамическим нагрузкам. Попадающие в турбину выхлопные газы достигают температуры 900°С, из-за чего ее корпус делают чугунным, причем для отливки используется особая технология. Обороты турбинного вала могут достигать показателя 200 000 об/мин, поэтому в конструкцию устанавливают высокоточные детали, которые тщательно подгоняют и затем балансируют. Также для турбины предъявляются высокие требования к смазочным материалам. Отдельные турбонагнетатели оборудованы так, что система смазки является одновременно охлаждением узла подшипников.


Система охлаждения и устройство турбокомпрессора автомобиля

Охлаждающая система турбокомпрессоров необходима для улучшения передачи тепла от его механизмов и частей. Наиболее распространенные варианты охлаждения деталей — масляный способ и комплексное охлаждение антифризом и маслом. Оба типа имеют свои преимущества, но не лишены и недостатков.

Охлаждение маслом

Достоинства:
  • Простая конструкция;
  • Удешевление турбокомпрессора.
Недостатки:
  • Меньшая эффективность в сравнении с системой, где выполняется использование антифриза с маслом;
    Высокая требовательность к составу масла;
  • Необходимость часто его менять;
  • Требовательность к контролированию температурного режима.

Изначально устройство турбокомпрессора имело только масляное охлаждение, которое быстро достигало высоких температур, проходя через подшипники. Такое масло начинает сразу закипать, возникает эффект коксования, из-за которого забиваются каналы, существенно ограничивая доступ охлаждения и смазки к подшипникам.


В результате подшипники изнашиваются, их заклинивает, необходим дорогостоящий ремонт. У такой неполадки имеется несколько причин:
  • Некачественное или не то, которое рекомендовано для двигателя масло;
  • Превышение сроков замены масла;
  • Неисправности смазочной системы двигателя автомобиля.

Комплексное охлаждение турбины антифризом и маслом

Преимуществом этого варианта становится большая эффективность получаемого охлаждения. Существенный недостаток – усложнение конструкции турбонагнетателей, что повышает их стоимость.

Устройство турбонаддува в варианте охлаждения турбин антифризом и маслом более сложное, поскольку в нем имеется отдельный масляный контур, а также система с охлаждающей жидкостью. Зато повышается эффективность работы, устраняются проблемы закипания масла.

Для такого турбонагнетателя масло служит, как и прежде, для охлаждения и смазки подшипников, а антифриз, подаваемый из общей цепи охлаждения двигателя, предотвращает перегрев и не дает закипать маслу. Из-за такой сложности увеличивается цена турбонагнетателя.

Что такое интеркулер на авто?

При работе горячей турбины воздух, нагнетаемый компрессором в ее корпусе, сильно сжимается, отчего происходит его нагрев. Это вызывает нежелательные последствия, поскольку при высокой температуре в воздухе меньше кислорода. Значит, эффективность наддува также снижается. Для борьбы с подобным явлением начали, используя рекомендации ученых, устанавливать в турбину интеркулер – вспомогательный охладитель воздуха.

Конструкторы устройства отмечают, что нагрев воздуха далеко не единственная задача, которую им приходится решать при проектировании турбины. Насущной проблемой также становится ее инерционность – задержка реакции двигателя на открытие в коллекторе дроссельной заслонки.

Турбина максимально эффективна, когда достигаются определенные обороты вращения коленчатого вала. Среди автолюбителей даже распространено мнение, что турбонаддув включается только тогда, когда скорость автомобиля достигает определенного значения. Хотя турбина работает постоянно, а значение числа оборотов, при которых ее действие наиболее эффективно, для каждого двигателя индивидуальное.

Отличия твин турбо и битурбо

Решая проблемы устройства турбин, конструкторами была разработана схема, в которой соединились нагнетатели двух компрессоров. Эта конструкция получила название twin-turbo.


Твинтурбо – это система, в которой несколько одинаковых турбин соединены параллельно. Их задача – повысить давление и объем поступающего воздуха. Система управления включает твин-турбо в момент, когда необходимо получить на повышенных оборотах максимальную мощность.

Подобный компрессор реализован в прославленном японском авто бренда Nissan, который получил имя Skyline Gt-R.

В нем установлен мотор rb26-dett. Аналогичная система, однако, оснащенная одинаковыми небольшими турбинами позволяет получить заметный прирост мощности даже при малых оборотах, при этом поддерживать турбонаддув постоянно.

Последовательное соединение разных турбин получило название «битурбо».

Конструкция сделана так, что при невысоких оборотах функционирует лишь маленькая турбина, которая обеспечивает «отзывчивость» при плавно изменяемой скорости. Если обороты резко возрастают, включается «крупная» турбина». Это позволяет машине получить значительный прирост производительности, причем в любом диапазоне функционирования двигателя. Подобная система реализована в моделях BMW biturbo, тюнинг которых вызывает восхищение.



Инновационные разработки

В числе современных разработок, уже радующих автовладельцев, турбина VGT, у которой лопатки крыльчатки изменяют свой угол наклона, направляя ее в сторону, куда направлены выхлопные газы.


Когда обороты двигателя небольшие, становится более узким пропускное сечение выхода в турбину выхлопных газов, поэтому «выхлоп» получается более быстрым. Чаще эту систему применяют для дизельных агрегатов, но есть разработки и для бензиновых двигателей.

Также к инновационным разработкам относится система twinscroll, где благодаря двойному контуру, по которому совершают обход выхлопные газы, получается, что их энергия вращает общий ротор с компрессором и крыльчаткой.

При этом имеется два варианта реализации:
  1. Выхлопные газы проходят одновременно оба контура и система функционирует как twinturbo.
  2. Второй тип работает наподобие схемы biturbo – имеется два контура, у которых разная геометрия. Когда обороты невысокие, выхлопные газы идут по краткому контуру, увеличивающему энергию и скорость благодаря небольшому диаметру. Если обороты повышаются, выхлопные газы поступают в контур, имеющий больший диаметр – при этом рабочее давление сохраняется во впускной системе и отсутствует запор для выхлопных газов. Распределение регулируют механические элементы — клапаны, переключающие потоки.

Сейчас  выпускают усовершенствованные турбины, поэтому их популярность возрастает все больше . Турбокомпрессоры перспективны как в плане форсирования моторов, так и потому, что повышают экономичность двигателя, чистоту его выхлопа.

Турбокомпрессоры | Все о турбинах

 

    Основные элементы турбокомпрессора:
    1. Корпус турбины (горячая улитка) – в основном изготавливается из сфероидного чугуна для того чтобы выдерживать высокую температуру.
    2. Колесо турбины (крыльчатка) – покрывается никелевым сплавом и соединяется валом с колесом компрессора.
    3. Вал.
    4. Корпус подшипников.
    5. Корпус компрессора (холодная улитка) – к данной детали не предъявляются ни каких особых требований эксплуатации, поэтому ее производят в основном из алюминия для экономии средств.
    6. Колесо компрессора (воздушная крыльчатка) – в основном изготавливается из алюминия и лишь в редких случаях (когда нужно, чтобы компрессор проработал длительный срок под высокой нагрузкой) его делают из титана.
    7. Масляные каналы.

    Производительность турбокомпрессора интуитивно можно определить на глаз. Чем больше его размер, тем больше давление он может выдержать. Большая турбина вмещает больший объем и давление и как следствие обеспечивает больший прирост к мощности двигателя. При этом на малых оборотах все большие турбокомпрессоры страдают от турбозадержки. В то время как их малые менее производительные собратья быстрее набирают номинальную мощность.

    За регулировку давления наддува внутри корпуса турбины отвечает перепускной клапан (анг. wastegate). Он работает на пневмо приводе и управляется системой управления мотора.

    Основным функциональным элементов турбокомпрессора является средний (центральный) корпус (картридж). По сути это весь турбокомпрессор без улиток. Через него проходит ротор (турбинное и компрессорное колесо соединенные валом). Вал вращается при минимальном трении в масленой ванне под давлением с максимальной скоростью продетый во втулки (подшипники или реже в шарикоподшипники) картриджа.

    Система смазки двигателя отвечает за подачу смазки в турбокомпрессор. Она не только смазывает, но и охлаждает детали, которые нагреваются. Качество масла является одним из наиболее значимых факторов в эксплуатации турбины. От него зависит то насколько долго вам прослужит турбонагнетатель. Перед установкой нового или заменой старого турбокомпрессора обязательно стоит провести полную замену масла. Турбированные двигатели с икорным зажиганием имеют более лучшее охлаждение поскольку средний корпус изначально включен в систему охлаждения мотора.

    Центробежный компрессор является прекрасным примером создания дополнительного давления внутри впускной камеры. Его конструкция почти полностью аналогична механическому нагнетателю. Воздух поступает в центр колеса, а потом по нисходящей в периферию корпуса создавая крутящий момент. Диффузор в свою очередь преобразует кинетическую энергию воздуха для повышения давления при резком снижении скорости движения потока. Во впускной коллектор поступает сжатый воздух.

    Для экономии средств корпус и колесо компрессора изготавливают из алюминия.

    ПЕРЕЙТИ К ВЫБОРУ ТУРБОКОМПРЕССОРОВ И ИХ ДЕТАЛЕЙ

    КАТАЛОГ ТУРБИН

    КАТАЛОГ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЕЙ

    СПРОСИТЬ У МЕНЕДЖЕРА

    КАК ИДЕНТИФИЦИРОВАТЬ ВАШ ТУРБОКОМПРЕССОР


    Для идентификации Вашего турбокомпрессора нужно знать его оригинальный номер. 
    Чаще всего он находится на гравированной пластине или просто выбит на корпусе компрессорной части.

    ШАГ ПЕРВЫЙ: Очистите пластину или корпус. Номер увидеть очень трудно, поэтому площадь нужно промыть или почистить мягким материалом используя очиститель. Используя шуршоватый материал — можно повредить поверхность.

    ШАГ ВТОРОЙ: Определите оригинальный номер турбокомпрессора. Каждый «Брэнд» турбокомпрессора имеет свой номер. Здесь несколько примеров (выберите производителя Вашего турбокомпрессора):

    Garrett

    Номер детали Garrett обычно содержит 6 символов начинаясь с 4 или 7, затем следует тире и дополнительные цифры. Например 454083-1; 452204-2; 720244-5004s; 712290-0002.

     

    BorgKKK (или BorgWarner)

    Номер детали KKK содержит 11 символов, начинаясь с 5 или K. Например: 5303-970-0057; 5303-988-0023; 5435-988-0125; K14-7805; K16-7805; KP35-7805; KP39-7805; K03-05.
    Если OEM номер Вашего KKK турбокомпрессора начинается с K, конвертируйте номер в 11-значный код, используя этот пример:
    K14-7805 идентичен 5314-970-7805
    KP35-0054 идентичен 5435-970-0054
    KP39-0037 идентичен 5439-970-0037
    Если KP39-0022 значит 5439-970-0022

     

    Mitsubishi

    Mitsubishi или MHI номер детали состоит из первых 5 чисел и дополнительных 5 чисел следующими после знака минус. Например 49177-02510; 49173-06501; 49135-05620.

     

    Schwitzer

    Всё предельно просто, если у Вас SCHWITZER турбокомпрессор. Просто введите 6-значный номер в поисковик и выбирайте из списка нужную Вам деталь или турбокомпрессор.

