Прямая и обратная полярность: Прямая и обратная полярность при сварке инвертором

Содержание

Прямая и обратная полярность при сварке инвертором

Сварку металлов постоянным током можно проводить двумя режимами: с прямой полярностью и обратной. Прямая полярность при сварке – это когда к электроду подключается минус, к металлической заготовке плюс. При сварке током обратной полярности все наоборот, то есть, к стержню подключается плюс, к изделию минус.

Зачем все это нужно

При сварке постоянным током на кончике электрода образуется термическое пятно, которое обладает высокой температурой. В зависимости от того, какой полюс подключен к электроду, будет зависеть и температура на его кончике, а соответственно будет зависеть режим сварочного процесса. К примеру, если подключен к расходнику плюс, то на его конце образуется анодное пятно, температура которого равна 3900С. Если минус, то получается катодное пятно с температурой 3200С. Разница существенная.

Что это дает.

  • При сварке током прямой полярности основная температурная нагрузка ложится на металлическую заготовку.
    То есть, она разогревается сильнее, что позволяет углубить корень сварочного шва.
  • При сварке током обратной полярности концентрация температуры происходит на кончике электрода. То есть, основной металл при этом нагревается меньше. Поэтому этот режим в основном используют при соединении заготовок с небольшой толщиной.

Необходимо добавить, что режим обратной полярности применяют также при стыковке высокоуглеродистых и легированных сталей, нержавейки. То есть, тех видов металлов, которые чувствительны к перегреву.

Внимание! Так как на анодном и катодном пятне температура разная, то от правильного подключения сварочного аппарата будет зависеть расход самого электрода. То есть, обратная полярность при сварке инвертором – это перерасход электродов.

В процессе сварки постоянным током необходимо добиться того, чтобы металл заготовок прогрелся хорошо, практически до состояния расплавленного. То есть, должна образоваться сварочная ванна. Именно прямая и обратная полярность режима сваривания влияет на качественное состояние ванны.

  • Если сила тока будут большой, а значит, и температура нагрева также будет высокой, то металл разогреется до такого состояния, что электрическая дуга будут просто его отталкивать. Ни о каком соединении здесь уже говорить не придется.
  • Если ток будут, наоборот, слишком мал, то металл не разогреется до необходимого состояния. И это тоже минус.

При прямой полярности внутри ванны будет создана среда, которой легко руководить электродом. Она растекается, поэтому одно движение стержня создает направленность сварного шва. При этом легко контролируется глубина сваривания.

Кстати, скорость движения электрода напрямую влияет на качество конечного результата. Чем скорость выше, тем меньше тепла поступает в зону сварки, тем меньше прогревается основной металл заготовок. Уменьшая скорость, увеличивается температура внутри сварочной ванны. То есть, металл хорошо прогревается. Поэтому опытные сварщики выставляют на инверторе ток больше необходимого. А вот качество сварного шва контролируют именно скоростью перемещения электрода.

Что касается самих электродов, то выбор полярности обусловлен материалом, из которого он изготовлен, или видом обмазки. К примеру, использование обратной полярности при сварке постоянным током, в которой применяется угольный электрод, приводит к быстрому расходу сварных стержней. Потому что при высоких температурах угольный электрод начинает разрушаться. Поэтому этот вид используется только при режиме прямой полярности. Чистый металлический стержень без покрытия, наоборот, хорошо заполняет сварочный шов при обратной полярности.

Глубина и ширина сварочного шва также зависит от используемого режима. Чем выше ток, тем происходит увеличение провара. То есть, увеличивается глубина сварного шва. Все дело в погонной энергии на дуге. По сути, это количество тепловой энергии, проходящей через единицу длины сварочного шва. Но увеличивать ток до бесконечности нельзя, даже в независимости от толщины свариваемых металлических заготовок. Потому что тепловая энергия создает давление на расплавленный металл, что вызывает его вытеснение. Конечный результат такой электросварки при повышенном токе – прожог сварочной ванны. Если говорить о влиянии прямой и обратной полярности при сварке инвертором, то большую глубину проплавки может обеспечить режим обратной полярности.

Некоторые особенности сваривания при прямой полярности

Что такое прямая полярность определено. Указаны некоторые качества сварных швов при проведении процесса соединения в режиме прямой полярности. Но остались некоторые тонкие моменты.

  • В сварочную ванну металл от электродов или присадочных материалов переносится большими каплями. Это, во-первых, большой разбрызг металла. Во-вторых, увеличение коэффициента проплавления.
  • При таком режиме электрическая дуга нестабильна.
  • С одной стороны снижение глубины провара, с противоположной снижение внедрения углерода в массу металла заготовки.
  • Правильный нагрев металла.
  • Меньший нагрев стержня электрода или присадочной проволоки, что позволяет сварщику использовать токи с более высоким значением.
  • При некоторых сварочных материалах наблюдается увеличение коэффициента наплавки. К примеру, при использовании плавящихся электродов в инертных и некоторых активных газах. Или при применении присадочных материалов, которые наносятся под флюсами некоторых типов, например, марки ОСЦ-45.
  • Кстати, прямая полярность влияет и на состав материала, оказавшегося в шве между двумя металлическими заготовками. Обычно в металле практически отсутствует углерод, но зато в большом количестве присутствует кремний и марганец.

Особенности сварки током обратной полярности

Сваривание тонких заготовок – процесс с повышенной трудностью, потому что постоянно присутствует опасность появления прожогов. Поэтому их соединяют режимом обратной полярности. Но есть и другие методы, чтобы снизить опасность.

  • Снизить потенциал тока, чтобы уменьшить температуру на заготовке.
  • Сварку лучше проводить прерывистым швом. К примеру, сделать небольшой участок в начале, затем переместиться в центр, после начать стыковку с противоположной стороны, далее начать варить промежуточные участки. В общем, схему можно менять. Таким способом можно избежать коробления металла, особенно если длина стыка больше 20 см. Чем больше сваренных отрезков, чем короче каждый участок, тем меньше процент коробления металла.
  • Очень тонкие металлические заготовки сваривают с периодическим прерыванием электрической дуги. То есть, электрод выдергивается из зоны сварки, затем тут же быстро снова поджигается, и процесс продолжается.
  • Если проводится сварка внахлест, то две заготовки должны быть герметично прижиматься друг к другу. Небольшой воздушный зазор приводит к прожогу верхней детали. Для создания плотного прилегания нужно использовать струбцины или любой груз.
  • При стыковочном соединении заготовок лучше минимизировать зазор межу деталями, а идеально, чтобы зазора не было бы вообще.
  • Для сварки очень тонких заготовок с неровными кромками под стык необходимо уложить материал, который бы хорошо забирал на себя тепло процесса. Обычно для этого используют медную пластину. Можно и стальную. В данном случае, чем больше толщина вспомогательного слоя, тем лучше.
  • Можно провести отбортовку кромок свариваемых изделий. Угол отбортовки — 180°.

Специалисты же рекомендуют, перед тем как начать сварку тонких заготовок обратной полярностью, лучше немного потренироваться на дефектном листе металла. Лучше потратите время на тренировку, чем латать дыры от прожога.

Поделись с друзьями

2

0

1

0

Что такое прямая и обратная полярность при сварке постоянным током

Качественное сварное соединение, при работе с аппаратами постоянного тока, во многом зависит от их настроек. Даже самый простой инвертор имеет не только настройки силы тока, но и полярности. Чаще всего, по умолчанию установлена прямая полярность при сварке и вы можете годами работать со своим инвертором, не зная всех его возможностей. Если у вас возникла необходимость сварить высоколегированную сталь или не получается добиться качественного шва, то знание всех тонкостей настроек вам просто необходимы. О том, какая бывает полярность и как она влияет на сварочные работы мы и поговорим.

Что такое прямая и обратная полярность

Сварка постоянным током подразумевает наличие гнезда, для подключения к “+” и “–” сварочного аппарата. В зависимости от того, куда подключена масса, а куда электрод и различают полярность.

  • Прямая полярность – схема подключения, при которой к плюсовому гнезду присоединяется масса, а к минусу – электрод. При этом род и полярность тока обуславливает существование анодного и катодного пятен. При таком подключении анодное(более горячее) образуется на стороне заготовки.
  • Обратная полярность – масса присоединена к минусу, а электрод к плюсу. На обратной полярности при сварке постоянным током анодное пятно с более высокой температурой, образуется на противоположной стороне, то есть – электроде.

Обратите внимание! Сварка переменным током подразумевает самостоятельное изменение полярности до сотни раз в секунду, поэтому в таких случаях соблюдать схему подключения не имеет смысла.

Чем обусловлен выбор полярности

Изменяя тип подключения, можно сконцентрировать нагрев или на свариваемой детали или на электроде (перемещая анодное пятно). За нагрев отвечает плюсовое гнездо, поэтому при прямом подключении, когда плюс присоединен к металлу наблюдается больший нагрев сварного соединения, а при обратной полярности больше греется электрод.

