☰ Принцип работы насоса гидроусилителя рулевой системы
Насос ГУР — устройство, которое преобразует механическую энергию в давление жидкости и нагнетает масло в рулевой механизм под давлением.
В системе гидроусилителя руля подавляющего большинства автомобилей используются центробежные пластинчатые (шиберные) насосы преимущественно двукратного действия, где всасывание и нагнетание происходит два раза за один оборот вала.
Устройство насоса гидроусилителя и принцип действия
Насосы ГУР устроены примерно одинаково:
- Корпус с крышками — верхней и нижней.
- Шкив — для агрегатов с механическим приводом (ременной передачей) от двигателя автомобиля или электромотор — для насосов с электроприводом.
- Вал с подшипниками или втулкой, на котором закреплен шкив, рабочая пара.
- Торцевые распределительные диски с окошками всасывания и нагнетания масла, расположенными диаметрально противоположно друг другу.
- Статор — неподвижная часть рабочей пары, в которой вращается ротор. Круглый в насосах однократного действия, эллиптический — в двукратных агрегатах.
- Ротор с подвижными пластинами, закреплен на валу через шлицевые соединения.
- Уплотнительные элементы: прокладки, сальники, уплотнительные кольца.
Устройство насоса гидроусилителя подразумевает также датчик давления, который контролирует работу насоса: если агрегат не работает, устройство направляет поток масла в обход.
Устройство насоса ГУР
Особенности устройства и работа насоса гидроусилителя
Пластинчатые насосы отличаются высоким коэффициентом полезного действия и практически не ломаются, если вовремя менять масло.
Устройство насоса гидроусилителя руля обуславливает его надежность.
В современных лопастных насосах полостей высокого и низкого давления по две — за один оборот вала всасывание и нагнетание происходит дважды.
Ротор и статор насоса ГУР
Насос гидроусилителя с эллиптическим статором выбран автопроизводителями не случайно: за счет формы статора ротор агрегата разгружен от действия сил давления, а значит медленнее изнашивается и служит гораздо дольше.
Сам по себе насос ГУР не требует специального ухода или систематического ТО. В насосах “солидного возраста” или в неухоженных агрегатах могут износиться внутренние детали: вал, пластины, статор, подшипники. Поэтому важно периодически осматривать агрегат, регулировать натяжение приводного ремня, менять уплотнительные элементы и обязательно своевременно менять масло. А также следить за работой всей системы гидроусилителя.
Гидроусилитель руля (ГУР) — устройство, принцип работы, недостатки
В последнее время, практически все автомобили комплектуются гидроусилителем рулевого управления. Гидроусилитель руля (ГУР) изначально был предназначен для грузовых автомобилей, а также многих всевозможных видов различной техники сельскохозяйственного назначения. В то время данное устройство было предназначено вовсе не для улучшения комфорта. Это связано с тем, что руль многих грузовых автомобилей практически невозможно повернуть без усилителя. Сейчас же он упрощает поворот колес и легковых автомобилей, уменьшая передаточное число механизма и диаметр рулевого колеса. Что же такое гидроусилитель руля и как он работает, а также рассмотрим его достоинства и недостатки.
Гидроусилитель — что это и зачем
Как вы уже поняли, изначально он создавался для упрощения поворота рулевого колеса на специальных автомобилях, где он затруднен в связи с большим передаточным числом рулевого механизма. Сейчас же это устройство успешно применяется практически на всех автомобилях, делая их маневреннее и отзывчивее на повороты руля.
Практика показала, что применение гидроусилителя сокращает количество оборотов руля и помогает избежать множества аварийных ситуаций, путем резкого маневра в противоположную сторону. Сделать это с обычным рулевым механизмом даже реечного типа достаточно проблематично.
Схема устройства ГУР
Всего существует два вида гидроусилителей рулевого механизма: стандартный и ЭГУР, который комплектуется специальным электронным блоком управления и электромагнитным клапаном. В целом их конструкция схожа и прекрасно впишется в любой рулевой механизм. Сейчас же, большая часть автомобилей комплектуется рулевой рейкой, поэтому рассмотрим устройство ГУР и ЭГУР на ее примере.
В состав основных частей гидроусилителя входят:
- Распределитель золотникового типа
- Специальный насос
- Бачок, в котором хранится рабочая жидкость
- Рабочий цилиндр
- Система шлангов патрубков для перемещения жидкости
ЭГУР же может дополнительно комплектуется датчиком скорости, электромагнитным клапаном и специальным блоком управления.
Рабочий цилиндр и распределитель устанавливаются на рулевую рейку и представляют с ним единое целое. Назначение насоса заключается в том, чтобы создать необходимое давление жидкости и приводится в движение при помощи ременной передачи от коленчатого вала двигателя.
Как работает усилитель рулевого управления + Видео
После запуска двигателя, масляный насос начинает вращаться и создает давление внутри системы. Если руль стоит прямо, то жидкость просто циркулирует по системе, минуя золотниковую часть устройства. Однако, после поворота руля в какую либо сторону, рулевой вал воздействует на специальный торсион, который открывает золотник в какую-либо сторону. Таким образом, в работу начинает входить одна из полостей рабочего цилиндра, что упрощает усилие, прилагаемое на руль, колеса начинают поворачиваться быстрее.
Как только руль выворачивается до упора, масло достигает пиковой величины давления, оказываемого на рабочий цилиндр. В этом случае, чтобы избежать повреждений, срабатывает специальный клапан, который открывается и выпускает всю рабочую жидкость в свободную циркуляцию внутри системы. После возврата руля в исходное положение, клапан запирается, и рабочий цилиндр давит уже в другую полость, делая поворот руля быстрее.
Отличие электрогидроусилителя состоит в том, что он оборудован системой, которая позволяет менять давление рабочей жидкости внутри системы в зависимости от скорости движения автомобиля. Это осуществляется при помощи датчика скорости, частоты вращения коленчатого вала или датчика угла поворота рулевого колеса. Такое новшество позволяет отключать ЭГУР при движении на большой скорости, чтобы избежать слишком резких маневров и сделать руль более информативнее на какие-либо отклонения. Когда скорость автомобиля равна нулю, или слишком мала, то ЭГУР начинает работать на полную силу, создавая максимально допустимое давление в системе. Контроллер же нужен для более плавного или резкого открытия клапанов в зависимости от скорости движения автомобиля.
Недостатки
Несмотря на все удобство, такое устройство имеет и ряд недостатков. Прежде всего, это ременная передача, которая отбирает у двигателя определенную величину мощности и некоторая часть его КПД затрачивается на приведение в действие насоса. Таким образом, ГУР увеличивает расход топлива автомобиля и снижает его мощность.
Кроме того, гидроусилитель нуждается в тщательном уходе, потому как его неожиданный отказ воспринимается водителем, как клин рулевого колеса. Понимая это не сразу, неопытные шоферы бросаются в панику и допускают случайные столкновения с определенными препятствиями. Прежде всего, нужно поддерживать постоянную затяжку хомутов гидросистемы, а, во-вторых, менять жидкость ГУР два раза в год и следить за состоянием гидронасоса.
Бачок с рабочей жидкостью должен быть обязательно заполнен ею до необходимого уровня, иначе давление будет слишком избыточным или недостаточным.
Гидроусилитель рулевого управления автомобиля (ГУР)
Сейчас почти каждый современный автомобиль оборудуется гидравлическим усилителем рулевого управления. Основная задача этого механизма заключается в создании дополнительного усилия на элементы рулевого управления для облегчения поворота колес во время маневрирования.
Изначально гидроусилитель устанавливался исключительно на грузовые авто и с/х технику по одной простой причине – без этого механизма управлять грузовиком или трактором очень сложно. Но со временем ГУР стал появляться и на легковых авто.
На небольших скоростях и при стоянке для поворота управляемых колес водителю на авто без ГУР приходится прилагать значительные усилия, на большой же скорости сопротивление снижается, то есть для совершения маневра усилия со стороны водителя снижаются.
Усилитель же обеспечивает одинаковое усилие, которое должен приложить водитель, как при малых, так и значительных скоростях. Поэтому парковка, маневрирование при начале движения с гидроусилителем руля значительно легче.
Гидроусилитель не только повышает комфортабельность при поездках но и дополнительно повышает безопасность, поскольку позволяет удержать автомобиль на дороге в случае пробития колеса на скорости.
Также на рулевом механизме наличие ГУРа позволяет уменьшить передаточное число. То есть, снижается количество оборотов рулевого колеса.
Конструкция гидроусилителя руля
Конструкция гидроусилителя
Любой гидравлический усилитель рулевого управления, какую бы он не имел конструкцию, состоит из ряда основных составных элементов:
- насос;
- распределительное устройство;
- исполнительный механизм;
- трубопроводы;
- бачок для жидкости;
Все составляющие компоненты ГУР соединены при помощи трубопроводов в закрытую систему, по которой циркулирует жидкость под давлением. Именно она и является главным рабочим элементом системы.
Устройство насоса гидроусилителя руля
Насос включен в схему для создания давления жидкости. В работу он может приводится либо от шкива коленвала посредством ременной передачи, либо же от электродвигателя. Регулировка давления же осуществляется перепускным клапаном, включенным в систему.
Распределительное устройство обеспечивает перераспределение потоков жидкости, которая подается от насоса. Основным элементом его является золотник, который при перемещении открывает и закрывает необходимые каналы.
Если колеса авто установлены ровно, то золотник соединяет между собой трубопровод высокого давления, по которому подается жидкость с патрубком обратной подачи. То есть, жидкость от насоса подается на распределитель и сразу возвращается обратно на него, не выполняя никаких действий. А вот при повороте колеса золотник смещается, открывая и закрывая требуемые каналы, и жидкость направляется на исполнительный механизм.
Этот механизм представляет собой гидроцилиндр двойного действия. В нем имеется поршень, разделяющий цилиндр на две полости. Во время поворота распределитель подает жидкость в необходимую полость, которая за счет давления заставляет перемещаться в необходимую сторону. При этом поршень связан с рулевым механизмом, поэтому при перемещении он передает усилие на механизм.
Виды и их конструктивные особенности ГУР
Ещё кое-что полезное для Вас:
Видео: Устройство гидроусилителя руля.
Существует несколько видов гидроусилителей, отличающихся по своей конструкции:
- раздельный;
- комбинированный;
ГУР с раздельной конструкцией применялся на ряде грузовиков. Особенностью его являлось то, что распределитель устанавливался на рулевом механизме, а вот гидроцилиндр устанавливался отдельно и был поршнем связан с рулевой трапецией посредством рычага. При повороте рулевого колеса золотник распределительного устройства подавал жидкость в требуемую полость, и поршень, перемещаясь, тянул или толкал рычаг рулевой трапеции.
На легковых же авто распространение получила комбинированная конструкция гидроусилителя. Ее особенность заключается в том, что распределитель и гидроцилиндр входят в конструкцию рулевого механизма.
При этом поршень цилиндра располагается непосредственно на рулевой рейке.