     

    IHI

    Если у Вас IHI турбокомпрессор — Вам необходимо найти специальный номер, состоящий из двух заглавных букв и двух цифр. Например: VJ32; VA81; VJ27; VL25. В редких случаях из четырёх букв: VIBG; VIEZ

     

    Toyota

    Для идентификации TOYOTA турбокомпрессор — Вам необходимо найти 10-значный номер, разделённый знаком минус. Обычно он находится на корпусе турбокомпрессора (алюминиевая часть). Иногда он приклеен на актуаторе (см. рис.).

     

    ШАГ ТРЕТИЙ: Введите оригинальный номер Вашего турбокомпрессора в окно поиска нашего сайта — получите полный список деталей для Вашего турбокомпрессора. Или воспользуйтесь фильтром по товарам сайта, выбрав нужную Марку-производителя или Тип оборудования.

    ШАГ ЧЕТВЁРТЫЙ: Свяжитесь с нашим отделом продаж для дальнейшего обслуживания.

    КАТАЛОГ ТУРБИН

    КАТАЛОГ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЕЙ

    Установка и запуск турбины
    1. При замене неисправного турбокомпрессора на новый, или отремонтированный необходимо, прежде всего, выяснить причину неисправности и устранить ее до установки ТКР.
    2. Замените масло и масляный, воздушный фильтры, согласно с требованиями завода изготовителя автомобиля.
    3. Промойте и продуйте воздушную магистраль между турбиной и воздушным фильтром. Убедитесь в ее герметичности.
    4. Промойте и продуйте воздушную магистраль между турбиной и двигателем. Проверьте соединения на герметичность.
    5. Проверьте впускной и выпускной коллекторы, на предмет отсутствия посторонних предметов.
    6. Перед установкой, с помощью шприца, залейте чистое масло в отверстие подачи масла в турбокомпрессор и проворачивайте ротор пальцем до появления масла с отверстия слива масла.
    7. Использование герметиков на подаче и сливе масла категорически запрещено. Используйте прокладки.
    8. После установки турбокомпрессора на двигатель проверьте герметичность соединений.
    9. Перед запуском двигателя необходимо прокрутить его стартером (не заводя) до тех пор, пока система смазки не заполнится маслом (не погаснет контрольная лампа).
    10. Запустить и прогреть двигатель.
    11. Перед началом эксплуатации следует повторно проверить все соединения на герметичность.
    12. Обкатать турбокомпрессор. Не давать максимальных нагрузок первые 500 км.

    ПЕРЕЙТИ К ВЫБОРУ ТУРБОКОМПРЕССОРОВ И ИХ ДЕТАЛЕЙ

    КАТАЛОГ ТУРБИН

    КАТАЛОГ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЕЙ

    ПЕРЕЙТИ К ВЫБОРУ ДЕТАЛЕЙ ДВИГАТЕЛЯ

    ПЕРЕЙТИ К ВЫБОРУ ДВИГАТЕЛЕЙ

    СПРОСИТЬ У МЕНЕДЖЕРА

     

    Компрессор или турбина: Что лучше выбрать для автомобиля? | Преимущества и недостатки этих агрегатов

    В наше время очень актуально увеличивать скоростные показатели своего автомобиля. Наиболее распространённые варианты это установка компрессора или турбины: что лучше пробуем разобраться в этой статье.

    Принцип работы турбо-наддува мы рассматривали выше.

    Далее разберёмся с принципами работы, плюсами и минусами данных улучшений для двигателя.

    Принцип работы компрессора

    Существуют объёмные нагнетатели, они подают воздух в двигатель равными порциями независимо от скорости, что даёт преимущества на низких оборотах.

    Механический компрессор — Нагнетатель

    Компрессоры внешнего сжатия, очень хорошо подходят там, где требуется много воздуха на низких оборотах. Минус, это то, что давления он сам не создаёт и может создать обратный поток. Его сжатие имеет довольно низкий КПД.

    Компрессоры внутреннего сжатия довольно хороши на высоких оборотах и имеет намного меньший эффект обратного потока. Из-за высоких требований к изготовлению имеют высокую цену, а при перегреве имеют шанс заклинивания.

    Динамические нагнетатели работают при достижении, определённых оборотов, но зато с большой эффективностью.

    Компрессоры работают от коленчатого вала двигателя с помощью дополнительного привода. И поэтому обороты компрессора зависят от оборотов двигателя.

    ПЕРЕЙТИ К ВЫБОРУ ТУРБОКОМПРЕССОРОВ И ИХ ДЕТАЛЕЙ

    КАТАЛОГ ТУРБИН

    КАТАЛОГ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЕЙ

    ПЕРЕЙТИ К ВЫБОРУ ДЕТАЛЕЙ ДВИГАТЕЛЯ

    ПЕРЕЙТИ К ВЫБОРУ ДВИГАТЕЛЕЙ

    СПРОСИТЬ У МЕНЕДЖЕРА

    Недостатки компрессора и турбины

    Турбина хорошо подходит для обогащения кислородом топливной смеси. Но всё же имеет свои минусы:

    • турбина — это стационарное устройство и требует полную привязку к двигателю;
    • на малых оборотах она не даёт большой мощности, а только на больших способна показать всю свою мощь;
    • переход с малых оборотов до высоких называется турбо — ямой, чем большую мощность имеет турбина, тем больше будет эффект турбо — ямы.

    В наше время уже имеются турбины, отлично работающие на высоких и на низких оборотах двигателя, но и цена у них соответственно приличная. При выборе компрессора или турбины, многие отдают предпочтение турбо-наддуву, независимо от цены.

    Основные функциональные недостатки, присущие всем турбокомпрессорам, появляются в связи с инерционностью действия устройства. Иначе говоря, в процессе работы возникает задержка между нажатием на акселератор (педаль газа), ростом давление выхлопных газов и увеличением мощности двигателя. Эта последовательность называется турбояма и появляется из-за силы трения. Ее провотиположность — турбозадержка является прямым следствием турбоямы и проявляется в резком скачке мощности двигателя на короткий срок.

    Для снижения негативных эффектов этих функциональных недостатков и повышения производительности  компании-изготовители турбокомпрессоров постоянно совершенствуют свои изделия. Применяют следующие технические решения:

    • Разработки и установка новых блоков подшипников, снижающих потери из-за силы трения.
    • Уменьшение массы турбины,  путем обточки деталей и замены деталей на другие изготовленые из более легких материалов (в том числе керамики).
    • Турбокомпрессор с изменяющейся геометрией (анг. VNT-турбина).
    • Разделительный турбокомпрессор (анг. twin-scroll).

    С компрессором намного проще при установке и эксплуатации. Работает он на низких и на высоких оборотах. Также он не требует больших усилий или затрат при ремонте, так как, в отличие от турбины, компрессор — независимый агрегат.

    Компрессор работает напрямую от коленчатого вала и ему не нужно ждать пока подымится давление выхлопных газов. 

    Чтобы настроить турбину, понадобится хороший специалист для настройки под топливную смесь. А чтобы настроить компрессор — не нужно больших усилий или каких либо профессиональных знаний, всё настраивается топливными жиклёрами.

    Помимо всего, турбо-наддув довольно сильно нагревается, из-за своей особенности — развивать очень высокие обороты.

    У приводных нагнетателей (компрессоров), давление не зависит от оборотов и поэтому автомобиль очень чётко реагирует на нажатие педали газа, а это довольно ценное качество, когда машина разгоняется. Ещё они очень просты в своей конструкции.

    Но есть недостатки и у компрессоров: моторы, оборудованные нагнетателями с механическим приводом, имеют большой расход топлива и меньший КПД, в сравнении с турбиной.

    Также имеются большие различия в цене. Любая мощная турбина популярного производителя будет иметь большую стоимость и будет дорога в обслуживании. И к тому же — требуется для её установки немало дополнительного оборудования. Компрессору же — нужен только дополнительный привод.

    В любом случае решать Вам, что лучше: компрессор или турбина, взвесьте все положительные и отрицательные качества и сделайте правильное решение!

    ПЕРЕЙТИ К ВЫБОРУ ТУРБОКОМПРЕССОРОВ И ИХ ДЕТАЛЕЙ

    КАТАЛОГ ТУРБИН

    КАТАЛОГ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЕЙ

    ПЕРЕЙТИ К ВЫБОРУ ДЕТАЛЕЙ ДВИГАТЕЛЯ

    ПЕРЕЙТИ К ВЫБОРУ ДВИГАТЕЛЕЙ

    СПРОСИТЬ У МЕНЕДЖЕРА


     

    Виды турбонаддува

    Раздельный турбокомпрессор – это турбокомпрессор у которого имеются два входа для выхлопных газов и два сопла для каждой пары цилиндров. Данная конструкция обеспечивает максимальную производительность и препятствует попаданию отработаных газов обратно в цилиндыры. Первое сопло отвечает за максимально бысьрое реагирование, а второе повышеную производительность и увеличение КПД.

    Помимо, этого ТКР с двойной улиткой имеет разделенные выпускные каналы, предотвращающие перекрытие во время выпуска выхлопных газов. 

    Турбина с изменяющейся геометрией  (или турбина с переменным соплом) – наиболее широко применяется  в производстве дизельных двигателей. Основное ее техническое отличие от других видов турбин – это наличие внутри подвижных лопастей с приводом регулирующих поток газов в самой турбине. В зависимости  от  угла наклона  лопастей меняется скорость выхлопных газов тем самым согласовывая давление и обороты двигателя.

    В некоторых конструкциях турбонаддува применяются по два  (автомобили КамАЗ) и более турбокомпрессоров  (тройной наддув для дизелей «BMW») подключенные параллельно или последовательно для увеличения производительности (или для того, что бы один работал на больших оборотах, а второй на малых).
     

    ПЕРЕЙТИ К ВЫБОРУ ТУРБОКОМПРЕССОРОВ И ИХ ДЕТАЛЕЙ

    КАТАЛОГ ТУРБИН

    КАТАЛОГ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЕЙ

    ПЕРЕЙТИ К ВЫБОРУ ДЕТАЛЕЙ ДВИГАТЕЛЯ

    СПРОСИТЬ У МЕНЕДЖЕРА


    Обслуживание авто с турбиной

    Турбокомпрессор является частью двигателя. Любые неисправности систем двигателя напрямую отражаются на работе турбины и приводят к преждевременному выходу ее из строя.

    Чтобы этого избежать необходимо:

    • периодически проверять и устранять неисправности топливной системы
    • своевременно менять масло, масляный и воздушный фильтры
    • использовать масла и фильтры, рекомендованные заводом-изготовителем
    • перед остановкой двигателя после интенсивной езды необходимо охлаждать турбину. Для этого необходимо дать двигателю поработать на оборотах холостого хода не менее 3 мин
    • не эксплуатировать двигатель до его прогрева
    • не эксплуатация автомобиль без воздушного фильтра или с не герметичными патрубками
    • не эксплуатировать автомобиль с низким уровнем масла в поддоне двигателя
    • не эксплуатировать автомобиль с неисправной системой выпуска (забитыми сажным фильтром, катализатором, глушителем).