Благодаря этой особенности мы можем выбирать схему подключения исходя из:

  • Толщины металла. Если мы свариваем толстые детали или средней толщины, то подойдет прямое подключение, при котором тепло, сконцентрированное на изделии поможет получить более глубокий шов и качественный провар. Также этот вид подключения подходит для отрезания металлов различной толщины. Тонкие металлы лучше всего сваривать при обратной полярности, концентрируя большую часть тепла на электроде. Таким образом деталь не будет поддаваться перегреву, а сам электрод будет плавиться быстрей.
  • Типа металла. Возможность изменять локализацию теплового пятна помогает подобрать наиболее эффективные схемы работы для различных металлов. К примеру, если мы варим нержавеющие стали или чугун, то необходимо обратное подключение, помогающее избежать перегрева сплава и формирования тугоплавких соединений. Для алюминия необходимо прямое подключение иначе пробиться через окислы будет очень сложно. Перед началом работ внимательно изучите рекомендации по настройки аппарата к конкретному сплаву.
  • Типа электрода или проволоки. Как и металлы, электроды имеют свои особенности температурных режимов, в большей степени связанных с типом флюса. К примеру, для работы с угольными электродами нельзя использовать обратную полярность иначе флюс перегреется и электрод придет в негодность. Чтобы подобрать настройку, подходящую для вашего электрода смотрите на тип проволоки и флюса или воспользуйтесь рекомендациями производителя. Говоря о проволоках для полуавтоматов, то они тоже имеют рекомендации, относительно подключения минуса и плюса аппарата.


Теперь вы знаете, что может повлиять на настройки подключения. Бывают случаи, когда металл требует одних, а электрод совсем других настроек. В таких случаях следует искать компромиссы, подстраивая силу тока и рабочие циклы.

Запомните! Тип подключения не зависит от пространственного положения.

Особенности сварки током прямой полярности

Прямая полярность при работе с постоянным током имеет ряд особенностей. Некоторые из них, мы уже перечислили, на остальные стоит обратить особое внимание:

  • сварной шов получается глубоким, но достаточно узким.
  • подходит для большинства сталей, толщиной от 3-х мм.
  • цветные металлы с применением вольфрамового стержня варятся только прямой полярностью.
  • характеризуется стабильной дугой и как следствие – более качественным швом.
  • запрещено использовать электроды для сварочных аппаратов переменного тока.
  • лучше подходит для резки металла.

Особенности сварки током обратной полярности

Как и прямая, обратная полярность при сварке инвертором имеет ряд особенностей, зная которые вы сможете избежать ряда ошибок, свойственных новичкам. Стоит выделить такие особенности:

  • при сварке постоянным током на обратной полярности шов получается менее глубоким, но более широким
  • отлично подходит для сваривания тонких металлов и средней толщины. При работе с толстыми заготовками качество шва резко снижается.
  •  запрещено работать обратной полярностью с электродами, чувствительными к перегреву.
  • при низких токах наблюдается значительное снижение качества сварного шва из-за скачущей дуги.
  • помимо обратного подключения, для работы с высоколегированными сталями следует строго придерживаться рекомендаций о рабочем цикле и остывании заготовки.

Заключение

Сварочные аппараты постоянного тока, такие как инверторы или полуавтоматы – достаточно просты, чтобы использовать в быту. Именно поэтому спрос и предложение этих устройств на рынке постоянно растет. Этому способствует их доступность, дешевизна и постоянным током варить проще, чем переменным. Однако чтобы получить качественное, красивое и долговечное сварное соединение нужно знать ряд технологических особенностей, в том числе предназначение и виды полярности. Благодаря знаниям из этой статьи и источнику постоянного тока своими руками вы сможете выполнить любые сварочные работы. Главное – тщательный подход к работе и соблюдение всех защитных мер.

Прямая и обратная полярность при сварке инвертором

Правильное выполнение сварочных работ во многом зависит от выбранных настроек аппаратуры. В работе с полуавтоматическими установками важно не только правильно выбрать силу тока, но и установить нужную полярность. Заводская настройка (по умолчанию) не подходит для выполнения очень многих задач. Особенно, когда речь идет о соединении высоколегированной стали, цветных или редких металлов. Поэтому для получения сварочного шва хорошего качества необходимо должным образом настроить оборудование.

Как влияет полярность при сварке

Понятие полярность подразумевает определенный вариант подключения аппаратуры, который продиктован стоящей задачей и особенностями соединения определенных материалов. Для смены полярности достаточно просто «перекинуть» клеммы. После этого направление движения тока поменяется и, соответственно, изменятся физические процессы сваривания.

Существует только два варианта полярности, которые настраиваются перед работой:

  • Прямая. Выбирается в случаях, когда необходимо соединить два толстые детали, а швы должны быть глубокими. Заготовки в этом случае подключаются к положительной клемме, а электрод – к минусовой. Подключение прямой полярностью приводит к тому, что в процессе работы образуются катодные и анодные пятна. Более горячее из них – анодное – возникает на заготовке: именно к ней подключена плюсовая клемма. Из-за этого металл прогревается (а, следовательно, и плавится) на большую глубину. Это дает возможность работать с алюминиевыми, чугунными и другими деталями из сложных сплавов.
  • Обратная. В этом случае наоборот: электрод подключается к плюсовой клемме, а заготовка – к минусовой. Анодное более горячее пятно может образоваться только на расходнике. Данный вариант подключения хорош тем, что дает возможность работать с тонкостенными и легкоплавными металлами.

В зависимости от поставленных целей и материалов сварщик выбирает на инверторе тот или иной вариант полярности. Молодые специалисты, которые не изучали теоретическую часть, нередко испытывают проблемы при работе с металлами малой или большой толщины. Поэтому очень важно внимательно изучить техническую документацию, которая идет в комплекте с инвертором. И только после этого можно приступать к практической части.

Что такое прямая и обратная полярность: техусловия выбора

Основой для взвешенного выбора типа полярности служат технические условия, которых необходимо придерживаться во время сварки. Благодаря конкретному типу подключения более высокий температурный режим находится на заготовке или же на самом электроде. На окончательное решение влияют несколько важных факторов.

Толщина заготовки

Прямое подключение лучше всего подходит для работы с заготовками малой и большой толщины. В этом случае заготовка разогревается лучше по сравнению с электродом, что дает возможность получить более глубокий шов. Этот режим отлично подходит и для резки металла. Для тонких листов лучше выбрать обратную полярность. Тогда основное тепло сосредотачивается на электроде и перегрев заготовки удается предотвратить.

Читайте также: Сварка тонкого металла инвертором

Тип металла

Изменение расположения теплового пятна позволяет выбрать наиболее подходящий режим работы под конкретную деталь. К примеру, нержавеющую сталь или чугун достаточно легко перегреть. В этом случае лучше подходит подключение с обратной полярностью, что дает возможность сформировать прочный и надежный шов. А вот алюминиевые сплавы нужно варить с прямой полярностью. В таком случае удается быстрее преодолеть окислительную пленку.

Тип расходных материалов

Условия зависят от типа флюса расходного материала. Для угольных электродов не подходит обратная полярность. При таком раскладе флюс будет перегрет и стержень станет непригодным для дальнейшего использования. Бывают случаи, когда материал флюса и заготовки выдвигают взаимоисключающие требования. Сварщику приходится проявлять максимум изобретательности, чтобы найти оптимальное смещение силы тока и выбрать подходящий рабочий цикл.

Читайте также: Сварка инвертором для начинающих

Сварка прямой полярностью

Каждый из способов сваривания металла обладает индивидуальными характеристиками. При работе инвертором с подключением методом прямой полярности отмечаются такие особенности:

  • Расходные материалы и присадки расплавляются, образуя в ванночке крупные металлические капельки. Эта особенность приводит к возрастанию степени проплавления заготовки и увеличению количества брызг.
  • При прямом подключении наблюдается снижение стабильности сварочной дуги.
  • При прогреве не нарушается структура материала. Металлическая решетка остается неизменной.
  • В связи с тем, что температура расходного материала остается сравнительно невысокой, можно увеличить силу тока.
  • Некоторые сварочные материалы характеризуются высоким коэффициентом наплавки. Он тем более растет, если применять плавящиеся электроды в инертной среде. Точно такого же эффекта можно достичь в результате химической реакции присадок и некоторых видов флюса.
  • При прямой полярности структура материала в сварочной ванне характеризуется повышенным содержанием кремния и марганца при полном отсутствии углерода.