При повороте колес в определенную сторону, золотник, смещаясь, открывает нужные каналы, жидкость поступает в требуемую полость и давит на поршень, тот смещается вместе с рейкой.
Принцип работы гидроусилителя руля
Теперь более подробно рассмотрим принцип работы комбинированного ГУР.
В распределительном механизме такого усилителя используется золотник поворотного типа. То есть открытие и закрытие каналов производится за счет проворота этого элемента вокруг оси.
В нейтральном положении, когда колеса авто установлены ровно, золотник соединяет между собой нагнетательную магистраль с трубопроводом обратной подачи. Кроме того открытыми остаются и каналы, ведущие на полости гидроцилиндра.
То есть жидкость не только циркулирует от насоса на распределительное устройство и обратно, она еще и подается в полости, причем в равных количествах и с одинаковым давлением.
При повороте колеса влево, золотник проворачивается, при этом подающая магистраль соединяется с трубопроводом, ведущим к левой полости. Жидкость подается в нее и начинает воздействовать на поршень. При этом золотник соединяет трубопровод обратной подачи с правой полостью, чтобы не создавалось противодействующего давления, и жидкость из нее уходит к насосу.
Если руль выкручен не до упора и оставлен в таком положении, золотник вернется в исходное положение, из-за чего произойдет выравнивание давления в полостях и поршень перестанет перемещаться.
При повороте колес вправо будут происходить процессы, противоположные описанным.
Недостатком такого гидроусилителя является то, что давление, подаваемое на гидроцилиндр одинаково как на малой так и большой скорости. А поскольку при увеличении скоростного режима сопротивление рулевого механизма снижается, то это приводит к такому эффекту как «пустой руль». Результатом такого явления становиться потеря водителем «чувства дороги» из-за того, что руль вращается очень легко.
Чтобы избавиться от этого негативного эффекта, в конструкцию ГУР часто включаются электронные элементы, контролирующие работу усилителя и регулирующие ее в зависимости от скорости.
Все достаточно просто – в систему включен электромагнитный клапан, работающий от электронного блока управления. ЭБУ считывает показания датчиков (скорости, частоты вращения коленвала), и при повышении скорости он подает сигнал на электромагнитный клапан, которые плавно снижает давление жидкости, подаваемой на распределитель. То есть, усилие ГУР на рулевой механизм будет снижаться.
Как работает гидроусилитель руля.
Работа гидравлического усилителя руля
Принцип работы гидравлического усилителя рулевого управления и взаимосвязь элементов его конструкции рассмотрим на примере гидроусилителя руля автомобиля КамАЗ (рис. 1).
При прямолинейном движении автомобиля золотник 18 и винт 13 находятся в нейтральном положении. Масло из насоса свободно проходит через золотник и обе полости силового цилиндра 6 и 23, и далее через радиатор 1 сливается в бачок насоса.
При повороте рулевого колеса направо (рис. 1,а) винт 1 вывертывается из гайки 6, а из-за сопротивления управляемых колес возникает сила, стремящаяся сдвинуть винт в осевом положении влево. Когда эта сила превысит усилие предварительного сжатия центрирующих пружин 4, винт вместе с золотником 12 сместится. При этом полость А силового цилиндра отсоединяется от линии слива, оставаясь при этом соединенной с линией нагнетания, а полость Б отсоединяется от линии нагнетания.
Рабочая жидкость поступит в полость А цилиндра и начнет оказывать давление на поршень-рейку, создавая дополнительное усилие на зубчатом секторе вала 7 сошки рулевого механизма, что способствует повороту управляемых колес.
При повороте рулевого колеса налево (рис. 1,б) винт с золотником 12 смещаются вправо, преодолевая усилие сжатия центрирующих пружин 4. Рабочая жидкость под давлением начнет поступать в полость Б, воздействуя на поршень-рейку 8, а полость А соединится с линией слива.
Поршень-рейка 8 под действием суммарного усилия, создаваемого водителем и рабочей жидкостью, повернет вал 7 сошки и далее через привод управляемые колеса.
***
Давление в полостях А и Б силового цилиндра при повороте увеличивается пропорционально повышению сопротивления колес. Одновременно возрастает давление в полостях между плунжерами 3.
В результате получаем динамическую взаимосвязь — чем больше сопротивление повороту колес, а следовательно чем выше давление масла в полости силового цилиндра, тем больше усилие, с которым золотник 12 стремится вернуться в среднее положение, а также усилие на рулевом колесе.
Таким образом обеспечивается силовое слежение.
Остановка рулевого колеса при повороте в любую сторону приводит к тому, что поршень-рейка 8, винт 1 и золотник 12 под действием центрирующих пружин 4 и перепада давления масла в полостях А и Б силового цилиндра сместятся в осевом направлении к среднему положению.
При этом золотник займет такое положение, при котором через щель для прохода масла в соответствующей полости цилиндра будет поддерживаться давление, необходимое для удержания управляемых колес в повернутом положении.
Таким образом обеспечивается кинематическое следящее действие усилителя рулевого управления.
При резком ударе или толчке со стороны колес во время движения, например при разрыве колеса, поршень-рейка 8 и винт 1 с золотником 12 сместится в осевом направлении.
При этом в результате перемещения золотника полость цилиндра, находящаяся с противоположной стороны, соединится с линией нагнетания насоса.
Возрастающее давление рабочей жидкости на поршень-рейку 8 уравновесит силу удара, и управляемые колеса не изменят своего положения, что позволит сохранить заданное направление движения и предотвратить возможную аварию.
При неработающем насосе, например во время буксировки автомобиля, управление автомобилем было бы очень затруднительно, так как находящаяся в полостях А и Б жидкость препятствовала бы перемещению поршня, и к рулевому колесу пришлось бы прикладывать значительное усилие, чтобы выдавливать ее в бачок насоса.
Поэтому обратный клапан плунжера 9 при повышении давления в любой полости во время перемещения поршня открывается и позволяет перетекать жидкости в противоположную полость, что облегчает поворот рулевого колеса.
***
Электрический усилитель рулевого управления — ЭУР
Главная страница
Дистанционное образование
Специальности
Учебные дисциплины
Олимпиады и тесты
Гидроусилитель руля: принцип работы
Гидравлический усилитель руля (ГУР) – это система, которая является частью рулевого механизма автотранспорта и предназначена для облегчения усилий рук водителя при управлении направлением движения. ГУР полностью сохраняет необходимую «обратную связь», обеспечивает устойчивость движения автотранспорта и однозначность задаваемой ему траектории.
Автовладельцы старших поколений прекрасно помнят, какие явные мускульные усилия требовались для каждого проворачивания рулём колёс, особенно при движении на малых скоростях. Потому и женщин за рулём было меньше (это не единственная причина, конечно, но одна из основных).
Решил эту проблему стал гидравлический усилитель (ГУР) – специальный механизм, которым стали оборудовать сначала рулевые механизмы грузовых машин, а потом он был перенесён и на легковые автомобили. ГУР помогает водителю преодолевать силу естественного сопротивления механизмов и трения шин о землю, облегчая вращения рулём. Он создаёт дополнительные усилия при повороте рулевого колеса, за счёт гидравлического давления.
В советском автопроме гидроусилитель руля впервые был применён ещё в 1950 году, на карьерных самосвалах МА3-525. Первым советским легковым автомобилем, оснащённым ГУРом, стал автомобиль представительского класса ЗИЛ-111 (в 1958 года). Широкого распространения гидроусилитель руля в автопроме долго не получал.
Однако в наше время уже стало трудно себе представить автомобиль, не оснащённый усилителем рулевого управления. Усилители могут стать электрическими (ЭУР), гидравлическими (ГУР), или электрогидравлическими (ЭГУР). Однако наиболее распространённым типом механизма усиления рулевого управления стал именно ГУР – благодаря лучшей экономической целесообразности его использования. Гидроусилитель немного более громоздкий, чем электроусилитель. Зато он и не требует точной, скоординированной работы датчиков, ЭБУ и самого электропривода.
Он устроен таким образом, что в случае выхода усилителя из строя полностью сохраняется возможность управления автомашиной. Хотя усилие на рулевом колесе, конечно, и становится более тяжёлым.
Для легковушек главным назначением ГУРа является обеспечение комфорта. Управлять транспортным средством, которое оснащено гидравлическим усилителем руля, намного легче и удобнее. Плюс к снижению мускульных усилий, водителю требуется совершать меньше оборотов руля. Такое положение вещей важно при выполнении парковок и маневрировании на узких участках, в стеснённых условиях.
Сохранение управляемости автомашиной, со смягчением ударов, которые передаются на руль при наезде управляемых колёс на дорожные неровности дороги. В этом состоит ещё она важная функция ГУРа.
Местонахождение частей и состав гидравлического усилителя руля
Гидронасос расположен неподалёку от шкива коленчатого вала и соединяется с ним приводным ремнём. В зависимости от конструкции автомобиля, тот же привод может приводить в движение вал генератора и помпы. Управляющий клапан, он же – распределитель, является встроенным в механизм рулевого вала и отзывается на повороты рулевым колесом в ту или иную сторону, благодаря специальному устройству – торсиону.
Местонахождение гидравлического цилиндра зависит от вида рулевого механизма. В большинстве автомашин он является вмонтированым в рейку и представляет собою поршень, который толкает её в необходимом направлении. В машинах с червячным приводом руля (так называемая рулевая колонка) цилиндр является отдельным агрегатом. К нему подсоединены тяги, которые отвечают за повороты передних колёс.
Указанные элементы объединяются в единую систему патрубками, которые рассчитаны на высокое давление. По ним циркулирует рабочая жидкость – масло. Её запас размещён в расширительном бачке, который установлен в самом высоком месте гидросистемы.
В этом бачке для рабочей жидкости размещён фильтрующий элемент и щуп для контроля за её уровнем. При помощи масла трущиеся пары смазываются механизмов, плюс передаются усилия от насоса к гидроцилиндру. Фильтром от грязи и мелкой металлической стружки, образующейся в процессе эксплуатации, служит имеющаяся в бачке сетка.
Если расширительный бачок сделан из полупрозрачного пластика, то уровень жидкости, находящейся в нём, можно проверить простым визуальным осмотром. Но если пластик непрозрачный, либо бачок использован металлический, тогда уровень рабочей жидкости можно проконтролировать при помощи щупа.
В некоторых автомашинах уровень рабочей жидкости ГУРа есть возможность проверить только после кратковременной работы мотора, либо при вращении рулевым колесом несколько раз в разные стороны, в процессе работы двигателя на холостом ходу. На щупе (или же на самом расширительном бачке) имеются специальные насечки или отметки.
Конструкция механизма
Состоит гидравлический усилитель рулевого колеса из нескольких основных элементов, которые соединены между собою маслопроводами. Это
- роторный насос, приводимый в движение ременной передачей от коленвала мотора автомобиля;
- гидрораспределитель, который направляет усилие в нужные стороны;
- гидравлический цилиндр с поршнем, который жёстким образом (рейками либо тягами) связан с рулевым механизмом;
- расширительный бачок с необходимым запасом гидравлической жидкости (масла).