    ПЕРЕЙТИ К ВЫБОРУ ТУРБОКОМПРЕССОРОВ И ИХ ДЕТАЛЕЙ

    КАТАЛОГ ТУРБИН

    КАТАЛОГ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЕЙ

    ПЕРЕЙТИ К ВЫБОРУ ДЕТАЛЕЙ ДВИГАТЕЛЯ

    ПЕРЕЙТИ К ВЫБОРУ ДВИГАТЕЛЕЙ

    СПРОСИТЬ У МЕНЕДЖЕРА


    Неисправности

    Когда в двигателе с принудительным наддувом выходит из строя турбокомпрессор, не стоит сразу обвинять в этом саму «турбину». Практикой установлено, что в большинстве случаев отказ турбокомпрессора вызывается «внешними» причинами.

    Дело в том, что турбокомпрессор – наиболее высоко-нагруженный агрегат двигателя. Условия, в которых работает турбокомпрессор, характеризуются огромным перепадом температур. В то время как его турбинная часть подвергается воздействию отработавших газов с температурой порядка 1000°С, со стороны компрессора температура в два раза ниже. Температурный фактор усугубляется высокими динамическими нагрузками, возникающими вследствие огромной частоты вращения ротора, которая может достигать величины 250 000 мин-1. Номинальные режимы работы турбокомпрессора, определяющиеся требованиями разработчиков двигателей и зависящие от заявленных параметров мотора, близки к предельным. Поэтому любые отклонения характеристик двигателя, даже на первый взгляд незначительные, оказывают губительное влияние на работоспособность турбокомпрессора и могут привести к его отказу. С этой точки зрения турбину можно рассматривать как своего рода индикатор состояния двигателя. Ситуация усугубляется тем, что турбокомпрессору, по определению, суждено работать «на перекрестке» многих систем двигателя: системы впуска и выпуска отработавших газов, системы смазки и охлаждения, вакуумной системы и системы вентиляции, а также системы управления двигателем. Неисправность каждой из них оборачивается нарушением нормального (расчетного) режима работы турбокомпрессора. Так что надежность турбокомпрессора зависит от многочисленных внешних факторов.

    Прежде чем ставить новый турбокомпрессор, вместо вышедшего из строя, нужно обязательно выявить и устранить причину его отказа. Если этого не сделать, то с большой долей вероятности и новая турбина вскоре будет повреждена. Чтобы отсрочить замену турбокомпрессора или вовсе исключить ее, нужно иметь четкое представление о причинах, провоцирующих отказ турбокомпрессора, и принимать действенные меры по их устранению.

    ПЕРЕЙТИ К ВЫБОРУ ТУРБОКОМПРЕССОРОВ И ИХ ДЕТАЛЕЙ

    КАТАЛОГ ТУРБИН

    КАТАЛОГ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЕЙ

    ПЕРЕЙТИ К ВЫБОРУ ДЕТАЛЕЙ ДВИГАТЕЛЯ

    ПЕРЕЙТИ К ВЫБОРУ ДВИГАТЕЛЕЙ

    СПРОСИТЬ У МЕНЕДЖЕРА

     

    История наддува и нагнетателей (компрессоров)

    Нагнетатель (компрессор) – механизм для сжатия и подачи воздуха под давлением.Готтлиб Даймлер

    Наддув – процесс повышения давления воздуха или некой смеси на впуск двигателя для увеличения количества горючей смеси в цилиндре и как следствие увеличение мощности получаемой от единицы объема двигателя.

    Механический нагнетатель – это компрессор, предназначенный для сжатия  воздуха или же смеси топлива и воздуха, которые направляются в цилиндры двигателя  внутреннего сгорания для повышения массового заряда горючей смеси. Из-за этого растёт калорийности смеси поступающей в цилиндры и увеличивается мощность двигателя. Он приводится в движение коленчатым валом или ремнем.

    Довольно давно инженеры и конструкторы установили главную цель в развитии автомобилестроения: увеличение удельной мощности при меньших габаритах двигателя.

    — Первое свидетельство о применении механического нагнетателя приписывают братьям Рутс  (анг. Roots), они создали Альфред Бюшинагнетатель с аналогичным названием «Roots».

    — Чуть позже  в 1885 году Готтлиб Даймлер запатентовал свой механический нагнетатель работающий по аналогу Рутс.

    — Спустя 7 лет  в 1902 году Луис Рено запатентовал свою собственную конструкцию центробежного нагнетателя.

    — А в 1911 году швейцарскому инженеру Альфреду Бюши в голову пришла гениальная мысль использовать энергию выхлопных газов для нагнетания давления. Он стал первым человеком догадавшимся что можно использовать отработанные газы.

    Быстрой рост развития нагнеталей сдерживался отсутствием подходящих материалов. Из-за большой температуры отработанных газов уменьшился срок службы выпускных клапанов, поршней систем охлаждения. При этом литровая мощность действительно увеличилась, но это не имело значение, поскольку двигатель чаще приходил в неисправность. Эйфория от изобретения постепенно сходила на нет.

    — Нагнетатели  в авиации. Истребитель «SPAD» S.XIII»Как и ожидалось следующий шаг в развитии нагнетателей был сделан вверх в авиационную отрасль. Самым первым авиа двигателем на который установили механический наддув принадлежат самолету «Мюррей-Вильята», который в 1910 г. установил рекордную высоту в 5200.  В 1918 году на один из французский истребитель «SPAD» S.XIIIC» инженером Огюстом Рато был установлен турбокомпрессор с аналогичным названием «Рато». Целесообразность этого действия была нулевой и не давала двигателю абсолютно никаких преимуществ. У мотора не было достаточно мощности для привода турбины. Через два года Рато смог реабилитироваться установив свой турбокомпрессор на двигатель «Либерти L-12» в биплане «Lepere», которому удалось побить рекорд высоты ( 10092 метра) и на долго остаться на пьедестале не побежденным. Совместная работа металлургов, ученных, авиаконструкторов и машиностроителей позволила создать новые поршни, клапаны и подшипники способные выдержать гораздо большую нагрузку чем их предшественники, что позволило наддуву закрепится и пустить корни в авиации.

    Нагнетатели в судоходстве. С небес наддувы сразу перекачивали на воду. В 1923 году в Германии начали выпускать пассажирские лайнеры Preussen и Danzig. Установка турбокомпрессора на 10-и цилиндровые двигатели этих гигантов увеличили их мощность в полтора раза.

    Нагнетатели в машиностроении. Появлением и активным распространением на наземной технике нагнетатели обязаны Второй Мировой Войне и автогонщикам. История вклада автоспорта в развитие наддувов начинается с двигателей «Daimler», «FIAT» и  «Sunbeam» в  1921 году. Второй, между прочим, выиграл Большой приз Европы в 1923 году. Через год болиды «Daimler» и «Alfa Romeo» выиграли Танга Флорио  и Большой приз Франции соответственно. Автомобильный спорт внес не только необходимые финансы в развитие наддувов, но поселил любовь в сердце всех мужчин, обеспечив тем самым его будущие развитие. Первые нагнетатели установленные на спортивных авто сумели показать себя с самой лучшей стороны, давая двигателю от 50-70% дополнительной мощности. В военной отрасли изначально наддувы планировали ставить на танки и грузовики, но из-за отсутствия должных знаний и материальных средств от установки надувов на танки пришлось отказаться на время. Первая массовая серия наддув была произведена и установлена на грузовики Saurer произведённые в Швейцарии в 1938 году.

    Предпосылки к созданию наддувов

    Для того чтобы ответить на то что же стало движущей силой для изобретения и создания наддува давайте обратив внимание на устройство двигателя. Поскольку подача необходимого объема топлива затруднений не вызывает, главной задачей для увеличения производительности становится обеспечение должной массы воздуха за единицу времени. Этот же показатель на прямую связан с частотой вращения коленчатого вала. Его пределом является допустимое значение средней скорости работы поршня. Данный показатель в основном имеет значение лишь для механических наддувов и рабочим объемом мотора. Из выше сказанного, что при заданных параметрах есть потолочное значение, выше которого можно подняться только, в том случае если установить наддув. Без особых проблем на сегодняшний день можно поднять мощность двигателя на 25% просто установив наддув, но если к нему добавить интеркулер мощность вырастит вдвое.

    Точность балансировки наддува очень важна. Высокое давление и температура воздуха подаваемого в цилиндры может привести к очень серьезным негативным последствия и быстрому износу. Под конец такта сжатия в момент когда поршень прессует и без того уже сжатую смесь ее давление и температура могут оказаться на столько высокими что произойдет преждевременная детонация. Дабы это не происходило принято переходить на использование более высокооктановых сортов топлива или проводить декомпрессию – снижающую степень сжатия.

    Стоить учитывать, что снижение степени сжатия также отрицательно влияет на экономичность и КПД.

    70-80-е годы стали для механических нагнетателей временем затухания, а их более продвинутые собратья — турбонагнетатели (турбокомпрессоры) отвоевывали рынок. Самой продвинутой системой принудительного нагнетания установленной на серийных автомобилях сейчас считается «Mercedes-Benz» класс C, E, при этом они почти полностью копируют образцы 20-30 годов (Рутс и Eaton), что свидетельствует о том что данная ветка развития нагнетателей отмирает. Ею пользуются в тех случаях, когда нужно добиться разной мощности не сильно меняя конструкции двигателя.

    Практика в нашей стране не показала особого внимания к данной технологии, из-за чего она почти не используется. Исключение составляют автогонки 60-70 годов и сельскохозяйственная отрасль.

    Гораздо более широкое применение во всем мире  получил наддув приводимый в действие силой отработанных газов — турбо наддув.


    Классификация наддува ДВС по видам
    • Агрегатный наддув 

    Подразумевает использование нагнетателя (агрегата). Делится на:

    1.    Механический наддув – отличительной особенностью этого компрессора является использование для привода энергии коленчатого вала.

    2.    Турбонаддув (он же турбокомпрессор) – это компрессор (обычно центробежный) привод которого осуществляется турбиной, лопасти которого вращаются благодаря кинетической энергии выхлопных газов.

    3.    Наддув «Comprex» — использует давления отработавших газов, непосредственно на поток воздуха поступаемого в мотор.

    4.    Электро наддув – его отличительной особенностью является то, что привод осуществляется электрическим мотором.

    5.    Комбинированный наддув – это смесь нескольких видов наддува, работающих в зависимости от нагрузки. Чаще всего это комбинация турбонаддува и механического. Первый работает на высоких оборотах, а второй на низких.
     

    • Безагрегатный наддув

     Делится на:

    1.    Резонансный наддув (он же акустический или инерционный) работает, используя колебательные явления внутри трубопровода.

    2.    Динамический наддув (он же пассивный или скоростной) рост давления осуществляется воздухозаборниками  специальной формы исключительно на высокой скорости. На низких скоростях этот вид наддува совершенно бесполезен. 
    Пометка: В этой статье понятие «динамический наддув» применяется исключительно для наддува с воздухозаборниками особой формы и не относится к «резонансному».

    3.    Рефрижерационный наддув использует энергию испаряющегося топлива в воздухе. Характеризуется наличием жидкости с низкой температурой кипения и большим высокой температурой пара. Не применяется в автомобилях. 

    Компрессоры прошли долгий и широкий путь в развитии авто, авиа и судостроения. За это время их конструкция менялась до неузнаваемости, появлялись новые виды, а старые и не прижившиеся забывались. 

