Кислородный датчик: устройство, назначение, диагностика
Сомнительная заправка, плохой бензин, «чек» на панели — стандартный и быстрый путь к замене кислородного датчика. Про лямбда-зонд слышали многие автомобилисты, но мало кто разбирался, за что именно он отвечает и почему так легко выходит из строя. Рассказываем про датчик кислорода — «обоняние» двигателя.
Лямбда и стехиометрия двигателя
Название датчика происходит от греческой буквы λ (лямбда), которая обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Для полного сгорания смеси соотношение воздуха с топливом должно быть 14,7:1 (λ=1). Такой состав топливно-воздушной смеси называют стехиометрическим — идеальным с точки зрения химической реакции: топливо и кислород в воздухе будут полностью израсходованы в процессе горения. При этом двигатель произведёт минимум токсичных выбросов, а соотношение мощности и расхода топлива будет оптимальным.
Если лямбда будет <1 (недостаток воздуха), смесь станет обогащённой; при лямбде >1 (избыток воздуха) смесь называют обеднённой.
Зависимость мощности и расхода топлива от состава смеси
Из графика видно, что при λ=1 мощность двигателя не пиковая, а расход топлива не минимален — это лишь оптимальный баланс между ними. Наибольшую мощность мотор развивает на слегка обогащённой смеси, но расход топлива при этом возрастает. А максимальная топливная эффективность достигается на слегка обеднённой смеси, но ценой падения мощности. Поэтому задача ЭБУ (электронного блока управления) двигателя — корректировать топливно-воздушную смесь исходя из ситуации: обогащать её при холодном пуске или резком ускорении, и обеднять при равномерном движении, добиваясь оптимальной работы мотора во всех режимах. Для этого блок управления ориентируется на показания датчика кислорода.
Зачем нужен кислородный датчик
Датчиков в современном двигателе великое множество. С помощью различных сенсоров ЭБУ замеряет температуру забортного воздуха и его поток, «видит» положение дроссельной заслонки, отслеживает детонацию и положение коленвала — словом, внимательно следит за воздухом «на входе» и показателями работы мотора, регулируя подачу топлива для создания оптимальной смеси в цилиндрах.
Схема лямбда-коррекции двигателя
Лямбда-зонд показывает, что же получилось «на выходе», замеряя количество кислорода в выхлопных газах. Другими словами, кислородный датчик определяет, оптимально ли работает мотор, соответствуют ли расчёты ЭБУ реальной картине и нужно ли вносить в них поправки. Основываясь на данных с лямбда-зонда, ЭБУ вносит соответствующие коррекции в работу двигателя и подготовку топливно-воздушной смеси.
Где находится кислородный датчик
Датчик кислорода установлен в выпускном коллекторе или приёмной трубе глушителя двигателя, замеряя, сколько несгоревшего кислорода находится в выхлопных газах.
Если у двигателя две головки блока (V-образники, «оппозитники»), то удваивается количество выпускных коллекторов и катализаторов, а значит и лямбда-зондов — у современной машины может быть и 4 кислородных датчика.
Устройство кислородного датчика
Классический лямбда-зонд порогового типа — узкополосный — работает по принципу гальванического элемента. Внутри него находится твёрдый электролит — керамика из диоксида циркония, поэтому такие датчики часто называют циркониевыми. Поверх керамики напылены токопроводящие пористые электроды из платины. Будучи погружённым в выхлопные газы, датчик реагирует на разницу между уровнем кислорода в них и в атмосферном воздухе, вырабатывая на выходе напряжение, которое считывает ЭБУ.
Циркониевый элемент лямбда-зонда приобретает проводимость и начинает работать только после прогрева до температуры 300 °C. До этого ЭБУ двигателя действует «вслепую» согласно топливной карте, без обратной связи от кислородного датчика, что повышает расход топлива при прогреве двигателя и количество вредных выбросов. Чтобы быстрее задействовать лямбда-зонд, ему добавляют принудительный электрический подогрев. Кислородные датчики с подогревом внешне отличаются увеличенным количеством проводов: у них 3–4 жилы против 1–2 у обычных датчиков.
В названии узкополосного датчика кроется его недостаток — он способен замерять количество кислорода в выхлопе в достаточно узком диапазоне. ЭБУ может корректировать смесь по его показаниям только в некоторых режимах работы мотора (холостой ход, движение с постоянной скоростью), что не отвечает современным требованиям по экономичности и экологичности двигателей. Для более точных замеров в широком диапазоне используют широкополосный лямбда-зонд (A/F-сенсор), который также называют датчиком соотношения «воздух-топливо» (Air/Fuel Sensor). Обычно к нему подходят 5–6 проводов, хотя бывают и исключения.
Внешне «широкополосник» похож на обычный датчик кислорода, но внутри есть отличия. Благодаря специальным накачивающим ячейкам эталонный лямбда-коэффициент газового содержимого датчика всегда равен 1, и генерируемое им напряжение постоянно. А вот ток меняется в зависимости от количества кислорода в выхлопных газах, и ЭБУ двигателя считывает его в реальном времени. Это позволяет электронике быстрее и точнее корректировать смесь, добиваясь её полного сгорания в цилиндрах.
Почему до сих пор производят узкополосные датчики? Во-первых, для старых автомобилей, где A/F-сенсоры не применялись. Во-вторых, из-за особенностей «широкополосника» его нельзя устанавливать после катализатора, где он быстро выходит из строя. А контролировать работу катализатора как-то надо. Поэтому в современных двигателях ставят два лямбда-зонда разного типа: широкополосный (управляющий) — в районе выпускного коллектора, а узкополосный (диагностический) — после катализатора.
Причины и признаки неисправности лямбда-зонда
Основная причина поломок кислородных датчиков — некачественный бензин: свинец и ферроценовые присадки оседают на чувствительном элементе датчика, выводя его из строя.
Самый очевидный признак неисправности лямбда-зонда — индикатор Check Engine на приборной панели. Считав код ошибки с помощью сканера или самодиагностики, можно проверить, какой именно датчик вышел из строя, если их несколько. Иногда всё дело в повреждённой проводке датчика — с проверки цепи и стоит начать поиск поломки.
Но далеко не всегда проблемный лямбда-зонд зажигает «Чек»: иногда он не ломается полностью, а медленно умирает, давая при этом ложные показания, из-за чего ЭБУ двигателя неверно корректирует состав смеси. В этом случае нужно ориентироваться на косвенные признаки — ухудшение работы двигателя.
Проблемы с датчиком кислорода нарушают всю систему обратной связи и лямбда-коррекции, вызывая целый букет неисправностей. Прежде всего, это увеличение расхода топлива и токсичности выхлопа, снижение мощности и нестабильный холостой ход. Если вовремя не заменить лямбда-зонд, следом выйдет из строя каталитический нейтрализатор, осыпавшись из-за перегрева от обогащённой смеси.
Универсальные кислородные датчики
Цена на оригинальные датчики кислорода вряд ли обрадует автомобилистов, но все лямбда-зонды работают по единому принципу, что позволяет без труда подобрать замену. Главное, чтобы соответствовал типа датчика (широкополосный/узкополосный), количество проводов и резьбовая часть. В продаже есть универсальные кислородные датчики без разъёма, которые можно использовать на десятках моделей автомобилей — подобрать и купить лямбда-зонд не составляет проблемы.
Чтобы избежать проблем с кислородными датчиками, следите за состоянием двигателя, заправляйтесь качественным топливом и регулярно выполняйте компьютерную диагностику, которая позволит выявить неисправности на ранней стадии.
Датчик кислорода для автомобиля (что это такое)
Датчик кислорода нужен, чтобы регулировать смесь топлива и воздуха, поступающую в двигатель. Он обеспечивает максимальную мощность и меньший расход топлива. Поговорим для чего нужен датчика кислорода в машине и принцип его работы.
Для чего нужен
В отработавших газах бензинового двигателя можно найти немало разнообразных токсичных компонентов, но верховодит традиционная триада:- СО – окись углерода, угарный газ;
- СН – несгоревшие углеводороды;
- NOх – окислы азота.
Инженеры противопоставили этой опасной троице очень важное устройство, входящее в систему выпуска, – каталитический нейтрализатор отработавших газов. Иначе говоря, газы, пройдя через это устройство, из агрессивно-токсичных превращаются в сравнительно безопасные, нейтральные.
Чтобы нейтрализатор мог эффективно «облагораживать» поступающие в него газы, содержание каждого компонента в них должно укладываться в довольно узкие рамки, соответствующие сгоранию в цилиндрах стехиометрической рабочей смеси топлива и воздуха. Напомним, что ее состав характеризуется так называемым коэффициентом избытка воздуха a.
Если a больше 1,0 – смесь обедненная, бедная и т.д. И наоборот – смесь с a меньше 1,0 – обогащенная, богатая и т.д. Если воздуха ровно столько, сколько требуется для полного сгорания топлива, смесь называют стехиометрической – это область значений a вблизи 1,0.
Зависимость эффективности нейтрализатора от состава рабочей смеси в цилиндрах двигателя. Чтобы эффективность была не ниже 80%, колебания состава относительно оптимального не должны превышать 1%.
Как обеспечить столь высокую точность и одновременно стабильность? Цель была достигнута с появлением электронной системы автоматического регулирования с датчиком кислорода в отработавших газах – по-другому, лямбда-зондом. Этот датчик – важнейший элемент обратной связи в системе впрыска, позволяющей поддерживать стехиометрический состав на установившихся режимах работы двигателя с точностью до ±1%. На современных авто можно увидеть датчики кислорода двух типов. К первому отнесем датчики на основе диоксида циркония (циркониевые), ко второму – на основе оксида титана (титановые). Принцип работы один, разница только в конструкции. Измерительный элемент датчика кислорода имеет напыление благородного металла – платины с внутренней и внешней сторон. Внутри – «твердый электролит» (керамика). Работает по принципу гальванического элемента с твердым электролитом: по достижении температуры 300–350°С керамика начинает проводить ионы кислорода.Полезно помнить, что это минимально возможная температура функционирования измерительного элемента, тогда как при работе двигателя температура датчика около 600°С. Ограничена и максимальная рабочая температура – около 900–1000°С в зависимости от типа датчика, перегрев грозит его повреждением.
Принцип работы
При работе двигателя концентрация кислорода внутри выпускной системы и снаружи ее, в окружающем воздухе, совершенно разная. Вот эта разница и заставляет ионы кислорода двигаться в твердом электролите, в результате чего на электродах измерительного элемента появляется разность потенциалов – сигнал датчика кислорода.Зависимость выходного сигнала зонда от температуры. Зона ниже 300°С – нерабочая: 1 – реакция на богатые смеси; 2 – реакция на бедные смеси.
Как видите, реакции на богатые и бедные смеси различаются очень сильно, но при падении температуры ниже 300°С разница постепенно уменьшается – эта зона уже нерабочая. Чтобы датчик после пуска двигателя быстрей прогревался, его размещают возможно ближе к мотору, но все же с учетом ограничений по максимальной температуре. Особенно «критична» длительная езда с полной мощностью двигателя.Современные датчики кислорода – с электроподогревом, которым управляет электронный блок управления двигателем, меняя ток нагревателя. Соответственно, он контролирует и исправность цепи нагревателя, что очень важно.
Как работают датчики: датчик кислорода
Датчик кислорода, также называемый датчиком O2, выполняет функцию, указанную в его названии, а именно измеряет количество кислорода в отработавших газах. И хотя это может показаться несложной задачей, датчик O2 является одним из наиболее важных датчиков транспортного средства, который отвечает за соблюдение баланса между топливом и воздухом и сведение к минимуму объема вредных выбросов. Поэтому вам полезно будет узнать, для чего он предназначен, почему он выходит из строя, и, что важно, как его заменить в случае поломки.
Как работает датчик O2?
В большинстве автомобилей установлено по крайней мере два кислородных датчика, расположенных в выхлопной системе. Один из них обязательно устанавливается перед каталитическим нейтрализатором, а один или несколько — после каталитического нейтрализатора. Кислородный датчик, установленный перед каталитическим нейтрализатором, регулирует подачу топлива, а датчик, расположенный после него, измеряет эффективность работы каталитического нейтрализатора.
Датчики O2 обычно можно отнести к категории узкодиапазонных или широкодиапазонных. Чувствительный элемент находится внутри датчика, заключенного в стальной корпус. Молекулы кислорода из выхлопных газов проходят через крошечные прорези или отверстия в стальной оболочке датчика, чтобы достичь чувствительного элемента, или ячейки Нернста. С другой стороны ячейки Нернста кислород из воздуха вне выхлопной системы перемещается вниз по датчику O2 и контактирует с ним. Разница в количестве кислорода между наружным воздухом выхлопными газми вызывает поток ионов кислорода и создает напряжение.