Читайте также: Рейтинг лучших сварочных инверторов

Сварка обратной полярностью

Метод применяется в обязательном порядке, если приходится работать с тонкими металлическими листами. Существует вероятность испортить заготовку: ее реально расплавить в месте соединения. Избежать такого результата можно, используя такие методы:

  • Уменьшение силы рабочего тока, что приводит к снижению температуры заготовки.
  • Формирование прерывистого сварочного шва. Сперва делается несколько прихватов по длине шва, которые впоследствии соединяются в одно целое. Схема может претерпевать изменения в зависимости от конкретных условий работы. Способ прерывистого шва дает возможность исключить деформацию рабочей поверхности. Особенно эффективен прием для швов длиной более 20 см.
  • Сваривание особо тонких заготовок прерывающейся сварочной дугой. Электрод уводится из рабочей зоны и, когда дуга прервалась, тотчас возвращается на место. Процесс получается практически непрерывным.
  • При сварке двух заготовок внахлест важно как можно плотнее прижать их одна к другой. даже минимальная воздушная прослойка может привести к прожиганию верхней части конструкции. Для более плотного прижима можно использовать струбцины или тяжелый груз.
  • Точно так же сваривание встык требует минимального зазора. Идеально, если его не буде вообще.
  • Тонкие заготовки с неровными краями соединяют с использованием подложки. Ее задача состоит в том, чтобы отвести избыточное тепло. Для этих целей лучше всего подходят толстые листы стали или меди.

Новичкам начинать практиковаться лучше с обратной полярностью. Это дает возможность уловить тонкости процесса и в дальнейшем не допускать прожогов или других дефектов.

Читайте также: Зависимость силы тока от диаметра электрода

Что значит прямая или обратная полярность аккумулятора

Что значит прямая или обратная полярность аккумулятора
        Понятие «полярность» определяет положение клеммных выводов аккумуляторной батареи. Самыми распространенными являются два ее вида – прямая и обратная. Далее разберемся, что такое прямая и обратная полярность аккумулятора, как ее определить, и также некоторые полезные советы.

        Аккумуляторы с прямой полярностью – еще разработка советских инженеров, отсюда и второе ее название. Применяется она на батареях, производимых на постсоветском пространстве. Ее особенность заключается в том, что «плюсовой» вывод установлен слева, а «минусовой» — справа на верхней крышке корпуса АКБ.
       
Обратная полярность – противоположность прямой. Ее используют в европейских странах, поэтому на иномарках применяется именно она. У такой полярности «плюс» расположен справа, а «минусовой» вывод – слева.
        Сразу отметим, что и не на всех европейских машинах устанавливаются АКБ с обратной полярностью. Некоторые модели, которые собираются в СНГ, могут комплектоваться аккумуляторами с прямой полярность. А вот на отечественных машинах, даже на самых последних моделях, используются батареи с прямой полярностью.
        Теперь о том, почему так важно знать, какая полярность АКБ нужна. Здесь все просто – провода для подключения к батарее имеют ограниченную длину, поэтому установка аккумулятора с неподходящей полярностью приведет к тому, что его просто невозможно будет подключить к бортовой сети, поскольку клеммы не будут доставать до выводов.

Как определить прямая или обратная?
Распознать, какая полярность у аккумулятора совсем несложно. Достаточно повернуть его «лицом» к себе, то есть, чтобы боковая наклейка была обращена в вашу сторону, а сами выводы располагались с ближней стороны. После этого просто смотрим, как расположены выводы: если «плюс» — слева, то прямая полярность, правое же его положение указывает на обратную.
                             

Но перед приобретением новой батареи важно учитывать не только полярность, но и само ее расположение в посадочном месте на авто. Ведь достаточно повернуть батарею на 180 град, чтобы поменять полярность аккумулятора, вот только выводы в таком случае будут с дальней стороны. А это уже может создать проблемы с подключением АКБ к бортовой сети, из-за того, что проводов будет нахватать или же что-то помешает накинуть и закрепить клеммы.
Что делать если перепутал полярность?

Бывает так, что батарея уже приобретена, но полярность ее не подходит, а возможности заменить на аккумулятор с нужным положением выводов нет. И все же ее можно подключить к сети авто.

Но для этого АКБ следует разместить так, чтобы «плюсовой» вывод располагался как можно ближе соответствующей клемме проводки (развернуть аккумулятор, немного сместить его в сторону). Важно сделать так, чтобы получилось подключить клемму к выводу батареи и закрепить ее.

Естественно, «минусовой» провод при этом доставать до вывода не будет, да это и не нужно. Далее берем длинный отрезок провода с хорошим сечением (можно использовать часть провода для «прикуривания»). Откручиваем «родной» массовый провод от кузова авто и заменяем его подготовленным отрезком. Закрепляем на конце клемму для подключения к АКБ и накидываем ее на вывод. Таким способом можно подключить к бортовой сети батарею с любой полярностью.

Прямая и обратная полярность при сварке инвертором, режимы сварки

Появление инверторных сварочных аппаратов значительно расширило область их применения. Этот тип работ стал доступен каждому домашнему мастеру. Но не всегда владельцы моделей знают особенности использования. В частности — зачем нужна прямая и в каких случаях применяется обратная полярность при сварке инвертором.

Основы использования инверторного сварочного аппарата

Этот тип оборудования предназначен для выполнения электродуговой сварки, с помощью которой можно соединять или разрезать стальные заготовки. Для применения необходимо определиться с основными параметрами – выбрать сварочный ток и тип электродов. Затем можно приступать к работе.

Общий порядок использования инвертора

  1. Подготовка поверхности материала – очистка от ржавчины и обезжиривание. Это необходимо для формирования надежного шва.
  2. Выбрать режим сварочного тока и электроды. Они зависят от характеристик металла, параметров будущего сварочного шва.
  3. Клемму массы (плюс) нужно соединить с поверхностью металла. Важно, чтобы она не мешала выполнению основных операций.
  4. К электродному держателю подсоединяется «минус».
  5. Формирование дуги. Это можно делать чирканьем или постукиванием электродом об металл в районе шва.
  6. После формирования соединения с помощью молотка необходимо снять окалину.

Этот порядок сварочных работ не учитывает форму соединения, ориентацию электрода. Подобные тонкости понадобятся для формирования особых видов сварочных швов.

Подобные виды сварочных швов важны для цилиндрических ёмкостей, таких как локальные очистные станции ЛОС, нефтегазовые сепараторы, строительные резервуары.

Как правильно выбрать модель

Использование режимов прямой и обратной полярности доступно для всех видов инверторов. Однако помимо этой функции аппараты должны обладать дополнительными характеристиками. От этого зависит область их применения, скорость и комфорт выполнения работ. Поэтому к выбору модели необходимо подойти профессионально.

Рекомендуемый функционал инверторов:

  • Горячий старт. Происходит кратковременное повышение тока для быстрого формирования дуги.
  • Антиприлипание. При высоких значениях тока велика вероятность его приваривания к металлу. Снижение этой величины позволит сформировать максимально ровный шов.
  • Форсаж. Активируется автоматически, когда на конце электрода появляется расплавленный металл. Кратковременное увеличение рабочего тока предотвратит прилипание.
  • Переменный ток. Он необходим для сварочных работ с алюминиевыми заготовками.
  • Пониженное значение холостого хода. Относится к мерам безопасности при эксплуатации в местах с повышенной влажностью или небольших помещениях. С помощью специального блока происходит снижение напряжения до 15 В.
  • Тип индикации. Оптимальный вариант – цифровое отображение текущих параметров.

Также важно выбрать ток сварки, который напрямую зависит от диаметра используемого электрода и толщины металла.

При работе с инверторными сварочными аппаратами чаще всего используют электроды марки АНО и МР. Они подходят для формирования шва на стальных поверхностях. Сварка алюминиевых изделий или заготовок из сложных сплавов требует выбора специальных расходных материалов, могут использоваться присадки.

Когда применяется прямая и обратная полярность

Изменение полярности при работе обусловлено протекающими процессами. Помимо выбора основных параметров сварки можно поменять подключаемые клеммы местами. Ток идет от отрицательного элемента к положительному. В результате этого происходит нагрев первого.

Подобные операции рекомендуются в следующих случаях:

  • Прямая полярность – к электроду подключен «минус», к металлу «плюс». Происходит нагрев поверхности последнего. Подобный режим необходим для обработки глубоких швов при большой толщине заготовки.
  • Обратная полярность – электрод подсоединен к «плюсу», металл к «минусу». Возникает обратный процесс – нагрев электрода при холодном металле. Это нужно для обработки тонкостенных заготовок, но приводит к быстрому выгоранию электрода.

Применение того или иного режима зависит от поставленных задач. Простота смены клемм позволяет выполнять эти операции при обработке одной заготовки.

Прямая и обратная полярность при сварке: выбор режима, подключение

Полярность тока является одним из основных параметров, определяющих особенности сварки металлических конструкций. Этот параметр влияет на температуру стержней с электропроводным материалом. При обработке изделий током с прямой или обратной полярностью важно учитывать основные схемы подключения, толщину заготовок и технические параметры электродного стержня.