    ПЕРЕЙТИ К ВЫБОРУ ТУРБОКОМПРЕССОРОВ И ИХ ДЕТАЛЕЙ

    КАТАЛОГ ТУРБИН

    КАТАЛОГ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЕЙ

    ПЕРЕЙТИ К ВЫБОРУ ДЕТАЛЕЙ ДВИГАТЕЛЯ

    ПЕРЕЙТИ К ВЫБОРУ ДВИГАТЕЛЕЙ

    ОЗНАКОМИТЬСЯ С БРЕНДАМИ

    ПОЛЕЗНАЯ ИНФОРМАЦИЯ ОТ ТЕХНОАКТИВ ИНВЕСТ

    НОВОСТИ В МИРЕ СПЕЦТЕХНИКИ

    СПРОСИТЬ У МЕНЕДЖЕРА

    Принцип работы турбокомпрессора автомобиля — ПроТурбо

    Принцип работы турбокомпрессора

    Турбокомпрессор – важнейшая составляющая часть двигателя современного автомобиля. Благодаря ему достигается существенный прирост мощности при незначительной массе самой детали. Как известно, принцип работы турбокомпрессора заключается в сильном сжатии подаваемого в двигатель воздуха и, соответственно, создании высокой мощности взрыва в цилиндрах двигателя. Благодаря турбокомпрессору в двигатель поступает на 50% больше объема воздуха, таким образом, сжигается больший объем топлива, что увеличивает мощность двигателя на 30-40% при тех же затратах топлива. Мотор, который имеет турбину, вырабатывает намного больше полезной энергии, чем не оснащенный ею.

    Механизм состоит из таких основных элементов:

    • корпус турбины, в которой выхлопные газы вращают ротор;
    • корпус компрессора, который всасывает воздух, а затем с помощью ротора нагнетает его в систему впуска;
    • картридж между турбиной и компрессором, содержащий вал с крыльчатками ротора;
    • интеркулер, который охлаждает воздух перед нагнетанием его в цилиндры двигателя.

    Принцип действия автомобильной турбины

    Турбокомпрессор на двигатель крепится к выпускному коллектору.  Система турбокомпрессора заключается в том, что турбина при помощи вала соединяется с компрессором, который установлен между воздушным фильтром и впускным коллектором.

    Принцип действия автомобильной турбины заключается в сжатии воздуха, который поступает в цилиндры двигателя. Так возникает давление турбокомпрессора. Выхлопные газы из цилиндров вращают лопатки ротора и выходят через боковое отверстие в корпусе турбины в глушитель. Благодаря устройству турбины автомобиля ее ротор, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорный ротор.

    С другой стороны вала ротор компрессора всасывает чистый атмосферный воздух из впускного тракта и направляет его под сильным давлением дальше во впускной тракт к цилиндрам мотора. Когда ротор компрессора вращается, воздух втягивается внутрь и сжимается, так как лопасти ротора вращаются с высокой скоростью. Корпус компрессора разработан таким образом, чтобы превращать поток воздуха, обладающий высокой скоростью и низким давлением, в поток воздуха с высоким давлением и низкой скоростью с помощью процесса, называемого диффузией. В этом и заключается принцип действия автомобильной турбины.

    Особенности функционирования

    Оба эти ротора, турбинный и компрессорный, жестко закреплены на роторном валу, вращающемся на гидростатических подшипниках. Они поддерживают вал на тонком слое масла, которое постоянно подается для снижения трения и охлаждения вала. Для правильной работы подшипники скольжения должны быть покрыты пленкой масла. Зазоры подшипников очень малы, меньше толщины человеческого волоса.

    В турбомоторах воздух, который поступает в цилиндры, приходится дополнительно охлаждать – тогда его сжатие можно будет сделать еще сильнее, закачав в цилиндры двигателя больше кислорода. Ведь сжать холодный воздух легче, чем горячий. Воздух, проходящий через турбину, нагревается от сжатия, от деталей турбонаддува. Поэтому перед попаданием в цилиндры двигателя сжатый воздух охлаждается в интеркулере. Интеркулер – это радиатор жидкостного или водяного охлаждения, установленный на пути воздуха от компрессора к цилиндрам двигателя. За счет охлаждения увеличивается плотность воздуха и, соответственно, закачать в цилиндры его можно больше.

    Мощность турбины автомобиля такова, что ротор турбокомпрессора вращается со скоростью до 150 тыс. оборотов в минуту, что примерно в 30 раз быстрее, чем скорость вращения автомобильного двигателя. Так как она соединена с выхлопной системой, температура в турбине также очень высокая. Работа турбокомпрессора заключается в том, что воздух поступает в компрессор при температуре окружающей среды, но при сжатии температура растет и на выходе из компрессора достигает 200°С.

    На «самообслуживание» системы наддува тратится немного энергии от двигателя – всего лишь около 1,5%. Это происходит потому, что ротор турбины получает энергию от выхлопных газов за счет их охлаждения. Кроме этого, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объема большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Все это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными аналогами такой же мощности.

    В последнее время популярность турбокомпрессоров резко возросла. Они оказалось перспективнее не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Если вы хотите купить турбокомпрессор с доставкой – вы обратились по адресу. На нашем сайте можно сделать заказ, а также узнать характеристики турбокомпрессора и характеристики турбины для модели своего автомобиля.

    Устройство ТКР | kamturbo

    УСТРОЙСТВО ТУРБОКОМПРЕССОРА ДЛЯ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

    ТУРБОКОМПРЕССОР

     

    Это лопастная машина, позволяющая использовать энергию выхлопных газов для нагнетания воздуха или топливовоздушной смеси в двигатель внутреннего сгорания — наддува.

    Наддув позволяет увеличить количество подаваемого в цилиндры двигателя воздуха, что позволяет сжигать в том же рабочем объёме цилиндра больше топлива. Т. е. при том же рабочем объёме двигателя увеличивается его мощность.

    Также при повышении давления в цилиндре улучшаются условия сгорания топлива, растёт экономичность двигателя и уменьшается токсичность выхлопных газов.


    Дополнительное снижение расхода топлива обусловлено использованием для привода компрессора избыточной энергии выхлопных газов.

    Поэтому турбонаддув сегодня всё шире применяется в двигателестроении.

     

    Конструктивно турбокомпрессор состоит из 3-х основных элементов:

    ТУРБИНА

     

    Турбина также состоит из корпуса и рабочего колеса. Колесо турбины жёстко связано с колесом компрессора валом. В автотракторном двигателестроении наиболее распространены радиально-осевые турбины.


    Отработавшие газы из двигателя подаются во входной патрубок турбины, а затем в спиральный канал корпуса турбины (улитку), который обеспечивает равномерный вход газа в рабочее колесо. Проходя через межлопаточные каналы колеса, от его периферии к центру, за счёт специального профиля лопаток, газ расширяется и охлаждается, при этом тепловая энергия газа преобразуется в механическую работу вращения колеса. Мощность, развиваемая на турбине, передаётся на колесо компрессора и обеспечивает его работу.
              
    Размеры всех элементов турбины и её рабочего колеса определяются исходя из необходимой мощности на привод компрессора и на основании анализа располагаемой энергии отработавшего газа в выхлопном коллекторе двигателя. Для каждого двигателя параметры турбины подбираются индивидуально. Так, например: при уменьшении проходного сечения канала улитки увеличивается скорость движения потока газа в ней, что способствует увеличению частоты вращения рабочего колеса и мощности турбины.
              
    Различают турбины, работающие при постоянном давлении газа перед турбиной, и импульсные. В первом случае на двигателе применяются сравнительно простые выпускные коллектора относительно большого сечения. Во втором случае в турбине используется энергия импульсов газового потока, обусловленная импульсным характером выхода газов из цилиндров, что способствует повышению эффективности работы турбины. При этом выхлопной коллектор имеет относительно небольшое сечение и состоит из двух коллекторов, каждый из которых соединён с определённой группой цилиндров. Этим обеспечивается равномерное чередование импульсов давления и отсутствие их взаимного наложения. Улитка импульсной турбины делится перегородкой на два канала, каждый из которых соединён со своим коллектором.
              
    С учётом высоких температур газа в турбине (до 800…9000С) корпуса турбин отливаются из чугуна специального состава. Рабочие колёса отливаются из жаропрочного сплава.
    Рабочее колесо турбины соединяется со стальным валом сваркой трением и в сборе называются ротором. В месте сварки вал ротора имеет внутреннюю полость, препятствующую теплопередаче от колеса в вал.
              
    Частота вращения ротора достигает, в зависимости от размерности ТКР и условий его работы на данном двигателе 90000…200000 об/мин и выше. Поэтому вращающиеся детали ТКР требуют очень точной балансировки. Это достигается балансировкой в три этапа:
    — балансировка ротора и колеса компрессора отдельно,
    — балансировка ротора в сборе с колесом компрессора,
    — проверка дисбаланса картриджа в сборе (ротор с колесом компрессора в сборе с корпусом подшипников), дополнительная балансировка при необходимости.
              
    Не допускается самостоятельная разборка ТКР в эксплуатации, т. к. при этом нарушается взаимное положение деталей ротора и балансировка

    КОМПРЕССОР

     

    Компрессор состоит из корпуса и колеса компрессора. В автотракторных двигателях самое широкое распространение получили компрессоры центробежного типа. При вращении колеса компрессора воздух засасывается лопатками через входной патрубок, расположенный в средней части корпуса компрессора. При прохождении через межлопаточные каналы колеса аэродинамическими и центробежными силами поток воздуха ускоряется. За колесом воздух проходит через кольцевую щель (диффузор) и через спиральный канал (улитку) корпуса компрессора, где постепенно тормозится. При этом повышается давление, достигая максимального значения на выходе из улитки.

     

     

    Необходимые параметры наддува, т. е. давление и расход воздуха на входе в двигатель, определяются исходя из рабочего объёма двигателя, необходимой мощности и частоты вращения. Геометрические размеры всех элементов компрессора выбираются на основании сложных газодинамических расчётов для достижения заданных параметров наддува. Поэтому для каждого двигателя выбор компрессора индивидуален.

     

    Как правило, колесо и корпус компрессора отливаются из алюминиевых сплавов.

    КОРПУС ПОДШИПНИКОВ

             

    Корпус подшипников служит для крепления корпусов компрессора и турбины и для размещения подшипников ротора. Ротор вращается в подшипниках скольжения (чаще всего бронзовые или алюминиевые втулки). Между наружной поверхностью подшипников и посадочной поверхностью подшипников в корпусе также имеется зазор, заполненный маслом. Этот зазор играет роль демпфера при радиальных смещениях ротора в подшипниках. Подшипники могут свободно вращаться в корпусе подшипников или зафиксированы в нём от вращения специальным элементом — фиксатором.

     

    Осевое перемещение ротора ограничивается упорным подшипником, состоящим из собственно упорного подшипника, закреплённого в задней стенке компрессора, и двух стальных упорных шайб, закреплённых на валу ротора. Упорный подшипник изготавливается из бронзы или из спечённого материала на основе бронзографита.
    Масло в подшипники подаётся под давлением из системы смазки двигателя через штуцер на корпусе подшипников и сливается через специальное отверстие в картер двигателя.
     

    Недостаточное поступление масла в подшипники ротора приводит к мгновенному задиру подшипников. Затруднённый слив масла из корпуса подшипников приводит к заполнению внутренней полости корпуса маслом и выдавливанию его через уплотнения ротора в компрессор и турбину.
     