Насос
Насос гидроусилителя руля нужен для того, чтобы в системе поддерживалось необходимое давление, а также постоянно происходила циркуляция масла. Он устанавливается на блоке цилиндров двигателя, работает от шкива коленвала с помощью приводного ремня.
В принципе, конструктивно данный насос может быть разного типа. Однако на практике повсеместное распространение получили насосы лопастные. Они отличаются высоким коэффициентом полезного действия и серьёзной устойчивостью к износу. Рабочие механизмы данного насоса – вращающийся ротор с лопастями – размещены в металлическом корпусе. В ходе вращения лопасти захватывают рабочую жидкость и под давлением нагнетают её в гидрораспределитель, а далее – в гидроцилиндр.
Поскольку привод насоса производится от шкива коленвала, его производительность и давление напрямую зависят числа оборотов двигателя. Чтобы давление поддерживалось на нужном для нормальной работы уровне (100-150 Бар), применён специальный клапан. Это пневматический либо гидравлический дроссель, который действует автоматически.
Гидрораспределитель
Распределитель гидравлического усилителя руля смонтирован на рулевом валу, или же на элементах рулевого привода. Его назначением является направление потоков рабочей жидкости в соответствующую полость гидроцилиндра, либо её возвращение в расширительный бачок.
Главные элементы распределителя ГУРа – это торсион, поворотный золотник и вал распределителя. Торсион – это тонкий пружинистый металлический стержень, который закручивается под воздействием крутящего момента. Золотник и вал распределителя – это две цилиндрические детали с каналами для жидкости. Они вставлены друг в друга. Золотник связывается с шестернёй рулевого механизма, а вал распределителя – с карданным валом рулевой колонки, т.е. с рулём. Торсион одним концом прикреплён к валу распределителя, а его другой конец вставлен в поворотный золотник.
Распределитель бывает осевым (если его золотник перемещается поступательно), либо роторным (когда золотник вращается).
Гидроцилиндр + соединительные шланги
Гидравлический цилиндр встроен в рейку. Он состоит из поршня и штока, который перемещает рейку под действием давления рабочей жидкости. Соединительными шлангами высокого давления обеспечивается циркуляция масла между распределителем, гидроцилиндром и насосом. Из расширительного бачка в насос, и из распределителя обратно в расширительный бачок масло течёт по шлангам низкого давления.
Гидроцилиндр + соединительные шланги
Принцип работы гидроусилителя
Главная особенность гидроусилителя руля состоит в том, что система задействуется сразу же после запуска двигателя автомобиля, так как вал гидронасоса вращается синхронно с коленчатым валом мотора. Пока водитель не работает рулём, образующееся в маслопроводах давление сбрасывается в расширительный бачок. Принцип работы гидравлического усилителя руля заключается в преобразовании давления рабочий жидкости, создаваемого гидронасосом, в механическую работу, совершаемую поршнем гидроцилиндра. Алгоритм функционирования ГУРа таков:
Рабочая жидкость перекачивается по системе, а избыток давления отправляется в расширительную ёмкость, пока водитель не начнёт поворачивать рулевым колесом. Во время поворота рулём торсион распределителя улавливает направления вращений, за счёт чего срабатывает один из двух клапанов, который открывает проток гидравлической жидкости к поршню цилиндра.
Масло с одной стороны надавливает на поршень, заставляет его толкать рейку или тягу в нужном направлении, пока шофёр не перестанет поворачивать руль. Когда рулевое колесо останавливается в любом положении, то гидрораспределитель закрывает клапан, а поршень прекращает подталкивать рейку.
При вращении рулевого колеса в обратную сторону первый клапан закрывается, и сразу же срабатывает второй. Жидкость поступает к поршню с другой стороны, заставляя его передвигаться и толкать рейку в другом направлении.
К примеру, автомобиль стоит с работающим двигателем на месте, и его колёса при этом установлены прямо. В этом положении гидроусилитель руля не работает, а его жидкость просто перекачивается насосом по системе – из расширительного бачка в гидрораспределитель и назад.
Водитель начинает вращения рулевым колесом. Крутящий момент от руля передаётся валу гидрораспределителя и дальше – торсиону, который начинает закручиваться. Поворотный золотник в тот момент не вращается, так как ему не даёт это делать сила трения. Перемещаясь относительно золотника, вал распределителя открывает канал для поступления масла в одну из полостей гидроцилиндра (в зависимости от того, куда водитель поворачивает руль). Вся рабочая жидкость под давлением отправляется в гидроцилиндр. Масло из второй полости гидроцилиндра поступает в сливную магистраль, и далее в расширительный бачок. Оно надавливает на поршень со штоком, за счёт чего рулевая рейка перемещается и колёса поворачиваются.
Когда водитель прекращает поворот рулевого колеса, однако продолжает удерживать его в повёрнутом положении, рулевая рейка при её перемещении вращает поворотный золотник и выравнивает его относительно вала гидрораспределителя. В тот момент распределитель ставится в нейтральное положение, и рабочая жидкость снова начинает просто вхолостую циркулировать по системе, не совершая работы (как это было при стоящей на месте машине и прямолинейном положении её колёс).
Схема работы гидравлического усилителя руля
Если поворачивать рулевое колесо до упора и при этом увеличивать обороты двигателя нажатием на педаль газа, то давление в контуре гидроусилителя повышается до максимальных значений. Это может привести к протечке сальников и даже к разрыву шлангов. Поэтому производителями автомобилей с гидроусилителями и не рекомендуется удерживать рулевое колесо в крайнем положении дольше пяти секунд.
Если по каким-либо причинам мотор автомобиля заглохнет, или сам гидроусилитель руля сломается и откажет, то у водителя при этом сохранится полный контроль над передними колёсами его автомашины. Просто для поворачивания рулевого колеса водителю уже придётся прилагать некоторые мускульные усилия. Как в «старые добрые времена».
Плюсы и минусы гидроусилителя руля
Нет никаких сомнений в том, что достоинств у системы гидроусиления рулевого управления гораздо больше, чем недостатков. Иначе ГУР не завоевал бы такой всеобщей популярности: ведь им в наше время оснащается абсолютное большинство новых машин всех ведущих автопроизводителей.
Надёжность
Гидравлическая система усиления руля очень надёжна. Она испытана многолетней практикой на различных видах автомашин и показывает практически безупречную безотказность.
Гидравлический усилитель руля обладает способностью развивать серьёзную мощность и преодолевать значительное сопротивление силе трения со стороны колёс. Поэтому применять его есть возможность на автомобилях любой грузоподъёмности и габаритных размеров.
Комфорт
Комфорт в управлении автомобилем для водителя – основная характерная черта и главный плюс рулевого гидроусилителя. ГУР, собственно, и создавался именно с такой целью – значительно облегчить человеку процесс управления автомобилем, избавить его от необходимости прилагать мышечные усилия при оборотах рулевого колеса.
Быстрое реагирование
Так как рулевое колесо вращается с ГУРом гораздо легче, чем без него, и оборотов «баранки» требуется меньше, у водителя появляется возможность живее и оперативнее реагировать на любые быстрые изменения в дорожной ситуации.
Лучшая точность и острота управляемости
Возможности, которые предоставляет использование гидравлического усилителя, дают дополнительный бонус всем производителям автомобилей. Так как ГУР фактически выполняет вместо водителя его физическую работу, в конструкции машин появилась возможность применять рулевые механизмы с меньшим передаточным отношением.
Среди недостатков гидравлического усилителя руля, отмечаются следующие его свойства.
Чтобы не спровоцировать поломку ГУРа, рулевое колесо нельзя надолго задерживать в крайнем правом или левом положении. В особенности – на повышенных оборотах двигателя. В этом случае, из-за образования критически сильного давления, масло может выдавить сальники и вытечь.
Устройство привода гидронасоса выполнено таким образом, что он функционирует безостановочно вместе с двигателем авто. Из-за этого насос изнашивается быстрее и отнимает часть энергии мотора, пусть незначительно, но всё же увеличивая расход горючего.
Все элементы системы гидроусилителя руля нуждаются в периодическом обслуживании, а также требуется следить за уровнем гидравлической жидкости в его расширительном бачке.
ГУРы на автомобилях эконом-класса и машинах бюджетных ценовых категорий при передвижении на больших скоростях делают рулевые колёса малоинформативными. Только в дорогих автомашинах реализовано особенное устройство насоса гидроусилителя руля, которое позволяет снижать давление масла в системе при повышении оборотов силового агрегата. Руль при этом как бы «наливается» некоторой тяжестью, и ощущение «пустоты» при управлении машиной на значительных скоростях не возникает.
Что предусматривается правилами обслуживания ГУРа
Для обеспечения бесперебойной работы гидроусилителя руля требуется периодически выполнять такие операции по уходу и обслуживанию:
контролировать уровень и состояние рабочей жидкости ГУРа в расширительном бачке;
время от времени осматривать патрубки и штуцеры системы: не появились ли растрескивания и протечки масла;
производить замену гидравлической жидкости – в соотвествии с интервалом, который указан в инструкции по эксплуатации и ремонту;
обращать внимание на появление посторонних шумов, говорящих о серьёзном износе подшипников гидронасоса;
своевременно менять износившийся приводной ремень гидроусилителя руля, чтобы он не порвался в самый неподходящий момент – где-нибудь в дальней дороге. Если проявляются толчки и удары в рулевое колесо – то это характерный признак растянутого, изношенного приводного ремня гидронасоса. Когда ремень проскальзывает, то насос начинает работать рывками, и масло поступает в систему с хорошо различимой пульсацией.
Масло для ГУРа
Жидкость, которая заливается в систему гидроусилителя руля, играет роль не только рабочего тела всего механизма, но ещё и смазки для насоса. В связи с этим, при её доливках либо заменах необходимо использовать масла, рекомендованные производителями, чтобы не допустить преждевременного выхода насоса из строя.
В теории, рабочей жидкостью ГУРа можно пользоваться весь срок эксплуатации автомобиля (как и маслом в коробке переключения передач). Однако на практике рекомендуется всё-таки периодически (примерно раз в 3-5 лет) менять масло гидроусилителя.
Ведь в ходе эксплуатации ГУРа всегда повышается температура его элементов. За счёт этого греется и рабочая жидкость, что ведёт к ухудшению её физических свойств. Присадки в её составе ведь деградируют от нагрева и трения, и гидравлическая жидкость постепенно начинает терять свои качества.
Когда при контроле состояния масла ГУРа в нём замечены мелкие посторонние частицы, или чувствуется горелый запах – это значит, что точно настало время для замены, и произвести её нужно как можно быстрее.
Менять надо масло и тогда, когда проявились признаки неисправности в гидроусилителе. Это тяжёлый ход руля, шумная работа насоса. Они говорят о том, что во время работы появиляются воздушные пробки, и надо масло поменять либо долить.