Полярность при сварочных работах

При ручной дуговой сварке подача присадочной проволоки осуществляется в автоматическом режиме. Сваривание деталей по технологии РДС осуществляется при постоянном токе. К клеммам сварочного инвертора нужно подключить кабели массы и электрода. Они обозначаются знаками “+” и “-“. Полярность определяет способ подсоединения проводов к клеммным колодкам полуавтомата. Этот этого параметра зависит характер движения элементарных частиц, что воздействует на сварочный процесс. Если полуавтоматический прибор для сварки функционирует при переменном токе, то сварщик не сможет поменять полярность

При сварке с прямой полярностью кабель с электродным стержнем соединяется с контактом “минус”, провод с прищепкой – с разъемом “плюс”. Температура на концах электрического инвертора достигает 1000 °C. При переходе на обратную полярность провода с электродом и прищепкой нужно поменять местами. Температура на концах электродного стержня повысится до 4000 °C. Смена полярности позволяет контролировать температурный режим обрабатываемых заготовок.

Изменять местоположение кабелей необходимо при обработке легированных изделий. Полярность меняется при различных функциональных режимах сварочного аппарата. Они определяются размерами и материалом изготовления свариваемых изделий. Прямое подключение кабелей используется при проведении сварочных работ на открытом воздухе. В данных условиях детали соединяются с применением трубчатой нити из алюминия, заполненной порошкообразным веществом. В этих условиях можно сваривать толстые металлические пластины.

Смена местоположения кабелей осуществляется при следующих условиях:

  1. При наличии защитных газ, предназначенных для изолирования металлов от воздействия оксидов и ускорение нагрева дуги.
  2. При использовании флюсовых присадок, необходимого для создания однородного диффузного слоя.

При прямой и обратной полярности формируются анодные и катодные пятна. Анодное облако является наиболее горячим. Его температура может достигать 800 °C. Через пятна проходит электроток. В этих областях наблюдается низкое напряжение, что обусловлено местоположением сварочной дуги.

Смена полярности позволяет сварщику увеличить глубину сварочного шва и обрабатывать конструкции с шириной менее 0,3 см. Сварка на прямой и обратной последовательности предоставляет возможность регулировать расположение дуги, что снижает скорость нагрева свариваемых изделий.

Выделяют следующие особенности сварки MMA с прямой полярностью:

  1. Позволяет получить прочный, узкий и глубокий сварочный шов.
  2. Облегчает сварку изделий, в составе которых отсутствует железо, и деталей толщиной более 0,3 см.
  3. Стабильность и устойчивость электрической дуги к срывам.
  4. Сварка невозможна, если применяются металлические стержни с электропроводным материалом, работающих при переменном токе.
  5. Высокое качества раскройки обрабатываемых заготовок.
  6. Воздействует на химический состав свариваемых изделий.
  7. Высокой коэффициент наплавки при нагревании сварочной дуги в аргоновой или гелиевой среде.
  8. Низкие темпы нагрева стержня электрического проводника или присадочной проволоки. Благодаря этому свойству при сварке модно применять инверторы, функционирующие при высокочастотных токах.
  9. Снижает процент внедрения карбона в массу свариваемого изделия.

РДС сварка при обратном подключении обладает следующими отличиями:

  1. Большая толщина и низкая глубина шва.
  2. При соединении тонких пластин их поверхность не деформируется.
  3. Нестабильность дуги, поэтому для сварки нельзя применять инверторы, работающие на невысоких токах.
  4. Низкий риск прожога поверхности металла, что обусловлено отбортовкой свариваемых поверхностей.
  5. При сваривании нельзя использовать стержни, разрушающихся при воздействии высоких температур.
  6. Требует минимизации зазора между свариваемыми частями.
  7. Низкий потенциал напряжения электротока.
  8. Сварка производится прерывистым швом.

При неправильном выборе полярности заготовки могут частично расплавиться, что приведет к возникновению кипящих брызг в сварочной ванне.

Подключение по схеме прямой полярности

При сварке током прямой полярности клеммная колодка “+” соединяется с обрабатываемым изделием. Подключение электродного стержня к контакту “-“ осуществляется через дуговой промежуток. При сварке с прямой полярностью электрический проводник будет нагреваться медленнее, чем металл. Поэтому температура между ними отличается на 700 °C. Во время сварки с постоянным током обратной полярности концы электродного стержня будут нагреваться сильнее поверхности заготовки. При прямом подключении роль катода исполняет электрод, обрабатываемые детали выступают в качестве анода.

Образование сварочной ванны – основная задача при сварке током прямой полярности. Для этого нужно прогреть заготовку до температуры плавления. При повышении силы электротока детали будут отталкиваться от сварочной дуги, что не позволит плотно соединить детали. При сварке с прямой полярностью требуются приборы, работающие при высокочастотных токах.

Подключение по схеме обратной полярности

При сварке постоянным током обратной полярности кабель с электродным стержнем необходимо подсоединить к “плюсу” инвертора, кабель на металл – к “минусу” инвертора. В этом случае роль катода выполняют поверхности заготовок, электрод становится анодом. В результате образуется рассеянная зона контакта между электрической дугой и свариваемым металлом. При сварке с обратной полярностью точка максимального разогрева размещается на металлическом стержне. В результате увеличивается глубина проплавки металлической поверхности.

Выбор режима полярности

Выбор полярности зависит от следующих факторов:

  1. Возможность прожога обрабатываемых заготовок.
  2. Наличие легированных сталей или нержавеющих сплавов железа в составе свариваемых изделий.
  3. Вероятность соединения металлических пластин малой толщины.

При смене полярности необходимо учитывать, что на аноде выделяется большое тепловой энергии, чем на катоде. Изначально сварочные аппараты работают по схеме прямого подключения. Сварщику необходимо изменять местоположение кабелей с электродным стержнем и прищепкой на металл при сваривании конструкций с разным поперечным сечением и толщиной. Для выбора правильного режима подключения проводников, необходимо учитывать следующие характеристики, определяющие особенности сварки:

  1. Расстояние между верхними и нижними поверхностями заготовок: основной фактор, воздействующий на структуру шва во время сварки постоянным током. При обработке толстых изделий необходимо прожечь поверхностью металлов. Это позволит увеличить площадь соприкосновения, что позволит сварной проволоке заполнить пустоты в поверхностях заготовок. В этом случае необходимо использовать сварку с прямой полярностью. Если нужно обработать изделия малой толщины, то нужно подавать отрицательный заряд на металл, положительный – на стержень электрода. Иначе на месте сварки могут образоваться небольшие отверстия или неровные швы.
  2. Сила тока: этот параметр определяет степень прогрева металла и электродов. Чем сильнее электроток, подаваемый сварочным инвертором, тем интенсивнее происходит процесс горения дуги. Сила тока зависит от расположения свариваемой поверхности. Если заготовка размещена горизонтально, то данный показатель уменьшается на 15%.

Также для определения полярности нужно знать материал изготовления обрабатываемой заготовки, ее толщину и параметры электродного стержня. Определить эти показатели можно в руководстве к сварочному прибору. В нем производитель оборудования указывает обстоятельства для смены полярности.

Толщина края металлической заготовки

Сваривание конструкций с толстыми краями необходимо подключать клеммы инвертора по схеме прямой полярности. В данных условиях дополнительное тепло будет концентрироваться в местах плавки. Это способствует увеличение глубины сварочного шва. Поверхности деталей смогут плотно соединиться без деформации. При обработке тонкого металла необходимо применять обратную полярность. Края детали во время сварки не должны перегреваться. Иначе снизятся качество шва и прочность соединения.

Разновидность металла

При обработке металлических поверхностей из разных материалов необходимо соблюдать следующие правила:

  1. Изделия из алюминия свариваются при прямом подключении. Алюминиевые детали имеют высокую теплопроводность и небольшой вес. Отличительным свойством этого металла является высокая степень окисления. Поэтому при сварке на алюминиевых заготовках формируется пленка. Она не позволяет деталям плотно соединиться. Прямая полярность снижает число образующихся окислов и образует сварочную ванну до появления оксидной пленки. При обработке рекомендуется использовать инертные газы. Они f линейного расширения и литейной усадки, высоким коэффициентом теплопроводности и низкой устойчивостью к межкристаллической коррозии. Эти свойства увеличивают риск сквозного проплавления и деформации металла. Поэтому детали из сплавов железа не требуют дополнительного тепла. При изменении полярности во время сварки рекомендуется использовать инверторы, поставляющие электричество с низкой силой тока.

Цветные металлы необходимо плавить при помощи электродных стержней из вольфрама по схемам прямой полярности.