    Попаданию масла из корпуса подшипников в компрессор и турбину препятствуют специальные уплотнения ротора, представляющие собой разрезные чугунные кольца, вставленные в канавки кольцедержателей на роторе. Кольца наружной поверхностью плотно, без просветов, прижимаются к уплотняемым поверхностям в задней стенке корпуса компрессора и корпуса подшипников со стороны турбины. При этом в замке колец выдерживается минимальный, по условиям собираемости, зазор. Боковые стенки колец и канавок кольцедержателей обрабатываются с высоким качеством. Между кольцами и стенками канавок также выдерживаются минимальные зазоры.

    Уплотнение ротора обеспечивается за счёт гидродинамических взаимодействий между боковыми поверхностями колец и стенками канавок, а также за счёт того, что давление воздуха и газа со стороны компрессора и турбины на большинстве режимов работы двигателя больше, чем в корпусе подшипников.

     

    На режиме холостого хода двигателя, возможно, что давление в корпусе подшипников окажется больше, чем давление перед уплотнением со стороны компрессора. В этом случае вероятна утечка масла из корпуса подшипников через уплотнение в компрессор. Поэтому не рекомендуется длительная (более 5 мин) работа двигателя на холостом ходу.
     

    Помимо уплотнений ротора в корпусе подшипников, перед уплотнением ротора со стороны компрессора, размещён маслоотражающий экран. Экран препятствует прямому попаданию масла, сливаемого через торцы радиального подшипника ротора, на колечное уплотнение и снижает вероятность утечки масла в компрессор. Для этой же цели на роторе перед уплотнением компрессора расположен маслоотражатель, выполненный в виде диска. Масло, попадая на маслоотражатель, сбрасывается с него под действием центробежных сил.
     

    При работе турбокомпрессора имеет место теплообмен между горячей турбиной и относительно холодным компрессором. И охлаждение турбин, и нагрев компрессора одинаково отрицательно влияют на эффективность турбокомпрессора в целом. Для снижения теплопередачи служит теплоизолирующий экран, расположенный между корпусом турбины и корпусом подшипников. Этой же цели служит конструкция крепления корпуса турбины на корпусе подшипников. В некоторых случаях используются специальные термоизолирующие прокладки между корпусами. Уменьшению тепла, передаваемого в компрессор, также способствует охлаждение корпуса подшипников маслом.

    Устройство и принцип работы турбины

    Турбина (турбокомпрессор) стала определяющим агрегатом в деле увеличения мощности моторов.

    Что такое турбина и для чего она нужна?

    Турбина — устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания.
    Главное назначение турбины –  с ее помощью можно значительно увеличить мощность автомобиля. При увеличении давления во впускном коллекторе на 1 атмосферу в камеру сгорания попадет в два раза больше кислорода, а значит от небольшого турбового двигателя можно ожидать мощности как от атмосферника с объемом в два раза больше — грубая теоретическая арифметика не лишенная смысла…

    Принцип работы турбокомпрессора

    Принцип работы турбины несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение. На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.

    Устройство турбины

     

    Турбина состоит из двух улиток — улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.

    В процессе работы турбина подвергается очень большим термодинамическим нагрузкам. В горячую часть турбины попадают выхлопные газы очень большой температуры 800-9000 °С, поэтому корпус турбины изготавливают из чугуна особого состава и особого способа отливки.

    Частота вращения вала турбины достигает 200 000 об/мин и более, поэтому изготовление деталей требует большой точности, подгонки и балансировки. Помимо этого в турбине высокие требования к используемым смазочным материалам. В некоторых турбинах система смазки служит так е системой охлаждения подшипниковой части турбины.

    Система охлаждения турбин

    Система охлаждения турбин двигателя служит для улучшения теплоотдачи частей и механизмов турбокомпрессора.
    Существует два  самых распространенных способа охлаждения деталей турбокомпрессора — охлаждение маслом, которое используется для смазки подшипников и комплексное охлаждение маслом и антифризом из общей системы охлаждения автомобилем.

    Оба способа имеют ряд преимуществ и недостатков.
    Охлаждение маслом.
    Преимущества:

    • Более простая конструкция
    • Меньшая стоимость изготовления самой турбины

    Недостатки:

    • Меньшая эффективность охлаждения по сравнению с комплексной системой
    • Более требовательна к качеству масла и к его более частой смене
    • Более требовательна к контролю за температурным режимом масла

    Изначально, большинство серийных двигателей с турбонаддувом оснащались тубинами с масляным охлаждением. При прохождении через шарикоподшипниковую часть масло сильно нагревалось. Тогда, когда температура выходила за пределы нормального рабочего температурного диапазона, масло начинало закипать, коксоваться забивая каналы и ограничивая доступ смазки и охлаждения к подшипникам. Это приводило к быстрому износу, заклиниванию  и дорогостоящему ремонту. Причин у неполадки могло быть несколько — некачественной масло или не рекомендованное для данного типа двигателей, превышение рекомендованы сроков замены масла, неисправности в системе смазки двигателя и пр.

    Комплексное охлаждение маслом и антифризом
    Преимущества:

    • Большая эффективность охлаждения

    Недостатки:

    • Более сложная конструкция самого турбокомпрессора, как следствие большая стоимость

    При охлаждении турбины маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к. имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а антифриз, который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу. Как следствие увеличивается стоимость самой конструкции.

    При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится — тем меньше эффективность наддува. С этим явлением призван бороться интеркулер — промежуточный охладитель воздуха.

    Нагрев воздуха не единственная проблема, с которой пытаются справиться конструкторы при проектировании турбодвигателя. Насущной проблемой является инерционность турбины (лаг турбины, турбояма) — задержка в реакции мотора на открытие дроссельной заслонки. Турбина  выходит на пик своих возможностей при определенных оборотах двигателя, отсюда и появилось мнение, что турбина включается при определенных оборотах. Турбина в большинстве случаев, работает всегда, а значение оборотов при которых ее эффективность максимальная у каждого двигателя и у каждой турбины разные. В погоне за решением этой проблемы появились системы их двух турбин (твин-турбо, twin-turbo, би-турбо, biturbo), твин-скрол (twin-scroll) турбины, турбины с изменяемой геометрией сопла и изменяемым углом наклона крыльчатки (VGT),  изменяются материалы частей чтобы повысить прочность и увеличить вес (керамические лопатки крыльчатки) и пр.

    Twin-turbo (твин-турбо) — система при которой используются две одинаковые турбины. Задача данной системы повысить объем или давление поступающего воздуха. Используется когда необходима максимальная мощность на высоких оборотах, например в драг-рейсинге. Такая система реализована на легендарном японском автомобиле Nissan Skyline Gt-R с двигателем rb26-dett.

    Такая же система, но с маленькими одинаковыми турбинами позволяет добиться прироста мощности при небольших оборотах и держать наддув постоянным до красной зоны.

    Biturbo (би-турбо) — систем а с двумя разными турбинами, которые соединены последовательно. Система устроена таким образом, что при низких оборотах работает маленькая турбина, обеспечивая хороший отклик на малых оборотах, при определенных условиях «включается» большая турбина и обеспечивает наддув при высоких оборотах. Это позволяет автомобилю уменьшить лаг двигателя и получить хороший прирост производительности во всем диапазоне работы двигателя.

    Такая систем турбонаддува используется в автомобилях BMW biturbo.

    Турбина с изменяемой геометрией (VGT) — система при которой лопатки крыльчатки в горячей части могут изменять угол наклона к потоку выхлопных газов.

    При малых оборотах двигателя пропускное сечение прохода выхлопных газов становится более узкое и  «выхлоп» проходит с большей скоростью и большей отдачей энергии. Когда обороты двигателя увеличиваются проходное сечение становится шире и и уменьшается сопротивление движению выхлопных газов, но при этом достаточно энергии для создания необходимого давления компрессором. Чаще систему VGT используют на дизельных двигателях т.к. там меньше тепловые нагрузки, меньшая скорость вращения ротора турбины.

    Twin-scroll ( двойная улитка) — система состоит из двойного контура движения выхлопных газов энергия которых вращает один ротор с крыльчаткой и компрессором. При этом существует два типа реализации когда выхлопные газы идут по обоим контурам сразу, при этом система работает как twin-turbo в одном корпусе — выхлопные газы делятся на два потока каждый из которых идут в свой контур горячей части раскручивая ротор турбины. Второй тип реализации работает на подобии системы biturbo — горячая часть имеет два контура с разной геометрией, при низких оборотах выхлопные газы направляются по меньшему контуру, который увеличивает скорость и энергию прохождения за счет небольшого диаметра, при повышении оборотов двигателя выхлопные газы двигаются по контуру диаметр которого больше — тем самым сохраняется рабочее давление в системе впуска и не создается запора на пути выхлопных газов. Это все регулируется клапанами, которые переключают поток из одного контура в другой.

    Как работает турбокомпрессор | Cummins

    Существенная разница между дизельным двигателем с турбонаддувом и традиционным бензиновым двигателем без наддува : воздух, поступающий в дизельный двигатель, сжимается перед впрыском топлива . Именно здесь турбокомпрессор имеет решающее значение для выходной мощности и эффективности дизельного двигателя.

    Работа турбокомпрессора заключается в сжатии большего количества воздуха, поступающего в цилиндр двигателя. Когда воздух сжимается, молекулы кислорода собираются ближе друг к другу.Это увеличение количества воздуха означает, что для безнаддувного двигателя такого же размера можно добавить больше топлива. Это приводит к увеличению механической мощности и повышению общей эффективности процесса сгорания. Следовательно, размер двигателя может быть уменьшен для двигателя с турбонаддувом, что приведет к лучшей компоновке, преимуществам экономии веса и общей улучшенной экономии топлива.

    Как работает турбокомпрессор?

    Турбокомпрессор состоит из двух основных частей: турбины и компрессора.Турбина состоит из турбинного колеса (1) и корпуса турбины (2) . Корпус турбины направляет выхлопные газы (3) в рабочее колесо турбины. Энергия выхлопного газа вращает турбинное колесо, и затем газ выходит из корпуса турбины через зону выхода выхлопных газов (4) .

    Компрессор также состоит из двух частей: крыльчатки компрессора (5) и корпуса компрессора (6) . Принцип действия компрессора противоположен турбине.Колесо компрессора прикреплено к турбине валом из кованой стали (7) , и когда турбина вращает колесо компрессора, высокоскоростное вращение втягивает воздух и сжимает его. Затем корпус компрессора преобразует воздушный поток с высокой скоростью и низким давлением в поток с низким и высоким давлением посредством процесса, называемого диффузией. Сжатый воздух (8) проталкивается в двигатель, позволяя двигателю сжигать больше топлива для выработки большей мощности.

    1. Колесо турбины
    2. Корпус турбины
    3. Выхлопные газы
    4. Площадь выхода выхлопных газов
    5. Колесо компрессора
    6. Корпус компрессора
    7. Вал из кованой стали
    8. Сжатый воздух

    Узнайте, как работает Turbo

    Подшипники турбокомпрессора

    Подшипники турбокомпрессора

    Hannu Jääskeläinen

    Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием.Для полного доступа требуется подписка DieselNet.
    Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

    Abstract : Подшипники являются важным элементом турбокомпрессора, влияющим на его долговечность и надежность. Современные подшипники турбокомпрессора можно разделить на два основных типа: системы гидродинамических опорных подшипников и системы шарикоподшипников. Другие потенциальные технологии подшипников включают воздушные подшипники из фольги и активные магнитные подшипники.