Объём рабочей жидкости при полной её замене не превышает полутора литров. Для масла ГУРа замеряется два уровня: холодный и горячий. Холодный уровень – это та точка, при которой температура рабочей жидкости находится в пределах от 0 до 30-ти градусов. Уровень горячий – та точка, при которой температура масла находится в пределах от 50-ти до 80-ти градусов.
Масло, которое заливается в систему гидроусилителя руля – это универсальные жидкости ATF или Multi HF, которые применяются не только в ГУРах, но и в автоматических коробках переключения передач. Любо – специализированные масла, разработанные специально и только для гидроусилителя, которые маркируются как PSF.
Выбирая масло для ГУРа, лучше ориентироваться на рекомендации автопроизводителя, и делать указание из сервис-книжки машины «выбором №1».
Как и моторное масло, рабочие жидкости для ГУРов могут делаться на минеральной, полусинтетической или синтетической основе. Выбирать надо тот, что рекомендован именно для данной модели автомобиля, во избежание возможного несоответствия химического состава разных рабочих жидкостей и, соответственно, повреждения металла отдельных элементов системы или резиновых уплотнителей.
Гидроусилитель руля стал для автомобилистов всего мира счастливой возможностью крутить руль практически без мускульных усилий – что называется, «двумя пальцами». А особенно – для автомобилисток.
Комфортное и лёгкое управление машиной превратились из роскоши в общераспространённый стандарт. ГУР надёжен и безотказен, однако, как и любой механизм, требует некоторого минимального внимания к себе, своевременного ухода и устранения неисправностей.
Принцип работы рулевого механизма с гидроусилителем автомобиля КамАЗ
К клапану (12) [рис. 1, А)] управления подведены от насоса (18) гидроусилителя шланг высокого (18) и шланг низкого давления (16), по которому масло через радиатор гидроусилителя (15) возвращается в насос.
Рис. 1. Рулевое управление автомобилей КамАЗ. Схема работы.
А) – Принципиальная схема;
Б) – При повороте направо;
В) – При повороте налево;
1) – Рулевое колесо;
2) – Рулевая колонка;
3) – Карданный вал;
4) – Угловой редуктор;
5) – Картер рулевого механизма;
6) – Винт;
7) – Шариковая гайка;
8) – Вал сошки с зубчатым сектором;
9) – Поршень-рейка;
10) – Перепускной клапан;
11) – Золотник;
12) – Клапан управления;
13) – Упорный подшипник;
14) – Предохранительный клапан;
15) – Масляный радиатор;
16) – Маслопровод низкого давления;
17) – Маслопровод высокого давления;
18) – Насос гидроусилителя.
При повороте в ту либо иную сторону из-за сопротивления колеса создаётся сила, которая стремится сдвинуть винт (6) в осевом направлении. В случае, если данная сила превысит силу предварительного сжатия пружин плунжеров, то винт вместе с золотником (11), зажатым в упорных подшипниках, переместится относительно корпуса клапана управления. При этом одна полость картера (5) рулевого механизма сообщается с линией высокого давления, а другая – со сливом [рис. 1, Б) и В)]. Поступающее из насоса масло давит на поршень-рейку и создаёт усилие на валу сошки.
Давление в рабочей полости цилиндра возрастает с повышением сопротивления повороту колёс. При этом увеличивается и давление под реактивными плунжерами, которые стремятся вернуть винт и золотник в среднее положение, и пропорционально возрастает сопротивление повороту рулевого колеса. Данное увеличение (снижение) сопротивления повороту рулевого колеса с увеличением (снижением) усилия поворота колёс создаёт у водителя «чувство дороги», что способствует лучшему его ориентированию в дорожных условиях, а также повышает безопасность движения. При езде в различных дорожных условиях за счёт усилителя рулевого управления сопротивление повороту руля не превышает 100 Н.
При прекращении поворота рулевого колеса под действием реактивных плунжеров золотник смещается в среднее положение, движение поршня и поворот колёс прекращаются. Перепускной клапан (10), расположенный в одном из плунжеров, при неработающем насосе (18) соединяет линию высокого давления с линией слива. В данном случае клапан обеспечивает работу рулевого механизма как обычного, без гидроусилителя.
Предохранительный клапан (14), расположенный в другом плунжере, открывается при достижении давления 6,5-7,0 МПа и соединяет линию высокого давления с линией слива, чем предохраняет насос (18) от перегрузок.
17*
Похожие материалы:
устройство, принцип работы насоса, рейки
Гидроусилитель руля (ГУР) – это система, облегчающая курсовое управление автомобилем.
Почему первым автомобилям не был нужен ГУР
Первые автомобили были легкими и с узкими колесами, а скорости их движения невысоки. Поэтому для поворота колес при помощи руля требовалось небольшое усилие и первые водители легко обходились без ГУР. Гидроусилитель руля потребовался с появлением первых тяжелых грузовиков. С тех пор устройство гидроусилителя не претерпело принципиальных изменений.
Устройство гидроусилителя руля
Принцип работы гидроусилителя руля с распределителем осевого и роторного типов одинаков. Основан на том, что когда руль стоит «прямо», золотник занимает среднее положение, оба сливных канала открыты, а жидкость нагнетаемая насосом минуя силовой гидроцилиндр, сливается обратно в бачок.
Но даже при небольшом повороте руля золотник закрывает один из сливных каналов, и жидкость под давлением направляется в соответствующую полость силового гидроцилиндра. Другая же полость останется связанной с каналом слива.
Поршень гидроцилиндра под действием давления смещается, и это усилие перемещает рейку или поворачивает червяк редуктора, в зависимости от конструкции рулевого механизма. Схема работы ГУР всегда такова, что насос создает давление, распределитель направляет, а гидроцилиндр преобразует его в усилие для поворота колес. Гидроусилитель руля устроен так, что при его отказе рулевое управление автомобиля продолжает работать. Только для того чтобы повернуть руль, нужно прикладывать большие усилия.
Гидроусилитель руля состоит из следующих агрегатов и деталей:
- Насос. Предназначен для создания давления рабочей жидкости. Чаще всего встречается конструкция насоса лопастного типа.
- Регулятор давления. Его схема проста. Он, по сути, является обычным редукционным клапаном, сливающим масло обратно в бачок. Нужен он для того, чтобы повышение частоты вращения коленвала двигателя не приводило к превышению предельно допустимого давления масла.
- Распределитель с управляющим золотником. Роторным называется распределитель, золотник которого вращается. Если же он перемещается линейно вдоль оси рулевого вала, его называют осевым. Осевой золотник поступательно движется по резьбе за счет вращательного движения рулевого вала, перемещаясь вдоль оси этого вала.
- Силовой гидроцилиндр двойного действия. В нем под действием давления рабочей жидкости движется поршень, помогая поворачивать колеса. Этот агрегат может быть интегрирован в рулевой механизм или соединяться с ним посредством промежуточных передаточных механизмов. Схема конструкции реечного рулевого механизма позволяет встроить в нее гидроцилиндр. Корпус рейки является цилиндром, поршень делают на середине рейки в виде перегородки с уплотнителем. Для поворота в ту или другую сторону подают в корпус масло под давлением с нужной стороны.
- Бачок с запасом рабочей жидкости. Для ее очистки от продуктов износа агрегатов ГУР бачок имеет встроенный фильтр.
- Соединительные шланги высокого давления. Обеспечивают подачу масла от насоса к распределителю и дальше к гидроцилиндрам.
- Соединительные шланги низкого давления. По ним течет жидкость из бачка в насос, а также из распределителя и из силового гидроцилиндра обратно в бачок ГУР.
Конструкция насоса лопастного типа
Популярность этой конструкции объясняется высоким КПД такого насоса. Привод насоса всегда ременный от шкива коленчатого вала. Для удобства привода, крепление насоса осуществляется к блоку цилиндров двигателя.
Внутренняя поверхность его корпуса имеет сложную форму. В роторе такого насоса делают параллельно его продольной оси несколько прорезей, в которые вставляются лопасти. При вращении привода насоса лопасти под действием центробежной силы частично выходят из пазов и, касаясь внутренней поверхности корпуса, образуют замкнутые камеры. Форма внутренней поверхности корпуса сделана таким образом, что при вращении ротора объем между двумя соседними лопастями и корпусом уменьшается, сжимая заключенную между ними жидкость. Поэтому когда между лопастями оказывается отверстие выхода насоса, масло под давлением устремляется в него. Всасывание масла происходит с точностью до наоборот. На другом участке внутренней поверхности корпуса между лопастями создается разрежение, а когда между ними оказывается вход, масло всасывается в камеру.
Рекомендации производителей
- Нельзя удерживать колеса автомобиля, имеющего ГУР, в крайнем положении более 5 сек, так как это может привести к перегреву масла, вплоть до его закипания, и выходу системы из строя.
- Для увеличения срока службы агрегатов ГУР и системы в целом рекомендуется не реже одного раза в два года производить замену рабочей жидкости.
- Для того чтобы гидроусилитель руля не отказал внезапно, необходимо периодически контролировать наличия масла в его бачке. При заметном снижении уровня рабочей жидкости, не связанном с температурой, углом поворота колес, наклоном автомобиля и тому подобным, необходимо проверить герметичность узлов и деталей гидравлического контура: шлангов, бачка насоса и их соединений. Проверка заключается во внешнем осмотре вышеназванных точек на предмет подтекания масла.
- Не рекомендуется длительное использование автомобиля с вышедшим из строя насосом гидроусилителя. Так как масло здесь используется не только для создания давления, но для смазки трущихся деталей. Работа автомобиля с неисправным насосом приведет к ускоренному износу и выходу из строя распределителя и силового гидроцилиндра.
Удаление воздуха из системы
Признаки завоздушивания системы: подклинивание рулевого колеса при смене направления его вращения; вспененное масло в бачке.
Прокачку системы опишем на примере автомобиля Газ 3110:
- Повернуть рулевое колесо из среднего положения до конца влево и вправо от 5 до 10 раз.
- Если масло из системы сливалось полностью, вывернуть клапан из крышки рулевого редуктора. Повернуть рулевое колесо влево и вправо 3-4 раза. Установить клапан на место, долить масло.
- Установить руль в среднее положение. Запустить мотор на 10-15 сек. Руль вращать не нужно. Заглушить мотор, долить масло.
Запустить мотор, плавно повернуть руль несколько раз влево и вправо, не задерживая его в крайних точках. После того как в бачок перестанут выходить воздушные пузырьки заглушить мотор и долить масло. На этом операцию удаления воздуха можно считать успешно завершенной.
Что такое усилитель тормозов? Как работает усилитель тормозов?
Техника вождения автомобилей полностью изменилась, и наступила новая эра с новыми технологиями и изобретениями.
С новыми изобретениями старый опыт вождения полностью изменился, было изобретено много новых механизмов и устройств, чтобы сделать вождение более безопасным и легким, например, механическая тормозная система заменена некоторыми усовершенствованными тормозными системами, такими как гидравлический тормоз, пневматические тормоза. и вакуумный тормоз.