Тип электрода

Для определения полярности необходимо учитывать основные характеристики электрода: разновидности анодного пятна, разновидность флюса и температура. Выделяют следующие виды электрических проводников в зависимости от технических характеристик:

  1. ЦЛ-11: применяются при сварке по схемам обратной полярности. Эти электроды способны обрабатывать поверхность металлов из плотной нержавеющей стали и иных сплавов железа с высокой устойчивостью к воздействию коррозии. Они обеспечивают высокое качество шва без разрушения защитного слоя металла. Электродные стержни ЦЛ-11 покрываются специальным раствором из фосфора и калия. Он защищает сварочный шов от негативного воздействия окружающей среды. Электрические проводники ЦЛ-11 нужно хранить в сухих помещениях. При их эксплуатации рекомендуется использовать короткие дуги, что обеспечивает лучшую проплавку металла.
  2. НИАТ-1: применяются для соединения деталей небольшой толщины при подключении кабелей по схеме обратной полярности. Эти электроды обладают антикоррозийными свойствами. Они устойчивы к большим нагрузкам. Данные проводники увеличивают прочность сварочного соединения. В состав электрических проводников НИАТ-1 входят магний, молибден, углерод, никель и силикаты. Эти химические элементы обладают невысоким коэффициентов наплавки (до 10 г/Ач), что увеличивает производительность электрода. Перед эксплуатацией электрических проводников рекомендуется подвергнуть их термической обработке в специализированных печах. Прокалку электродов необходимо проводить в течение 1 часа.
  3. ОЗЛ-8: используются при обработке цветных металлов током прямой полярности. Они могут функционировать в рабочей среде с температурой ниже 1000°C. Эти электрические проводники имеют антикоррозийные свойства. Поэтому они могут применяться для обработки легированных сталей. Электродные стержни ОЗЛ-8 изготавливаются на основе небольшого стержня из сварочной проволоки диаметром до 5 мм. Коэффициент наплавки данных электрических проводников составляет не более 13 г/Ач, предел текучести – 400 МПА. Для наплавки 1 кг сварочного шва требуется 600 г электродов ОЗЛ-8.

При использовании электродов необходимо соблюдать следующие правила:

  1. Перед процессом сваривания металлических деталей тщательно очистить стержни электрического проводника.
  2. Обработать свариваемые детали химических раствором, защищающим их поверхность от пыли и иных видов загрязнений. Он также придает металлу блеск.
  3. При использовании новых электродов нужно предварительно осуществить их прокалку в специальных сушильных печах.
  4. В процессе сваривания заготовок требуется держать электродный стержень перпендикулярно оси сварочного шва.
  5. Держать электрическую дугу на расстоянии 3 мм от свариваемых кромок.
  6. Во время сварки нельзя совершать резкие рывки. В противном случае изменится рисунок шва.
  7. Чтобы избежать образования пористых поверхностей, необходимо очистить обрабатываемые изделия от шлаков и остатков расплавленного электрода.
  8. Нельзя допускать резкое понижение температуры электрического проводника. Иначе инструмент может частично деформироваться.

Нюансы эксплуатации электродов при разных полярностях указаны в инструкциях, составляемых при изготовлении этих инструментов. Они публикуются на официальных сайтах производителей электрических проводников.

Прямая и обратная полярность при сварке

Сварка металла – процесс, который на первый взгляд может показаться довольно простым. Многие умельцы варят для домашних нужд, но увидеть качественный, красивый шов можно не так уж часто. Более того, в частной практике никто не проверяет крепость соединения на соответствие стандартам. Вопрос встает ребром, когда возникают определенные трудности, например, прожог листа, расхождение шва. Вот тут и нужно знать тонкости процесса – прямую и обратную полярность.

Что означает полярность при сварочных работах

В инверторных сварочных аппаратах для обозначения полярности используются надписи

Рассматривая вопрос полярности, понятно, что сварка в этом случае осуществляется током постоянного напряжения. Клеммы сварочного инвертора, куда подсоединяются силовые кабели держателя электрода и массы, обозначены значками «+» и «-». Обычно, подключая такой прибор и начиная его эксплуатировать, многие, руководствуясь инструкцией или рекомендациями знакомого специалиста, не задумываются, почему на конкретную клемму вешают именно этот, а не другой провод.

А разница все-таки есть, и здесь сокрыт недвусмысленный физический закон движения заряженных частиц – электронов. Электроны, обладая отрицательным зарядом, всегда движутся от минуса к плюсу в любой схеме, включая инвертор. При сварке можно подключить электрод как к плюсовой клемме, так и к минусовой – все будет работать. Но электроны в том и другом случае будут двигаться в разных направлениях по цепи, это отразится на процессе и конечном результате.

Подключение по схеме прямой полярности

Если схему собрать так, что плюс от инвертора идет на стальную заготовку (свариваемая деталь), потом через дуговой промежуток, сварочный электрод к минусу инвертора, то такое соединение получило название прямой полярности при сварке. В этом случае анодом выступает деталь, а катодом — электрод. Место соединения на детали будет греться сильнее, чем кончик электрода, приблизительно на 700 градусов по Цельсию.

Подключение по схеме обратной полярности

Схема подключения кабелей аппарата для сварки, когда плюс от инвертора приходит на сварной электрод, потом через дуговой промежуток попадает на рабочую деталь и минус инвертора, получила название обратной полярности при сварке. Здесь уже электрод будет греться сильнее, так как анодное пятно будет на нем, катодное – в области соединения стальных заготовок.

Выбор режима

Правильный выбор полярности при подключении сварочного оборудования может зависеть от нескольких факторов. Но самое главное для специалиста — усвоить, что на аноде, а это «+» всегда выделяется больше тепла (до 4000 градусов по Цельсию) чем на катоде (чуть больше 3000 градусов).

Виды сварочной дуги при сварке электродами

Это отправная точка дальнейшего анализа: толщина стали, марка, вид металла, тип сварочного электрода. В случае неответственной конструкции, возможно, будет лишним обращать внимание на полярность сварки.

Толщина заготовки – основной фактор, когда необходимо следить за полярностью. Более толстый материал в месте стыка нужно сильнее прогреть, чтобы частицы его взаимно проникли на большей площади соприкосновения, а пустоты заполнились металлом сварной проволоки – это надежность шва. Тонкий металл нельзя сильно греть, иначе можно получить дырку, некрасивый неравномерный сварной шов.

Когда сварке подвергают такие сплавы как чугун или нержавейка, то перегрев этих материалов может привести к образованию тугоплавких соединений, что нежелательно. Сплав алюминия требует мероприятий по удалению окислов, и хороший прогрев идет только на пользу. В сварочной литературе по каждому виду металла есть рекомендации об оптимальных методах и режимах работы с ним.

Покрытие электродов специальным флюсом тоже рассчитано на работу в определенных режимах. Угольный электрод для электросварки не имеет стойкости к перегреву, поэтому обратная полярность ему противопоказана. Сварная проволока полуавтоматических аппаратов более лояльна к выбору полюсовки, но каждый производитель дает на продукцию свои рекомендации по использованию.

Особенности сварки при использовании прямой полярности

Работая сварочным аппаратом постоянного тока и применяя способ подключение схемы прямой полярности, следует учитывать такие особенности процесса:

  • Шов сварочного соединения — глубоко проникающий, узкий по ширине, более крепкий по качеству;
  • Можно варить практически все типы сталей, толщина которых начинается от трех миллиметров и выше;
  • При использовании вольфрамового стержня для цветных металлов можно применять только метод прямой полярности при сварке;
  • Сварная дуга отличается стабильностью, устойчивостью к срывам, в результате чего легче контролировать процесс работы и получить красивый шов;
  • Для работы таким методом не подходят электроды, рассчитанные на использование в сварке переменным током;
  • При использовании сварочного аппарата в качестве резака, заготовка легче поддается раскройке.

Особенности обратной полярности при сварке

Сварка металла при таком способе подключения оборудования имеет следующие характеристики:

  • Шов сварочного соединения менее глубок по проникновению в металл, с более выраженной шириной;
  • Метод наиболее подходит для соединения средних по толщине заготовок либо тонких листов металла;
  • При операциях с толстыми заготовками наблюдается хрупкость шва под воздействием нагрузок;
  • Для работы не подходят электроды, структура которых разрушается при перегреве;
  • Электрическая дуга отличается меньшей стабильностью, особенно в режиме работы на низких токах, что ведет к неравномерности соединения;
  • Осуществляя сварку высоколегированных сталей, необходимо строго выполнять технологический процесс рабочего цикла.

Плюсы и минусы разных методов сваривания деталей

Говоря о плюсах и минусах прямой и обратной полярности сваривания, нужно понимать, что неправильный выбор режима проявит все отрицательные стороны процесса. Толстый металл при отрицательной полярности будет слабо греться, шов получится поверхностным, придется обваривать деталь с двух сторон, что увеличит материальные и временные затраты.

Тонкий металл при положительной полярности потечет, начнет прожигаться электродом, кипящие брызги из сварочной ванны будут загрязнять поверхность изделия и требовать дополнительных усилий по их устранению.

Если же все учесть правильно, то минусы обратятся в плюсы, процесс сварки будет несложным для выполнения и радовать глаз результатом.

Видео по теме: Прямая и обратная полярность при работе инверторным аппаратом

Разница между прямой и обратной полярностями при дуговой сварке

Источники питания для дуговой сварки могут подавать как переменный, так и постоянный ток, либо обе формы тока. В случае полярности постоянного тока ток течет только в одном направлении; тогда как в случае переменного тока направление тока меняется на противоположное в каждом цикле (количество циклов в секунду зависит от частоты питания). Теперь при дуговой сварке основные металлы соединяются с одной клеммой, а электрод — с другой клеммой. При наличии достаточной разности потенциалов непрерывный поток электронов между ними через небольшой зазор образует дугу (основной источник тепла при дуговой сварке).В зависимости от подключений питание постоянного тока может обеспечивать две полярности, как показано ниже:

  • Прямая полярность постоянного тока (DCSP) или отрицательный электрод постоянного тока (DCEN) —Когда электрод подключается к отрицательной клемме источника питания, а основные металлы подключаются к положительной клемме.
  • Обратная полярность постоянного тока (DCRP) или Положительный электрод постоянного тока (DCEP) — когда неблагородные металлы подключены к отрицательной клемме источника питания, а электрод подключен к положительной клемме.

И прямая полярность постоянного тока, и обратная полярность постоянного тока имеют свои плюсы и минусы. Разница между прямой полярностью постоянного тока (DCSP) и обратной полярностью постоянного тока (DCRP) представлена ​​в таблице ниже. Для лучшего понимания вы можете прочитать:

Прямая полярность Обратная полярность
Электрод подключается к отрицательной клемме источника питания, а неблагородные металлы — к положительной клемме. Недрагоценные металлы соединяются с отрицательной клеммой источника питания, а электрод — с положительной клеммой.
При достаточной разности потенциалов электроны выходят из кончика электрода и ударяются о поверхность базовой пластины. Здесь электроны освобождаются от поверхности пластины основания и ударяются о кончик электрода.
2/3 rd общего тепла дуги генерируется около опорной пластины, а остальное — на кончике электрода. 2/3 rd всего тепла дуги генерируется на кончике электрода, а остальное — около опорной пластины.
Правильное сплавление основного металла достигается легко. Так устраняется неплавление и непровара. Из-за меньшего тепловыделения возле опорной плиты может произойти неполное сплавление опорной плиты.
В случае расходных электродов скорость осаждения присадочного металла довольно низкая. Скорость осаждения присадочного металла довольно высока, поскольку большая часть тепла выделяется на конце электрода.
Напряжение дуги и стабильность дуги не зависят от излучательной способности рабочего материала. Напряжение дуги и стабильность дуги в значительной степени зависят от излучательной способности рабочего материала.
Слабое действие дуговой очистки (очистка от оксидов). Дуга очистки хорошая.
Включения могут возникнуть, если поверхности опорной плиты не были должным образом очищены перед сваркой. Благодаря хорошему очищающему действию дуги снижается склонность к дефектам включения.
DCSP может вызвать сильную деформацию и более широкую ЗТВ в свариваемом компоненте. Искажения меньше с DCRP, а также HAZ узкая.
DCSP не подходит для сварки тонких листов. DCSP подходит для сварки тонких листов.
Металлы с высокой температурой плавления (например, нержавеющая сталь, титан) могут подходящим образом соединяться с помощью DCSP. Металлы с низкой температурой плавления (например, медь, алюминий) можно соединять с помощью DCSP.

Переключатель обратной полярности DPDT

Простая замена

На большинстве элементов батареи, если вы поместите батарею неправильно, она не будет работать. На некоторых предметах это может повредить электронику, а на других может произойти разные вещи.

Например, если мы подключим положительный и отрицательный полюсы этой батареи к простому щеточному двигателю постоянного тока, двигатель будет вращаться в определенном направлении (возможно, по часовой стрелке).Это связано с тем, что электрический ток проходит через катушку внутри двигателя и вступает в реакцию с закрытыми магнитами (это не то же самое с бесщеточными , асинхронными двигателями , но здесь это не рассматривается).

Теперь, если мы поменяем местами эти соединения, двигатель вращается в направлении , противоположном направлению (против часовой стрелки). Почему? Потому что мы изменили способ протекания электрического тока в катушке двигателя. Мы поменяли полярность…

И это вкратце … обратная полярность меняет положительное на отрицательное, а отрицательное на положительное.

Лучший способ

С моими гусеничными гусеничными двигателями было бы непрактично вручную менять местами подключения аккумулятора, пытаясь управлять им, поэтому вместо этого я использовал пару переключателей.

Переключатели DPDT

Мы можем добиться обратной полярности более контролируемым образом, просто используя переключатели DPDT, что означает «двухполюсный двойной ход». У них обычно есть вкл.-Выкл. настроек. Это, если мне не изменяет память, позволяет им управлять четырьмя независимыми цепями, я думаю … но давайте не будем об этом беспокоиться.

Тумблер DPDT. 3 положения ВКЛ — ВЫКЛ — ВКЛ. 6 клемм снизу

Самое замечательное в этих дешевых, легко доступных переключателях то, что они могут менять полярность . Они могут сделать за нас всю эту битву по замене проводов.

Для этого вам необходимо подключить переключатели определенным образом…

Вид снизу переключателя DPDT — обратите внимание на пересечение оконечных клемм

. Здесь вы смотрите на нижнюю сторону переключателя, где находятся клеммы.На первый взгляд это может показаться немного запутанным, но на самом деле все очень просто.

Вход — это аккумулятор, поэтому красный провод (положительный) и синий провод (отрицательный) подключаются к соответствующим клеммам аккумулятора, а затем к концевым клеммам переключателя (не имеет значения, какой конец или какой вывод). Теперь посмотрите, как красный и синий провода пересекаются друг с другом и соединяются с двумя другими концевыми выводами — их напротив концевых выводов . Если вы помните этот простой крест, вы можете подключить один из этих переключателей.Выходной сигнал берется с двух центральных клемм переключателя (зеленый и желтый на моей схеме, но цвет не имеет значения). Полярность зеленого и желтого проводов определяется тем, какой конец вы подключили первым, или текущим положением переключателя. Но не бойтесь … Нажатие переключателя изменит полярность.

Это так просто … щелкните в одну сторону: зеленый — положительный, желтый — отрицательный. Щелкните другой, желтый — положительный, зеленый — отрицательный!

Переключатель DPDT, вид снизу — 1) Положительный вход от батареи, подключенный к противоположным концевым клеммам.2) Отрицательный вход подключен к противоположным концевым клеммам. 3) Центральные клеммы подключены к устройству — например, к двигателю постоянного тока. При нажатии переключателя устройство принимает положительный / отрицательный или отрицательный / положительный сигнал в зависимости от положения переключателя Вид снизу переключателя DPDT — начало подключения кроссовера — подключена противоположная конечная клемма

Рулевые пути с переключателями DPDT

Как я уже сказал, мои гусеницы приводятся в движение двумя моторами. Например, когда один двигатель идет полностью вперед, а другой полностью перевернут, модель начинает вращаться — гусеницы, которыми славятся гусеницы с нулевым поворотом.

Итак, для управления каждой дорожкой я использовал переключатель DPDT. Вот упрощенная схема:

Управление двумя двигателями (гусеницами) с помощью переключателей DPDT

Это действительно так просто, как кажется. Это позволило мне создать очень простую панель управления:

Простая панель управления с двумя переключателями DPDT — не лучшая фотография, которую я знаю, но вы можете видеть кроссовер на

. Итак, у вас есть это … изменение полярности переключателем.

Предупреждение

Теперь пришло время признаться … пока я делал это, я бы не рекомендовал его для больших двигателей (как я использовал), кроме как строго для тестирования.Большие двигатели потребляют много тока. Когда их быстро переносят из одного направления в другое, они могут потреблять огромное количество тока — до двадцати раз больше, чем я где-то читал. По этой причине в идеале необходимо использовать регулятор скорости. Это электронное устройство, специально разработанное для борьбы с этими пиками тока и безопасного обращения с ними. Это не только безопаснее для вас, но и поможет избежать взрыва ваших дорогих двигателей. Я больше говорю о контроллерах скорости на странице Radio Control (которые я позже добавил к своим трекам).

Эта схема переключателя DPDT подходит для крошечных двигателей, но для более крупных — нет. Да, я использовал его — , но только для тестирования … а я немного глуповат . Я старался не менять направление резко, чтобы предотвратить накопление тока, но на самом деле, вероятно, лучше не делать этого без регулятора скорости. Вас предупредили …

С учетом сказанного, переключатель DPDT — действительно полезная вещь, о которой нужно помнить. Время от времени это пригодится.

Что такое обратная полярность? | Путевая точка

Обратная полярность — это когда розетка подключена в обратном направлении.Это происходит, когда «горячий» провод, также известный как черный или красный провод, подключается к нейтральной стороне, а нейтральный провод подключается к «горячей» стороне. Глядя на изображение выше, тестер розеток показывает именно это.

Пока цепь все еще замкнута, это может создать опасную ситуацию.

Как работает розетка или светильник

Прежде чем понять, чем опасна розетка с обратной полярностью, мы должны понять, как работает обычная розетка.

Когда розетка подключена, правая сторона обычно является горячей стороной, на которой черный провод достигает розетки.Это всегда будет сторона выпускного отверстия с меньшей выемкой.

Затем на противоположной стороне нейтральный провод ожидает замыкания цепи через вилку или лампочку. Это всегда будет большая выемка на выходе.

Теперь, если, скажем, лампа должна быть включена в розетку, горячий провод идет к лампе, а выключатель лампы либо включает, либо выключает свет. Поэтому в патрон лампы не поступает питание, если выключатель выключен. Как только переключатель активирован, световая розетка может замкнуть цепь, посылая электричество на нейтральный провод.

Взгляните на диаграмму ниже:

Почему опасна обратная полярность?

Когда розетка подключена в обратном направлении, горячий провод теперь находится на предполагаемой нейтральной стороне. Таким образом, если вы подключите ту же лампу, как указано выше, розетка лампы будет иметь питание, даже если переключатель находится в выключенном состоянии, поскольку переключатель находится только на горячей стороне. Все, что нужно, — это замкнуть цепь, прикоснувшись к металлу и послав электричество на «землю».

Взгляните на диаграмму ниже:

Reverse Polarity влияет не только на лампы, но и на тостер.Скажем, например, ваш тостер был включен в розетку с обратной проводкой. Если бы вы воткнули нож в тостер, чтобы достать тост, вы могли бы получить шок, если бы ваш нож коснулся металла.

Вот почему обратная полярность может быть такой опасной.

Как узнать, является ли что-то обратной полярностью?

Хорошо то, что ваш домашний инспектор обычно сообщает вам, была ли розетка подключена в обратном порядке. Самая частая причина того, что розетка подключается наоборот, — это просто непрофессиональное качество изготовления.

Вы также можете проверить обратную полярность, купив тестер розеток в местном магазине или на Amazon.

Вот изображение тестера розеток и того, как тестер сигнализирует о различных проводках. В этом случае розетка подключена правильно.

Как исправить розетку с обратной полярностью?

К счастью, отремонтировать розетку с обратной полярностью относительно просто. Выполните следующие действия, чтобы починить розетку:

  1. Отключить питание розетки / комнаты.
  2. Снимите крышку розетки и розетку со стены.
  3. Отсоедините черный / красный и белый провода от розетки.
  4. Переключите черный / красный и белый провода на правильную сторону.
  5. Убедитесь, что провода надежно закреплены и имеют хороший контакт.
  6. Вставьте розетку обратно в стену с закрытой крышкой.
  7. Включите питание.
  8. Проверьте розетку с помощью тестера розеток, чтобы убедиться, что она работает правильно.

Вот изображение с правильной разводкой.

Переключение проводов на вставном разъеме

Большинство проводов для розеток подключаются с помощью винтов по бокам розетки.Однако у вас может быть «вставной» тип, когда провода вставляются в заднюю часть розетки.

Чтобы отсоединить провода от вставного типа, вам понадобится небольшой предмет, например небольшая отвертка с плоской головкой. Вставьте небольшую отвертку с плоской головкой в ​​выемку непосредственно рядом с проводом, одновременно вытаскивая розетку.

Вот видео.

Заключение

Как домашние инспекторы, мы довольно часто находим розетки с обратной полярностью.

Обратная полярность — это когда горячий и нейтральный провода соединены в обратном порядке.Это может создать ситуации, когда люди могут получить удар током при использовании таких приборов, как тостер или лампа.

Обратную полярность можно легко исправить, переключив провода на соответствующие стороны.

Если у вас есть дополнительные вопросы или проблемы, не забудьте оставить комментарий ниже.

Также не стесняйтесь проверить наши другие электрические сообщения.

MOSFET — быстрая обратная полярность

Ваш полевой транзистор будет иметь внутренний диод сток-исток, как следствие его полупроводниковой конструкции.Согласно техническому описанию вашего полевого транзистора, он может непрерывно пропускать до 34 А при падении напряжения 0,9… 1,2 В.

Двигатель не будет действовать как резистор, поэтому я предполагаю, что его нормальный рабочий ток составляет 32/12 = 2,66 А. Пожалуйста, проверьте это значение и укажите его ток остановки (запуска).

Если полевой транзистор в вашей схеме таков, как вы его нарисовали … (ИСПРАВЛЕНО) При нормальном питании затвор-исток полевого транзистора будет смещен в прямом направлении, а полевой транзистор будет включен.Внутренний диод полевого транзистора не будет иметь прямого смещения, достаточного для проведения, и весь ток полевого транзистора будет течь через исток-сток. Когда питание меняется на противоположное, полевой транзистор будет выключен, так как его затвор будет на диоде D1, падение которого ниже, чем его сток. Внутренний диод полевого транзистора будет иметь обратное смещение, поэтому вы будете защищены.

Если полевой транзистор в вашей схеме отличается от того, что вы нарисовали … При нормальном питании полевой транзистор будет проводить ток двигателя. Когда питание меняется на противоположное, внутренний диод будет проводить, и ваш двигатель будет работать в обратном направлении.Так что никакой обратной защиты в этом направлении.

Обратите внимание, что если ваш электродвигатель является щеточным электродвигателем постоянного тока, как предполагает ваша схема, он будет генерировать электромагнитные помехи, и , если вы запустите его и запустите его через диод , это значительно ухудшит электромагнитные помехи. Об этом следует помнить, если EMC важна для приложения. Использование диодов в источниках питания для высокочастотных цепей — плохая идея для EMI, несмотря на то, что странный дизайнер назвал их «волшебными односторонними проводами». Я провел изрядное количество тестов на ЭМС, и это было показано снова и снова 🙁

ПЕРВОНАЧАЛЬНО, ЭТОТ ОТВЕТ БЫЛ ОСНОВАН НА НЕПРАВИЛЬНОМ И НЕПРАВИЛЬНОМ ЗАЯВЛЕНИИ ОТНОСИТЕЛЬНО РАБОТЫ FET И БЫЛ ИСПРАВЛЕНО ВЫШЕ…КТО ОСТАЕТСЯ БЕЗ ТОЧКИ. НО Я ОСТАВИЛ ЕГО ЗДЕСЬ, чтобы комментарии к ней остались. ОРИГИНАЛЬНОЕ ЗАЯВЛЕНИЕ БЫЛО: Если полевой транзистор в вашей схеме таков, как вы его нарисовали … При нормальном питании внутренний диод полевого транзистора будет пропускать полный ток двигателя, а полевой транзистор будет иметь обратное смещение. Когда питание меняется на противоположное, полевой транзистор будет выключен, так как его затвор будет на диоде D1, падение которого ниже, чем его сток. Таким образом, эта схема ничем не отличается от включения большого диода в источник питания и отказа от M1 / ​​R1 / D1 / C1.

Защита от обратной полярности с помощью последовательных диодов

Для защиты схемы эффектов от обратной полярности используются два общих варианты: диод подключается последовательно или параллельно. Этот пост о диодах серии.

Защитные диоды серии

Диод — это полупроводник, который (в идеале) пропускает ток только в одном направлении. Подключение его последовательно с положительным полюсом аккумулятора или разъемом постоянного тока обеспечивает что при обратной полярности ток не течет.

[Защитный диод, включенный последовательно]

В отличие от своих параллельных аналогов, Последовательные защитные диоды не должны пропускать ток короткого замыкания, только обычные ток, потребляемый схемой эффектов. Тогда одной важной характеристикой является Напряжение блокировки постоянного тока В R , которое указывает, сколько обратного напряжение, которое диод может заблокировать. Для большинства конструкций небольшой диод, такой как 1N4148 должно быть достаточно с рейтингом блокировки 75 В .

Прямое напряжение В

F

Диод не просто проводит, когда ток течет в прямом направлении, он также необходимо приложить определенное минимальное напряжение, прежде чем он начнет проводить — так называемый прямое напряжение В F упало на диоде.

При малых токах гитарные педали обычно тянут, большинство кремниевых диодов, таких как 1N4148 или 1N4001 падение около 0,7 В . По мере увеличения тока увеличивается прямое напряжение.