    Рекомендации по проектированию

    Системы подшипников турбокомпрессора — это часто упускаемый из виду, но важный компонент турбокомпрессора.Правильно спроектированная система подшипников может означать разницу между конструкцией турбокомпрессора, которая работает эффективно и действенно в течение всего срока службы двигателя, и конструкцией, которая страдает от проблем с долговечностью. Системы подшипников турбонагнетателя также развиваются в условиях повышенного давления, чтобы снизить расход топлива и выбросы двигателя. Более новые двигатели часто требуют более высокого КПД турбокомпрессора, что во многих случаях может быть частично достигнуто за счет снижения потерь из-за системы подшипников.

    Система подшипников турбокомпрессора должна соответствовать требованиям [2538] :

    .
    • Высокая осевая нагрузка. Высокое давление наддува, действующее на крыльчатку компрессора, может создавать значительные осевые нагрузки. В турбинах с изменяемой геометрией осевая нагрузка может быть даже выше из-за способности VGT приводить компрессор к более высоким давлениям наддува при малых расходах. Низкий расход в VGT обычно означает небольшую настройку форсунок и низкое статическое давление, действующее на турбинное колесо, которое не может значительно компенсировать соответствующую тягу компрессора.
    • Нефтяные загрязнения. Более длительные интервалы замены моторного масла и более высокая концентрация сажи из-за средств контроля выбросов двигателя, таких как система рециркуляции отработавших газов, могут привести к загрязнению масла, которое может вызвать коррозию поверхностей подшипников.
    • Задержка подачи масла. Низкая температура окружающей среды и длинные маслопроводы могут увеличить время, необходимое для достижения смазочным маслом турбокомпрессора при запуске двигателя. Даже на низких оборотах холостого хода частота вращения турбонагнетателя может быть относительно высокой вскоре после запуска и привести к потенциальным проблемам с износом системы подшипников.
    • Горячий останов. Продолжительная работа при высокой температуре выхлопных газов с последующим немедленным отключением двигателя без холостого хода может вызвать локальный перегрев и закоксовывание масла в корпусе подшипника и последующее повреждение поверхностей подшипника.

    В эпоху повышенных требований к снижению выбросов и расхода топлива снижение трения в подшипниках может сыграть решающую роль в снижении выбросов при холодном запуске и экономии топлива. Кроме того, по мере того, как вязкость моторного масла становится ниже, либо за счет использования масел с низкой вязкостью, либо за счет разбавления топливом во время последующего впрыска для регенерации DPF, системы подшипников турбонагнетателя должны адаптироваться для поддержания динамической стабильности ротора и предотвращения повышенного износа [3414] .

    Современные коммерческие системы подшипников турбонагнетателя можно разделить на два основных типа: системы гидродинамических подшипников скольжения и системы шарикоподшипников.Также возможны гибридные системы, сочетающие опорные и шариковые подшипники.

    ###

    Турбокомпрессоры с фиксированной геометрией

    Турбокомпрессоры с фиксированной геометрией

    Hannu Jääskeläinen

    Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
    Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

    Abstract : В простейшей конструкции турбокомпрессора геометрия турбины и компрессора фиксирована, а давление наддува полностью определяется потоком выхлопных газов.Байпас на стороне выпуска, или перепускная заслонка, является обычным средством достижения лучшего контроля давления наддува с турбинами с фиксированной геометрией. Перепускная заслонка может быть встроена в турбину со стороны турбокомпрессора или может быть отдельным клапаном, подключенным к внешнему водопроводу. Пневматическое срабатывание перепускной заслонки под давлением было обычным явлением, но вакуумное срабатывание и электрическое срабатывание используются во многих новых конструкциях.

    Введение

    Самая простая конструкция турбокомпрессора с точки зрения управления — это тот, у которого геометрия турбины и компрессора фиксирована и в котором не используются средства для управления давлением наддува.Давление наддува, обеспечиваемое турбонагнетателем этого типа, полностью определяется потоком выхлопных газов двигателя и характеристиками турбонагнетателя. Турбокомпрессор оптимизирован для конкретных условий эксплуатации. Размер турбины турбонагнетателя и / или отношение A / R обычно относительно велики для данного применения из-за необходимости такого размера турбокомпрессора, чтобы в условиях наибольшего расхода турбокомпрессор не превышал скорость или не создавал чрезмерного давления наддува. В то время как давление наддува, близкое к номинальным, может быть выбрано путем выбора размера турбокомпрессора, переходные характеристики и давление наддува при более низких оборотах двигателя могут пострадать.Кроме того, на больших высотах частота вращения турбонагнетателя будет иметь тенденцию к увеличению, что может привести к проблемам с помпажем и / или превышением частоты вращения турбонагнетателя, если это не связано с увеличением размера турбонагнетателя. Однако для некоторых двигателей, работающих в основном в ограниченном количестве установившихся режимов, неуправляемый турбокомпрессор с турбиной с фиксированной геометрией может оказаться вполне удовлетворительным.

    Для приложений, которые испытывают широкий диапазон рабочих условий и которые должны обеспечивать хороший динамический отклик, например, в легковых автомобилях, турбокомпрессор с фиксированной геометрией без контроля давления наддува не подходит.Для управления давлением наддува для турбонагнетателей с турбинами с фиксированной геометрией в этих приложениях можно использовать два метода:

    • Обводной канал на стороне выпуска , также известный как перепускной клапан , для обхода части потока от входа турбины, или
    • Байпас на стороне входа для байпаса потока от входа компрессора.

    Боковой байпас выпуска (Wastegate)

    Добавление перепускного клапана, который позволяет части выхлопных газов обходить турбину, является более распространенным средством достижения лучшего контроля давления наддува с турбинами с фиксированной геометрией.В большинстве случаев это позволяет использовать турбину с фиксированной геометрией меньшего размера или с меньшим соотношением A / R, которая может обеспечивать большую мощность компрессора при меньших расходах выхлопных газов, рис. 1 [2629] . Переходный отклик также значительно улучшен из-за улучшенной низкой эффективности потока, а также более низкой инерции вращения турбокомпрессора.

    На рисунке 1 синяя линия представляет турбокомпрессор с турбиной с фиксированной геометрией, а красная линия представляет собой турбокомпрессор с турбиной меньшего размера с фиксированной геометрией.Ни одна из турбин с фиксированной геометрией не имеет перепускного клапана. Обратите внимание, что турбокомпрессор с турбиной меньшего размера будет иметь превышение скорости и ускорение двигателя при относительно низких оборотах двигателя. Добавление перепускной заслонки к турбокомпрессору с турбиной меньшего размера может значительно улучшить наддув на более низких оборотах двигателя, избегая при этом избыточного разгона и превышения скорости турбокомпрессора на более высоких скоростях. Количество улучшений зависит от того, насколько хорошо контролируется перепускной клапан.

    Рисунок 1 . Влияние размера турбины и перепускной заслонки на давление наддува и скорость турбонагнетателя

    (Источник: Cummins Turbo Technologies)

    На рисунке 2 показан другой пример, но с точки зрения карты компрессоров.Показаны характеристики наддува при полной нагрузке с фиксированной геометрией и турбонагнетателем с перепускным клапаном. Каждая турбина рассчитана на то, чтобы обеспечить двигателю одинаковое давление наддува, массовый расход всасываемого воздуха и скорость вращения при номинальной мощности. Турбина с фиксированной геометрией без байпаса должна быть способна обрабатывать весь поток выхлопных газов при номинальной мощности и имеет тенденцию обеспечивать меньшее давление наддува при более низком потоке воздуха в двигателе. Преимущество возможности использования турбины меньшего размера / более низкого отношения A / R с перепускным клапаном очевидно.Следует отметить, что, поскольку частота вращения турбонагнетателя при максимальном расходе для всех случаев одинакова, степень сжатия на высоких оборотах двигателя на турбине с перепускным клапаном и, следовательно, насосные потери двигателя должны быть выше, чем для турбины с фиксированной геометрией без перепускного клапана. [2538] .

    Рисунок 2 . Характеристики разгона при полной нагрузке с двумя различными вариантами турбины

    ###

    Что такое турбокомпрессор и как он работает?

    Турбокомпрессор — это устройство, устанавливаемое на двигатель транспортного средства, которое предназначено для повышения общей эффективности и производительности.Это причина, по которой многие производители автомобилей предпочитают использовать турбонаддув в своих автомобилях. Новые Chevrolet Trax и Equinox предлагаются с двигателями с турбонаддувом, и с течением времени ими будет оснащаться все больше и больше автомобилей.

    Как это работает?

    Турбина состоит из двух половин, соединенных валом. С одной стороны, горячие выхлопные газы вращают турбину, которая соединена с другой турбиной, которая всасывает воздух и сжимает его в двигателе. Это сжатие дает двигателю дополнительную мощность и эффективность, потому что чем больше воздуха может попасть в камеру сгорания, тем больше топлива может быть добавлено для большей мощности.

    Преимущества

    Помимо дополнительной мощности, турбокомпрессоры иногда называют устройствами, которые предлагают «бесплатную мощность», потому что, в отличие от нагнетателя, для его привода не требуется мощность двигателя. Горячие и расширяющиеся газы, выходящие из двигателя, приводят в действие турбокомпрессор, поэтому нет утечки полезной мощности двигателя. Двигатели с турбонаддувом также не подвержены такому воздействию, как двигатели без наддува, когда они едут на больших высотах.Чем выше высота набирает атмосферный двигатель, тем труднее ему получать кислород из-за разреженной атмосферы. Турбонагнетатель решает эту проблему, потому что он нагнетает кислород в камеру сгорания двигателя, иногда при давлении в 2 раза превышающем атмосферное.

    Турбокомпрессоры также улучшают топливную экономичность транспортного средства, однако существует неправильное представление о транспортных средствах с турбонаддувом и топливной экономичности. Если взять двигатель без наддува и установить на нем турбонагнетатель, это не улучшит топливную экономичность.Способ, которым производители повышают эффективность использования топлива с помощью турбонаддува, заключается в уменьшении размера двигателя и его последующем турбонаддуве. Например, возьмите рядный 4-цилиндровый двигатель без наддува объемом 2,5 л, уменьшите рабочий объем до 1,4 л, а затем наденьте на него турбонаддув. Меньший двигатель с турбонаддувом по-прежнему будет иметь те же показатели производительности (или немного лучше), но из-за меньшего рабочего объема он также будет потреблять меньше топлива.

    Конструкция и принцип действия турбокомпрессора — турбина

    Турбонагнетатель основные функции принципиально не изменились со времен Альфреда Бюхи.Турбокомпрессор состоит из компрессора и турбины, соединенных общим валом. Турбина с приводом от выхлопных газов обеспечивает приводную энергию для компрессора.

    Дизайн и функционирование

    Турбина турбонагнетателя, состоящая из турбинного колеса и корпуса турбины, преобразует выхлопные газы двигателя в механическую энергию для привода компрессора. Газ, который ограничен площадью поперечного сечения потока турбины, приводит к при перепаде давления и температуры между входом и выходом.Это падение давления преобразуется турбиной в кинетическую энергию для привода турбинного колеса.

    Есть два основных типа турбин: осевые и радиальные. В осевом типе, поток через колесо идет только в осевом направлении. В радиальных турбинах приток газа центростремительный, т.е.в радиальном направлении снаружи внутрь, и газ отток в осевом направлении.

    До диаметра колеса около 160 мм используются только радиальные турбины.Этот соответствует мощности двигателя около 1000 кВт на турбокомпрессор. От 300 мм и более используются только осевые турбины. Между этими двумя значениями оба варианта возможны.