Для правильного функционирования тормозных систем разработаны дополнительные устройства, делающие вождение более удобным и безопасным.
Усилитель тормозов — одно из устройств безопасности, используемых в автомобилях, и необходимая часть тормозной системы.
Усилитель тормозов работает следующим образом.
Принцип работы:Усилитель тормозов — это предохранительное устройство, используемое с тормозами, которое работает по принципу закона Паскаля.
Это помогает сделать вождение очень комфортным, потому что при вождении основными задачами являются контроль скорости и торможение.
С помощью этого устройства процесс торможения полностью изменился, так как уменьшилось человеческое усилие при нажатии на тормоз. Он установлен между главным тормозным цилиндром и педалью тормоза.
Усилитель тормозов увеличивает силу давления перед передачей в главный цилиндр, так что усилие водителя уменьшается, или мы можем сказать, что он умножает усилия водителя на педаль тормоза с приложением вакуума, вызванного расположением поршня-цилиндра двигателя.
Повышает эффективность торможения и обеспечивает комфортное вождение за счет снижения утомляемости водителя из-за очень меньшего усилия, необходимого для торможения.
Компоненты :Усилитель тормозов — необходимое устройство в тормозная система. Он имеет различные компоненты, которые расположены в правильная последовательность для правильного функционирования. Основные части тормоза Бустеры следующие:
Корпус:Корпус — это основная часть, в которой все компоненты размещены в последовательности.Это внешний кожух усилителя тормозов, который обеспечивает безопасность внутренних деталей и предохраняет их от ударов и столкновений.
Валы:Валы обеспечивают связь между входом и выходом. В усилителе тормозов используются два типа валов: один известен как входной или первичный вал, а второй — вторичный или выходной вал. Входной вал обеспечивает связь между педалью входного тормоза и диафрагмой. Функция этого вала заключается в открытии и закрытии впускного клапана для впуска и выпуска атмосферного воздуха.Вторичный или выходной вал обеспечивает связь между диафрагмой и главным цилиндром. Функция вторичного вала заключается в передаче создаваемого усилия от диафрагмы на главный тормозной цилиндр.
Клапаны:Клапаны играют важную роль в функционировании усилителя тормозов, поскольку для контроля и поддержания точного давления требуются надлежащие впуск и выпуск воздуха. Здесь два клапана используются одинаково с валами. Один — атмосферный клапан, второй — вакуумный.Функции обоих клапанов одинаковы, но вакуумный клапан является односторонним только потому, что он используется для поддержания вакуума внутри усилителя тормозов и позволяет только выходить воздуху, но вход воздуха не допускается.
Атмосферный клапан позволяет вход и выход атмосферного воздуха внутри усилителя тормозов при торможении педаль нажата и отпущена. На выходе установлен вакуумный клапан. стороны усилителя тормозов, и он поддерживает идеальный вакуум за счет ограничение попадания воздуха внутрь усилителя тормозов.
Мембрана:Это основной компонент любого усилителя тормозов, поскольку он разделяет первичную и вторичную стороны усилителя тормозов, а также передает движение от входного вала к внешнему валу за счет приложения давления воздуха.
Пружины:В одном усилителе тормозов используются две пружины с обеих сторон. Размер пружин зависит от размера усилителя тормозов. Основная функция пружины — регулировать положение клапанов, и с помощью пружины клапаны возвращаются в исходное положение после отпускания педали.
Рабочий:Работа усилителя тормозов очень просто. В усилителе тормозов усилие передается от входа к выходу. с приложением давления воздуха, которое увеличивает интенсивность тормозная сила. Он увеличивает усилие на педали тормоза перед внедрением в приложение торможения. Усилитель тормозов работает следующим образом.
- Когда педаль тормоза нажимается для включения тормозов, открывается атмосферный клапан, и атмосферный воздух начинает поступать в усилитель тормозов.
- В то же время надлежащий вакуум поддерживается на вторичной стороне за счет применения поршневой системы двигателя. Свежий атмосферный воздух, имеющий давление, равное атмосферному давлению, позволяет первичному валу толкать диафрагму в прямом направлении при нажатии педали тормоза.
- При движении диафрагмы вторичный вал толкает главный цилиндр с большей силой.
- Причина увеличения интенсивности силы — разница давлений между обеими сторонами.На вторичной стороне присутствует разрежение или отрицательное давление, тогда как на первичной стороне действует атмосферное давление, которое намного выше, чем давление вторичной стороны, поэтому небольшое нажатие на педаль тормоза приводит к увеличению требуемой входной силы.
- При отпускании педали тормоза весь узел возвращается в исходное положение с помощью пружин и выпуска воздуха, закрывающего оба клапана.
Это все про усилитель тормозов. Если у вас есть какие-либо вопросы относительно этой статьи, задавайте их в комментариях.Если вам понравилась эта статья, не забудьте поделиться ею в социальных сетях. Подпишитесь на наш сайт для получения более информативных статей. Спасибо, что прочитали.
Также прочтите — АНТИБЛОКИРОВОЧНАЯ ТОРМОЗНАЯ СИСТЕМА (АБС): КОМПОНЕНТЫ, ТИПЫ И ПРИНЦИП РАБОТЫ
Подпишитесь на обновления Отписаться от обновленийКак они работают и для чего они нужны?
Бустеры или усилители используются для создания выхода высокого давления из входа низкого давления. Подобно тому, как работает электрический трансформатор, меняя ток на напряжение, гидроусилитель преобразует больший объем жидкости под низким давлением в меньший объем при более высоком давлении.
Дай мне толчок?
Бустерная установка состоит из двух секций: приводного цилиндра (вход) и камеры высокого давления (выход). Когда жидкость подается в приводной цилиндр, это заставляет поршень и толкатель выдвигаться. Когда плунжер продвигается в камеру, внутренний объем сжимается, создавая давление. Разница в площади между поршнем и поршнем определяет степень наддува, которая представляет собой соотношение между давлением и объемом. Например, бустер с соотношением сторон 8: 1 будет иметь выходную мощность 1/8 его входного объема при 8-кратном входном давлении.
Под давлением
Бустерымогут быть разработаны для работы с различными жидкостями и могут использовать разные жидкости как на входе, так и на выходе. Распространенной конструкцией является пневматический усилитель, в котором давление рабочего воздуха используется для создания гидравлического масла высокого давления для использования в цилиндре. Например, пневматический усилитель с диаметром цилиндра 5 дюймов и диаметром 1 дюйм имеет соотношение 25: 1 при подаче производственного воздуха под давлением 80 фунтов на квадратный дюйм. установка будет создавать давление гидравлического масла 2000 фунтов на квадратный дюйм. Это может быть очень полезно там, где пространство ограничено, поскольку блок повышения давления может быть расположен на удалении от цилиндра и может генерировать высокое давление только с общей подачей воздуха.Используя вышеупомянутый пневматический усилитель с соотношением 25: 1, в следующем примере, если выходной сигнал 2000 фунтов на квадратный дюйм используется для приведения в действие гидравлического цилиндра диаметром 2 дюйма, цилиндр будет выдвигаться с усилием приблизительно 6200 фунтов. Для достижения тех же 6200 фунтов силы непосредственно с пневматическим цилиндром при давлении 80 фунтов на квадратный дюйм потребуется цилиндр диаметром 10 дюймов.
При доступном давлении на выходе, превышающем 40 000 фунтов на квадратный дюйм и большом диапазоне возможных жидкостей, бустеры могут стать отличным решением некоторых сложных проблем.
У вас есть приложение, в котором используется гидравлический или пневматический усилитель? Расскажи нам об этом.Оставьте комментарий ниже …
Изображение предоставлено: Vichaya Kiatying-Angsule
Принцип Паскаля | Физика
Цели обучения
К концу этого раздела вы сможете:
- Определите давление.
- Государственный принцип Паскаля.
- Разберитесь в применении принципа Паскаля.
- Вывести отношения между силами в гидравлической системе.
Давление определяется как сила на единицу площади.Можно ли увеличить давление в жидкости, надавливая непосредственно на жидкость? Да, но гораздо проще, если жидкость будет закрытой. Сердце, например, повышает кровяное давление, давя прямо на кровь в замкнутой системе (клапаны закрыты в камере). Если вы попытаетесь протолкнуть жидкость в открытой системе, например в реке, жидкость уйдет. Замкнутая жидкость не может вытекать, поэтому давление легче увеличить с помощью приложенной силы. Что происходит с давлением в замкнутой жидкости? Поскольку атомы в жидкости могут свободно перемещаться, они передают давление всем частям жидкости и стенкам контейнера.Примечательно, что давление передается в неизменном виде . Это явление называется принципом Паскаля , потому что он был впервые четко сформулирован французским философом и ученым Блезом Паскалем (1623–1662): изменение давления, приложенного к замкнутой жидкости, передается в неизменном виде всем частям жидкости и всему пространству. стенки его контейнера.
Принцип ПаскаляИзменение давления, приложенного к замкнутой жидкости, передается в неизменном виде всем частям жидкости и стенкам ее контейнера.
Принцип Паскаля, экспериментально подтвержденный факт, — вот что делает давление в жидкостях столь важным. Поскольку изменение давления в замкнутой жидкости передается в неизменном виде, мы часто знаем о давлении больше, чем о других физических величинах в жидкости. Более того, принцип Паскаля подразумевает, что полное давление в жидкости является суммой давлений из различных источников . Мы найдем этот факт — добавление давления — очень полезным.
У Блеза Паскаля была интересная жизнь: он обучался на дому у своего отца, который забрал из своего дома все учебники математики и запретил ему изучать математику до 15 лет.Это, конечно, вызвало у мальчика любопытство, и к 12 годам он начал учить геометрию. Несмотря на это раннее лишение, Паскаль внес значительный вклад в математические области теории вероятностей, теории чисел и геометрии. Он также известен как изобретатель первого механического цифрового калькулятора в дополнение к его вкладам в области статики жидкости.
Применение принципа Паскаля
Одно из наиболее важных технологических применений принципа Паскаля можно найти в гидравлической системе , которая представляет собой замкнутую гидравлическую систему, используемую для приложения сил.Наиболее распространены гидравлические системы, приводящие в действие автомобильные тормоза. Давайте сначала рассмотрим простую гидравлическую систему, показанную на рисунке 1.
Рис. 1. Типичная гидравлическая система с двумя заполненными жидкостью цилиндрами, закрытыми поршнями и соединенными трубкой, называемой гидравлической линией. Направляющая вниз сила F 1 на левый поршень создает давление, которое передается в неизменном виде на все части заключенной жидкости. Это приводит к тому, что направленная вверх сила F 2 на правом поршне больше, чем F 1 , потому что правый поршень имеет большую площадь.
Взаимосвязь сил в гидравлической системе
Мы можем вывести соотношение между силами в простой гидравлической системе, показанной на рисунке 1, применив принцип Паскаля. Во-первых, обратите внимание, что два поршня в системе находятся на одинаковой высоте, и поэтому не будет разницы в давлении из-за разницы в глубине. Теперь давление F 1 , действующее на область A 1 , просто [латекс] {P} _ {1} = \ frac {{F} _ {1}} {{A} _ { 1}} \\ [/ latex], как определено [latex] P = \ frac {F} {A} \\ [/ latex].Согласно принципу Паскаля, это давление передается в неизменном виде по жидкости и всем стенкам емкости. Таким образом, на другом поршне ощущается давление P 2 , равное P 1 . То есть P 1 = P 2 . Но поскольку [latex] {P} _ {2} = \ frac {{F} _ {2}} {{A} _ {2}} \\ [/ latex], мы видим, что [latex] \ frac {{ F} _ {1}} {{A} _ {1}} = \ frac {{F} _ {2}} {{A} _ {2}} \\ [/ latex]. Это уравнение связывает отношения силы к площади в любой гидравлической системе, при условии, что поршни находятся на одной и той же вертикальной высоте и трение в системе незначительно.Гидравлические системы могут увеличивать или уменьшать прилагаемую к ним силу. Чтобы увеличить силу, давление прилагается к большей площади. Например, если к левому цилиндру на рисунке 1 приложено усилие 100 Н, а площадь правого цилиндра в пять раз больше, то выходное усилие составит 500 Н. Гидравлические системы аналогичны простым рычагам, но у них есть преимущество. это давление может передаваться по извилистым линиям сразу в несколько мест.
Пример 1. Расчет силы ведомых цилиндров: Паскаль нажимает на тормоза
Рассмотрим автомобильную гидравлическую систему, показанную на рисунке 2.
Рис. 2. В гидравлических тормозах используется принцип Паскаля. Водитель прилагает усилие 100 Н на педаль тормоза. Эта сила увеличивается простым рычагом и, опять же, гидравлической системой. Каждый из идентичных подчиненных цилиндров получает одинаковое давление и, следовательно, создает одинаковую выходную силу F 2 . Круглые площади поперечного сечения главного и подчиненного цилиндров представлены как A 1 и A 2 соответственно
К педали тормоза прикладывается сила 100 Н, которая воздействует на цилиндр, называемый главным, через рычаг.На главный цилиндр действует сила 500 Н. (Читатель может проверить, что сила составляет 500 Н, используя методы статики из Приложения статики, включая стратегии решения проблем.) Давление, создаваемое в главном цилиндре, передается на четыре так называемых подчиненных цилиндра. Главный цилиндр имеет диаметр 0,500 см, а каждый рабочий цилиндр — 2,50 см. Рассчитайте силу F 2 , создаваемую на каждом из подчиненных цилиндров.
СтратегияНам дана сила F 1 , которая приложена к главному цилиндру.Площади поперечного сечения A 1 и A 2 могут быть рассчитаны по их заданным диаметрам. Затем [латекс] \ frac {{F} _ {1}} {{A} _ {1}} = \ frac {{F} _ {2}} {{A} _ {2}} \\ [/ latex ] Можно использовать для определения силы F 2 . Выполните это алгебраически, чтобы получить F 2 с одной стороны, и замените известные значения:
РастворПринцип Паскаля, применяемый к гидравлическим системам, выражается [латексом] \ frac {{F} _ {1}} {{A} _ {1}} = \ frac {{F} _ {2}} {{A} _ {2}} \\ [/ latex]:
[латекс] {F} _ {2} = \ frac {{A} _ {2}} {{A} _ {1}} {F} _ {1} = \ frac {{\ mathrm {{\ pi r}} _ {2}} ^ {2}} {{\ mathrm {{\ pi r}} _ {1}} ^ {2}} {F} _ {1} = \ frac {{\ left (1 .{4} \ text {N} \\ [/ латекс].
ОбсуждениеЭто значение представляет собой силу, прилагаемую каждым из четырех подчиненных цилиндров. Обратите внимание, что мы можем добавить столько подчиненных цилиндров, сколько захотим. Если каждый из них имеет диаметр 2,50 см, каждый будет иметь усилие 1,25 × 10 4 Н.
Простая гидравлическая система, такая как простая машина, может увеличивать усилие, но не может выполнять больше работы, чем было сделано на ней. Работа — это сила, умноженная на пройденное расстояние, и рабочий цилиндр проходит меньшее расстояние, чем главный цилиндр.Кроме того, чем больше добавлено ведомых устройств, тем на меньшее расстояние проходит каждое из них. Многие гидравлические системы, такие как механические тормоза и системы в бульдозерах, имеют моторизованный насос, который фактически выполняет большую часть работы в системе. Движение ног паука частично достигается за счет гидравлики. Используя гидравлику, паук-прыгун может создать силу, которая позволяет ему прыгать в 25 раз больше своей длины!
Установление соединений: сохранение энергии
Сохранение энергии, применяемой к гидравлической системе, говорит нам о том, что система не может выполнять больше работы, чем сделано на ней.Работа передает энергию, поэтому объем работы не может превышать затраты на нее. В механических тормозах и других подобных гидравлических системах используются насосы для подачи дополнительной энергии, когда это необходимо.Сводка раздела
- Давление — сила на единицу площади.
- Изменение давления, приложенного к замкнутой жидкости, передается в неизменном виде всем частям жидкости и стенкам ее контейнера.
- Гидравлическая система — это замкнутая гидравлическая система, используемая для приложения сил.
Концептуальные вопросы
1.Предположим, что главный цилиндр в гидравлической системе находится на большей высоте, чем рабочий цилиндр. Объясните, как это повлияет на силу, создаваемую в рабочем цилиндре.
Задачи и упражнения
1. Какое давление передается в гидравлической системе, рассмотренной в примере 1? Выразите свой ответ паскалями и атмосферой.
2. Какая сила должна быть приложена к главному цилиндру гидравлического подъемника, чтобы выдержать вес 2000-кг легкового автомобиля (большого автомобиля), опирающегося на рабочий цилиндр? Главный цилиндр имеет 2.00 см в диаметре, а раб имеет диаметр 24,0 см.
3. Грубый хозяин после вечеринки наливает в кувшин остатки нескольких бутылок вина. Затем он вставляет в бутылку пробку диаметром 2 см, помещая ее в непосредственный контакт с вином. Он изумлен, когда он вставляет пробку на место, и дно кувшина (диаметром 14 см) отламывается. Вычислите дополнительную силу, приложенную ко дну, если он ударил по пробке с силой 120 Н.
4. Определенная гидравлическая система предназначена для приложения силы, в 100 раз превышающей приложенную к ней.а) Каким должно быть отношение площади рабочего цилиндра к площади главного цилиндра? б) Каким должно быть соотношение их диаметров? (c) На какой коэффициент уменьшается расстояние, на которое движется выходная сила, по сравнению с расстоянием, на которое движется входная сила? Предполагайте отсутствие потерь на трение.
(5. a) Убедитесь, что затраты на работу равны производительности гидравлической системы при условии отсутствия потерь на трение. Для этого покажите, что расстояние, на которое перемещается выходное усилие, уменьшается в тот же раз, что и выходное усилие.Предположим, что объем жидкости постоянный. (b) Какое влияние трение в жидкости и между компонентами системы окажет на выходную силу? Как это будет зависеть от того, движется жидкость или нет?
Глоссарий
- Принцип Паскаля:
- : изменение давления, приложенного к замкнутой текучей среде, передается в неизменном виде всем частям текучей среды и стенкам ее контейнера.
Избранные решения проблем и упражнения
1.2,55 × 10 7 Па; или 251 атм
3. 5.76 × 10 3 Дополнительная сила
5. (a) [латекс] V = {d} _ {\ text {i}} {A} _ {\ text {i}} = {d} _ {\ text {o}} {A} _ { \ text {o}} \ Rightarrow {d} _ {\ text {o}} = {d} _ {\ text {i}} \ left (\ frac {{A} _ {\ text {i}}} { {A} _ {\ text {o}}} \ right) \\ [/ latex].
Теперь, используя уравнение:
[латекс] \ frac {{F} _ {1}} {{A} _ {1}} = \ frac {{F} _ {2}} {{A} _ {2}} \ Rightarrow {F} _ {\ text {o}} = {F} _ {\ text {i}} \ left (\ frac {{A} _ {\ text {o}}} {{A} _ {\ text {i}} } \ right) \\ [/ latex].
Наконец,
[латекс] {W} _ {\ text {o}} = {F} _ {\ text {o}} {d} _ {\ text {o}} = \ left (\ frac {{F} _ { \ text {i}} {A} _ {\ text {o}}} {{A} _ {\ text {i}}} \ right) \ left (\ frac {{d} _ {\ text {i} } {A} _ {\ text {i}}} {{A} _ {\ text {o}}} \ right) = {F} _ {\ text {i}} {d} _ {\ text {i }} = {W} _ {\ text {i}} \\ [/ latex].
Другими словами, объем работы равен затратам.
(b) Если система не движется, трение не играет роли. С трением мы знаем, что есть потери, так что [латекс] {W} _ {\ text {out}} = {W} _ {\ text {in}} — {W} _ {\ text {f}} \ \[/латекс]; следовательно, объем работы меньше затрат труда. Другими словами, при трении вам нужно надавить на входной поршень сильнее, чем было рассчитано для случая отсутствия трения.
% PDF-1.4 % 15 0 obj> эндобдж xref 15 532 0000000016 00000 н. 0000011912 00000 п. 0000010936 00000 п. 0000011992 00000 п. 0000012171 00000 п. 0000019044 00000 п. 0000019120 00000 н. 0000019359 00000 п. 0000019582 00000 п. 0000019811 00000 п. 0000019853 00000 п. 0000019895 00000 п. 0000019937 00000 п. 0000019979 00000 п. 0000020021 00000 п. 0000020063 00000 п. 0000020105 00000 п. 0000020147 00000 п. 0000020190 00000 п. 0000020232 00000 п. 0000020274 00000 п. 0000020316 00000 п. 0000020358 00000 п. 0000020400 00000 п. 0000020442 00000 п. 0000020484 00000 п. 0000020526 00000 п. 0000020568 00000 п. 0000020726 00000 п. 0000021187 00000 п. 0000021589 00000 п. 0000022829 00000 п. 0000023987 00000 п. 0000024974 00000 п. 0000025842 00000 п. 0000026905 00000 п. 0000028007 00000 п. 0000028041 00000 п. 0000029282 00000 п. 0000032021 00000 п. 0000034690 00000 н. 0000034764 00000 п. 0000034844 00000 п. 0000034921 00000 п. 0000034998 00000 н. 0000035075 00000 п. 0000035155 00000 п. 0000035235 00000 п. 0000035315 00000 п. 0000035395 00000 п. 0000035478 00000 п. 0000035558 00000 п. 0000035635 00000 п. 0000035715 00000 п. 0000035789 00000 п. 0000035866 00000 п. 0000035940 00000 п. 0000036014 00000 п. 0000036088 00000 п. 0000036259 00000 п. 0000036424 00000 п. 0000036589 00000 п. 0000036735 00000 п. 0000036911 00000 п. 0000037087 00000 п. 0000037267 00000 п. 0000037443 00000 п. 0000037623 00000 п. 0000037788 00000 п. 0000037989 00000 п. 0000038175 00000 п. 0000038362 00000 п. 0000038550 00000 п. 0000038721 00000 п. 0000038892 00000 п. 0000039086 00000 п. 0000039262 00000 п. 0000039458 00000 п. 0000039639 00000 п. 0000039841 00000 п. 0000040023 00000 п. 0000040230 00000 п. 0000040412 00000 п. 0000040618 00000 п. 0000040800 00000 п. 0000041018 00000 п. 0000041231 00000 п. 0000041439 00000 п. 0000041622 00000 п. 0000041814 00000 п. 0000042034 00000 п. 0000042224 00000 п. 0000042448 00000 п. 0000042598 00000 н. 0000042819 00000 п. 0000043016 00000 п. 0000043169 00000 п. 0000043390 00000 п. 0000043581 00000 п. 0000043740 00000 п. 0000043955 00000 п. 0000044150 00000 п. 0000044313 00000 п. 0000044530 00000 п. 0000044727 00000 п. 0000044893 00000 п. 0000045092 00000 п. 0000045261 00000 п. 0000045481 00000 п. 0000045672 00000 п. 0000045842 00000 п. 0000046012 00000 п. 0000046205 00000 п. 0000046375 00000 п. 0000046565 00000 п. 0000046735 00000 п. 0000046934 00000 п. 0000047104 00000 п. 0000047301 00000 п. 0000047521 00000 п. 0000047691 00000 п. 0000047908 00000 п. 0000048103 00000 п. 0000048273 00000 н. 0000048443 00000 н. 0000048646 00000 н. 0000048868 00000 н. 0000049063 00000 н. 0000049233 00000 п. 0000049456 00000 п. 0000049654 00000 п. 0000049824 00000 п. 0000049994 00000 н. 0000050189 00000 п. 0000050359 00000 п. 0000050562 00000 п. 0000050780 00000 п. 0000050976 00000 п. 0000051146 00000 п. 0000051378 00000 п. 0000051576 00000 п. 0000051754 00000 п. 0000051983 00000 п. 0000052179 00000 п. 0000052361 00000 п. 0000052589 00000 п. 0000052788 00000 п. 0000052966 00000 п. 0000053193 00000 п. 0000053388 00000 п. 0000053570 00000 п. 0000053794 00000 п. 0000053995 00000 п. 0000054175 00000 п. 0000054404 00000 п. 0000054600 00000 п. 0000054787 00000 п. 0000055015 00000 п. 0000055214 00000 п. 0000055398 00000 п. 0000055620 00000 п. 0000055814 00000 п. 0000055998 00000 п. 0000056221 00000 п. 0000056420 00000 н. 0000056604 00000 п. 0000056818 00000 п. 0000057037 00000 п. 0000057226 00000 п. 0000057425 00000 п. 0000057606 00000 п. 0000057825 00000 п. 0000058019 00000 п. 0000058203 00000 п. 0000058417 00000 п. 0000058615 00000 п. 0000058800 00000 п. 0000059020 00000 н. 0000059214 00000 п. 0000059411 00000 п. 0000059629 00000 н. 0000059852 00000 п. 0000060042 00000 п. 0000060241 00000 п. 0000060422 00000 п. 0000060633 00000 п. 0000060819 00000 п. 0000061032 00000 п. 0000061226 00000 п. 0000061417 00000 п. 0000061632 00000 п. 0000061831 00000 п. 0000062016 00000 н. 0000062233 00000 п. 0000062432 00000 п. 0000062617 00000 п. 0000062858 00000 п. 0000063040 00000 п. 0000063289 00000 п. 0000063481 00000 п. 0000063723 00000 п. 0000063910 00000 п. 0000064151 00000 п. 0000064328 00000 н. 0000064503 00000 п. 0000064735 00000 п. 0000064912 00000 п. 0000065087 00000 п. 0000065331 00000 п. 0000065507 00000 п. 0000065692 00000 п. 0000065925 00000 п. 0000066101 00000 п. 0000066332 00000 п. 0000066574 00000 п. 0000066749 00000 п. 0000066989 00000 п. 0000067166 00000 п. 0000067402 00000 п. 0000067583 00000 п. 0000067827 00000 н. 0000067998 00000 н. 0000068233 00000 п. 0000068410 00000 п. 0000068635 00000 п. 0000068810 00000 п. 0000069043 00000 п. 0000069225 00000 п. 0000069402 00000 п. 0000069628 00000 п. 0000069799 00000 п. 0000070013 00000 п. 0000070188 00000 п. 0000070403 00000 п. 0000070591 00000 п. 0000070800 00000 п. 0000070971 00000 п. 0000071176 00000 п. 0000071358 00000 п. 0000071573 00000 п. 0000071787 00000 п. 0000072010 00000 п. 0000072496 00000 п. 0000072717 00000 п. 0000072943 00000 п. 0000073455 00000 п. 0000073685 00000 п. 0000073860 00000 п. 0000074081 00000 п. 0000074252 00000 п. 0000074476 00000 п. 0000074659 00000 п. 0000074874 00000 п. 0000075051 00000 п. 0000075262 00000 п. 0000075445 00000 п. 0000075652 00000 п. 0000075868 00000 п. 0000076078 00000 п. 0000076249 00000 п. 0000076457 00000 п. 0000076632 00000 п. 0000076852 00000 п. 0000077081 00000 п. 0000077294 00000 п. 0000077477 00000 п. 0000077697 00000 п. 0000077868 00000 п. 0000078078 00000 п. 0000078303 00000 п. 0000078487 00000 п. 0000078707 00000 п. 0000078919 00000 п. 0000079145 00000 п. 0000079354 00000 п. 0000079531 00000 п. 0000079753 00000 п. 0000079966 00000 н. 0000080141 00000 п. 0000080372 00000 п. 0000080543 00000 п. 0000080738 00000 п. 0000080915 00000 п. 0000081103 00000 п. 0000081300 00000 п. 0000081493 00000 п. 0000081674 00000 п. 0000081877 00000 п. 0000082057 00000 п. 0000082240 00000 п. 0000082415 00000 п. 0000082604 00000 п. 0000082798 00000 н. 0000082986 00000 п. 0000083182 00000 п. 0000083352 00000 п. 0000083529 00000 п. 0000083704 00000 п. 0000083870 00000 п. 0000084026 00000 п. 0000084182 00000 п. 0000084378 00000 п. 0000084567 00000 п. 0000084742 00000 п. 0000084898 00000 н. 0000085092 00000 п. 0000085263 00000 п. 0000085451 00000 п. 0000085629 00000 п. 0000085828 00000 п. 0000086016 00000 п. 0000086191 00000 п. 0000086383 00000 п. 0000086565 00000 п. 0000086753 00000 п. 0000086941 00000 п. 0000087138 00000 п. 0000087330 00000 п. 0000087509 00000 п. 0000087684 00000 п. 0000087868 00000 п. 0000088062 00000 н. 0000088233 00000 п. 0000088417 00000 п. 0000088592 00000 п. 0000088766 00000 п. 0000088950 00000 п. 0000089143 00000 п. 0000089314 00000 п. 0000089506 00000 п. 0000089686 00000 п. 0000089873 00000 п. 00000
00000 п. 00000 00000 п. 00000 00000 п. 0000090619 00000 п. 0000090796 00000 н. 0000090990 00000 н. 0000091179 00000 п. 0000091354 00000 п. 0000091543 00000 п. 0000091714 00000 п. 0000091902 00000 п. 0000092080 00000 п. 0000092268 00000 н. 0000092444 00000 п. 0000092628 00000 п. 0000092799 00000 н. 0000092980 00000 п. 0000093151 00000 п. 0000093331 00000 п. 0000093505 00000 п. 0000093682 00000 п. 0000093856 00000 п. 0000094037 00000 п. 0000094187 00000 п. 0000094365 00000 п. 0000094521 00000 п. 0000094671 00000 п. 0000094845 00000 п. 0000095016 00000 п. 0000095200 00000 н. 0000095384 00000 п. 0000095537 00000 п. 0000095718 00000 п. 0000095884 00000 п. 0000096058 00000 п. 0000096262 00000 п. 0000096433 00000 п. 0000096640 00000 п. 0000096821 00000 п. 0000097026 00000 п. 0000097229 00000 п. 0000097441 00000 п. 0000097644 00000 п. 0000097825 00000 п. 0000098034 00000 п. 0000098240 00000 п. 0000098448 00000 н. 0000098658 00000 п. 0000098836 00000 п. 0000099042 00000 н. 0000099251 00000 п. 0000099425 00000 н. 0000099633 00000 п. 0000099807 00000 п. 0000100019 00000 п. 0000100199 00000 н. 0000100343 00000 п. 0000100555 00000 н. 0000100763 00000 н. 0000100972 00000 н. 0000101179 00000 п. 0000101363 00000 н. 0000101571 00000 н. 0000101742 00000 н. 0000101945 00000 н. 0000102154 00000 п. 0000102350 00000 н. 0000102531 00000 н. 0000102738 00000 н. 0000102914 00000 п. 0000103118 00000 п. 0000103321 00000 п. 0000103499 00000 н. 0000103699 00000 н. 0000103891 00000 н. 0000104085 00000 п. 0000104282 00000 н. 0000104463 00000 н. 0000104654 00000 п. 0000104825 00000 н. 0000105018 00000 н. 0000105193 00000 п. 0000105371 00000 п. 0000105549 00000 н. 0000105734 00000 н. 0000105917 00000 н. 0000106093 00000 п. 0000106279 00000 н. 0000106464 00000 н. 0000106644 00000 п. 0000106832 00000 н. 0000107015 00000 н. 0000107206 00000 н. 0000107343 00000 п. 0000107527 00000 н. 0000107698 00000 п. 0000107845 00000 н. 0000108043 00000 н. 0000108196 00000 п. 0000108359 00000 н. 0000108531 00000 н. 0000108712 00000 н. 0000108903 00000 н. 0000109079 00000 п. 0000109253 00000 н. 0000109448 00000 н. 0000109623 00000 п. 0000109797 00000 п. 0000109989 00000 н. 0000110165 00000 н. 0000110360 00000 н. 0000110534 00000 п. 0000110712 00000 н. 0000110899 00000 н. 0000111075 00000 н. 0000111276 00000 н. 0000111447 00000 н. 0000111647 00000 н. 0000111821 00000 н. 0000112027 00000 н. 0000112226 00000 н. 0000112402 00000 н. 0000112605 00000 н. 0000112807 00000 н. 0000112981 00000 н. 0000113196 00000 н. 0000113372 00000 н. 0000113551 00000 н. 0000113750 00000 н. 0000113946 00000 н. 0000114145 00000 н. 0000114356 00000 н. 0000114530 00000 н. 0000114717 00000 н. 0000114921 00000 н. 0000115095 00000 н. 0000115299 00000 н. 0000115473 00000 н. 0000115684 00000 н. 0000115858 00000 п. 0000116034 00000 н. 0000116214 00000 н. 0000116420 00000 н. 0000116591 00000 н. 0000116767 00000 н. 0000116972 00000 н. 0000117148 00000 н. 0000117324 00000 н. 0000117533 00000 н. 0000117707 00000 н. 0000117881 00000 н. 0000118095 00000 н. 0000118301 00000 н. 0000118488 00000 н. 0000118691 00000 п. 0000118882 00000 н. 0000119085 00000 н. 0000119271 00000 н. 0000119477 00000 н. 0000119666 00000 н. 0000119873 00000 н. 0000120061 00000 н. 0000120265 00000 н. 0000120454 00000 н. 0000120662 00000 н. 0000120848 00000 н. 0000121050 00000 н. 0000121240 00000 н. 0000121449 00000 н. 0000121637 00000 н. 0000121836 00000 н. 0000122027 00000 н. 0000122227 00000 н. 0000122414 00000 н. 0000122619 00000 н. 0000122810 00000 н. 0000123009 00000 н. 0000123199 00000 н. 0000123397 00000 н. 0000123585 00000 н. 0000123785 00000 н. 0000123977 00000 н. 0000124182 00000 н. 0000124369 00000 н. 0000124543 00000 н. 0000124693 00000 н. 0000124892 00000 н. 0000125066 00000 н. 0000125240 00000 н. 0000125393 00000 н. 0000125569 00000 н. 0000125743 00000 н. 0000125899 00000 н. 0000126075 00000 н. 0000126249 00000 н. 0000126424 00000 н. 0000126590 00000 н. 0000126746 00000 н. 0000126902 00000 н. 0000127046 00000 н. трейлер ] >> startxref 0 %% EOF 17 0 obj> поток x ڬ OhU yoy3i-f ,, 32nL% I%! PP » o ^ Dw! 6kb Հ 9 TEx + dz89ЃG’V = ߗКак работает miniBOOSTER? — miniBOOSTER Hydraulics A / S
Высокоэффективное усиление
miniBOOSTER — это осциллирующие усилители.Они автоматически повышают давление в системе, повышая давление на выходе, и компенсируют потери масла на стороне высокого давления. Эта функция miniBOOSTER основана на запатентованной системе, как показано на анимации.