Если смесь выхлопных газов слишком богата и в выхлопе слишком мало кислорода, в электронный блок управления (ЭБУ) двигателя подается сигнал на уменьшение количества топлива, поступающего в цилиндр. Если смесь выхлопных газов слишком бедна, то посылается сигнал на увеличение количества топлива, подающегося в двигатель. Если топлива слишком много, в выхлопных газах присутствуют углеводороды и угарный газ. Если топлива слишком мало — загрязняющие атмосферу оксиды азота. Сигнал датчика помогает поддерживать оптимальный состав смеси. Широкодиапазонные датчики O2 имеют дополнительную насосную ячейку O2 для регулирования количества кислорода, подающегося к чувствительному элементу. Это позволяет производить измерения в гораздо более широком диапазоне соотношения компонентов топливной смеси.
Почему возникают неисправности датчиков кислорода?
Поскольку датчик кислорода находится в потоке выхлопных газов, он может загрязниться. Обычно причиной загрязнения является чрезмерно богатая топливная смесь или выброс масла в более старых двигателях, а также просачивание в камеру сгорания охлаждающей жидкости через прокладки. Он также подвергается воздействию чрезвычайно высоких температур и, как и любой другой компонент, может со временем изнашиваться. Все это может повлиять на характеристики отклика кислородного датчика, что способно привести к увеличению времени отклика или изменению кривой напряжения датчика, а в долгосрочной перспективе — к снижению эффективности датчика.
Каковы признаки неисправности датчика кислорода?
При поломке датчика кислорода компьютер больше не может определять соотношение топливно-воздушной смеси, поэтому он вынужден «гадать». В связи с этим существует несколько контрольных признаков, на которые стоит обратить внимание:
- Индикатор проверки двигателя: хотя он может загореться по многим причинам, обычно это связано с выхлопными газами.
- Большой расход топлива: неисправный кислородный датчик нарушит правильное смешивание воздуха и топлива, что приведет к увеличению расхода топлива.
- Неровная работа двигателя на холостом ходу или пропуски зажигания: поскольку выходной сигнал датчика кислорода помогает контролировать синхронизацию двигателя, интервалы сгорания и топливно-воздушную смесь, неисправность датчика может стать причиной неровной работы двигателя.
- Вялый разгон.
Устранение неисправностей датчика O2
Чтобы определить причину неправильной работы датчика O2, выполните следующие действия:
- Считайте коды неисправностей с помощью диагностического прибора. Обратите внимание, что при обнаружении проблем с датчиками O2 прибор часто выдает несколько кодов неисправностей.
- Лямбда-зонды имеют внутренний нагреватель, поэтому следует проверить сопротивление нагревателя — оно обычно бывает довольно низким.
- Проверьте подачу питания на нагреватель — зачастую это провода одного цвета.
- Проверьте электрический разъем на наличие повреждений или грязи.
- Проверьте выпускной коллектор и топливные форсунки на наличие утечек, а также состояние элементов системы — это может повлиять на правильность работы датчика.
- Проверьте правильность показаний датчика O2, выполнив замер концентрации кислорода с помощью четырех- или пятикомпонентного газоанализатора.
- Используйте осциллограф для проверки сигнала на холостом ходу и при 2500 об/мин.
- Если доступ к проводке датчика затруднен, используйте данные в реальном времени, чтобы проверить наличие сигнала.
- Проверьте состояние защитной трубки чувствительного элемента датчика на наличие признаков повреждения и загрязнения.
Коды распространенных неисправностей
Ниже приведены коды самых распространенных неисправностей и причины их возникновения:
- P0135: датчик кислорода перед каталитическим нейтрализатором 1, отопительный контур / разомкнут
- P0175: богатая топливная смесь (ряд 2)
- P0713: неправильно сбалансирован состав смеси (ряд 2)
- P0171: бедная топливная смесь (ряд 1)
- P0162: неисправность цепи датчика O2 (ряд 2, датчик 3)
Как произвести замену датчика кислорода
youtube.com/embed/j7VnQ5JpILo»/>
Советы по замене кислородных датчиков
- Прежде чем заменить датчик, вам необходимо выявить причину неисправности. Подключите диагностический прибор, например Delphi DS, выберите нужный автомобиль и считайте код(-ы) неисправности(-ей). Подтвердите код неисправности, выбрав действительные данные и сравнив значение с датчика, в котором вы предполагаете неисправность, со значением заведомо рабочего датчика. При необходимости обратитесь к данным производителя автомобиля, чтобы найти правильное значение для сравнения.Чтобы убедиться в том, что проблема обусловлена неисправным датчиком, а не проводкой, могут потребоваться другие инструменты или оборудование.
- Поскольку во многих автомобилях новых моделей имеется несколько датчиков кислорода, убедитесь, что вы правильно определили неисправный датчик, чтобы по ошибке не заменить исправный. Производители транспортных средств несколько по-разному обозначают положение датчиков «ряд 1» и «ряд 2», «перед/зад» и «до/после», поэтому следует убедиться в том, что вы нашли нужный (неисправный) датчик. Лучший способ сделать это — с помощью диагностического инструмента посмотреть данные в реальном времени.
- После этого отсоедините провод от датчика.
- С помощью гаечного ключа или специального торцевого ключа для датчиков кислорода выкрутите датчик из его посадочного места. Затем утилизируйте старый датчик и замените его новым.
- В большинстве случаев резьбовое соединение датчика имеет специальное токопроводящее покрытие от прикипания, поэтому достаточно просто установить новый датчик на место старого.
- Чтобы предотвратить схватывание датчика в резьбе, все датчики Delphi поставляются с высокотемпературным противозадирным составом, который либо наносится на заводе-изготовителе, либо прилагается в комплекте. При необходимости нанесите состав на новый датчик перед установкой. Не наносите чрезмерное количество противозадирного средства на резьбу, так как это может привести к загрязнению чувствительного элемента.
- Затяните датчик рекомендованным моментом.
- После установки датчика подключите электронный разъем.
- Теперь снова подключите диагностический прибор и удалите все сопутствующие коды неисправностей.
- Наконец, включите зажигание и убедитесь, что индикатор проверки двигателя погас, а затем проведите ходовые испытания.
Принцип работы датчика Лямбда зонд
Любознательные автолюбители давно уже слышали о таких системах, как антиблокировочная тормозная система (ABS) или стабилизация курсовой устойчивости (ESP), да и о других тоже. Сегодня поговорим о датчике Лямбда зонд, рассмотрим принцип работы датчика Лямбда зонд, узнаем для чего надо датчик Лямбда зонд, за что он отвечает и так далее.
С каждым годом человечество все больше задумывается о сохранении окружающей среды, ведь не мало было упущено в прошлом, надо подумать и о будущем. Узаконивание жестких экологических норм относительно автомобилей, привело к разработке и применению новых устройств, таких как каталитические нейтрализаторы.
Каталитический нейтрализатор
Каталитический нейтрализатор – это устройство, назначение которого является снижение вредных выбросов в окружающую среду. Катализатор очень полезная вещь, только для его корректной работы следует соблюдать некоторые условия. Огромное влияние на работу катализатора оказывает состав топливно-воздушной смеси. Именно от качества топливно-воздушной смеси и зависит ресурс работы катализатора. Поэтому и был разработан датчик Лямбда зонд, который отвечает за контроль состава этой же топливно-воздушной смеси. В просто народе его называют датчик кислорода.
Что такое Лямбда зонд икак выглядит датчик Лямбда зонд?Не секрет, что свое название датчик получил от обозначения коэффициента избытка воздуха, который обозначается греческой буквой Лямбда. Лямбда зонд применяется для измерения состава отработавших газов и содействует в дальнейшем для поддержания оптимального состава смеси топлива и воздуха. Оптимальное соотношение топливно-воздушной смеси обеспечит качественное сгорание, что уменьшит выброс вредных веществ в атмосферу.
Оптимальный состав топливно-воздушной смеси это когда на 14,7 частей воздуха приходится 1 часть топлива, при этом Лямбда равняется одному. На старых советских двигателях такого сложно было добиться. А в современных автомобилях для этого используют системы питания с электронным впрыском топлива, которая взаимодействует с датчиком Лямбда-зонд.
Как измеряется избыток воздуха в топливно-воздушной смеси?Избыток воздуха в топливно-воздушной смеси измеряется путем определения в отработавших газах содержания остаточного кислорода (О2). Этим объясняется и расположение датчика в выпускном коллекторе непосредственно перед катализатором.
Для считывания сигнала с Лямбда датчика используется электронный блок управления системы впрыска топлива (ЭБУ), который отвечает за оптимизацию состава топливно-воздушной смеси, то уменьшая, то увеличивая подачу топлива в цилиндры двигателя.
Некоторые производители автомобилей пошли еще дальше, и начали устанавливать по два Лямбда датчика в выхлопной системе, перед катализатором и после него. Два датчика Лямбда устанавливали для того, чтобы увеличить точность приготовления горючей смеси и улучшить работу катализатора.
Принцип работы лямбда-зонда
Схема датчика кислорода лямбда зонда на основе диоксида циркония: 1 – твердый электролит; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – сигнальный контакт; 6 – выхлопная труба.
Наиболее качественное измерение выхлопных газов Лямбда датчиком обеспечивается при температуре 300-400 градусов Цельсия. При такой температуре Циркониевый электролит становиться более проводимым, вследствие чего на электродах датчика появляются выходное напряжение.
Поэтому при запуске и прогреве двигателя датчик не используется. На этих режимах работы двигателя контроль качества топливно-воздушной смеси осуществляют датчики положения дроссельной заслонки, датчик температуры охлаждающей жидкости, датчик количества оборотов коленчатого вала.
На схеме представлена зависимость напряжения лямбда-зонда от коэффициента избытка воздуха при 500-800°С температуре датчика.
Для качественной работы датчика при низких температурах применяют принудительные нагревательные элементы.
Если не работает датчик лямбда зонд, тогда ЭБУ выбирает средние параметры работы, считывая данные с своей памяти. Параметры топливно-воздушной смеси будут разниться от идеальной.
К чему приведет поломка Лямбда датчика?
Поломка Лямбда датчика приведет к повышению расхода топлива, на холостом ходу двигатель будет работать неравномерно, в выхлопных газах будет содержаться повышенный уровень СО, упадет мощность двигателя, но автомобиль будет на ходу.
Самому проверить Лямбда датчик достаточно сложно, поэтому лучше проконсультироваться с специалистами.
Какой срок службы Лямбда датчика?
Срок службы Лямбда датчика зависит от качества заливаемого топлива. Бывает так, что достаточно нескольких заправок некачественным бензином и датчик приходит в негодность. Средний срок службы Лямбда датчика составляет от 40 до 80 тыс. км пробега.
Датчик кислорода. Устройство и принцип работы :: Avto.Tatar
Датчик кислорода — это часть двигателя, отвечающая за смесь воздуха с топливом. Воздушно-топливная смесь снижает расход топлива без потери мощности.
Общеизвестно, что бензиновые двигатели производят очень токсичную отработку. Она содержит целый букет химических элементов, а самые ядовитые из них — окись углерода (CO), углеводороды (CH) и окись азота (NOx). Для нейтрализации их вреда система выпуска была модифицирована каталитическим нейтрализатором. Данное устройство снижает токсичность газов и делает их почти безопасными.
Для эффективной работы нейтрализатора состав газов, подаваемых на него, должен соответствовать определенным стехиометрическим стандартом воздушно-топливной смеси. Коэффициент избытка воздуха — основная характеристика свойственная этой смеси. Его значение колеблется вокруг единицы (1.0). Если оно опускается ниже 1.0, то смесь считается обогащенной. Показатель выше 1.0 указывает на обеднение. Если значение коэффициента избытка воздуха стремится к единице, то такая смесь называется стехиометрической.
Для достижения максимальной эффективности (порядка 80%) состав рабочей смеси в двигателе не должен отступать от стехиометрического значения больше чем на 1%. Но каким образом смешивание газообразного и жидкого вещества может происходить с такой высокой точностью? На выручку пришли современные технологии. Была разработана специальная система регулировки подачи воздуха и топлива, называемая лямбда-зондом. Это высокоточный датчик обратной связи, являющийся одним из самых важных элементов.
Строение датчика кислорода
Современные автомобили используют два разных вида датчиков кислорода: титановые и циркониевые. Несмотря на некоторые различия в строении, принцип работы у них одинаковый. В кислородном датчике имеется элемент измерения, опыленный платиной с наружной и внутренней стороны. Внутри находится керамический твердый электролит.
Принцип работы схож с гальваническим элементом. Минимальная температура, необходимая для функционирования датчика — 300–350 градусов Цельсия. По ее достижении керамический элемент становится проводником ионов кислорода. Максимальная безопасная температура — в пределах 950–1000 градусов Цельсия. Более интенсивный нагрев может привести к поломке.
Принцип работы
Кислородные ионы приводятся в движение за счет разных концентраций масс во внутренней и наружной части системы выпуска. Таким образом, своей работой двигатель создает разность потенциалов, необходимую для подачи сигнала. Если температура датчика ниже 300 градусов Цельсия, то он находится в нерабочем состоянии.
В зависимости от температуры датчика происходит реакция на разные смеси: при высоких температурах — на богатые, при низких на бедные. Разница между реакциями на богатые и бедные смеси весьма высока, но если температура падает ниже 300 градусов Цельсия, разница уменьшается, а датчик переходит в нерабочее состояние.
Для того чтобы решить данную проблему, лямбду пытаются разместить поближе к двигателю, сохраняя при этом ограничение температурного режима во избежание повреждений датчика. Наибольшая опасность возникает при «выжимании» высоких мощностей из мотора.
В современном автомобилестроении датчики кислорода оснащены спиральными нагревательными элементами. Управляется подогрев электроникой двигателя. Помимо этого, электронный блок отвечает еще и за стабильность работы цепи нагревания.
Датчик кислорода — волшебство?
Как работает датчик кислорода? По-другому он называется лямбда-зондом. Датчик кислорода помогает двигателю развивать максимальную мощность, экономить топливо, обеспечивает полное сгорание топливо-воздушной смеси, путем ее коррекции к оптимальному соотношению воздух/топливо. Как работает датчик кислорода? По-другому он называется лямбда-зондом. Датчик кислорода помогает двигателю развивать максимальную мощность, экономить топливо, обеспечивает полное сгорание топливо-воздушной смеси, путем ее коррекции к оптимальному соотношению воздух/топливо.
Содержание статьи:
Различные датчики в автомобиле помогают водителю и бортовому компьютеру видеть состояние автомобиля и отдельных его узлов. Одним из примеров таких датчиков можно считать кислородный. Рассмотрим принцип работы и для чего он предназначен.
Что такое лямда-зонд
Со временем автомобили становятся все более и более сложными. Разработано устройство, которое образует сложный химический оборот: оно входит в систему выброса отработанных газов, где на датчике образуется напряжение, которое подается на блок управления. Необходимо, чтобы лямбда-зонд подавал сигнал на компьютер автомобиля и определял, какое количество кислорода содержится в выхлопе, иначе ЭБУ будет неверно дозировать топливо, а это приведет к повышенному расходу топлива, а так же к потере мощности.
Блок управления регулирует количество топлива, используя сигналы устройства, чем обогащает или обедняет смесь. Это происходит одним циклом и постоянно, в закрытом контуре.
Если лямбда-зонд не подает никаких признаков жизни, то блок управления переходит в режим работы по таблицам, которые заложены, своего рода, аварийный режим. Блок подает обогащенную смесь, вызывает большой расход топлива и сильную токсичность выхлопа.
Типы датчиков кислорода
Циркониевый датчик стоит впереди катализатора и сам генерирует напряжение, либо отрицательное, либо положительное. Опорное напряжение такого датчика составляет 0,45 В, которое отклоняется либо до 0,9 В, либо до 0,1 В. Главное отличие такого датчика от титанового является именно тот факт, что циркониевый самостоятельно генерирует напряжение.
При ремонте стоить помнить, что к такому датчику ни в коему случае нельзя припаивать какие попало провода, потому что именно в изоляции проложены каналы для прохождения эталонного воздуха. Если такового не будет, то датчик попросту не будет правильно работать.
Широкополосный датчик – это новейшая конструкция лямбда-зонда на данный момент. Его устройство позволяет не просто определять бедную или богатую смесь на входе в цилиндры, но так же и определять степень отклонения. Именно такие параметры сделали его более точным, в то же время широкополосный кислородный датчик быстрее реагирует на изменения состава выхлопных газов.
Всем известно, что любой кислородный датчик начинает работать только после 350 градусов. Здесь же для более быстрого достижения рабочей температуры устанавливается нагревательных элемент.
Как устроен датчик кислорода
Датчик состоит из керамической трубки, покрытой платиной, внутрь вставлены два электрода. Корпус трубки расположен в системе горячих отработанных газов, а другая часть соединяется корпусом с атмосферой. В новейших датчиках системы отверстия отсутствуют, кислород в них проникает через изоляцию кабелей.
Получается, что обе стороны лямбда-зонда расположены в различных средах. Первая среда – это выхлопные газы, вторая – атмосфера. Когда кислород сгорает в отработанных газах, а в атмосфере он, конечно, имеется, датчик выдает напряжение, высчитывая разницу в содержании в газах и в атмосфере.
Чем выше разница у выхлопных газов и кислорода в объёме атмосферы, тем большее количество напряжения вырабатывает датчик. Высокий уровень напряжения – 0,9 Вольт, средний – 0,4 5Вольт и бедный уровень – 0,1 Вольт. Скорость немедленного переключения от бедной смеси к обогащенной зависит от устройства системы подачи топлива. Скорость реакции системы подачи топлива на сигналы датчика кислорода зависит, прежде всего, именно от конструкции самой системы. Так, например, наименьшая скорость реакции у центрального впрыска? Дальше идет распределенный впрыск, ну а самым чувствительным, естественно, является непосредственный впрыск.
Датчик кислорода включается, когда температура его достигает 350градусов. Внутри встроен элемент нагрева. Он не остывает и не отключается при работе автомобиля на холостом ходу. В новых современных моделях автомобилей стоит уже не по одному датчику, а от 2 до 4 штук. Датчик кислорода работает в высокой температуре выхлопных газов. Со временем грязь накапливается на корпусе датчика и приводит его к уменьшению работоспособности.
Загрязнители бывают различные: сера, масло, остатки топлива. Наружная поверхность лямбда-зонда также подвержена повреждениям: жидкостью, маслом, землёй, солью дорожной.
Диагностируем датчик кислорода
Лямбда-зонд проверяют специальным сканером, осциллографом для записи амплитудных и временных параметров или вольтметром. На вольтметре показания быстро меняются, и считать данные очень трудно. При диагностике многоконтактным осциллографом или сканером на экране появляются диаграммы, на них показаны все переходы постоянного напряжения. Программа показывает напряжение работающего датчика в виде волнистой линии. Оно высвечивается в форме амплитуды и демонстрирует переход от богатого состояния к бедному. Если датчик новый, он должен хорошо работать во время холостых оборотов.
Напряжение в этот момент изменяется от минимального показания (0,1 В) к максимальному (0,9 В). При обрыве или замыкании цепи датчика загорается лампочка на панели приборов. При поломке или неисправности датчик необходимо заменить. Этим самым уменьшится расход бензина и токсические выхлопы, также продлевается работа катализатора. Датчики, имеющие один или два провода, заменяются через каждые 50 тысяч километров, с тремя или четырьмя проводами – через 70 тысяч километров.
Видео — как проверить датчик кислорода:
Как работает и что показывает датчик кислорода
Администратор
34963
Если вы попали сюда по запросу о показаниях второго (2) лямбда-зонда, то вам СЮДА.
Итак, попробуем разобраться в том как работает датчик кислорода. Ну, как вы уже знаете есть много датчиков, необходимых для работы современного двигателя, но, однако функция других датчиков зачастую не так важна, как функция датчиков кислорода.
Эти датчики считывают количество несгоревшего кислорода в выхлопных газах. Затем компьютер использует это значение для баланса топливной смеси. Когда содержание кислорода в выхлопных газах увеличивается (характеризует смесь как обедненную) выходное напряжение датчиков уменьшается. Это является сигналом для ЭБУ к увеличению объема топлива подаваемого через форсунки. В свою очередь, когда содержание кислорода в выхлопных газах снижается (характеризует смесь как богатую), датчик кислорода увеличивает напряжение выходного сигнала, а компьютер реагирует путем уменьшение подачи топлива. Как только количество топлива уменьшается, мы возвращаемся к обедненной смеси, и напряжение на датчике падает. Этот процесс многократно повторяется пока двигатель работает. Это непрерывный цикл обратной связи является сердцем системы контроля подачи топлива.
Типичные показания датчика при обедненной смеси — напряжение между 0 и 0.3 В и для богатой смеси показания в диапазоне от 0.6 до 1 вольта. Идеальная воздушно-топливная смесь (14.7:1) создает напряжение на выводах датчика 0.5 В
Так почему бы просто не поддерживать постоянно дозированное количество топлива, которое изменяется с положения дроссельной заслонки? На самом деле, довольно много факторов влияют на количество топлива, которое необходимо для поддержания отношения 14.7:1. Некоторые из этих факторов: качество топлива, атмосферное давление, влажность и многое другое. Таким образом, необходимы О2-датчики (датчики кислорода)! Количество раз в единицу времени обновлений информации датчиками весьма разнятся, но большинство современных датчиков в среднем обновляют показания минимум полдюжины раз в секунду. Старые датчики обновляли показания медленно порядка одного раза в секунду, так что вы можете себе представить насколько лучше стали контролировать выхлоп современные датчики.
Старые кислородные датчики, использовавшиеся до 1982 года были 1 или 2 проводные неподогреваемого типа. Эти датчики не будут на самом деле начинать правильно регистрировать состояние выхлопной пока датчик не нагреется, чтобы достичь свой рабочий диапазон. В результате компьютер работает в режиме «открытого контура» (использование заданных топливных значений, которые фактически заставляют двигатель работать на переобогащенной смеси) в течение более длительных периодов времени. Все датчики нового типа «с подогревом» (датчик ho2s), которые включают нагревательный элемент для приведения датчика до рабочей температуры быстрее, обычно это занимает меньше минуты, так быстро, как это возможно, даже за 10 секунд — это возможно! Нагревательные элементы предотвращают охлаждение датчиков, когда двигатель работает на холостом ходу. Эти подогреваемые датчики имеют обычно 3 и 4 провода в конструкции своих разъемов.
Есть несколько различных видов датчиков, которые различаются по химическому составу и дизайну, но их назначение и функции остаются неизменными. Техника за эти годы вышла далеко за рамки того, что описано на этой странице, но есть несколько вещей, которые нужно понимать. Датчики кислорода сравнивают содержание кислорода в окружающем воздухе с содержанием кислорода в выхлопных газах. Наружного воздух попадает в датчик через отверстие в корпусе датчика или через разъем проводки. Некоторые типы датчиков генерируют (изменяют) напряжение, когда изменяется содержание кислорода в выхлопных газах, а некоторые изменяют сопротивление. Новейший тип, обогреваемые широкополосные O2 датчики (кислородные датчики) имеют диапазон напряжений от 2 до 5 вольт.
Несмотря на все их различия и фактические показания выдаваемые датчиками, компьютер обрабатывает информацию так, что у нас ожидаются значения от 0 до 1 В. Есть пара исключений, конечно. Некоторые типы кислородных датчиков «Титания» с подогревом могут производить напряжение до 5 вольт. Это значение не изменяется с помощью компьютера. Еще один тип того же датчика настроен для чтения значений противоположное тому, что вы ожидаете. Высокое напряжение указывают на бедную смесь и низкое напряжение на богатую. Эти 2 типа датчиков кислорода не распространены и использовались в основном на некоторых Ниссанах, Jeep’ах и Иглах. В каждом правиле должны быть исключения! Инженеры они такие, да, я знаю.
Вы также заметите, что на большинстве автомобилей после ’96 года, есть второй комплект датчиков кислорода за каталитическим нейтрализатором (т.е. там стоит вторая лямбда, он же 2 датчик кислорода). Их функция такая же, как и передних О2 датчиков, а их показания используются по-разному, и их целью является измерить эффективность преобразователей, а не контролировать соотношение топлива двигателя. Вы можете обратиться к нашей статье «коды по датчику кислорода» и «помощь в диагностике» для дальнейшего уточнения показаний датчиков кислорода. Эти статья содержат ценную диагностическую информацию и процедуры проведения испытаний, а также возможные причины кодов ошибок по богатой или бедной смеси. Я надеюсь, что вы нашли эту информацию полезной.