    Поскольку турбина с радиальным потоком является наиболее популярным типом для автомобильной промышленности, следующее описание ограничено конструкцией и функциями этой турбины. тип. В улитке таких радиальных или центростремительных турбин давление выхлопных газов преобразуется в кинетическую энергию и выхлопные газы по окружности колеса направлен с постоянной скоростью к турбинному колесу.Передача энергии от кинетической преобразование энергии в мощность на валу происходит в турбинном колесе, которое сконструировано таким образом, чтобы почти вся кинетическая энергия преобразуется к тому времени, когда газ достигает колеса торговая точка.

    Рабочие характеристики

    Производительность турбины увеличивается по мере падения давления между входом и выходом. увеличивается, т. е. когда больше выхлопных газов забивается перед турбиной в результате более высоких оборотов двигателя, или в случае повышения температуры выхлопных газов из-за к более высокой энергии выхлопных газов.

    Характерное поведение турбины определяется удельным поперечным сечением потока, поперечное сечение горловины в зоне перехода впускного канала к спиральной камере. За счет уменьшения этого поперечного сечения горловины больше выхлопных газов задерживается выше по потоку. турбина и производительность турбины увеличивается в результате более высокого давления соотношение. Таким образом, меньшее поперечное сечение потока приводит к более высокому давлению наддува.
    Площадь поперечного сечения потока турбины может быть легко изменена путем замены турбины. Корпус.

    Помимо площади проточного сечения корпуса турбины, площадь выхода на колесо Впуск также влияет на пропускную способность турбины по массе. Обработка турбины Литой контур колеса допускает площадь поперечного сечения и, следовательно, давление наддува, быть отрегулированным. Увеличение контура приводит к увеличению площади поперечного сечения потока. турбины.

    Турбины с изменяемой геометрией турбины изменяют поперечное сечение потока между улитками. канал и вход колеса. Площадь выхода на турбинное колесо изменяется на переменную направляющие лопатки или регулируемое скользящее кольцо, закрывающее часть поперечного сечения.

    На практике рабочие характеристики турбин турбонагнетателя отработавших газов описываются картами, показывающими параметры потока в зависимости от давления в турбине. соотношение.Карта турбины показывает кривые массового расхода и КПД турбины для различные скорости. Чтобы упростить карту, кривые массового расхода, а также КПД, можно показать средней кривой

    Для высокой общей эффективности турбокомпрессора согласование компрессора и Диаметр турбинного колеса имеет жизненно важное значение. Положение рабочей точки на карте компрессора определяет частоту вращения турбокомпрессора. Диаметр турбинного колеса должен быть таким, чтобы КПД турбины был максимальным в этом рабочем диапазоне.

    Турбины двухступенчатые

    Турбина редко подвергается постоянному давлению выхлопных газов. В импульсном режиме с турбонаддувом коммерческие дизельные двигатели, турбины с двойным входом позволяют снизить пульсации выхлопных газов. оптимизирован, поскольку более высокий коэффициент давления турбины достигается за более короткое время. Таким образом, за счет увеличения степени сжатия эффективность повышается, улучшая очень важный временной интервал, когда через него проходит высокий, более эффективный массовый расход турбина.В результате этого улучшенного использования энергии выхлопных газов двигатель характеристики давления наддува и, следовательно, характеристики крутящего момента улучшаются, особенно при низких оборотах двигателя.

    Турбокомпрессор с двухкамерной турбиной

    Чтобы различные цилиндры не мешали друг другу во время зарядки В циклах обмена три цилиндра соединены в один выпускной коллектор.Двойной вход Затем турбины позволяют отдельно пропускать поток выхлопных газов через турбину.

    Кожухи турбины водяного охлаждения

    Турбокомпрессор с корпусом турбины с водяным охлаждением для морского применения

    При проектировании турбокомпрессора необходимо также учитывать аспекты безопасности. На корабле Например, в машинном отделении следует избегать горячих поверхностей из-за опасности возгорания.Таким образом, корпуса турбин с водяным охлаждением или корпуса турбин, покрытые изоляционным материалом. материал используется для морских применений.

    Турбокомпрессоры

    против нагнетателей: что лучше?

    Слова «с турбонаддувом» и «наддувом» теперь вошли в американский лексикон. Их часто произносят все, от политиков до тележурналистов и некоторых комиков в машинах за чашкой кофе. И хотя оба термина обычно понимаются как означающие, что чему-то придается дополнительная жизненная сила, становится более мощным или высокоэмоциональным, ускоряется или усиливается, большинство людей не понимают технологий, которые на самом деле придают этим словам их значение.Что такое турбокомпрессоры и нагнетатели — и какой из них лучше?

    Для большей мощности требуется больше воздуха


    Мощность, которую может произвести двигатель внутреннего сгорания, зависит в первую очередь от того, сколько топлива он может сжечь и насколько быстро и эффективно он преобразует это тепло в механическую силу. Но для сгорания топлива требуется воздух (на самом деле кислород, содержащийся в воздухе), поэтому максимальная мощность двигателя во многом зависит от того, сколько воздуха он может потреблять, чтобы сжечь это топливо.

    Отсюда и концепция принудительной подачи в двигатель большего количества воздуха, чем он обычно принимает, чтобы он мог сжигать больше топлива и производить больше мощности.Этот дополнительный всасываемый воздух может подаваться либо турбонагнетателем, либо нагнетателем. Оба являются воздушными компрессорами, но работают и работают по-разному.

    Две технологии с одной целью


    Турбонагнетатель использует скорость и тепловую энергию обжигающе горячих (и расширяющихся) выхлопных газов, выходящих из цилиндров двигателя, для вращения турбины, которая приводит в движение небольшой компрессор или рабочее колесо, которое, в свою очередь, заправляет больше воздуха обратно в двигатель. Нагнетатель также нагнетает дополнительный воздух в двигатель, но вместо этого приводится в действие двигателем механически через ремень, идущий от коленчатого вала, или от электродвигателя.

    В типичном турбокомпрессоре, подобном этому, компрессор в серебристом впускном корпусе втягивает и сжимает воздух, который затем питает двигатель. Компрессор приводится в движение выхлопной турбиной в темном корпусе агрегата.

    Getty Images

    Плюсы и минусы

    Каждая из этих технологий повышения мощности имеет свои преимущества и недостатки, но наиболее очевидным отличием от за рулем является небольшая задержка реакции вашей правой ноги в автомобиле с турбонаддувом, особенно когда вы нажимаете глубоко на дроссельную заслонку. .Это связано с тем, что турбокомпрессору требуется момент, чтобы «раскрутиться», прежде чем выдать свою дополнительную мощность — требуется секунда, чтобы тепло и давление выхлопных газов увеличились настолько, чтобы вращать турбонагнетатель после того, как вы нажмете на педаль газа. По понятным причинам это называется «задержка разгона» или «задержка турбонаддува».

    На двигатель V-8 Dodge Challenger Hellcat установлен нагнетатель. Он снимается с коленчатого вала широким черным ремнем в передней части двигателя.

    Chris Doane Automotive

    Напротив, у нагнетателя нет задержки; Поскольку его воздушный насос напрямую связан с коленчатым валом двигателя, он всегда вращается и мгновенно реагирует.Прирост мощности, который он обеспечивает, и, следовательно, реакция двигателя, которую вы чувствуете через сиденье штанов, немедленно увеличивается прямо пропорционально тому, насколько сильно вы нажимаете на педаль акселератора.

    В то время как основной недостаток турбонагнетателя — задержка наддува, нагнетатель — это эффективность. Поскольку нагнетатель использует собственную мощность двигателя, чтобы вращаться, он откачивает мощность — все больше и больше по мере увеличения оборотов двигателя. По этой причине двигатели с наддувом обычно менее экономичны. Тем не менее, для развития мега-мощности с мгновенным откликом дроссельной заслонки «толкнуть вас в спину» правила наддува.Он используется на нескольких мощных машинах, таких как Chevrolet Corvette Z06 мощностью 650 л.с. и ZR1 на 755 лошадиных сил, а также на SRT Challenger Hellcats and Demons мощностью 700 л.с.

    И победитель

    Автопроизводители решили: турбокомпрессор выигрывает с большим отрывом. Дело не столько в мощности, сколько в топливной эффективности. Федеральные требования к постоянно улучшающейся экономии топлива, строгие стандарты выбросов парниковых газов и желание клиентов экономить топливо побуждают автопроизводителей использовать турбины, а не нагнетатели.

    Турбокомпрессор позволил автопроизводителям заменить множество двигателей V-6 более эффективными рядными четырехцилиндровыми двигателями с турбонаддувом, которые обеспечивают по крайней мере эквивалентную мощность и часто более высокий крутящий момент, в то время как турбированные шестерки заменили многие двигатели V-8 с более высокими характеристиками. спортивные и роскошные автомобили. Глобальная информационная компания IHS Markit насчитывает около 220 моделей 2018 года, предлагающих по крайней мере один двигатель с турбонаддувом, по сравнению с 30, доступными с двигателем с наддувом.

    Volvo была первым производителем автомобилей в США.S., которые сочетают в себе турбонаддув и наддув для увеличения мощности двигателя. Система установлена ​​на его верхнем 2,0-литровом рядном четырехцилиндровом двигателе.

    Крис Амос

    Один производитель, шведский производитель Volvo, решил не выбирать между двумя технологиями. В настоящее время на некоторых из его 2,0-литровых рядных четырехцилиндровых двигателя используются оба типа ускорителей мощности — небольшой, обычный (с приводом от двигателя) нагнетатель для низких частот и турбокомпрессор для более высоких оборотов.

    Электрический наддув: в городе появились новые технологии

    Недавно на рынок вышла третья альтернатива для повышения мощности: электрический наддув.Производительные модели Mercedes-AMG CLS53 и E53 2019 года предлагают новый 3,0-литровый рядный шестицилиндровый двигатель с турбонаддувом мощностью 429 л.с., оснащенный нагнетателем с электрическим приводом, который дополняет турбонаддув на высоких оборотах. Электродвигатель вращает компрессор, чтобы обеспечить всплеск крутящего момента на низких оборотах, который заполняет разрыв в мощности, который обычно ощущается как турбо-задержка.

    Mercedes-AMG — первый производитель, внедривший электрический нагнетатель, который используется для усиления мощности своего нового высокопроизводительного седана CLS53 на низких оборотах.

    Мерседес-АМГ

    BorgWarner, производитель устройства, говорит, что электрический нагнетатель «обеспечивает наддув по требованию до тех пор, пока турбокомпрессор не вступит во владение, улучшая наддув на низких оборотах двигателя и почти устраняя турбо-задержку». Мы много ездили на этом двигателе и можем подтвердить, что он работает так, как рекламируется. Скоро он будет доступен для двигателей как минимум двух других автопроизводителей.

    Этот контент импортирован из {embed-name}. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

    Между тем, у нас есть явный победитель в этой многолетней битве между технологиями повышения мощности — по крайней мере, по мнению автопроизводителей, которые выбрали турбонаддув почти для всех своих современных двигателей с наддувом. Но на самом деле этот поединок по армрестлингу продолжается. Есть основания полагать, что в будущем двигателей внутреннего сгорания обе технологии будут работать бок о бок.

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

    Турбокомпрессор против нагнетателя: в чем разница?