Базовая конструкция включает поршень низкого давления (LP), поршень высокого давления (HP) и бистабильный реверсивный клапан (BV1). Клапан сброса давления (DV) является дополнительной функцией.
Гидравлическая жидкость под давлением в системе подается в порт IN. Он свободно протекает через обратные клапаны KV1, KV2 и DV (если есть) через порт H.В этот момент весь поток проходит через усилитель, и цилиндр на стороне высокого давления H будет двигаться вперед с высокой скоростью. Когда цилиндр встречает сопротивление, давление на стороне высокого давления H увеличивается до уровня давления питания насоса. Это вызывает закрытие обратных клапанов KV1 и DV, и масло направляется в Том 1. Бистабильный клапан BV1 соединяет Том 2 с резервуаром через Том 3. Когда давление насоса подается на Том 1, поршни движутся вниз.
Когда поршень полностью опускается, подается питание Pilot Supply 1, заставляя бистабильный клапан BV1 изменять свое положение.Жидкость направляется в Том 2, перемещая поршни вверх, доставляя жидкость под более высоким давлением. Результирующее давление определяется отношением площади поршня низкого давления LP к площади поршня высокого давления (HP).
После того, как поршень высокого давления (HP) переместился вверх, Pilot Supply 1 подключается к резервуару, бистабильный клапан BV1 возвращается в исходное положение, и цикл повторяется до тех пор, пока не будет установлено необходимое конечное давление. В этот момент усилитель останавливается и возобновляет работу только для поддержания давления на стороне высокого давления H.
Давление может быть сброшено со стороны высокого давления через пилотный обратный клапан DV (если он есть). При подключении порта R к давлению питания и порта IN к резервуару, Pilot Supply 3 будет находиться под давлением, позволяя жидкости со стороны высокого давления H течь обратно в резервуар.
Разница между усилителем тормозов и вакуумным усилителем тормозов
Если у вас есть автомобиль, выпущенный после 1968 года, вполне вероятно, что у вас есть силовая тормозная система. Несмотря на то, что существует несколько эволюций этой жизненно важной операционной системы транспортного средства, основная предпосылка применения рычага, повышения гидравлического давления и трения по-прежнему остается фундаментальным процессом для замедления и остановки транспортного средства.Одна из наиболее часто неправильно понимаемых проблем — это понимание разницы между усилителем тормозов и вакуумным усилителем тормозов.
По правде говоря, усилитель тормозов и вакуумный усилитель тормозов — это одно и то же. В каждом из них используется вакуумное давление, помогающее подавать гидравлическую жидкость и использовать трение между тормозным ротором и колодками. Там, где существует путаница, называется система гидроусиления усилителя тормозов усилителем тормозов. Система Hydro-Boost устраняет необходимость в вакууме и использует прямое гидравлическое давление для выполнения той же задачи.
Для упрощения давайте разберем, как работает вакуумный усилитель тормозов в отличие от гидравлического усилителя тормозов, а также проведем несколько тестов для диагностики потенциальных проблем с обоими.
Как работает вакуумный усилитель тормозов?
Вакуумный усилитель тормозов получает мощность через вакуумную систему, прикрепленную к впускному коллектору двигателя. Вакуум распространяется через усилитель тормозов, который оказывает давление в гидравлических тормозных магистралях при нажатии педали тормоза.Эта система используется в вакуумном усилителе или усилителе тормозов. Вакуум, создаваемый двигателем, приводит в действие внутренний баллон, который передает усилие на гидравлические тормозные магистрали.
Обычно существует три источника отказа вакуумного усилителя тормозов:
В двигателе отсутствует вакуумное давление.
Усилитель тормозов не может поглощать или создавать внутреннее разрежение.
Сломаны внутренние детали, такие как обратный клапан и вакуумный шланг, внутри усилителя тормозов, которые не обеспечивают питание гидравлических линий.
Что такое услуга Hydro-Boost Power Assist?
Система гидроусиления работает почти так же, как и система на основе вакуума, но вместо того, чтобы полагаться на вакуумное давление, она использует прямое гидравлическое давление. Он приводится в действие насосом гидроусилителя рулевого управления и обычно выходит из строя одновременно с гидроусилителем рулевого управления. Фактически, это обычно первый индикатор отказа силового тормоза с гидроусилением. Однако эта система использует серию резервных копий для поддержания работы тормозов с усилителем в течение короткого периода времени в случае разрыва шланга рулевого управления с гидроусилителем или обрыва ремня рулевого управления с усилителем.
Почему усилитель тормозов называется вакуумным усилителем тормозов?
Усилитель тормозов разработан для обеспечения дополнительной мощности, помогающей задействовать тормоза. В основном из-за работы усилителя тормозов вакуумная система называется усилителем тормозов. Усилитель тормозов с гидравлическим приводом также часто ассоциируется с термином «усилитель тормозов». Чтобы узнать, какой тип усилителя тормозов используется на вашем автомобиле, обратитесь к руководству по эксплуатации вашего автомобиля.
В большинстве случаев этот вопрос задают, когда возникла проблема с вашей тормозной системой. Профессиональный механик может очень помочь в диагностике проблемы с вашей тормозной системой. Во время осмотра тормозной системы они выполнят несколько диагностических проверок, чтобы определить источник неисправности. Это включает усилитель тормозов. Если у вас есть вакуумная или гидравлическая система, они смогут определить проблему и порекомендовать лучшие запасные части и варианты ремонта, необходимые для возврата вашего автомобиля в дорогу.
Компоненты гидравлической тормозной системы
Без надлежащей тормозной системы невозможно управлять автомобилем. Тормозные системы позволяют автомобилю останавливаться или замедляться, прикладывая лишь небольшое усилие на педаль тормоза. Что бы это ни было, от велосипедов до самолетов, каждое транспортное средство, которое мы используем, должно иметь надлежащую тормозную систему. Электромагнитная тормозная система, сервотормозная система, механическая тормозная система, гидравлическая тормозная система, тормоза с АБС, и т. Д. — вот некоторые категории используемых тормозных систем.В последнее время у большинства автомобилей есть тормоза на 4 колеса для обеспечения безопасности во время вождения. Среди четырех тормозов, расположенных на передних колесах, важную роль в остановке автомобиля.
Здесь мы можем обсудить более подробную информацию о гидравлической тормозной системе , которая обычно используется в автомобилях.
В гидравлической тормозной системе используется гидравлическая жидкость (обычно тормозные масла, содержащие простые эфиры гликоля или диэтиленгликоль) для передачи усилия, прикладываемого к педали тормоза, на конечные колодки барабана или суппорт диска для остановки движущегося транспортного средства.Основные компоненты гидравлического контура тормозной системы — это главный и рабочий цилиндры, заполненные жидкостью. Когда водитель прикладывает усилие на педаль тормоза, жидкость в главном цилиндре проталкивается к рабочему цилиндру через подключенные тормозные магистрали. Когда жидкость попадает в рабочий цилиндр, шток поршня перемещается наружу и создает трение, которое заставляет колеса останавливаться. Это принцип работы гидравлического тормоза.
Также читайте: Компоненты гидравлической системы и их функции
Теперь следующая тема — какие компоненты используются в гидравлическом контуре тормозной системы.Ниже перечислены важные компоненты и их функции.
Педаль тормоза: Чтобы замедлить или остановить движение автомобиля, водитель прикладывает усилие к педали. Этот компонент, на который водитель нажимает ногой, называется педалью тормоза. Он соединен с главным цилиндром через механический шнур или тягу.
Главный цилиндр: Важный элемент каждой тормозной системы, преобразующий прилагаемое к педали усилие в гидравлическое давление.Основные функции главного цилиндра включают создание давления, выравнивание необходимого давления для торможения, предотвращение загрязнения воздуха и воды и т. Д. Компонентами главного цилиндра являются корпус, резервуар, поршень, резиновая чашка, обратный клапан давления и многое другое.
Колесный цилиндр: Колесные цилиндры отвечают за преобразование гидравлического давления в механическое давление, используемое для прижимания тормозных колодок к барабану. Ступенчатый колесный цилиндр и однопоршневой колесный цилиндр — это две основные категории колесных цилиндров.
Тормозные магистрали и шланги: Тормозные магистрали или шланги используются для передачи жидкости под высоким давлением между различными компонентами. В этих двух тормозные магистрали жесткие и построены с использованием стальных труб с двойными стенками. В то время как тормозные шланги гибкие, их можно перемещать.
Тормозная жидкость: Тормозная жидкость — это среда, передающая давление в колесные цилиндры.