[Нелинейная зависимость между прямым напряжением и током]

Другой недостаток состоит в том, что падение напряжения также приводит к потере мощности. Если педаль тянет, например, I = 10 мА , затем P = 10 мА × 0,7 В = 7 мВт . Это может или может быть неприемлемым при работе от батареи, когда существует риск обратная полярность низкая.

Обратная полярность

Серия защитных диодов — почти идеальная защита от обратного полярность, так как его очень высокое сопротивление размыкает цепь и блокирует обратный ток.Любая обратная утечка современных диодов вряд ли приведет к выходу из строя даже чувствительных схем.

[Защитный диод с обратным смещением]

Только при избыточном обратном напряжении В R > 75 В применяется слишком долго, диод выйдет из строя и, вероятно, будет разрушен тепловые эффекты.

Обратное перенапряжение

Если схема может обрабатывать более высокое входное напряжение в прямом направлении, она должен выдерживать это и в обратном направлении.Напряжение блокировки постоянного тока В R диода также называют напряжением пробоя. Пробой может произойти двумя способами: либо замыкание диода, либо его обрыв. (Он также может сначала закоротить, а затем открыть.)

Короткая позиция, очевидно, была бы худшим исходом, поскольку она позволила бы всем развернуться ток через схему эффектов. Однако даже если диод откроется нет гарантии, что он выйдет из строя достаточно быстро, прежде чем обратный ток достигает операционных усилителей или транзисторов.

Оплавленные диоды часто замыкаются, по крайней мере, на время.Иногда они в конце концов иногда не горит — в зависимости от тока короткого замыкания.

Допуск переменного тока

Схема эффектов, разработанная для постоянного тока, вряд ли выдержит отрицательные пики. от источника питания переменного тока слишком долго. По крайней мере, это уничтожит или относительно быстро ухудшают характеристики транзисторов и операционных усилителей. Серия диод защищает от этого.

[Последовательный диод с прямым смещением]

[Обратно-смещенный последовательный диод]

Ток любой полусинусоидальной волны в обратном направлении блокируется, он проходит в только в прямом направлении.Пока вы не перенапрягаете педаль, вы хорошо. Имейте в виду, что адаптер переменного тока 9 В обычно соответствует В RMS (среднеквадратичное или эффективное напряжение), поэтому фактический пик составляет примерно 12,7 В .

Бонус: полуволновое выпрямление

При источнике переменного тока и токе, проходящем только через диод с прямым смещением, мы обзавестись однополупериодным выпрямителем. Это, по сути, обеспечивает DC — хотя и с чрезмерно большая рябь.

[Ректифицированный переменный ток]

[Выпрямленный переменный ток со сглаживающей крышкой]

Если в схеме эффектов есть фильтр источника питания сеть за диодом, его конденсатор (ы) уменьшит количество пульсаций напряжение и сгладьте полученный постоянный ток.

[Однополупериодный выпрямитель со сглаживающей крышкой]

Педаль может периодически включаться и выключаться или ее характеристики пульс. Вероятно, это хороший индикатор для гитариста, что что-то не так.

Снижение падений напряжения

Меньшие падения напряжения могут быть достигнуты с помощью диодов Шоттки. более низкий рейтинг блокировки и более высокая утечка обратного тока. Модель 1N5817 рассчитана на для В R = 20 В Напряжение блокировки постоянного тока, которого достаточно для большинства педалей 9 V .Его прямое напряжение составляет около 0,18 В при 10 мА .

[последовательно включенный защитный диод Шоттки]

Во многих (не во всех!) Конструкциях педалей падение напряжения на последовательных диодах, вероятно, не имеет значения. Хорошо спроектированная схема не просто перестает правильно работать при 8,8 В или будет использовать только небольшую часть емкости батареи.

Не забывайте, что между блоками питания и тем, что напряжение, которое они будут обеспечивать — иногда это 10 В , иногда только 8.5 В . И это снова может измениться в зависимости от того, сколько тока потребляется и как линейный выход источника питания.

Альтернативы

Есть несколько альтернатив, обеспечивающих защиту от обратной полярности без или почти полное отсутствие падения напряжения и меньшее энергопотребление. Обратно-смещенный Параллельные защитные диоды, вероятно, являются самым простым подходом.

Немного более продвинутая идея — использование полевого МОП-транзистора в качестве переключателя. он замыкается только при подаче напряжения питания правильной полярности.Его характеристики аналогичны последовательному защитному диоду, хотя только крошечное, ничтожное падение напряжения.

Еще одна идея объединяет транзисторы PNP и NPN.

В чем разница между обратной и прямой полярностью

Когда вы видите буквы AC / DC на сварочном аппарате, думаете ли вы об одной из ваших любимых рок-н-ролльных групп? Если серьезно, разница очень важна для окончательного качества ваших сварных швов.

AC (переменный ток) и DC (постоянный ток) используются для описания полярности электрического тока, который генерирует сварочный аппарат, и направления его движения.Если вы используете неправильную полярность для определенного сварочного прутка, прочность сварного шва будет не очень хорошей.

Общие термины, связанные с полярностью, — это обратная полярность и прямая полярность. Это обычное дело в сварочном деле. Еще один способ описать эти два термина — «электрод положительный» и «электрод отрицательный». Положительный электрод такой же, как и обратная полярность. Отрицательный электрод такой же, как и прямой. Следовательно, + и — написаны на вашем сварочном аппарате, где к нему подключаются кабели.

На любой купленный вами сварочный пруток будет нанесена маркировка с указанием полярности, которую следует использовать для сварки. Использование правильной полярности обеспечит правильное проникновение и общий вид конечного валика.

Если вы используете неправильную полярность, это можно определить по знакам. Будет слишком много брызг, у вас будет плохое проникновение, и у вас будет меньше контроля над дугой.

Некоторые сварочные аппараты имеют переключатель для регулировки полярности. Если у вашего сварщика его нет, вам нужно будет переключить сварочные кабели в том месте, где они подключаются к аппарату.Если вы хотите изменить полярность, убедитесь, что электрододержатель вставлен в клемму +.

Самый простой способ определить, используете ли вы неправильную полярность, — по звуку и ощущению сварного шва, который вы укладываете. Если у вас нет большого опыта в сварке штучной сваркой, вам будет немного сложнее определить разницу. Я видел, как ребята сваривали весь день с неправильной полярностью. Затем я брал их сварщика на пару минут и сразу понимал.Все сводится к опыту.

Если у вас нет большого опыта в сварке штучной сваркой, вам необходимо дважды проверить настройку аппарата. Следуйте указаниям пакета сварочных стержней и делайте это. Если вы используете стержни 7018, убедитесь, что они настроены на обратную полярность.

Анализ ошибок: защита от обратной полярности

Вы можете многому научиться на своих инженерных ошибках. Эдвард Рингель, врач из штата Мэн, США, любитель электроники, недавно рассказал нам, как «защититься от ошибок» с «0 долларов».50 компонентов и 30 секунд пайки ».

Члены глобального сообщества профессиональных инженеров, студентов технических вузов, ученых и производителей Elektor знают, как важно учиться на своих инженерных ошибках. Эдвард Рингель, врач и любитель электроники из штата Мэн, США, недавно рассказал нам, как «защититься от ошибок» и защитить от обратной полярности с помощью «компонента за 0,50 доллара и 30 секунд пайки». Читайте дальше, чтобы узнать больше.

Проблема обратной полярности «Во время создания прототипа я поджаривал больше компонентов больше раз, чем мне хотелось бы помнить, потому что кратковременная потеря бдительности привела к тому, что провода моего источника питания поменяли местами.Это не такая уж большая проблема при создании финальной сборки, но во время экспериментов легко отвлечься, взволновать или просто сделать глупую ошибку. Затем меня приветствует неприятный запах жареного пластика и силикона. В частности, в сложных проектах или проектах, в которых используются дорогие компоненты, я теперь подключаю диод Шоттки последовательно с положительной стороной источника питания. Диоды Шоттки имеют небольшое падение напряжения и часто позволяют V pos оставаться в пределах рабочих характеристик компонентов без модификации источника питания.Если компонент или плата более привередливы, напряжение источника питания можно увеличить на 0,2 В (хотя это бывает редко). Schottkys бывают разных номиналов мощности и дешевы. Кто-то может возразить, что я заменяю компоненты наблюдательностью или осторожностью. В некоторой степени это правда. Однако самый тщательный анализ человеческой ошибки показывает, что ошибку нельзя свести к нулю, и что создание средств защиты и сетей безопасности для выявления и защиты от ошибок так же важно, как и само уменьшение ошибок.Так что, если компонент за 0,50 доллара и 30 секунд пайки (обещаю, без свинца!) Могут защитить мой Teensy 3.

Добавить комментарий

Ваш адрес email не будет опубликован.