Англоязычный оригинал
С уважением, перевод предоставлен коллективом мастерской Works-Garage.
Works-Project.ru
Датчики кислорода: как они работают и что они делают
Что такое датчик кислорода?Датчик кислорода (обычно именуемый «датчиком O2», поскольку O2 — это химическая формула кислорода) установлен в выпускном коллекторе автомобиля для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигатель.
Контролируя уровень кислорода и отправляя эту информацию на компьютер вашего двигателя, эти датчики сообщают вашему автомобилю, является ли топливная смесь богатой (недостаточно кислорода) или бедной (слишком много кислорода).Правильное соотношение воздух-топливо имеет решающее значение для поддержания плавности хода вашего автомобиля.
Поскольку датчик O2 играет важную роль в работе двигателя, выбросах и топливной экономичности, важно понимать, как они работают, и следить за тем, чтобы ваш датчик работал должным образом.
Где расположены датчики кислорода?Количество кислородных датчиков в автомобиле варьируется. Каждый автомобиль, выпущенный после 1996 года, должен иметь кислородный датчик перед и после каждого каталитического нейтрализатора.Таким образом, в то время как большинство транспортных средств имеют два датчика кислорода, двигатели V6 и V8, оснащенные двойным выхлопом, имеют четыре датчика кислорода — один перед каталитическим нейтрализатором и за ним на каждом ряду двигателя.
Для чего нужен датчик кислорода?Автомобильный датчик 02 используется для измерения количества кислорода в выхлопных газах и передачи этой обратной связи на компьютер вашего автомобиля. Затем компьютер использует эту информацию для корректировки воздушно-топливной смеси.
Датчики кислорода работают, вырабатывая собственное напряжение при нагревании (примерно 600 ° F).На конце датчика кислорода, который подключается к выпускному коллектору, находится циркониевая керамическая груша. Внутренняя и внешняя части колбы покрыты пористым слоем платины, которая служит электродами. Внутренняя часть колбы вентилируется изнутри через корпус датчика во внешнюю атмосферу.
Когда внешняя часть баллона подвергается воздействию горячих газов выхлопных газов, разница в уровнях кислорода между баллоном и внешней атмосферой внутри датчика вызывает прохождение напряжения через баллон.
Если соотношение топлива бедное (недостаточно топлива в смеси), напряжение относительно низкое — примерно 0,1 вольт. Если соотношение топлива богатое (слишком много топлива в смеси), напряжение относительно высокое — примерно 0,9 вольт. Когда топливно-воздушная смесь находится в стехиометрическом соотношении (14,7 частей воздуха на 1 часть топлива), кислородный датчик выдает 0,45 вольт.
Верхний кислородный датчик (кислородный датчик 1)Кислородный датчик 1 является верхним кислородным датчиком по отношению к каталитическому нейтрализатору.Он измеряет воздушно-топливное соотношение выхлопных газов, выходящих из выпускного коллектора, и отправляет сигналы высокого и низкого напряжения в модуль управления трансмиссией, чтобы регулировать воздушно-топливную смесь. Когда модуль управления трансмиссией получает сигнал низкого напряжения (обедненной смеси), он компенсирует это за счет увеличения количества топлива в смеси. Когда модуль управления трансмиссией получает сигнал высокого напряжения (богатый), он обедняет смесь, уменьшая количество топлива, которое он добавляет в смесь.
Использование модулем управления трансмиссией входного сигнала кислородного датчика для регулирования топливной смеси известно как замкнутый контур управления с обратной связью.Эта работа с замкнутым контуром приводит к постоянному переключению между богатой и обедненной смесью, что позволяет каталитическому нейтрализатору минимизировать выбросы за счет поддержания надлежащего баланса общего среднего соотношения топливной смеси.
Однако при запуске холодного двигателя или выходе из строя кислородного датчика модуль управления трансмиссией переходит в режим разомкнутого контура. В режиме разомкнутого контура модуль управления трансмиссией не получает сигнал от кислородного датчика и заказывает фиксированную богатую топливную смесь. Работа в разомкнутом контуре приводит к увеличению расхода топлива и выбросов. Многие новые кислородные датчики содержат нагревательные элементы, помогающие им быстро достичь рабочей температуры, чтобы свести к минимуму время, затрачиваемое на работу без обратной связи.
Нижний кислородный датчик (кислородный датчик 2)Кислородный датчик 2 — нижний кислородный датчик по отношению к каталитическому нейтрализатору. Он измеряет соотношение воздух-топливо на выходе из каталитического нейтрализатора, чтобы убедиться, что каталитический нейтрализатор работает правильно.Каталитический нейтрализатор поддерживает стехиометрическое соотношение воздух-топливо 14,7: 1, в то время как модуль управления трансмиссией постоянно переключается между богатой и обедненной воздушно-топливной смесью из-за входного сигнала от верхнего кислородного датчика (датчик 1). Следовательно, нижний кислородный датчик (датчик 2) должен выдавать стабильное напряжение примерно 0,45 В.
Признаки неисправного датчика O2При выходе из строя датчика 02 могут появиться различные диагностические коды неисправностей (DTC). В большинстве случаев неисправный датчик O2 приводит к включению светового индикатора двигателя, сопровождаемого кодом неисправности, который вы можете прочитать с помощью сканера OBD2, такого как FIXD. Основываясь на этом коде неисправности, он укажет на причину сбоя, а затем продолжит диагностику.
Симптомы неисправного датчика O2 могут включать следующее:
- Обедненная или богатая рабочая среда
- Плохое ускорение
- Колебания двигателя
- Черный дым из выхлопной трубы (богатое рабочее состояние) Черный дым — избыток топлива, выходящий из выхлопной трубы
- Неровный холостой ход
- Автомобиль остановился
- Пониженная топливная эффективность
Чтобы определить, неисправен ли у вас кислородный датчик vs.в обедненных или богатых условиях работы первым делом необходимо проверить работу датчика O2 с помощью диагностического прибора.
Как тестировать датчики кислородаПоскольку датчик O2 играет важную роль в поддержании максимально эффективной и чистой работы вашего двигателя, важно убедиться, что он работает должным образом. Большинство кислородных датчиков обычно служат от 30 000 до 50 000 миль, или 3-5 лет, а более новые датчики служат еще дольше при надлежащем обслуживании и уходе.
Вы можете проверить кислородный датчик дома с помощью вольтметра или диагностического прибора OBD2, такого как датчик FIXD.Перейдите к потоку данных в реальном времени в приложении FIXD, чтобы увидеть напряжение и время отклика ваших датчиков O2.
Обычно передний (передний) датчик O2 1, который функционирует должным образом, будет переключаться с богатой на обедненную смесь с довольно устойчивой скоростью, создавая волнообразное образование. Напряжение, генерируемое датчиком O2, должно составлять от 0,1 В до 0,9 В, с 0,9 В на богатой стороне и 0,1 В на бедной стороне. Если ваши показания находятся в этом диапазоне, датчик O2 работает нормально.
Задний (нижний) кислородный датчик 2 является датчиком катализатора, и, если все работает нормально, этот датчик будет колебаться около половины вольта.Однако это измерение может варьироваться в зависимости от производителя.
Дополнительные советы по тестированию датчика O2Если датчик O2 не реагирует быстро на тестирование:
Если датчик кажется вялым или медленным во время тестирования и есть другие симптомы без кода неисправности, это может быть проблема «ленивого» датчика O2, который может вызвать другие проблемы.
Если напряжение датчика O2 залипает на богатой или обедненной смеси:
Попробуйте ввести противоположное условие, чтобы определить, связана ли проблема с датчиком кислорода или с топливовоздушной смесью.Например, если ваш датчик O2 заедает бедной смесью, добавьте топлива в ситуацию, чтобы увидеть, сработает ли он. Если датчик O2 находится на стороне богатой смеси, попробуйте создать утечку вакуума или увеличить количество кислорода, чтобы посмотреть, как и реагирует ли датчик.
Будьте в курсе с приложением FIXD Sensor & AppС автомобильным сканером и приложением FIXD вы можете взять под свой контроль уход за автомобилем и сэкономить 1000 долларов. От автоматических предупреждений о техническом обслуживании, отправляемых прямо на ваш телефон, до данных в реальном времени, показывающих уровень топлива, уровни датчика кислорода, напряжение аккумулятора и многое другое, FIXD информирует вас, чтобы вы могли продлить срок службы вашего автомобиля и избежать ненужных дополнительных продаж.Узнайте больше о сканере и приложении FIXD OBD2 сегодня!
Что необходимо знать домашнему механику о датчиках O2
Скачать PDFСовременные компьютеризированные системы управления двигателем полагаются на входные данные от различных датчиков для регулирования характеристик двигателя, выбросов и других важных функций. Датчики должны предоставлять точную информацию, в противном случае могут возникнуть проблемы с управляемостью, повышенный расход топлива и сбои в выбросах.
Одним из ключевых датчиков в этой системе является датчик кислорода.Его часто называют датчиком «O2», потому что O2 — это химическая формула кислорода (атомы кислорода всегда перемещаются парами, а не в одиночку).
Первый датчик O2 был представлен в 1976 году на Volvo 240. Следующие в Калифорнии автомобили получили их в 1980 году, когда правила Калифорнии по выбросам требовали снижения выбросов. Федеральные законы о выбросах сделали датчики O2 практически обязательными для всех автомобилей и легких грузовиков, построенных с 1981 года. И теперь, когда действуют правила OBD-II (автомобили 1996 года и новее), многие автомобили теперь оснащены несколькими датчиками O2, некоторые из которых целых четыре!
Датчик O2 установлен в выпускном коллекторе для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигателя.Контроль уровня кислорода в выхлопных газах — это способ измерения топливной смеси. Он сообщает компьютеру, является ли топливная смесь богатой (меньше кислорода) или бедной (больше кислорода).
На относительную насыщенность или обедненную смесь топливной смеси может влиять множество факторов, включая температуру воздуха, температуру охлаждающей жидкости двигателя, барометрическое давление, положение дроссельной заслонки, расход воздуха и нагрузку на двигатель. Есть и другие датчики, которые отслеживают эти факторы, но датчик O2 является главным монитором того, что происходит с топливной смесью.Следовательно, любые проблемы с датчиком O2 могут вывести из строя всю систему.
Петли
Компьютер использует вход кислородного датчика для регулирования топливной смеси, что называется топливным «контуром управления с обратной связью». Компьютер ориентируется на датчик O2 и реагирует изменением топливной смеси. Это приводит к соответствующему изменению показаний датчика O2. Это называется работой «замкнутого контура», потому что компьютер использует вход датчика O2 для регулирования топливной смеси.Результатом является постоянное переключение от богатой к обедненной смеси, что позволяет каталитическому нейтрализатору работать с максимальной эффективностью, сохраняя при этом среднюю общую топливную смесь в надлежащем балансе для минимизации выбросов. Это сложная установка, но она работает.
Когда не поступает сигнал от датчика O2, как в случае, когда холодный двигатель запускается впервые (или датчик 02 выходит из строя), компьютер заказывает фиксированную (неизменную) богатую топливную смесь. Это называется операцией «разомкнутого контура», потому что входной сигнал от датчика O2 не используется для регулирования топливной смеси.Если двигатель не переходит в замкнутый цикл, когда датчик O2 достигает рабочей температуры, или выходит из замкнутого цикла из-за потери сигнала датчика O2, двигатель будет работать на слишком богатой смеси, что приведет к увеличению расхода топлива и выбросов. Неисправный датчик охлаждающей жидкости также может предотвратить переход системы в замкнутый контур, потому что компьютер также учитывает температуру охлаждающей жидкости двигателя при принятии решения о переходе в замкнутый цикл.
Как это работает
Датчик O2 работает как миниатюрный генератор и вырабатывает собственное напряжение, когда нагревается.Внутри вентилируемой крышки на конце датчика, который ввинчивается в выпускной коллектор, находится циркониевая керамическая колба. Колба снаружи покрыта пористым слоем платины. Внутри колбы находятся две платиновые полоски, которые служат электродами или контактами.
Наружная часть колбы подвергается воздействию горячих газов в выхлопе, в то время как внутренняя часть колбы выходит изнутри через корпус датчика во внешнюю атмосферу. Кислородные датчики старого образца на самом деле имеют небольшое отверстие в корпусе, чтобы воздух мог попасть в датчик, но датчики O2 нового типа «дышат» через свои проводные разъемы и не имеют вентиляционного отверстия.Трудно поверить, но небольшое пространство между изоляцией и проводом обеспечивает достаточно места для проникновения воздуха в датчик (по этой причине никогда не следует наносить смазку на разъемы датчика O2, поскольку она может блокировать поток воздуха). Проветривание датчика через провода, а не через отверстие в корпусе, снижает риск попадания грязи или воды, которые могут засорить датчик изнутри и вызвать его выход из строя. Разница в уровнях кислорода между выхлопным и наружным воздухом внутри датчика вызывает прохождение напряжения через керамическую грушу.Чем больше разница, тем выше значение напряжения.
Датчик кислорода обычно вырабатывает примерно до 0,9 вольт, когда топливная смесь богатая и в выхлопных газах мало несгоревшего кислорода. Когда смесь бедная, выходное напряжение датчика упадет примерно до 0,1 вольт. Когда топливно-воздушная смесь сбалансирована или находится в точке равновесия около 14,7: 1, датчик будет показывать около 0,45 вольт.
Когда компьютер получает сигнал обогащения (высокое напряжение) от датчика O2, он понижает топливную смесь, чтобы уменьшить показания датчика.Когда показания датчика O2 становятся бедными (низкое напряжение), компьютер снова меняет направление, заставляя топливную смесь обогащаться. Это постоянное переключение топливной смеси вперед и назад происходит с разными скоростями в зависимости от топливной системы. Скорость перехода самая низкая на двигателях с карбюраторами с обратной связью, обычно один раз в секунду при 2500 об / мин. Двигатели с впрыском в корпус дроссельной заслонки несколько быстрее (2–3 раза в секунду при 2500 об / мин), тогда как двигатели с многоточечным впрыском являются самыми быстрыми (5–7 раз в секунду при 2500 об / мин).
Датчик кислорода должен быть горячим (около 600 градусов или выше), прежде чем он начнет генерировать сигнал напряжения, поэтому многие датчики кислорода имеют внутри небольшой нагревательный элемент, чтобы помочь им быстрее достичь рабочей температуры. Нагревательный элемент также может предотвратить слишком сильное охлаждение датчика во время длительного холостого хода, что может привести к возврату системы к разомкнутому контуру.
Датчики O2 с подогревом используются в основном в новых автомобилях и обычно имеют 3 или 4 провода.Старые однопроводные датчики O2 не имеют нагревателей. При замене датчика O2 убедитесь, что он того же типа, что и оригинальный (с подогревом или без него).
Новая роль датчиков O2 с OBDII
Начиная с нескольких автомобилей в 1994 и 1995 годах и всех автомобилей 1996 года и новее, количество кислородных датчиков на каждый двигатель увеличилось вдвое. Второй кислородный датчик теперь используется после каталитического нейтрализатора для контроля его эффективности. На двигателях V6 или V8 с двойным выхлопом это означает, что можно использовать до четырех датчиков O2 (по одному для каждого ряда цилиндров и по одному после каждого преобразователя).
Система OBDII предназначена для контроля выбросов двигателя. Это включает в себя наблюдение за всем, что может вызвать увеличение выбросов. Система OBDII сравнивает показания уровня кислорода датчиков O2 до и после преобразователя, чтобы увидеть, снижает ли преобразователь загрязняющие вещества в выхлопных газах. Если он не видит изменений в показаниях уровня кислорода, это означает, что преобразователь не работает должным образом. Это приведет к включению контрольной лампы неисправности (MIL).
Диагностика датчика
ДатчикиO2 невероятно прочны, учитывая условия эксплуатации, в которых они живут. Но датчики O2 изнашиваются и в конечном итоге должны быть заменены. Характеристики датчика O2 имеют тенденцию к снижению с возрастом, поскольку загрязняющие вещества накапливаются на наконечнике датчика и постепенно снижают его способность производить напряжение. Такое ухудшение может быть вызвано различными веществами, попадающими в выхлопные газы, такими как свинец, силикон, сера, масляная зола и даже некоторые топливные присадки.Датчик также может быть поврежден факторами окружающей среды, такими как вода, брызги дорожной соли, масло и грязь.
По мере того, как датчик стареет и становится вялым, время, необходимое для реакции на изменения в топливно-воздушной смеси, замедляется, что приводит к увеличению выбросов. Это происходит потому, что колебания топливной смеси замедляются, что снижает эффективность преобразователя. Эффект более заметен на двигателях с многоточечным впрыском топлива (MFI), чем с электронной карбюрацией или впрыском через корпус дроссельной заслонки, потому что соотношение топлива изменяется намного быстрее при использовании MFI.Если датчик полностью умирает, результатом может быть фиксированная богатая топливная смесь. По умолчанию для большинства применений с впрыском топлива средний диапазон составляет три минуты. Это вызывает большой скачок расхода топлива, а также выбросов. А если преобразователь перегреется из-за богатой смеси, он может выйти из строя. Одно исследование EPA показало, что 70% автомобилей, не прошедших испытание на выбросы I / M 240, нуждались в новом датчике O2.
Единственный способ узнать, выполняет ли датчик O2 свою работу, — это регулярно его проверять.Вот почему на некоторых автомобилях (в основном импортных) есть световой индикатор с напоминанием о техническом обслуживании датчика. Хорошее время для проверки датчика — замена свечей зажигания.
Вы можете прочитать выходные данные датчика O2 с помощью сканирующего прибора или цифрового вольтметра, но переходы трудно увидеть, потому что числа сильно меняются. Вот где действительно сияет инструмент сканирования на базе ПК, такой как AutoTap. Вы можете использовать функции построения графиков, чтобы наблюдать за изменениями напряжения датчиков O2. Программное обеспечение отобразит выходное напряжение датчика в виде волнистой линии, которая показывает как его амплитуду (минимальное и максимальное напряжение), так и его частоту (скорость перехода от богатого к бедному).
Хороший датчик O2 должен выдавать колеблющуюся форму волны на холостом ходу, при которой напряжение изменяется от почти минимального (0,1 В) до почти максимального (0,9 В). Искусственное обогащение топливной смеси путем подачи пропана во впускной коллектор должно привести к тому, что датчик среагирует почти немедленно (в течение 100 миллисекунд) и перейдет на максимальный (0,9 В) выходной сигнал. Создание обедненной смеси путем открытия вакуумной линии должно привести к падению выходного сигнала датчика до минимального (0,1 В) значения. Если датчик не переключается вперед и назад достаточно быстро, это может указывать на необходимость замены.
Если цепь датчика O2 разомкнута, закорочена или выходит за пределы допустимого диапазона, она может установить код неисправности и загореться контрольной лампой проверки двигателя или неисправности. Если дополнительная диагностика обнаруживает неисправность датчика, требуется его замена. Но многие датчики O2, которые сильно испорчены, продолжают работать достаточно хорошо, чтобы не устанавливать код неисправности, но недостаточно хорошо, чтобы предотвратить увеличение выбросов и расхода топлива. Таким образом, отсутствие кода неисправности или контрольной лампы не означает, что датчик O2 работает правильно.
Замена датчика
Очевидно, что неисправный датчик O2 требует замены. Но также может быть полезно периодически заменять датчик O2 для профилактического обслуживания. Замена стареющего датчика O2, который стал медленно работать, может восстановить максимальную топливную эффективность, минимизировать выбросы выхлопных газов и продлить срок службы преобразователя.
Необогреваемые 1- или 2-проводные датчики O2 на автомобилях с 1976 по начало 1990-х годов можно заменять каждые 30 000–50 000 миль.Подогреваемые 3- и 4-проводные датчики O2 в приложениях с середины 1980-х до середины 1990-х годов можно менять каждые 60 000 миль. На автомобилях, оборудованных OBDII (1996 г. и новее), рекомендуется интервал замены 100 000 миль.
Разбираемся с датчиками: датчик кислорода
Датчик кислорода, также известный как датчик O2, выполняет то, что предполагает его название — он измеряет количество кислорода в выхлопных газах. Хотя это может показаться довольно скромной задачей, датчик O2 на самом деле является одним из самых важных датчиков на любом транспортном средстве, отвечающим за поддержание правильного баланса между воздухом и топливом для оптимальных выбросов.Из-за этого вы захотите знать, что он делает, почему выходит из строя, и, что важно, как его заменить, когда это произойдет.
Как работает датчик O2?
Большинство автомобилей имеют по крайней мере два кислородных датчика, расположенных по всей выхлопной системе; по крайней мере, один перед каталитическим нейтрализатором и один или несколько после каталитического нейтрализатора. Датчик предварительной очистки регулирует подачу топлива, а датчик ниже по потоку измеряет эффективность каталитического нейтрализатора.
ДатчикиO2 обычно можно разделить на узкополосные или широкополосные.Чувствительный элемент находится внутри датчика в стальном корпусе. Молекулы кислорода из выхлопных газов проходят через крошечные щели или отверстия в стальной оболочке датчика, чтобы достичь чувствительного элемента или нервной ячейки. На другой стороне нервной ячейки кислород из воздуха за пределами выхлопной трубы проходит вниз по датчику O2 и вступает в контакт. Разница в количестве кислорода между кислородом в наружном воздухе и в выхлопных газах способствует потоку ионов кислорода и создает напряжение.
Если смесь выхлопных газов слишком богата и в выхлопе слишком мало кислорода, в электронный блок управления двигателя (ЭБУ) отправляется сигнал для уменьшения количества топлива, добавляемого в цилиндр. Если смесь выхлопных газов слишком бедная, то отправляется сигнал об увеличении количества топлива, используемого в двигателе. Слишком много топлива производит углеводороды и окись углерода. Слишком мало топлива производит загрязняющие вещества в виде оксидов азота. Сигнал датчика помогает поддерживать правильную смесь. Датчики O2 с широким диапазоном имеют дополнительную ячейку откачки O2 для регулирования количества кислорода, присутствующего в чувствительном элементе.Это позволяет измерять гораздо более широкое соотношение воздух / топливо.
Почему датчики O2 выходят из строя?
Поскольку датчик кислорода находится в потоке выхлопных газов, он может быть загрязнен. Общие источники загрязнения включают чрезмерно богатую топливную смесь или прорыв масла в старом двигателе и охлаждающую жидкость двигателя, сгорающую в камере сгорания в результате утечки через прокладку двигателя. Он также подвергается воздействию чрезвычайно высоких температур и, как и любой другой компонент, со временем изнашивается. Все это может повлиять на характеристики отклика датчика кислорода, что приведет к увеличению времени отклика или сдвигу кривой напряжения датчика и, в конечном итоге, к снижению характеристик датчика.
На что обращать внимание при отказе датчика O2
Когда датчик кислорода выходит из строя, компьютер больше не может определять соотношение воздух / топливо, поэтому в конечном итоге он делает предположения. По этой причине есть несколько контрольных знаков, на которые следует обратить внимание:
- Контрольная лампа двигателя: хотя контрольная лампа двигателя может гореть по многим причинам, обычно это связано с проблемой, связанной с выбросами.
- Низкая экономия топлива: неисправный кислородный датчик нарушает подачу смеси из воздуха в топливную смесь, что приводит к увеличению расхода топлива.
- Неровная работа двигателя на холостом ходу или пропуски зажигания: поскольку выходной сигнал датчика кислорода помогает управлять синхронизацией двигателя, интервалами сгорания и соотношением воздуха к топливу, неисправный датчик может привести к неровной работе автомобиля.
- Низкая производительность двигателя.
Поиск и устранение неисправностей датчика O2
Чтобы определить источник неисправности датчика O2, выполните следующие действия:
- Считайте все коды неисправностей с помощью диагностического прибора. Обратите внимание, что при проблемах с датчиками O2 часто возникает несколько кодов неисправностей. Лямбда-зонд
- имеет внутренний нагреватель, поэтому проверьте сопротивление нагревателя — обычно оно будет довольно низким.
- Проверьте подачу питания на ТЭН — часто эти провода одного цвета.
- Осмотрите электрический разъем на предмет повреждений или грязи.
- Осмотрите выпускной коллектор и топливные форсунки на предмет утечек, а также на состояние компонентов системы зажигания — они могут повлиять на работу датчика.
- Проверьте правильность показаний датчика O2, подтвердив значение O2 с помощью четырех или пяти анализаторов выбросов газов.
- С помощью осциллографа проверьте сигнал как на холостом ходу, так и на прибл. Скорость двигателя 2500 об / мин.
- Используйте данные в реальном времени, чтобы проверить наличие сигнала, если проводка датчика труднодоступна.
- Проверьте состояние защитной трубки элемента зонда на предмет повреждений и загрязнения.
Общие коды неисправностей
Общие коды неисправностей и причины включают:
- P0135 : Датчик кислорода перед катализатором 1, цепь подогрева / обрыв
- P0175 : слишком богатая система (банк 2)
- P0713 : Неисправность корректора топливной системы (банк 2)
- P0171 : слишком бедная система (банк 1)
- P0162 : Неисправность цепи датчика O2 (bank 2, датчик 3)
Как заменить датчик O2
youtube.com/embed/j7VnQ5JpILo»/>
Перед заменой датчика необходимо диагностировать проблему.Подключите диагностический прибор, такой как Delphi DS, выберите правильный автомобиль и прочтите код (ы) неисправности. Подтвердите код неисправности, выбрав данные в реальном времени и сравнив значение подозрительного неисправного датчика со значением известного исправного датчика. При необходимости обратитесь к данным производителя транспортного средства, чтобы найти правильное значение для сравнения. Другие инструменты или оборудование могут потребоваться, чтобы определить, является ли именно датчик, а не проводка, которая является причиной проблемы.
- Поскольку многие автомобили последних моделей имеют несколько кислородных датчиков, убедитесь, что вы правильно определили неисправный датчик, чтобы по ошибке не заменить неправильный.Производители автомобилей идентифицируют позиции «банк1» и «банк2» и «перед / зад» и «до / после» по-разному, поэтому следует позаботиться о том, чтобы убедиться, что вы определили правильный (проблемный) датчик. Лучший способ сделать это — просмотреть данные в реальном времени с помощью диагностического инструмента.
- Затем отключите проводное соединение.
- Затем с помощью гаечного ключа или специального торцевого ключа для O2 открутите датчик от гнезда. После откручивания выбросьте старый датчик и замените его новым.
- Большинство кислородных датчиков поставляются со специальным электропроводящим противозадирным составом, нанесенным на резьбу, так что это просто вопрос ввинчивания нового датчика в пустоту, оставленную старым.
- Чтобы защитить датчик от приваривания к резьбе, датчики Delphi поставляются с противозадирными составами, нанесенными заранее или включенными в комплект. При необходимости нанесите состав на новый датчик перед повторной установкой. Будьте осторожны, чтобы не нанести чрезмерное количество противозадирного средства на нитки, так как это может загрязнить чувствительную область.
- Затяните датчик с рекомендованным моментом затяжки.
- После того, как датчик будет на месте, вставьте электронный разъем.
- Теперь снова подключите диагностический прибор и удалите все связанные коды неисправностей.
- Наконец, включите зажигание и убедитесь, что индикатор проверки двигателя погас, затем выполните дорожное испытание.
Как работает кислородный датчик в автомобиле?
Каждый новый автомобиль и большинство автомобилей, выпущенных после 1980 года, имеют кислородный датчик .Датчик является частью системы контроля выбросов и передает данные в компьютер управления двигателем. Цель датчика — помочь двигателю работать с максимальной эффективностью, а также производить как можно меньше выбросов.
Бензиновый двигатель сжигает бензин в присутствии кислорода (подробные сведения см. В разделе «Как работают автомобильные двигатели»). Оказывается, существует определенное «идеальное» соотношение воздуха и бензина, и это соотношение составляет 14,7: 1 (разные виды топлива имеют разные идеальные соотношения — соотношение зависит от количества водорода и углерода, присутствующих в данном количестве. топлива).Если воздуха меньше, чем это идеальное соотношение, то после сгорания останется топливо. Это называется смесью богатая смесью . Богатые смеси плохи, потому что несгоревшее топливо создает загрязнение. Если воздуха больше, чем это идеальное соотношение, значит, имеется избыток кислорода. Это называется бедной смесью . Бедная смесь имеет тенденцию производить больше загрязняющих веществ оксидами азота, и в некоторых случаях это может привести к снижению производительности и даже к повреждению двигателя.
Датчик кислорода расположен в выхлопной трубе и может обнаруживать богатые и бедные смеси.Механизм в большинстве датчиков включает химическую реакцию, которая генерирует напряжение (подробности см. В патентах ниже). Компьютер двигателя смотрит на напряжение, чтобы определить, является ли смесь богатой или бедной, и соответственно регулирует количество топлива, поступающего в двигатель.
Причина, по которой двигателю нужен кислородный датчик, заключается в том, что количество кислорода, которое может потреблять двигатель, зависит от всех факторов, таких как высота, температура воздуха, температура двигателя, барометрическое давление. , нагрузка на двигатель и т. д.
Когда датчик кислорода выходит из строя, компьютер больше не может определять соотношение воздух / топливо, поэтому в конечном итоге он делает предположения. Ваша машина плохо работает и расходует больше топлива, чем нужно.
КАК ДИАГНОСТИРОВАТЬ И ЗАМЕНИТЬ
Компьютеризированные системы управления двигателем полагаются на входные данные от различных датчиков для регулирования характеристик двигателя, выбросов и других важных функций. Датчики должны предоставлять точную информацию, в противном случае могут возникнуть проблемы с управляемостью, повышенный расход топлива и сбои в выбросах.
Датчик кислорода — один из ключевых датчиков в этой системе. Его часто называют датчиком «O2», потому что O2 — это химическая формула кислорода (атомы кислорода всегда перемещаются парами, а не поодиночке). Его также можно назвать датчиком h3O2 для подогреваемого кислородного датчика, поскольку он имеет внутреннюю цепь нагревателя, которая доводит датчик до рабочей температуры после холодного запуска.
Первый датчик O2 был введен в 1976 году на Volvo 240. Следующие в Калифорнии автомобили получили их в 1980 году, когда калифорнийские правила выбросов требовали снижения выбросов.Федеральные законы о выбросах сделали датчики O2 практически обязательными для всех автомобилей и легких грузовиков, построенных с 1981 года. И теперь, когда действуют правила OBD-II (автомобили 1996 года и новее), многие автомобили теперь оснащены несколькими датчиками O2, некоторые из которых целых четыре!
Датчик O2 установлен в выпускном коллекторе для контроля количества несгоревшего кислорода в выхлопных газах, когда выхлопные газы выходят из двигателя. Контроль уровня кислорода в выхлопных газах — это способ измерения топливной смеси. Он сообщает компьютеру, является ли топливная смесь богатой (меньше кислорода) или бедной (больше кислорода).
На относительную насыщенность или обедненную смесь топливной смеси может влиять множество факторов, включая температуру воздуха, температуру охлаждающей жидкости двигателя, барометрическое давление, положение дроссельной заслонки, расход воздуха и нагрузку на двигатель. Существуют и другие датчики для отслеживания этих факторов, но датчик O2 является главным монитором того, что происходит с топливной смесью. Следовательно, любые проблемы с датчиком O2 могут вывести из строя всю систему.
КОНТУРА УПРАВЛЕНИЯ ОБРАТНОЙ СВЯЗЬЮ ТОПЛИВНОЙ СМЕСИ
Компьютер использует вход кислородного датчика для регулирования топливной смеси, что называется контуром управления с обратной связью по топливу.»Компьютер ориентируется на датчик O2 и реагирует изменением топливной смеси. Это приводит к соответствующему изменению показаний датчика O2. Это называется работой» замкнутого контура «, потому что компьютер использует вход датчика O2 для регулирования Результатом является постоянное переключение от богатой к обедненной смеси, что позволяет каталитическому нейтрализатору работать с максимальной эффективностью, сохраняя при этом средний общий баланс топливной смеси для минимизации выбросов.Это сложная установка, но она работает.
Когда не поступает сигнал от датчика O2, как в случае, когда холодный двигатель запускается впервые (или датчик 02 выходит из строя), компьютер заказывает фиксированную (неизменную) богатую топливную смесь. Это называется операцией «разомкнутого контура», потому что входной сигнал от датчика O2 не используется для регулирования топливной смеси.
Если двигатель не переходит в замкнутый цикл, когда датчик O2 достигает рабочей температуры, или выходит из замкнутого цикла из-за потери сигнала датчика O2, двигатель будет работать на слишком богатой смеси, что приведет к увеличению расхода топлива и выбросов.Неисправный датчик охлаждающей жидкости также может предотвратить переход системы в замкнутый контур, потому что компьютер также учитывает температуру охлаждающей жидкости двигателя при принятии решения о переходе в замкнутый цикл.
КАК РАБОТАЕТ КИСЛОРОДНЫЙ ДАТЧИК
Датчик O2 работает как миниатюрный генератор и вырабатывает собственное напряжение, когда нагревается. Внутри вентилируемой крышки на конце датчика, который ввинчивается в выпускной коллектор, находится циркониевая керамическая колба. Колба снаружи покрыта пористым слоем платины.Внутри колбы находятся две платиновые полоски, которые служат электродами или контактами.
Наружная часть колбы подвергается воздействию горячих газов в выхлопе, в то время как внутренняя часть колбы выходит изнутри через корпус датчика во внешнюю атмосферу. Кислородные датчики старого образца на самом деле имеют небольшое отверстие в корпусе, чтобы воздух мог попадать в датчик, но датчики O2 нового типа «дышат» через свои проводные разъемы и не имеют вентиляционного отверстия. Трудно поверить, но небольшое пространство между изоляцией и проводом обеспечивает достаточно места для проникновения воздуха в датчик (по этой причине никогда не следует наносить смазку на разъемы датчика O2, поскольку она может блокировать поток воздуха). .Проветривание датчика через провода, а не через отверстие в корпусе, снижает риск загрязнения датчика изнутри и его выхода из строя.
Разница в уровнях кислорода между выхлопным и наружным воздухом внутри датчика вызывает прохождение напряжения через керамическую грушу. Чем больше разница, тем выше значение напряжения.
Датчик кислорода обычно генерирует напряжение до 0,9 вольт, когда топливная смесь богатая и в выхлопных газах мало несгоревшего кислорода. Когда смесь обеднена, выходное напряжение датчика упадет примерно до 0,2 В или меньше. Когда топливно-воздушная смесь сбалансирована или находится в точке равновесия около 14,7 к 1, датчик будет показывать около 0,45 вольт.
Когда компьютер получает сигнал обогащения (высокое напряжение) от датчика O2, он понижает топливную смесь, чтобы уменьшить напряжение обратной связи датчика. Когда показания датчика O2 становятся бедными (низкое напряжение), компьютер снова меняет направление, заставляя топливную смесь обогащаться.Это постоянное переключение топливной смеси вперед и назад происходит с разными скоростями в зависимости от топливной системы. Скорость перехода самая низкая на двигателях с карбюраторами с обратной связью, обычно один раз в секунду при 2500 об / мин. Двигатели с впрыском в корпус дроссельной заслонки несколько быстрее (2–3 раза в секунду при 2500 об / мин), а двигатели с многоточечным впрыском являются самыми быстрыми (5–7 раз в секунду при 2500 об / мин).
Датчик кислорода должен быть горячим (около 600 градусов или выше), прежде чем он начнет генерировать сигнал напряжения, поэтому многие датчики кислорода имеют внутри небольшой нагревательный элемент, чтобы помочь им быстрее достичь рабочей температуры.Нагревательный элемент также может предотвратить слишком сильное охлаждение датчика во время длительного холостого хода, что может привести к возврату системы в открытый контур.
Датчики O2 с подогревом используются в основном в новых автомобилях и обычно имеют 3 или 4 провода. Старые однопроводные датчики O2 не имеют нагревателей. При замене датчика O2 убедитесь, что он того же типа, что и оригинальный (с подогревом или без подогрева)
ДАТЧИКИ O2 И OBD II
Начиная с нескольких автомобилей в 1994 и 1995 годах и всех автомобилей 1996 года и новее, количество кислородных датчиков на каждый двигатель увеличилось вдвое.Второй датчик кислорода теперь используется после каталитического нейтрализатора для контроля его эффективности. На двигателях V6 или V8 с двойным выхлопом это означает, что можно использовать до четырех датчиков O2 (по одному для каждого ряда цилиндров и по одному после каждого преобразователя).
Система управления подачей топлива с обратной связью EFI использует входные сигналы датчика O2 для управления топливной смесью.
Система OBD II предназначена для контроля выбросов двигателя. Это включает в себя наблюдение за всем, что может вызвать увеличение выбросов.Система OBD II сравнивает показания уровня кислорода датчиков O2 до и после преобразователя, чтобы увидеть, снижает ли преобразователь загрязняющие вещества в выхлопных газах. Если он не видит изменений в показаниях уровня кислорода, это означает, что преобразователь не работает должным образом. Это приведет к включению контрольной лампы неисправности (MIL).
ДИАГНОСТИКА ДАТЧИКА КИСЛОРОДА
ДатчикиO2 невероятно надежны, учитывая условия эксплуатации, в которых они живут. Но датчики O2 изнашиваются и в конечном итоге должны быть заменены.
Характеристики датчика O2 имеют тенденцию к снижению с возрастом, поскольку загрязнения накапливаются на наконечнике датчика и постепенно снижают его способность производить напряжение. Такое ухудшение может быть вызвано различными веществами, попадающими в выхлопные газы, такими как свинец, силикон, сера, масляная зола и даже некоторые присадки к топливу. Датчик также может быть поврежден факторами окружающей среды, такими как вода, брызги дорожной соли, масло и грязь.
По мере того, как датчик стареет и становится вялым, время, необходимое для реакции на изменения в топливно-воздушной смеси, замедляется, что приводит к увеличению выбросов.Это происходит потому, что колебания топливной смеси замедляются, что снижает эффективность преобразователя. Эффект более заметен на двигателях с многоточечным впрыском топлива (MFI), чем с электронной карбюрацией или впрыском через корпус дроссельной заслонки, потому что соотношение топлива изменяется намного быстрее в приложениях MFI.
Если датчик полностью умирает, результатом может быть фиксированная богатая топливная смесь. По умолчанию для большинства применений с впрыском топлива средний диапазон составляет три минуты. Это вызывает большой скачок расхода топлива, а также выбросов.А если преобразователь перегреется из-за богатой смеси, он может выйти из строя.
Одно исследование EPA показало, что 70% автомобилей, не прошедших испытание на выбросы I / M 240, нуждались в новом датчике O2.
Большинство проблем с датчиком O2 приводят к тому, что система OBD II устанавливает один или несколько диагностических кодов неисправности (DTC) и включает индикатор проверки двигателя. Это коды OBD, связанные с неисправностями датчика O2:
КОДЫ НЕИСПРАВНОСТЕЙ ДАТЧИКА КИСЛОРОДА
P0030 …. Цепь управления нагревателем датчика кислорода (HO2S), ряд 1, датчик 1
P0031…. Цепь управления нагревателем HO2S, ряд 1, датчик 1
P0032 …. Цепь управления нагревателем HO2S, ряд 1, датчик 1
P0033 . … Цепь управления перепускным клапаном турбонагнетателя
P0034 …. Управление перепускным клапаном турбонагнетателя Низкий уровень цепи
P0035 …. Высокий уровень цепи управления перепускным клапаном турбонагнетателя
P0036 …. Цепь управления нагревателем HO2S, ряд 1, датчик 2
P0037 …. Низкий уровень цепи управления нагревателем HO2S, ряд 1, датчик 2
P0038 …. Цепь управления нагревателем датчика кислорода (HO2S), ряд 1, датчик 2
P0042 ….HO2S Цепь управления нагревателем, ряд 1, датчик 3
P0043 …. Цепь управления нагревателем HO2S, ряд 1, датчик 3
P0044 …. Цепь управления нагревателем HO2S, ряд 1, датчик 3
P0050 …. Цепь управления нагревателем HO2S Ряд 2, датчик 1
P0051 …. Низкий уровень цепи управления нагревателем HO2S Ряд 2, датчик 1
P0052 …. Высокий уровень цепи управления нагревателем HO2S, ряд 2, датчик 1
P0056 …. Цепь управления нагревателем HO2S, ряд 2, датчик 2
P0057 …. Цепь управления нагревателем HO2S, ряд 2, датчик 2
P0058 . … Цепь управления нагревателем HO2S, ряд 2, датчик 2
P0062…. Цепь управления нагревателем HO2S, ряд 2, датчик 3
P0063 …. Цепь управления нагревателем HO2S, ряд 2, датчик 3
P0064 …. Цепь управления нагревателем HO2S, ряд 2, датчик 3
P0130 …. Цепь датчика O2 Ряд 1, датчик 1
P0131 …. Цепь датчика О2, низкое напряжение, ряд 1, датчик 1
P0132 …. Цепь датчика О2, высокое напряжение, ряд 1, датчик 1
P0133 …. Цепь датчика О2, медленное реагирование, ряд 1, датчик 1
P0134 …. Нет активности в цепи датчика O2, блок 1, датчик 1
P0135 … Цепь нагревателя датчика O2, ряд 1, датчик 1
P0136…. Неисправность цепи датчика О2, ряд 1, датчик 2
P0137 …. Цепь датчика О2, низкое напряжение, ряд 1, датчик 2
P0138 …. Цепь датчика О2, высокое напряжение, ряд 1, датчик 2
P0139 …. Цепь датчика О2 Медленный отклик, блок 1, датчик 2
P0140 …. O2 в цепи датчика не обнаружено активности, банк 1, датчик 2
P0141 . … O2 Sensor Heater Circuit Bank 1 Sensor 2
P0142 …. O2 Sensor Circuit Malfunction Bank 1 Sensor 3
P0143 …. Низкое напряжение цепи датчика O2, ряд 1, датчик 3
P0144…. Цепь датчика O2, блок 1, датчик 3, высокое напряжение
P0145 …. Цепь датчика O2, медленный отклик, блок 1, датчик 3
P0146 …. Цепь датчика O2, активность не обнаружена, датчик 3, банк 1
P0147 …. O2 Цепь нагревателя датчика, ряд 1, датчик 3
Если датчик O2 работает незначительно вялым или слегка смещен на богатую или обедненную смесь, он может не установить код неисправности. Единственный способ узнать, нормально ли работает датчик O2, — это проверить его реакцию на изменения в топливно-воздушной смеси. Вы можете прочитать выходное напряжение датчика O2 с помощью сканирующего прибора или цифрового вольтметра, но переходы трудно увидеть, потому что числа сильно меняются.Лучше всего наблюдать за изменениями выходного напряжения датчика O2 с помощью цифрового запоминающего осциллографа (DSO). Осциллограф отобразит выходное напряжение датчика в виде волнистой линии, которая показывает как его амплитуду (минимальное и максимальное напряжение), так и его частоту (скорость перехода от богатого к обедненному).
Образцы осциллографа датчика кислорода.
Хороший датчик O2 должен выдавать колеблющуюся форму волны на холостом ходу, при которой напряжение изменяется от почти минимального (0,1 В) до почти максимального (0,9 В).Искусственное обогащение топливной смеси путем подачи пропана во впускной коллектор должно привести к тому, что датчик среагирует почти немедленно (в течение 100 миллисекунд) и перейдет на максимальный (0,9 В) выходной сигнал. Создание обедненной смеси путем открытия вакуумной линии должно привести к падению выходного сигнала датчика до минимального (0,1 В) значения. Если датчик не переключается вперед и назад достаточно быстро, это может указывать на необходимость замены.
Если цепь датчика O2 разомкнута, закорочена или выходит за пределы допустимого диапазона, она может установить код неисправности и загореться контрольной лампой проверки двигателя или неисправности.Если дополнительная диагностика выявляет неисправность датчика, требуется его замена. Но многие датчики O2, которые сильно испорчены, продолжают работать достаточно хорошо, чтобы не устанавливать код неисправности, но недостаточно хорошо, чтобы предотвратить увеличение выбросов и расхода топлива. Таким образом, отсутствие кода неисправности или контрольной лампы не означает, что датчик O2 работает правильно. Датчик может быть ленивым, или смещенным, богатым или бедным.
Компания под названием Lenehan Research производит портативный тестер датчика O2, который проверяет время отклика датчика O2, чтобы определить, хорошее оно или плохое.Тестер требует, чтобы датчик кислорода перескочил с уровня ниже 175 мВ до уровня выше 800 мВ менее чем за 100 мс, когда дроссельная заслонка находится в — отрезал. Если датчик не реагирует достаточно быстро, тест не проходит. Тестер также показывает работу с обратной связью на быстром, сверхъярком цветном 10-светодиодном дисплее и проверяет управление PCM системой управления с обратной связью по топливу.
ЗАМЕНА ДАТЧИКА КИСЛОРОДА
Очевидно, что неисправный датчик O2 требует замены. Но также может быть полезно периодически заменять датчик O2 для профилактического обслуживания.Замена стареющего датчика O2, который стал медленно работать, может восстановить максимальную топливную эффективность, минимизировать выбросы выхлопных газов и продлить срок службы преобразователя.
Необогреваемые 1- или 2-проводные датчики O2 на автомобилях с 1976 по начало 1990-х годов можно заменять каждые 30 000 — 50 000 миль. Подогреваемые 3- и 4-проводные датчики O2 в приложениях с середины 1980-х до середины 1990-х годов можно менять каждые 60 000 миль. На автомобилях, оборудованных OBD II (1996 г. и новее), можно рекомендовать интервал замены 100 000 миль.
Датчик кислорода можно снять с выпускного коллектора с помощью специального гнезда датчика кислорода (в котором есть вырез для очистки проводов) или гнезда 22 мм. Датчик выйдет легче, если двигатель немного теплый, но не горячий на ощупь. Поместите гнездо на датчик и поверните против часовой стрелки, чтобы ослабить его. Если он замерз, нанесите проникающее масло и нагрейте основание датчика.
При установке нового кислородного датчика прямого монтажа или оригинального кислородного датчика разъем проводки нового датчика вставляется в разъем без каких-либо изменений.Но если вы устанавливаете «универсальный» кислородный датчик, исходный разъем проводки придется отрезать, чтобы провода на новом датчике можно было соединить с проводами, идущими к разъему. В 4-проводных датчиках один провод является сигнальным, один — заземлением, а два других — для цепи нагревателя. Провода имеют цветовую кодировку, но цвета на универсальном датчике, вероятно, не будут совпадать с цветами на исходном датчике. См. Таблицу ниже с цветовой кодировкой, используемой на датчиках кислорода различных марок:
Типичные цветовые коды проводки кислородного датчика.
Вопросы и ответы по датчику кислорода
Сколько датчиков кислорода установлено на современных двигателях?
Зависит от года выпуска и типа двигателя. На большинстве четырех- и рядных шестицилиндровых двигателей обычно установлен единственный кислородный датчик, установленный в выпускном коллекторе. На двигателях V6, V8 и V10 обычно есть два датчика кислорода, по одному в каждом выпускном коллекторе. Это позволяет компьютеру контролировать воздушно-топливную смесь из каждого ряда цилиндров.
На более поздних моделях автомобилей с OBD II (некоторые модели 1993 и 94 года, а также все модели 1995 года и новее) один или два дополнительных кислородных датчика также устанавливаются внутри или за каталитическим нейтрализатором для контроля эффективности преобразователя.Они называются датчиками O2, расположенными ниже по потоку, и их будет по одному для каждого преобразователя, если двигатель имеет двойные выхлопы с отдельными преобразователями.
Как кислородные датчики идентифицируются на диагностическом приборе?
При отображении на диагностическом приборе правый и левый верхние кислородные датчики обычно обозначаются Bank 1, Sensor 1 и Bank 2, Sensor 1. Датчик Bank 1 всегда будет находиться на той же стороне двигателя V6 или V8, что и номер цилиндра. один.
На диагностическом приборе нижний датчик на четырех- или рядном шестицилиндровом двигателе с одним выхлопом обычно обозначается Bank 1, Sensor 2.На двигателях V6, V8 или V10 нижний датчик O2 может быть помечен как банк 1 или банк 2, датчик 2. Если двигатель V6, V8 или V10 имеет двойной выхлоп с двойными преобразователями, нижние датчики O2 будут обозначены как банк 1, Датчик 2 и ряд 2, датчик 2. Или нижний кислородный датчик может быть помечен как блок 1 Датчик 3, если двигатель имеет два верхних кислородных датчика в выпускном коллекторе (некоторые делают для более точного контроля выбросов).
Важно знать, как идентифицируются датчики O2, потому что диагностический код неисправности, указывающий на неисправный датчик O2, требует замены определенного датчика.Блок 1 Датчик 1 может быть задним датчиком O2 на поперечном V6 или датчиком на переднем выпускном коллекторе. Более того, датчики O2 на поперечном двигателе могут быть помечены иначе, чем датчики на заднем приводе. От одного производителя транспортного средства к другому не так много единообразия в том, как маркируются датчики O2, поэтому всегда обращайтесь к документации OEM по обслуживанию, чтобы узнать, какой датчик является датчиком 1 банка 1, а какой датчиком 1 банка 2. информацию бывает трудно найти.Некоторые OEM-производители четко определяют, какой датчик O2 является каким, а другие — нет. В случае сомнений позвоните дилеру и спросите кого-нибудь в сервисной службе.
Чтобы узнать, где находится датчик кислорода, щелкните здесь.
Как датчик O2 ниже по потоку контролирует эффективность преобразователя?
Нижний кислородный датчик в каталитическом нейтрализаторе или за ним работает точно так же, как верхний кислородный датчик в выпускном коллекторе. Датчик вырабатывает напряжение, которое изменяется при изменении количества несгоревшего кислорода в выхлопных газах.Если датчик O2 представляет собой традиционный датчик циркониевого типа, выходное напряжение падает примерно до 0,2 В при обедненной топливной смеси (больше кислорода в выхлопе). Когда топливная смесь богатая (меньше кислорода в выхлопе), выходной сигнал датчика подскакивает до максимума около 0,9 вольт. Сигнал высокого или низкого напряжения сообщает PCM, что топливная смесь богатая или бедная.
На некоторых более новых автомобилях используется новый тип датчика воздушного топлива с широким соотношением сторон (WRAF). Вместо того, чтобы генерировать сигнал высокого или низкого напряжения, сигнал изменяется прямо пропорционально количеству кислорода в выхлопных газах.Это обеспечивает более точное измерение для лучшего контроля топлива. Эти датчики также называются широкополосными датчиками кислорода, поскольку они могут считывать очень бедные топливно-воздушные смеси.
Система OBD II контролирует эффективность преобразователя, сравнивая сигналы верхнего и нижнего кислородных датчиков. Если преобразователь выполняет свою работу и снижает количество загрязняющих веществ в выхлопных газах, нижний кислородный датчик должен показывать небольшую активность (несколько переходов от обедненной к богатой, которые также называются «перекрестным подсчетом»).Показание напряжения датчика также должно быть достаточно стабильным (не повышаться или понижаться) и составлять в среднем 0,45 В или выше.
Если сигнал нижнего кислородного датчика начинает отражать сигнал верхнего кислородного датчика (ов), это означает, что эффективность преобразователя упала и преобразователь не очищает загрязняющие вещества в выхлопных газах. Пороговое значение для установки диагностического кода неисправности (DTC) и включения контрольной лампы неисправности (MIL) — это когда выбросы, по оценкам, превышают федеральные ограничения на 1.5 раз. См. Раздел «Поиск и устранение неисправностей кода катализатора P0420» для получения дополнительной информации о проблемах преобразователя.
Если эффективность преобразователя снизилась до точки, при которой транспортное средство может превышать предел загрязнения, PCM включит контрольную лампу неисправности (MIL) и установит диагностический код неисправности. В этот момент может потребоваться дополнительная диагностика для подтверждения неисправного преобразователя. Если датчики O2 на входе и выходе работают нормально и показывают снижение эффективности преобразователя, преобразователь необходимо заменить, чтобы восстановить соответствие требованиям по выбросам.Автомобиль не пройдет тест на выбросы OBD II, если в PCM есть коды преобразователя.
В чем разница между «подогреваемым» и «ненагреваемым» кислородным датчиком?
Датчики кислорода с подогревом имеют внутреннюю цепь нагревателя, которая доводит датчик до рабочей температуры быстрее, чем датчик без нагрева. Кислородный датчик должен быть горячим (примерно от 600 до 650 градусов по Фаренгейту), прежде чем он сгенерирует сигнал напряжения. Горячий выхлоп двигателя будет обеспечивать достаточно тепла, чтобы довести датчик O2 до рабочей температуры, но это может занять несколько минут в зависимости от температуры окружающей среды, нагрузки двигателя и скорости.В это время система управления с обратной связью по топливу остается в «разомкнутом контуре» и не использует сигнал датчика O2 для регулировки топливной смеси. Обычно это приводит к богатой топливной смеси, потраченному впустую топливу и более высоким выбросам.
За счет добавления цепи внутреннего нагревателя к датчику кислорода можно направить напряжение через нагреватель, как только двигатель начнет нагревать датчик. Нагревательный элемент представляет собой резистор, который накаляется докрасна, когда через него проходит ток. Нагреватель доводит датчик до рабочей температуры в течение от 20 до 60 секунд в зависимости от датчика, а также поддерживает датчик кислорода в горячем состоянии, даже когда двигатель работает на холостом ходу в течение длительного периода времени.
Датчики O2 с подогревом обычно имеют два-три или четыре провода (дополнительные провода предназначены для цепи нагревателя). Примечание. Сменные датчики O2 должны иметь такое же количество проводов, что и исходные, и иметь такое же внутреннее сопротивление.
Система OBD II также контролирует цепь нагревателя и устанавливает код неисправности, если цепь нагревателя внутри датчика O2 неисправна. Нагреватель является частью датчика и не может быть заменен отдельно, поэтому, если цепь нагревателя разомкнута или закорочена и проблема не во внешней проводке или разъеме датчика, датчик O2 необходимо заменить.
НАЖМИТЕ ЗДЕСЬ, чтобы просмотреть или загрузить эту статью в виде файла PDF
Щелкните здесь, чтобы узнать больше о направляющей для датчика
Связанные статьи о датчиках двигателя:
Широкополосные датчики O2 и датчики A / FРасположение датчиков кислорода
Определение проблем с выбросами (датчики O2)
Анализ датчиков двигателя
Общие сведения о системах управления двигателем
Модули управления трансмиссией (PCM)
Все о бортовой диагностике II ( OBD II)
Обнуление диагностики OBD II
Монитор OBD не готов
Каталитические преобразователи
Поиск и устранение неисправностей Катализатор P0420 Код
Низкая экономия топлива (причины)
Нажмите здесь, чтобы увидеть больше технических статей Carley Automotive
Нужна информация из заводского руководства по обслуживанию вашего автомобиля?
Mitchell 1 DIY eautorepair manualsДатчики O2 для природного газа | Датчики кислорода Racing
В современных компьютеризированных системах управления двигатели полагаются на датчики для предоставления точной информации при регулировке воздушно-топливной смеси.Установленные в выпускном коллекторе датчики O2 контролируют количество несгоревшего кислорода. Собранная информация используется бортовым компьютером автомобиля для регулирования выбросов для достижения максимальной производительности двигателя. На вашем трамвае двигатель запускается без сигнала датчика O2 (это называется разомкнутым контуром). Это позволяет получить богатую смесь во время прогрева двигателя.
Наконечник датчика кислорода в большинстве автомобилей излучает сигнал напряжения, когда колба датчика O2 подвергается воздействию горячих выхлопных газов. Датчик отправляет информацию на компьютер.Если кислорода меньше, двигатель работает на богатой смеси. И наоборот, если кислорода больше, двигатель работает на обедненной смеси. Большинство автомобилей последних моделей оснащено источником тепла для немедленного нагрева датчика и получения более точного сигнала напряжения. Это позволяет системе перейти в замкнутый цикл для более быстрой обратной связи, поэтому топливная смесь быстрее сбалансируется для уменьшения нежелательных выбросов.
По мере накопления загрязнений на наконечнике датчика способность генерировать сигнал (напряжение) снижается, и производительность датчика O2 ухудшается.Расход топлива и выбросы в окружающую среду увеличиваются из-за более медленной реакции датчика O2. Если датчик O2 не может быстро переключаться вперед и назад, его необходимо заменить. Как оператор транспортного средства, вы не можете полагаться на коды ошибок, поскольку неисправный датчик может или не может вызвать код неисправности. Когда датчик O2 выходит из строя, компьютер работает по разомкнутому контуру.
Каждый раз, когда возникает проблема с производительностью двигателя, следует проверять датчик O2. Датчик можно проверить, сняв его с выпускного коллектора и подключив к цифровому вольтметру.Для нагрева чувствительного элемента используется источник тепла, например пропановая горелка, а выходное напряжение подтверждается вольтметром. Всегда рекомендуется проверять датчик O2 при каждой замене свечей зажигания в вашем двигателе. Более того, всегда разумно устанавливать автомобильные свечи зажигания E3 или гоночные свечи E3 в свой автомобиль или грузовик.
ДатчикиE3 DiamondFire используются в самых разных мусоровозах, школьных автобусах, транзитных автобусах и во многих системах, работающих на природном газе. Имея очень конкурентоспособную цену, датчики E3 соответствуют или превосходят спецификации двигателей, пользующихся большим спросом на природном газе и газе плюс.Высокопроизводительные датчики O2 для гонок E3 специально разработаны, чтобы выдерживать суровые условия соревнований по автоспорту. Сменные датчики имеют прочную конструкцию и предварительно заделанные разъемы для быстрой установки. Технология E3 DiamondFire обеспечивает улучшенный отклик двигателя, более длительный срок службы датчика и надежную работу круга за кругом.
Как работает датчик кислорода в двигателе?
Что такое датчик кислорода?
Технически кислород очень важен для двигателя.Он определяет правильную работу двигателя. Таким образом, для достижения правильного соотношения воздух-топливо производители используют кислородные датчики в выхлопных системах. Кроме того, кислородный датчик выхлопных газов также известен как «лямбда-зонд». Он расположен перед каталитическим нейтрализатором в выхлопной трубе. Датчик генерирует напряжение относительно количества кислорода в выхлопных газах. Таким образом, он обеспечивает обратную связь в режиме реального времени с системой управления двигателем о составе смеси.
Датчик O2 BoschКроме того, откалибрована система управления двигателем (EMS).Он обеспечивает оптимальную мощность двигателя, выбросы и экономичность во всем рабочем диапазоне двигателя. Датчик кислорода помогает EMS контролировать оптимальные выбросы в выхлопной системе. Таким образом достигается идеальное соотношение воздух-топливо 14,7: 1.
Дизайн:
Кроме того, кислородный датчик состоит из «гальванической батареи». Датчик содержит два пористых платиновых электрода. Кроме того, между ними находится керамический электролит (диоксид циркония). Датчик кислорода генерирует напряжение.Он варьируется от 100 мВ (0,1 В) до 900 мВ (0,9 В). Это зависит от уровня кислорода в выхлопных газах. Датчик кислорода сравнивает атмосферный кислород, обычно около 21%, с количеством кислорода в выхлопных газах.
Датчик O2 (любезно предоставлен Denso)Обычно богатая смесь содержит больше топлива на одну часть кислорода. Это означает, что в нем 0% кислорода. Таким образом, датчик выдает высокое напряжение около 900 мВ. Бедная смесь содержит меньше топлива на часть кислорода. Он может содержать от 3% до 4% кислорода.Итак, датчик выдает низкое напряжение 100 мВ. Однако среднее напряжение датчика составляет ~ 450 мВ, что дает идеальное соотношение смеси 14,7: 1.
Критерии:
Rich Mixture — большая разница между уровнями кислорода в атмосфере и выхлопных газах. Это приводит к высокой проводимости между электродами. Следовательно, выходное напряжение высокое — около 900 мВ.
Lean Mixture — меньшая разница между уровнями кислорода. Это приводит к меньшей проводимости и меньшему выходному напряжению, обычно около 100 мВ.
Нормальная смесь — когда уровень смеси составляет примерно 14,7: 1. Тогда выходной сигнал кислородного датчика будет около 450 мВ.
Датчики кислорода Характеристики:
- Имеет проволоку из нержавеющей стали. Он обеспечивает лучшую устойчивость к коррозии и термическим нагрузкам.
- Производители используют позолоченные клеммы на контактах сигнального и опорного разъемов. Кроме того, он обеспечивает превосходный контакт даже для минутных сигналов напряжения / тока.
- Корпус датчика с двойной лазерной сваркой предотвращает попадание влаги на чувствительный элемент / нагреватель.
- Производители проводят функциональную проверку качества датчиков O2 при 1000 ° C.
- Производители также испытывают давление в керамической гильзе 420 бар, чтобы убедиться в целостности.
- Измерительный элемент кислородного датчика во время производства проходит испытания на «газопроницаемость».
Датчик O2 Функция:
Кроме того, кислород очень важен для человеческого организма. Точно так же важно запустить двигатель и получить лучшую производительность. Датчик кислорода помогает поддерживать «идеальное» соотношение воздух / топливо 14.7: 1 или Lambda 1. Он обеспечивает значение лямбда, равное 1, для различных условий работы двигателя. Кроме того, он сравнивает количество кислорода в выхлопных газах с количеством кислорода в атмосфере. При таком разном количестве кислорода кислородный датчик вырабатывает и отправляет выходное напряжение в систему управления топливом двигателя.
Кроме того, AC Delco, Bosch, Denso и Hitachi являются одними из ведущих производителей датчиков O2 в мире.
Примечание: изображения (любезно предоставлены соответствующими производителями)
Смотреть Датчик кислорода в действии:
Подробнее: Как работают датчики двигателя? >>
О CarBikeTech
CarBikeTech — это технический блог.