    По мере того, как государственное законодательство и экологические соображения приводят к переходу от энергоемких безнаддувных двигателей большого объема к более экономичным двигателям меньшего размера, автопроизводители все чаще используют турбонагнетатели и нагнетатели, чтобы получить больше энергии из меньшего количества топлива. Оба устройства служат «заменой смещения», помогая втиснуть такое же количество воздуха, которое более крупный двигатель естественным образом вдохнет в меньший двигатель, чтобы они могли производить ту же мощность, когда ступня водителя ударяется об пол.Оказывается, кислород труднее попасть в двигатель, чем топливо. (Это также цель, которую системы закиси азота служат на рынке послепродажного обслуживания.) Давайте по-новому взглянем на относительные преимущества турбонаддува по сравнению с наддувом.

    В чем разница между турбонагнетателем и нагнетателем?

    «Нагнетатель» — это общий термин для воздушного компрессора, который используется для увеличения давления или плотности воздуха, поступающего в двигатель, обеспечивая большее количество кислорода для сжигания топлива.Все самые ранние нагнетатели приводились в движение от коленчатого вала, обычно с помощью шестерни, ремня или цепи. Турбокомпрессор — это просто нагнетатель, который приводится в действие турбиной в потоке выхлопных газов. Первые из них, датируемые 1915 годом, назывались турбокомпрессорами и использовались в радиальных авиационных двигателях для увеличения их мощности в более разреженном воздухе, обнаруживаемом на больших высотах. Сначала это название было сокращено до турбокомпрессора, а затем до турбо.

    Посмотреть все 5 фото

    Что лучше: турбонагнетатель или нагнетатель?

    Каждый из них может использоваться для увеличения мощности, экономии топлива или того и другого, и у каждого есть свои плюсы и минусы.Турбокомпрессоры используют часть «бесплатной» энергии, которая в противном случае полностью терялась бы в выхлопе. Привод турбины действительно увеличивает противодавление выхлопных газов, которое оказывает некоторую нагрузку на двигатель, но чистые потери имеют тенденцию быть меньше по сравнению с прямой механической нагрузкой, связанной с приводом нагнетателя (самые большие нагнетатели, приводящие в действие драгстер, работающий на верхнем топливе, потребляют 900 лошадиных сил на коленчатом валу). в двигателе мощностью 7500 лошадиных сил). Но нагнетатели могут обеспечить наддув почти мгновенно, тогда как турбокомпрессоры обычно страдают некоторой задержкой срабатывания, в то время как давление выхлопных газов, необходимое для вращения турбины, увеличивается.Очевидно, что драгстер с самым высоким уровнем топлива, пытающийся проехать квартал за четыре секунды, не может тратить время на ожидание повышения давления выхлопных газов, поэтому все они используют нагнетатели, в то время как автомобили, которым поручено повысить среднюю корпоративную экономию топлива (CAFE), не могут себе позволить. тратить драгоценную мощность на воздуходувки, поэтому они в основном используют турбины. Но с появлением мягкой гибридизации и 48-вольтовых электрических систем вы можете ожидать большего использования нагнетателей, приводимых в действие свободно рекуперированным электричеством, сохраняемым во время замедления и торможения.В новом шестицилиндровом двигателе Mercedes-Benz M256, который теперь устанавливается на такие автомобили, как CLS 450 и GLE 450, используется именно такая система, как и в новом Land Rover Defender с двигателем такого же размера и конфигурации с максимальным запасом хода.

    Сколько мощности добавляет турбонагнетатель или нагнетатель?

    Выше мы отметили, что количество кислорода, которым двигатель может «дышать», является ограничивающим фактором относительно того, какую мощность он может производить, потому что технология топливных форсунок более чем способна подавать столько топлива, сколько может быть сожжено. с количеством кислорода в баллоне.Безнаддувные двигатели, работающие на уровне моря, получают давление воздуха 14,7 фунтов на квадратный дюйм, поэтому, если турбонагнетатель или нагнетатель добавляет к двигателю 7 фунтов на квадратный дюйм, то сами цилиндры получают примерно на 50 процентов больше воздуха и теоретически могут производить примерно на 50 процентов больше. мощность. Обычно так не получается. Сжатие всасываемого воздуха добавляет тепла, которое вместе с дополнительным давлением увеличивает вероятность повреждения двигателя перед детонацией или «звоном», поэтому время часто приходится несколько замедлять.Это может ограничить количество времени, в течение которого топливо должно полностью сгореть, и, следовательно, частично снижает выигрыш в мощности. Большинство современных двигателей с турбонаддувом и / или нагнетателем также включают промежуточные охладители, которые помогают отводить часть тепла, добавляемого турбонагнетателем или нагнетателем. В конце концов, обычно ожидается, что добавление на 50 процентов большего количества воздуха даст на 30-40 процентов больше мощности.

    Просмотреть все 5 фото

    Как турбины / нагнетатели экономят газ?

    Когда они работают, турбины и нагнетатели в основном помогают сжигать на больше газа, но когда они прикреплены болтами к двигателю, который в противном случае был бы слишком мал, чтобы адекватно удовлетворить потребности транспортного средства с точки зрения ускорения или при буксировке, и т.п., они помогают экономить топливо во время круизов на малой мощности, которые составляют большую часть нашей поездки. Один из способов добиться этого — уменьшить насосные потери, которые возникают, когда двигатель большого рабочего объема работает с дроссельной заслонкой пять процентов или меньше — он должен усердно работать, чтобы всасывать воздух мимо в основном закрытой дроссельной заслонки. Для того же количества мощности может потребоваться 20-процентное открытие дроссельной заслонки на меньшем двигателе, что приведет к меньшему количеству насосных работ. (Вот почему многие новые автомобили не создают достаточного вакуума для работы механических тормозов, дверей смешанного воздуха систем климат-контроля и т. Д., и либо оснащены вспомогательными вакуумными насосами, либо используют электрические элементы управления для этих элементов.)

    Почему турбонагнетатели более популярны, чем нагнетатели в серийных автомобилях?

    Турбины, как правило, превосходят компрессоры с кривошипно-шатунным приводом в критическом тесте экономии топлива FTP75, который определяет количество миль на галлон с наклейками на стекле и рейтинг CAFE корпорации, поэтому турбины можно найти на более распространенных транспортных средствах, начиная с 1,0-литрового Ford EcoSport за 21240 долларов. турбо для любого из четырех двигателей с турбонаддувом в пикапе Ford F-150.Между тем, как показывает этот список всех автомобилей с наддувом, доступных в США, нагнетатели в основном устанавливаются на высокопроизводительные автомобили. Конечно, все Volvo, оснащенные 2,0-литровыми двигателями с двойным наддувом, такие как модели XC60 и XC90 T6 и T8, имеют как турбокомпрессор , так и нагнетатель . Эта конструкция использует сильные стороны каждого из них — наддув нагнетателя на низких оборотах обеспечивает давление до тех пор, пока большой турбонагнетатель не раскрутится, и в этот момент нагнетатель отсоединяется от коленчатого вала, чтобы не терять мощность.

    Просмотреть все 5 фото

    А как насчет Twin Turbos, Biturbos, Quad Turbos и Hot Vees?

    Twin-turbo просто означает, что есть два турбокомпрессора. Они могут работать независимо (как это часто бывает в двигателях с V-образной конфигурацией, где отдельные турбины работают с каждой стороны двигателя) или последовательно. Когда они используются последовательно, малый и большой турбонаддув объединяются в пару, и в этом случае маленький турбонагнетатель быстро раскручивается, чтобы уменьшить турбо-задержку, а затем, когда поток выхлопных газов увеличивается, более крупный турбонагнетатель начинает подавать наддув.Обратите внимание, что некоторые называют первый битурбо (Mercedes обозначает многие из своих автомобилей AMG Biturbos), а второй — твин-турбо, но мы не делаем этого различия. Естественно, квад-турбо означает, что их четыре, как в Bugatti Chiron. В его большом двигателе W-16 используются две пары последовательных турбонагнетателей. В течение многих лет большинство V-образных двигателей с турбонаддувом свешивали турбины с выпускных коллекторов на внешней стороне двигателя, при этом всасываемый воздух входил в долину V-образного сечения. В последнее время возникла тенденция к тому, чтобы обратить это вспять и подать всасываемый воздух на внешние стороны V-образного сечения, при этом выхлопная труба и турбины расположены внутри V-образного сечения.Это имеет то преимущество, что значительно уменьшает общий размер двигателя и, при надлежащей вентиляции капота, может привести к более низким температурам под капотом.

    Просмотреть все 5 фото

    Какие бывают типы нагнетателя?

    Из-за необходимости размещать турбокомпрессор рядом с выхлопом, его форм-фактор с самого начала склонялся к центробежному (турбинному) компрессору. Также доступны центробежные нагнетатели с ременным приводом, которые также довольно легко установить в модернизированных установках послепродажного обслуживания.Пакстон популяризировал эту установку, и ее дизайн теперь продается под названием Vortech (как показано выше). Одним из интересных вариантов этой концепции является центробежный нагнетатель с регулируемым передаточным числом, который включает в себя бесступенчатый привод шкива, установленный на обычном компрессоре. Заводские нагнетатели на V-образных двигателях обычно упаковываются в V-образной впадине и, следовательно, предпочитают более длинную, более низкую и более узкую упаковку. Из них тип Roots наиболее популярен среди заводских автомобилей с наддувом, к которым относятся новые Ford Mustang Shelby GT500 и Camaro ZL1.В этой установке два вала, вращающихся в противоположных направлениях, имеют выступы, которые заставляют воздух опускаться вниз через валы — обычно воздух входит в верхнюю часть устройства и выходит из нижней части. Двухвинтовые нагнетатели Lysholm нагнетают воздух от одного конца нагнетателя к другому. Винтажный Ford GT начала 2000-х использовал этот тип, как и двигатель цикла Миллера Mazda Millenia.

    Винтовой нагнетатель типа G-Lader был одобрен Volkswagen в течение некоторого времени и предлагался на Corrado здесь, в США. Этот странный дизайн включает в себя пару переплетенных спиралей, которые связаны с большим трением и оказались проблематичными.Лопастной нагнетатель — это еще одна конструкция, которая мало использовалась в автомобильной промышленности с тех пор, как нагнетатели Powerplus устанавливались на некоторые автомобили MG в 1930-х годах. Это сложно объяснить без подробных иллюстраций и связано с большим трением. Последний тип, заслуживающий упоминания, — это нагнетатель волны давления, известный как система Comprex. Он имеет вращающийся цилиндр, разделенный на многочисленные камеры, открытые с обоих концов. Один конец выходит на выхлопной поток, другой — на впускной.Выхлопные импульсы толкают всасываемый воздух к стороне всасывания, прежде чем трубка снова герметизируется, отражая импульсную волну выхлопа обратно в сторону выхлопа. На обратном пути камера снова попадает в воздухозаборник, куда воздух врывается вслед за отступающей волной. Есть некоторое смешение газов, и это работает только на низких оборотах двигателя, поэтому лучше всего подходит для дизелей. Примерно 150 000 дизельных двигателей Mazda получили эту установку, но ни один из них не был продан на наших берегах.

    Могу ли я добавить к моему автомобилю турбонагнетатель или нагнетатель?

    Существуют комплекты вторичного рынка для обоих, но обычно немного проще прикрутить болтами к нагнетателю, для которого нужны только кронштейн, шкив коленчатого вала и ремень, а также интеграция во впускную систему — плюс, возможно, добавление промежуточного охладителя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *