Двигатель ваз 2103 технические характеристики: Двигатель ваз 2103 Устройство характеристики и цена

Двигатель ваз 2103 Устройство характеристики и цена


 
Устройство 


 
Двигатель ваз 2103 очень схож по своей конструкцией с двигателем ваз 2101, но имеются некоторые отличия. Первое важное отличие этого двигателя — это увеличенный объем за счет установки коленвала с увеличенным ходом поршня. Достигнуто это было за счет увеличения высоты блока на 8,8 мм, у двигателя ваз 2101 высота блока была 207,1 мм у мотора ваз 2103 высота блока равняется 215,9 мм. Еще одно интересное отличие заключается во впускном коллекторе. Длина перегородки впускного коллектора была увеличена с целью улучшения стабильности оборотов холостого хода. В остальном двигатель ваз 2103 имеет очень много сходств, капризный карбюратор, 8 клапанов, все те же проблемы с помпой и термостатом, в общем практически абсолютное родство. 


 
Неисправности 


 
1)Стук и вибрации при работе двигателя. Так как двигатель ваз 2103 не имеет гидрокомпенсаторов то, появляется необходимость в регулировке зазора клапанов. Проводить эту процедуру необходимо каждые 10-15 тыс.км. 
 
Об этом подскажет стук в двигателе и вибрации, которые слышны даже при закрытом капоте с места водителя. Для того, чтобы самостоятельно произвести эту процедуру необходимо запастись щупом толщиной 0,15 мм. Кроме того, понадобятся ключи на 13 и 17 мм. В давние времена регулировка клапанов была обычной процедурой. Еще из-за отсутствия натяжителя цепи периодически приходится ее подтягивать, делать эту процедуру необходимо раз в 10-15 тыс.км. 
 
2)Плавающие обороты. Виной этому являются капризные карбюраторы, которые постоянно нуждаются в чистке и регулировке. Еще причиной этого явления может стать некачественное топливо. Прочистить карбюратор очень легко для этого продается специальный аэрозоль для отчистки карбюратора. 
 
3)Троение двигателя. Это происходит чаще всего по двум причинам расстроенное зажигание и вторая причина потеря компрессии в цилиндре. 
 
4) Перегрев двигателя. Изношенная помпа, термостат, заклинивание вентилятора либо не герметичность системы охлаждения. 
 
5)Повышенный расход топлива. Богатит карбюратор, который, требует регулировки. Стоит привыкнуть к тому, что двигатель ваз 2103 требует частой регулировки карбюратора.
 
6)Запотевание клапанной крышки. Это происходит по причине износа прокладки крышки ГБЦ. 
 
7)Повышенный расход масла. Обычно это явление сопровождается сизым дымом причиной данного явления может быть износ маслосъемных колец. 


 
Характеристики ваз 2103
 


Годы выпуска: с 1972 года 
 
Материал блока цилиндров: чугун 
 
Материал головки блока цилиндров : алюминий 
 
Компановка : рядный 4-х цилиндровый 
 
Кол-во клапанов: 8 
 
Наличие гидрокомпенсаторов: отсутствуют 
 
Привод ГРМ: цепной 
 
Ход поршня: 80 мм 
 
Диаметр цилиндра: 76 мм 
 
Степень сжатия: 8,5 
 
Объем двигателя куб.см : 1452 
 
Мощность двигателя л.с./об.мин: 71/5600 
 
Крутящий момент Нм/об.мин: 104/3400 
 
Рекомендуемое топливо: 92 бензин 
 
Экологический стандарт: Евро 0 
 
Вес двигателя: 121 кг 
 
Расход топлива, л/100 км 
 
город: 9,4 
 
трасса: 6,9 
 
смешан: 8,9 
 
Расход масла гр./1000 км: 700 
 
Рекомендуемое масло в двигатель: 
 
5W-30 
5W-40 
10W-40 
15W-40 
 
Сколько масла лить при замене : ~ 3,5 литров 
 
Ресурс двигателя: 250 тыс.км 
 
Стоимость двигателя : 
 
мин.цена : 5 тыс.руб б/у мотор 
 
сред.цена : 10 тыс.руб б/у мотор 
 
макс.цена : 60 тыс.руб б/у мотор 
 
Цены на двигатель ваз 2103  указаны в ознакомительных целях, в разных городах и регионах они могут отличаться. 
 
На какие автомобили устанавливался: 
 
Ваз 21023 
 
Ваз 21043 
 
Ваз 21053 
 
Ваз 21061 
 
Ваз 2107 


 
Тюнинг 
 


Информацию о тюнинге ваз 2103 Вы сможете узнать перейдя по ссылке. 


 
Регламент обслуживания 


 
1) Замена масла раз в 10 тыс.км , для замены потребуется 3,5 литров 
 
моторного масла. 
 
2) Замена воздушного фильтра и топливного фильтра 
 
необходима каждые 40 тыс.км 
 
3) Замена охлаждающей жидкости производится раз в 40 тыс.км либо раз в 2 года в 
 
зависимости от того что наступит раньше. 
 
4) Каждые 10 тыс.км потребуется регулировка зазоров клапанов и подтяжка цепи. 
 
5) Замена свечей зажигания производится каждые 20 тыс.км. 


 
Плюсы и минусы 
 


Плюсы: 
 
Стоимость обслуживания 
 
Терпимость к качеству топлива 
 
Огромное кол-во запчастей и б/у двигателей 
 
Неплохой ресурс 
 
Минусы: 
 
Мелкие проблемы по мелочам 
 
Требуется частая регулировка зазоров клапанов 
 
Требуется регулярная чистка и регулировка карбюратора 
 

Двигатель ВАЗ 2103: характеристики, неисправности и тюнинг

Двигатель ВАЗ 2103 представляет собой классический силовой агрегат, входящий в линейку моторов, разработанных и выпускаемых ОАО «АвтоВАЗ».

Обобщая, можно сказать, что все двигатели этого семейства (2101 — 2130) разработаны на базе глубокого модернизированного мотора FIAT-124. Изменения, проведенные отечественными конструкторами, касались верхнего распределительного вала и межцентровых расстояний цилиндров.

Именно эти изменения позволили в дальнейшем не один раз модернизировать моторы, не останавливая их серийного производства. От остальных силовых агрегатов этого модельного ряда (кроме «шестерки») двигатель 2103 отличается тем, что вал газораспределительного механизма приводится в действие стальной цепью.

Технические характеристики

Скачать .xls-файл

Скачать картинку

Отправить на email

mail

ПАРАМЕТРЗНАЧЕНИЕ
Объем цилиндров (рабочий), см31452
Максимальная мощность, л. с. (при 5600 об/мин.)71.4
Максимальный крутящий момент, Н.м (при 3400 об/мин.)104
Количество цилиндров4
Количество клапанов на цилиндр2
Общее количество клапанов8
Диаметр цилиндра, мм76
Ход поршня, мм80
Подача топливаКарбюратор или инжектор
Степень сжатия8.5
Вид горючегоАИ-92
Расход горючего, л./100 км (город/трасса/смешанный режим)9,4/6,9/8,9
Система смазкиКомбинированная (под давлением+ разбрызгивание)
Применяемое масло5W-30, 5W-40, 10w-40, 15W-40
Объем масла в картере, л3.75
Система охлажденияЖидкостная, замкнутого типа, с принудительной циркуляцией
Габаритные размеры, мм565х541х665
Вес, кг120.7
Моторесурс, тыс. час. (завод/практика)125/200

Силовой агрегат устанавливался на автомобилях ВАЗ: 21023, 2103, 21043, 21053, 21061, 2107, 2121.

Описание

Двигатель ВАЗ 2103 изготавливается с использованием «высокого» блока цилиндров (215,9 мм вместо 207,1 у ВАЗ 2101), что позволило довести его рабочий объем до 1,5 литров и установить коленвал с увеличенным ходом поршней.

Агрегат представляет собой классический вариант мотора с верхним расположением газораспределительного механизма.

Распределительный вал приводится в действие цепным приводом, причем натяжитель цепи не предусмотрен. В связи с этим, натяжение цепи необходимо регулярно проверять и регулировать. Кроме того регулировать нужно и зазоры клапанов, так как газораспределительный механизм не имеет гидрокомпенсаторов.

  • Блок цилиндров изготавливается из чугуна, а его головка отливается из алюминиевого сплава. Распределительный вал выполнен из стали и отличается от других моделей наличием одной необработанной шейки, которая имеет форму шестигранника.
  • Карбюратор, который устанавливается на двигатель ВАЗ 2103, оснащен распределителем с вакуумным регулятором опережения зажигания. После появления инжекторных силовых агрегатов, на мотор стали устанавливать измененную головку блока цилиндров с соответствующим газораспределительным механизмом.
  • Для работы водяного насоса (помпы) используется привод с клиновидным ремнем, имеющим сечение 10х8 мм.
  • Подача масла из картера во внутренние каналы блока цилиндров и к парам трения осуществляется с помощью масляного насоса, размещенного в картере силового агрегата.
  • На двигателе 2103 устанавливалась как классическая, так и бесконтактная система зажигания.

Техническое обслуживание

Двигатель ВАЗ 2103 обладает высокой степенью унификации на уровне деталей и сборочных единиц, в связи с чем его ремонт, связанный с заменой комплектующих, не вызывает никаких трудностей.

Как и все силовые агрегаты ВАЗ того времени, моторы ВАЗ 2103 требуют достаточно сложного и трудоемкого технического обслуживания. При проведении регламентных работ необходимо:

  1. Через каждые 10-15 тыс. км пробега проверять и при необходимости регулировать: натяжение цепи привода газораспределительного механизма; зазоры клапанов в головке блока цилиндров;
  2. Регулярно очищать и регулировать карбюратор.
  3. После каждых 10 000 км пробега менять моторное масло.
  4. Регулярно проверять мотор на наличие протечек охлаждающей жидкости и моторного масла.

По мнению многочисленных владельцев автомобилей с двигателями ВАЗ 2103 этот силовой агрегат является одним из самых неприхотливых и надежных среди всех моторов семейства классических моторов.

Единственное условие – тщательное регулярное обслуживание и эксплуатация в режимах, рекомендованных руководством по эксплуатации автомобиля. При выполнении этого требования моторесурс двигателя 2103 может достигать 300 тыс. км.

Неисправности

Двигателю 2103 свойственны такие же неисправности, как и для других классических моторов ВАЗ. Чаще всего встречаются:

НЕИСПРАВНОСТИПРИЧИНЫСПОСОБЫ УСТРАНЕНИЯ
Двигатель невозможно запустить.1.      Не поступает топливо в карбюратор.
2.      Сильное загрязнение топливного фильтра.
3.      Сломан бензонасос.
4.      При запуске мотора не открывается электромагнитный клапан карбюратора.
ŸПромыть и/или продуть топливопроводы и топливный фильтр.
Заменить топливный фильтр.
Прочистить или заменить бензонасос.
Проверить целостность электропроводки.
Мотор «глохнет» на холостом ходу или его обороты «плавают».1.      Нарушена регулировка холостого хода.
2.      Сломан карбюратор.
3.      Нарушены зазоры между рычагами и кулачками распределительного вала.
ŸОтрегулировать режим холостого хода.
Прочистить каналы и жиклеры карбюратора.
Заменить диафрагму пускового устройства карбюратора.
Отрегулировать зазоры между деталями газораспределительного механизма.
Повышенный расход моторного масла.1.      Протечки масла сквозь уплотнители.
2.      Изношены поршневые кольца или цилиндры.
3.      Изношены или повреждены маслоотражательные колпачки клапанов.
ŸПроверить и при необходимости заменить прокладки и сальники.
Заменить кольца и/или поршни.
Расточить цилиндры.
ŸЗаменить маслоотражательные колпачки.

Встречаются и другие неисправности при эксплуатации двигателей ВАЗ 2103. В общем случае диагностику неисправностей мотора лучше проводить в условиях специализированного СТО.

Тюнинг

Добавить мощности мотору 2103 можно различными способами:

Самый простой способ – расточить цилиндры до диаметра 79 мм. Это позволит увеличить их общий объем до 1,6 литров. Установка поршней диаметром 79 мм позволяет поднять мощность до 75 л. с. При этом крутящий момент составит 115 Нм при 3 000 об/мин.

  1. Дальнейшего увеличения мощности можно добиться, увеличив ход поршня до 84 мм. Для этого применяют поршни ТРТ и коленчатый вал от ВАЗ 2130. Этот коленчатый вал, как правило, используют в тех случаях, когда хотят увеличить мощность и крутящий момент на низких и средних оборотах. При этом мощность двигателя увеличится до 80-85 л. с.
  2. Существует более сложный вариант тюнинга, при котором: растачивают и полируют каналы головки блока цилиндров и впускного коллектора; подбирают соответствующий распределительный вал. Правильно подобранные детали позволяют увеличить мощность мотора до 100 л. с.
  3. Установка компрессора 0,5 бар вместе с доработанной головкой блока цилиндров дает возможность увеличить мощность силовой установки до 125 л. с.
  4. Возможны и более дорогие способы увеличения мощности мотора 2103, однако цена комплектующих и оплата работ, связанных с доработкой деталей, сборкой двигателя и его регулировкой, может превысить стоимость как двигателя, так и автомобиля в целом.

Двигатель ВАЗ 2103 – переходный вариант мотора третьего поколения

ИзготовительВАЗ
Марка ДВСВАЗ-2103
Годы производства1972 – 1983
Объем1,5 л (1452 см3)
Мощность52,4 кВт (71,4 л. с.)
Крутящий момент106 Нм (3400 об/мин)
Вес120,7 кг
Степень сжатия8,5
Питаниекарбюратор ДААЗ-2103 Солекс (1972 – 1974 г.г.), далее Озон 2107-1107010-20
Тип моторарядный
Число цилиндров4
Местонахождение первого цилиндравозле цепи ГРМ
Число клапанов на каждом цилиндре2
Материал ГБЦсплав алюминиевый
Допустимое короблениепрокладки коллекторов (впуск/выпуск) 0,08 мм

прокладка головки цилиндров 0,05 мм

Седло клапанаширина 2 – 2,4 мм, угол 45°
Распредвалодин верхний внутри ГБЦ, ширина фаз 232°, опережение выпускного клапана 42°, запаздывание впускного клапана 40°
Сальник распредваладиаметры – 40 мм, 56 мм, ширина 7 мм
Материал блока цилиндровчугун
Диаметр цилиндракласс А – 76 – 76,01 мм

класс В – 76,01 – 76,02 мм

класс С – 76,02 – 76,03 мм

класс D – 76,03 – 76,04 мм

класс Е – 76,04 – 76,05 мм

Поршни и кольцапоршень из алюминиевого сплава с оловянным покрытием

кольца чугунные, компрессионное снаружи хромированное (верхнее) и фасфотированное (нижнее)

Диаметр поршнякласс А – 75,94 – 75,95 мм

класс С – 75,96 – 75,97 мм

класс Е – 75,98 – 75,99 мм

Зазорыпоршень/стенка цилиндра – 0,153 – 0,173 мм (стандарт) или 0,19 мм (максимум)

поршневых колец – 110 мм относительно плоскости разреза

Кольцо компрессионное верхнее1,535 – 1,555 мм
Кольцо компрессионное нижнее3,957 – 3,977 мм
Кольцо маслосъемное2,015 – 2,035 мм
Зазор между поршневой канавкой и кольцом0,03 – 0,07 мм
Коленвалчугун, литье
Количество подшипников коренных5
Диаметр шейки КП50,795 – 50,775 мм
Зазор коренной шейки0,1 – 0,5 мм
Подшипники шатунныедиаметр шейки вала – 47,814 мм

толщина вкладыша – 1,448 мм

ширина вкладыша – 28,025 – 28,975 мм

Сальники коленвалапередний – диаметры 42 мм, 60 мм, ширина 7 мм

задний – диаметры 85 мм, 105 мм, ширина 10 мм

Ход поршня80 мм
ГорючееАИ-92
Нормативы экологииЕвро-2
Расход топливатрасса – 6,9 л/100 км

смешанный цикл 8,9 л/100 км

город – 9,4 л/100 км

Расход масламаксимум 0,7 л/1000 км
Моторное масло для 21035W-30 и 15W-40
Объем моторного масла3,75 л
Периодичность заменыкаждые 55000 км
Рабочая температура80°
Ресурс моторазаявленный 125000 км

реальный 200000 км

Регулировка клапановгайками и щупом
Система охлажденияпринудительная, тосол-А40
Количество ОЖ9,75 л
Помпакрыльчатка полимерная, крепление на блоке
Зажиганиетранзисторное бесконтактное, катушка Б117А и распределитель 30.3706
Свечи на 2103оригинал – А17-ДВ
Зазор между электродами свечи0,5 – 0,6 мм
Цепь ГРМдвухрядная роликовая, 116 звеньев, длина 49,54 – 49,58 см
Порядок работы цилиндров1-3-4-2
Воздушный фильтрсухой со сменным картонным картриджем и предочистителем, регулировкой температуры по сезону
Масляный фильтррекомендуемый Mann W914/2
Маховик129 зубьев, 0,62 кг

диаметр внутреннего отверстия – 25,67 мм

диаметр наружный – 27,75 мм

количество посадочных отверстий – 6 штук

смещений нет

Болты крепления маховикаМ10х1,25 мм, длина 23,5 мм,
Маслосъемные колпачкипроизводителей Хорс или Corteco
Компрессиядавление в цилиндрах от 10 бар, разница давлений в отдельных цилиндрах в пределах 1 бара
Температура масла80°С
Температура срабатывания термостата80 – 84°С
Давление клапана внутри радиаторной пробки0,7 – 1 бар
Содержание в выхлопе вредных продуктовСН <200%, СО <0,5%
Обороты ХХ850 – 900 мин-1
Усилие затягивания резьбовых соединенийсвеча – 37,24 Нм

маховик – 83,3 – 84,38 Нм

болт сцепления – 29,4 Нм

крышка подшипника – 80,36 – 84,38 Нм (коренной) и 51 – 53,5 Нм (шатунный)

головка цилиндров – две стадии 39,2 Нм, 112,7 Нм

Технические характеристики двигателя 2103 | AUTO-GL.ru

ИзготовительВАЗ
Марка ДВСВАЗ-2103
Годы производства1972 – 1983
Объем1,5 л (1452 см3)
Мощность52,4 кВт (71,4 л. с.)
Крутящий момент106 Нм (3400 об/мин)
Вес120,7 кг
Степень сжатия8,5
Питаниекарбюратор ДААЗ-2103 Солекс (1972 – 1974 г.г.), далее Озон 2107-1107010-20
Тип моторарядный
Число цилиндров4
Местонахождение первого цилиндравозле цепи ГРМ
Число клапанов на каждом цилиндре2
Материал ГБЦсплав алюминиевый
Допустимое короблениепрокладки коллекторов (впуск/выпуск) 0,08 мм

прокладка головки цилиндров 0,05 мм

Седло клапанаширина 2 – 2,4 мм, угол 45°
Распредвалодин верхний внутри ГБЦ, ширина фаз 232°, опережение выпускного клапана 42°, запаздывание впускного клапана 40°
Сальник распредваладиаметры – 40 мм, 56 мм, ширина 7 мм
Материал блока цилиндровчугун
Диаметр цилиндракласс А – 76 – 76,01 мм

класс В – 76,01 – 76,02 мм

класс С – 76,02 – 76,03 мм

класс D – 76,03 – 76,04 мм

класс Е – 76,04 – 76,05 мм

Поршни и кольцапоршень из алюминиевого сплава с оловянным покрытием

кольца чугунные, компрессионное снаружи хромированное (верхнее) и фасфотированное (нижнее)

Диаметр поршнякласс А – 75,94 – 75,95 мм

класс С – 75,96 – 75,97 мм

класс Е – 75,98 – 75,99 мм

Зазорыпоршень/стенка цилиндра – 0,153 – 0,173 мм (стандарт) или 0,19 мм (максимум)

поршневых колец – 110 мм относительно плоскости разреза

Кольцо компрессионное верхнее1,535 – 1,555 мм
Кольцо компрессионное нижнее3,957 – 3,977 мм
Кольцо маслосъемное2,015 – 2,035 мм
Зазор между поршневой канавкой и кольцом0,03 – 0,07 мм
Коленвалчугун, литье
Количество подшипников коренных5
Диаметр шейки КП50,795 – 50,775 мм
Зазор коренной шейки0,1 – 0,5 мм
Подшипники шатунныедиаметр шейки вала – 47,814 мм

толщина вкладыша – 1,448 мм

ширина вкладыша – 28,025 – 28,975 мм

Сальники коленвалапередний – диаметры 42 мм, 60 мм, ширина 7 мм

задний – диаметры 85 мм, 105 мм, ширина 10 мм

Ход поршня80 мм
ГорючееАИ-92
Нормативы экологииЕвро-2
Расход топливатрасса – 6,9 л/100 км

смешанный цикл 8,9 л/100 км

город – 9,4 л/100 км

Расход масламаксимум 0,7 л/1000 км
Моторное масло для 21035W-30 и 15W-40
Объем моторного масла3,75 л
Периодичность заменыкаждые 55000 км
Рабочая температура80°
Ресурс моторазаявленный 125000 км

реальный 200000 км

Регулировка клапановгайками и щупом
Система охлажденияпринудительная, тосол-А40
Количество ОЖ9,75 л
Помпакрыльчатка полимерная, крепление на блоке
Зажиганиетранзисторное бесконтактное, катушка Б117А и распределитель 30.3706
Свечи на 2103оригинал – А17-ДВ
Зазор между электродами свечи0,5 – 0,6 мм
Цепь ГРМдвухрядная роликовая, 116 звеньев, длина 49,54 – 49,58 см
Порядок работы цилиндров1-3-4-2
Воздушный фильтрсухой со сменным картонным картриджем и предочистителем, регулировкой температуры по сезону
Масляный фильтррекомендуемый Mann W914/2
Маховик129 зубьев, 0,62 кг

диаметр внутреннего отверстия – 25,67 мм

диаметр наружный – 27,75 мм

количество посадочных отверстий – 6 штук

смещений нет

Болты крепления маховикаМ10х1,25 мм, длина 23,5 мм,
Маслосъемные колпачкипроизводителей Хорс или Corteco
Компрессиядавление в цилиндрах от 10 бар, разница давлений в отдельных цилиндрах в пределах 1 бара
Температура масла80°С
Температура срабатывания термостата80 – 84°С
Давление клапана внутри радиаторной пробки0,7 – 1 бар
Содержание в выхлопе вредных продуктовСН
Обороты ХХ850 – 900 мин-1
Усилие затягивания резьбовых соединенийсвеча – 37,24 Нм

маховик – 83,3 – 84,38 Нм

болт сцепления – 29,4 Нм

крышка подшипника – 80,36 – 84,38 Нм (коренной) и 51 – 53,5 Нм (шатунный)

головка цилиндров – две стадии 39,2 Нм, 112,7 Нм

устройство, объём и другие и технические характеристики, ремонт мотора, замена коленвала, инструкции с фото и видео

Двигатель ВАЗ 2103 заслуживает отдельного внимания по причине большой популярности среди автомобилей «классика». Этот силовой агрегат устанавливался не только на свою родную модель, но и на другие модификации «Жигулей».

Какими двигателями оснащался ВАЗ 2103

Силовая установка ВАЗ 2103 представляет собой классическую модель, входящую в линейку моторов ОАО «АвтоВАЗ». Это модернизированный вариант агрегата FIAT-124, разработанный отечественными инженерами ещё во второй половине прошлого века. Изменения коснулись распредвала и межцилиндрового расстояния.

Тюнинг двигателя FIAT-124 был проведён качественно, ведь в дальнейшем его серийное производство не прекращалось десятки лет. Конечно, были проведены рестайлинги, но костяк мотора оставался прежним. Особенность вазовского двигателя 2103 в том, что его вал ГРМ приводится в действие цепью, а не ремнём.

1,5-литровый силовой агрегат представляет собой третье из четырёх поколений классики. Это наследник двигателей 1,2 л ВАЗ 2101 и 1,3 л ВАЗ 21011. Он предшествовал созданию мощного 1,6-литрового агрегата ВАЗ 2106 и более современных инжекторных моторов для автомобилей с передним приводом. Все модификации двигателя ВАЗ 2103 отличались улучшенными техническими возможностями.

ВАЗ 2103 появился в 1972 году и стал первой четырёхглазой моделью «Жигулей». Может это и стало поводом для оснащения автомобиля новым и мощным агрегатом, развивающим 71 л. с. Его по праву назвали самым «живучим» двигателем своего времени — даже пробег в 250 тыс. км не оказывал на него губительного влияния, если водитель придерживался заводских правил эксплуатации и ухода. Обычный же ресурс этого мотора составлял 125 тысяч км пробега.

1,5-литровый силовой агрегат

1,5-литровый силовой агрегат представляет собой третье из четырёх поколений классики

Улучшенные показатели силового агрегата ВАЗ 2103 сразу заметны в особенностях конструкции. Мотор оснащён с другим блоком цилиндров — целые 215,9 мм вместо 207,1 мм. Это позволило увеличить рабочий объём до 1,5 л и поставить коленвал с увеличенным поршневым ходом.

Распредвал приводится в действие цепью без натяжителя. Он не предусмотрен, в связи с чем натяжение приходится регулярно проверять и настраивать.

Ещё особенности.

  1. Периодической регулировке подлежат зазоры клапанов, так как ГРМ не оснащён гидрокомпенсаторами.
  2. Блок цилиндров чугунный, головка отлита из сплава алюминия.
  3. Распредвал стальной, имеет особенность — 1 необработанную шейку с шестью гранями.
  4. В паре с ним работает либо карбюратор с ВРОЗ (вакуумный регулятор зажигания), либо инжекторная система, но уже с соответствующим ГРМ — изменена конструкция ГБЦ.
  5. Насос подачи смазки расположен в картере двигателя.

Технические возможности двигателя таковы:

  • диаметр цилиндра вернули к значению 76 мм;
  • ход поршня увеличили на 14 мм;
  • объём двигателя в кубических сантиметрах стал равен 1452 куб. см;
  • с каждым цилиндром работает два клапана;
  • двигатель питается бензином с октановым числом АИ-92 и выше;
  • масло используется в пределах 5W-30/15W-40, его расход составляет 700г/1000 км пробега.

Интересно, что последующий двигатель ВАЗ 2106 получил уже цилиндры с увеличенным до 79 мм диаметром.

Поршни

Элементы ДВС ВАЗ 2103 изготовлены из алюминия, в разрезе они овального типа. Размер поршня сверху меньше, чем снизу. Это объясняет особенность измерения — оно проводится только в плоскости, которая перпендикулярна поршневому пальцу и находится на расстоянии 52,4 мм от низа.

По внешнему диаметру поршни ВАЗ 2103 классифицируются по 5, через каждые 0,01 мм. На 3 категории через 0,004 мм они делятся по диаметру отверстия под палец. Все данные о диаметрах поршня можно посмотреть на нижней части элемента — днище.

Для силового агрегата ВАЗ 2103 подходит тип поршня с диаметром 76 мм без выемки. А вот для моторов ВАЗ 2106 и 21011 этот показатель равен 79, поршень с выемкой.

Поршень с диаметром 76 мм без выемки

Поршень с диаметром 76 мм без выемки для силового агрегата ВАЗ 2103

Коленчатый вал

Коленвал ВАЗ 2103 изготовлен из суперпрочного материала, имеет девять шеек. Все шейки основательно закалены на глубину 2–3 мм. В коленвале имеется специальное гнездо для установки подшипника.

Соединения шеек канальчатое. По ним поступает масло для подшипников. Каналы заглушены колпаками, запрессованными для надёжности в трёх точках.

Коленвал ВАЗ 2103 аналогичен ВАЗ 2106, но отличается от узлов ДВС «копейки» и одиннадцатой модели размером кривошипа. Последний увеличен на 7 мм.

Размеры полуколец и шеек коленвала.

  1. Полукольца имеют толщину 2,31–2,36 и 2,437–2,487 мм.
  2. Шейки коренные: 50,545–0,02; 50,295–0,01; 49,795–0,002 мм.
  3. Шейки шатунные: 47,584–0,02; 47,334–0,02; 47,084–0,02; 46,834–0,02 мм.

Маховик

Деталь чугунная со стальным зубчатым венцом, входящим в соединение с шестернёй стартера. Напрессовка венца — горячим способом. Зубья основательно закалены токами высокой частоты.

Крепление маховика осуществляется посредством 6 самоконтрящихся болтов. Расположение фиксаторов имеет только два положения по меткам. Центрирование маховика с коленвалом проводится через передний подшипник ведущего вала КПП.

Таблица: основные технические характеристики.

Какой двигатель можно поставить на ВАЗ 2103 вместо штатного

Отечественные машины хороши тем, что при достаточном бюджете удастся воплотить практически любой задуманный проект. Даже при стыковке мотора с коробкой передач не возникает особых сложностей. Таким образом, на ВАЗ 2103 подойдёт практически любой силовой агрегат. Главное — он должен подходить по размерам.

Роторный двигатель

До определённого времени только спецподразделения милиции и КГБ имели на «вооружении» автомобили с такими моторами. Однако любители тюнинга в СССР, народные умельцы, находили и устанавливали роторно-поршневой двигатель (РПД) на свой ВАЗ 2103.

РПД легко ставится на любую вазовскую машину. Идёт он на «Москвич» и на «Волгу» в трёхсекционном варианте.

Роторно-поршневой двигатель

Роторно-поршневой двигатель легко ставится на любую вазовскую машину

Дизельный мотор

Дизель стыкуют со штатной КПП ВАЗ 2103 с помощью переходной плиты, хотя передаточные числа моторов совсем не подходят.

  1. Езда с дизельным Фольксваген Джетта Мк3 будет не ахти какая удобная, особенно после 70–80 км/ч.
  2. Немногим лучше вариант с дизельным агрегатом от Форд Сиерры. В этом случае придётся изменить конструкцию тоннеля, установить редуктор от БМВ и внести ещё кое-какие изменения.

Моторы от иномарок

Вообще, двигатели зарубежного производства ставились и ставятся на ВАЗ 2103 часто. Правда, избежать дополнительных модификаций в этом случае не получается.

  1. Наиболее популярным считается двигатель от Фиат Аргенты 2.0i. Около половины владельцев тюнингованных «троек» ставили именно эти моторы. Проблем с установкой практически нет, однако, двигатель староват, что вряд ли порадует владельца.
  2. Двигатели от БМВ М10, М20 или М40 тоже подходят. Приходится доработать стойки, переварить маховик и заменить оси.
  3. Моторы от Рено Логан и Митсубиси Галант хвалят умельцы, но в этих случаях приходится менять КПП.
  4. И, наверное, лучший вариант — силовая установка от Фольксваген 2.0i 2E. Правда, стоит такой двигатель недёшево.

Неисправности мотора ВАЗ 2103

Наиболее частые дефекты, встречающиеся на двигателе:

  • большой «жор» масла;
  • сложный запуск;
  • плавающие обороты или остановка на холостых оборотах.

Все эти неисправности связаны с различными причинами, о которых речь пойдёт ниже.

Двигатель перегревается

Специалисты называют основной причиной перегрева моторной установки недостаток хладагента в системе. По правилам перед выездом из гаража водитель обязан каждый раз проверять уровень всех технических жидкостей. Но не все это делают, а потом удивляются, оказавшись с «закипевшим» ДВС на обочине.

Перегрев двигателя

Перегрев двигателя возникает из-за недостатка хладагента в системе

Тосол может и вытекать из системы. В этом случае налицо неисправность — нарушение целостности системы охлаждения. Пятна антифриза на полу гаража, в котором стояла машина, прямо указывают владельцу на утечку. Её важно своевременно устранить, иначе в бачке и системе не останется ни капли жидкости.

Причины утечки таковы.

  1. Чаще всего хладагент просачивается из-за недостаточно плотно затянутых хомутов шлангов. Особенно плохо обстоит дело, если хомут железный, и он порезал резиновый патрубок. В этом случае приходится менять отрезок коммуникации целиком.
  2. Бывает и так, что начинает пропускать радиатор. Разумнее в такой ситуации заменить элемент, хотя небольшие трещины ремонтируются.
  3. Тосол просачивается через прокладку. Это самая опасная ситуация, так как жидкость будет уходить внутрь двигателя, и никаких подтёков владелец автомобиля не заметит. Определить «внутреннее кровоизлияние» системы можно будет только по повышению расхода хладагента и изменением его цвета на «кофе с молоком».

Ещё одна причина перегревания мотора — неработающий вентилятор радиатора. На ВАЗ 2103 качество охлаждения лопастями двигателя крайне важно. Малейшее провисание ремня привода воздействует на него отрицательно. Но это не единственный повод для выхода элемента.

  1. Вентилятор может банально испортиться — сгореть.
  2. Из строя выходит предохранитель, отвечающий за электроцепь.
  3. На клеммах вентилятора окисляются контакты.

Наконец, перегрев ДВС может произойти из-за порчи термостата.

Стук двигателя

На ВАЗ 2103 стук двигателя определяется без специального оборудования, на слух. Берётся деревянный 1-метровый шест, который одним концом прикладывается к мотору в проверяемой части. Другая сторона шеста должна быть зажата в кулаке и поднесена к уху. Получается нечто вроде стетоскопа.

  1. Если стук прослушивается в зоне разъёма с масляным картером, он глухой, а частота зависит от амплитуды вращения коленвала — это стучат изношенные коренные подшипники коленчатого вала.
  2. Если звук прослушивается выше разъёма картера, он усиливается по мере увеличения оборотов ДВС — это стучат шатунные подшипники. Шум станет громче при поочерёдном отключении свечей зажигания.
  3. Если звук идёт с района цилиндров и лучше всего прослушивается на малых оборотах двигателя, а также под нагрузкой, это стучат поршни об цилиндр.
  4. Стук в зоне головки при резком нажатии на педаль акселератора говорит об изношенных поршневых гнёздах.

Дымит двигатель ВАЗ 2103

Как правило, одновременно с дымом мотор подъедает масло. Он может быть серого цвета, увеличиваться при повышении оборотов на холостом ходу. Причина связана с маслосъёмными кольцами, требующими замены. Возможно также, что не работает одна из свечей.

В некоторых случаях такое бывает из-за разрыва прокладки, недостаточной затяжки болтов головки блока. На старых моторах возможна трещина на головке блока.

Троит двигатель

Под словосочетанием «троит двигатель» подразумевается, что не работает один или несколько цилиндров. Силовая установка не способна развивать полной мощности и не обладает нужным тяговым усилием — соответственно, увеличивается расход топлива.

Основными причинами троения являются: неисправные свечи, неправильно установленный момент зажигания, потеря герметичности в зоне впускного коллектора и т. д.

Троение двигателя

Троение двигателя вызывается неправильно установленным моментом зажигания

Ремонт двигателя

Наиболее простым способом ремонта силовой установки является замена расходников. Однако настоящее восстановление работы ДВС подразумевает его снятие, разборку и последующую установку.

Перед тем, как начать операцию, важно подготовить правильные инструменты.

  1. Комплект ключей и отвёрток.
  2. Оправка для центровки ведомого диска муфты.
  3. Специальное приспособление для снятия масляного фильтра.Съёмник

    Съёмник для снятия масляного фильтра

  4. Особый ключ для прокручивания храповика.
  5. Съёмник для демонтажа звёздочки коленвала.
  6. Маркер для пометки шатунов и вкладышей.

Как снять двигатель

Алгоритм действий.

  1. Скинуть клеммы с аккумулятора.Клеммы аккумулятора

    Клеммы аккумулятора важно скинуть перед снятием двигателя

  2. Вытащить крышку капота — однозначно, она будет мешать.
  3. Слить весь хладагент из системы.
  4. Избавиться от брызговика.
  5. Демонтировать стартер и радиатор.Стартер

    Стартер придётся демонтировать

  6. Отсоединить приёмный шланг выпускного коллектора.
  7. Разъединить КПП и нажимной диск вместе в сборе с ведомым.
  8. Вытащить воздушный фильтр карбюратора, отсоединить тяги заслонки.
  9. Снять все оставшиеся шланги.

Теперь надо будет подготовить защиту для кузова — установить деревянный брусок между мотором и кузовом. Он подстрахует на случай возможного повреждения.

Далее.

  1. Скинуть топливный шланг.
  2. Отсоединить проводку генератора.
  3. Отвернуть фиксаторы подушек опор.
  4. Обернуть ДВС стропами, отвести мотор в сторону и назад, убрать брусок.
  5. Поднять моторную установку и вывести за пределы капота.Снятие двигателя

    Снятие двигателя лучше проводить с напарником

Замена вкладышей

Они представляют собой тонкие полукруглые пластинки из стали, и являются обоймами для подшипников.

Вкладыши невозможно ремонтировать, так как они имеют чёткий размер. Менять детали приходится из-за физического износа, так как со временем поверхности истираются, появляется люфт, который важно своевременно устранить. Ещё одной причиной замены является проворачивание вкладышей.

Вкладыши

Вкладыши невозможно ремонтировать, так как они имеют чёткий размер

Замена поршневых колец

Вся процедура по замене поршневых колец сводится к трём действиям:

  • снятию навесного оборудования и ГБЦ;
  • проверкой состояния поршневой группы;
  • установке новых колец.

При наличии съёмника снятие старых колец с поршня не вызовет никаких сложностей. Если инструмента нет, то можно попробовать тонкой отвёрткой разжать кольцо и вынуть. В первую очередь снимается маслосъёмное кольцо, затем компрессионное.

Старые кольца

Старые кольца снять с поршня легче с помощью съёмника

Вставлять новые кольца надо с помощью специальной оправки или обжимки. Сегодня они продаются в любом автомагазине.

Ремонт маслонасоса

Масляный насос — важнейший узел системы смазки двигателя ВАЗ 2103. С его помощью осуществляется перекачка смазки с картера по всем каналам. Первым признаком неисправности насоса становится снижение давления, а причиной — забитый маслоприёмник и засорённый картер.

Ремонт маслонасоса сводится к сливу масла, снятию поддона и промыванию маслоприёмника. Среди других причин неисправности узла выделяют поломку корпуса насоса. Для восстановления детали используются специальные инструменты, такие как ударная отвёртка, паяльник, набор гаечных ключей и отвёртка.

Видео: про ремонт двигателя ВАЗ 2103

Двигатель ВАЗ 2103 и его модификации считаются одними из лучших в классе. Однако и они со временем требуют проведения ремонта и замены составляющих.

Двигатель ВАЗ 2103

Двигатель ВАЗ 2103 с рабочим объемом 1,5 л представляет собой третье из четырех поколений тольяттинской классики. Он явился наследником моторов 2101 на 1,2 л и 21011 на 1,3 л. А сам мотор 2103 стал основой для создания движка 2106 на 1,6 л. На этом классическая линейка моторов закончилась, уступив место инжектору и переднему приводу.


Вернуться к оглавлению

Место в линейке двигателей ВАЗ

Вся классическая линейка АвтоВАЗа представляет собой переработанный мотор модели Fiat 124. Переделка была отнюдь не косметической, уже модель 2101 (1970 год) заметно отличалась от прототипа. Распредвал перенесли в верхнюю часть мотора, на 3 мм увеличили диаметр поршня, а на 5,5 мм уменьшили его ход. Тогда же двигатель стал приемистее за счет короткоходности.

Следом появился мотор 21011, диаметр цилиндра которого увеличили еще на 3 мм до величины 79 мм. За счет этого увеличился рабочий объем двигателя, немного подросла мощность. В 1972 году вышел в свет ВАЗ 2103 — первая четырехглазая модель «Жигулей». Она оснащалась новым и самым мощным на тот момент мотором в 71 лошадиную силу. Диаметр цилиндра вернули к значению 76 мм, а ход поршня увеличили на 14 мм. Рабочий объем составил 1452 кубических см. Этот мотор долгое время пользовался репутацией самого живучего. Даже пробег в 250 тысяч км не является для него непостижимой величиной при правильном уходе и штатной эксплуатации.

Преемник мотора 2103 (двигатель 2106) отличается от только увеличенным до 79 мм диаметром цилиндра.


Вернуться к оглавлению

Характеристики двигателя ВАЗ 2103

Технические характеристики двигателя 2103 отражают его положение в линейке моторов АвтоВАЗа. Его устанавливали на модели ВАЗ 2103, 21023, 21043, 21053, 21061, 2107. Это рядный четырехцилиндровый карбюраторный двигатель внутреннего сгорания с двумя клапанами на цилиндр, который работает на бензине марки АИ-92. Для работы мотора используют масло от 5W-30 до 15W-40, при этом расход составляет 700 г на1000 км пробега.

Основные характеристики мотора ВАЗ 2103

Наименование.Показатель.
Длина.565 мм.
Ширина.541 мм.
Высота.665 мм.
Диаметр цилиндра.76 мм.
Ход поршня.80 мм.
Степень сжатия.8,5.
Вес двигателя.121 кг.
Компрессия двигателя ВАЗ 2103.1 МПа (10 бар).
Максимальная мощность при скорости вращения коленчатого вала 5600 об/мин.71 лошадиная сила.
Максимальный крутящий момент при 3400 об/мин.104 Нм.
Расход топлива при движении по трассе.6,9 л на100 км.
Расход топлива в городском цикле.9,4 л на 100 км.
Расход топлива в смешанном цикле.8,9 л на100 км.

В процессе жизненного цикла ВАЗ 2103 неоднократно проходила доработка двигателя и его усовершенствование. Были созданы инжекторная версия мотора, вариант с бесконтактной системой зажигания и масса других. Эти модификации отличаются улучшенными техническими характеристиками.

Ресурс двигателя ВАЗ 2103, заявляемый заводом-изготовителем, составляет 125 тысяч км. На практике ресурс нередко вдвое превышает заявленный.


Вернуться к оглавлению

Конструкция двигателя ВАЗ 2103

Устройство двигателя ВАЗ 2103 представляет собой классический мотор с верхним расположением газораспределительного механизма, который имеет высокий блок цилиндров. Карбюратор ВАЗ 2103 имеет распределитель с вакуумным регулятором опережения зажигания. Высота движка составляет 215,9 мм вместо 207,1 (у ВАЗ 2101). Это позволило нарастить рабочий объем до 1,5 л и применить коленвал с увеличенным ходом поршней.

Блок цилиндров ВАЗ 2103 отлит из специального чугуна. Межцентровое расстояние равно 95 мм, что дает возможность увеличить диаметр цилиндра с 76 до 79 мм. Головка блока цилиндров изготавливается из алюминиевого сплава, ее высота составляет 112,5 мм.

Для привода газораспределительного механизма (ГРМ) применяется двухрядная втулочно-роликовая цепь, имеющая 116 звеньев. Натяжитель цепи отсутствует. Для привода генератора и водяного насоса используется клиновидный ремень сечением 10×8 мм, длиной 944 мм. Коленчатый вал имеет радиус кривошипа 40 мм и обеспечивает ход поршня 80 мм.

Поршни и клапаны модели ВАЗ 2103 аналогичны поршням и клапанам модели 2101. Поршни делают из алюминиевого сплава с покрытием наружной поверхности оловом. Поршневые кольца изготавливают из чугуна. Бочкообразная поверхность верхнего компрессионного кольца хромируется. Нижнее компрессионное кольцо упрочняется фосфатированием. Маслосъемное кольцо имеет пружину-расширитель, шлифованную по торцам и по наружному диаметру.


Вернуться к оглавлению

Эксплуатация двигателя трешки

В целом эксплуатация двигателя не вызывает особых проблем. Своевременное выполнение регламентных работ, замена масла, регулировка карбюратора ВАЗ 2103, применение качественного моторного топлива обеспечивают продолжительный период работы мотора. Есть в эксплуатации двигателя и своя специфика, которую надо учитывать.

Одна из специфических черт двигателя 2103 заключается в том, что цепной привод газораспределительного механизма не имеет натяжителя цепи. Это приводит к необходимости периодической ревизии, а в некоторых случаях требуется и восстановление штатной работоспособности. Регламентная периодичность такой ревизии составляет 10000 км. Имея некоторый опыт, можно выполнить эту регулировку своими руками. Вот пошаговая схема действий:

  • полностью открутите колпачковую гайку натяжителя;
  • пальцем контролируя положение штока натяжителя, проверните коленвал на 1-1,5 оборота в направлении его вращения;
  • как только шток натяжителя утопится, пружина автоматически отрегулирует натяжение цепи через башмак;
  • закрутите колпачковую гайку.

Другой важной регламентной процедурой при эксплуатации мотора ВАЗ 2103 является регулировка тепловых зазоров клапанов. Необходимости ремонтировать клапан возникает, когда присутствует отчетливый стук в двигателе на малых оборотах. Регулировка осуществляется в следующем порядке:

  1. Совместите метки на шестерне и корпусе распредвала.
  2. Широким щупом 0,15 мм отрегулируйте 8-й и 6-й клапаны.
  3. Проверните коленвал на 180 градусов и отрегулируйте 4 и 7 клапаны.
  4. Проверните коленвал еще на 180 градусов, чтобы выставить 1 и 3 клапаны.
  5. Снова поверните коленвал на 180 градусов для регулировки 5 и 2 клапанов.

Проворачивать коленвал можно прокатывая автомобиль вперед на четвертой передаче.


Вернуться к оглавлению

Тюнинг мотора 2103

Потенциал мотора ВАЗ 2103 так высок, что трудно удержаться от искушения выжать из него побольше. Есть умельцы, которые выжимают из машины до 200 лошадиных сил. Такой тюнинг двигателя ВАЗ 2103 носит экстремальный характер, его не рекомендуется делать для езды по обычным дорогам в повседневном режиме.

Есть много вариантов, как форсировать двигатель. Один из способов увеличить мощность двигателя и повысить другие эксплуатационные характеристики — переделка мотора в движок ВАЗ 2106. Для этого надо расточить цилиндры до диаметра 79 мм и заменить поршневую группу деталями от шестерки. Остальные элементы остаются прежними, агрегаты унифицированы по всем деталям. Сборка двигателя ВАЗ 2103 после такого тюнинга проводится без проблем.

Другой популярный способ форсировки этого мотора — установка на него компрессора на 0,5 бар. Эта модернизация довольно проста и не требует серьезных доработок. Такой тюнинг может дать увеличение мощности до 100 лошадиных сил. Это относительно доступный вариант усовершенствования двигателя. Ведь на рынке есть готовые установочные наборы, обеспечивающие давление 0,5 или даже 0,7 бар.

Если ухаживать за своим автомобилем, своевременно проводить ремонт двигателя ВАЗ 2103, машина не подведет в пути. А будет много лет радовать своих владельцев безотказностью и прекрасными ходовыми качествами.

О двигателях для ВАЗ -2103 (LADA 1500)

Двигатели «Жигулей» часто «грешат» износом распредвала или отсутствием натяжителя в цепи привода, которую нужно подтягивать каждые 10 тысяч километров. При возникновении громкого стука в двигателе придется регулировать зазоры клапанов, чтобы избежать падения мощности, повышенного расхода горючего, прогорания клапана и прочего.

Также среди недостатков двигателя для «тройки» необходимость постоянной регулировки и очистки СО. При перегреве мотора следует обратить внимание на помпу.

При возникновении троения нужно сменить компрессию.

Тюнинг двигателя возможен в широком диапазоне: от расточки до компрессора и турбин.

Среди автомобилистов двигатель ВАЗ-2103 на хорошем счету, по сравнению с другими агрегатами линейки. Длительный срок эксплуатации обусловлен доступностью запчастей и их дешевизной. При бережном отношении к движку и своевременном обслуживании ВАЗ-2103 проедет не 125 тысяч км заявленные производителем, а все 180-200 тысяч километров.

Двигатель ВАЗ 2106

Мотор ВАЗ 2106 на 1,6 литра стал продолжением ВАЗ 2103 и как следствие 2101. Главные отличия от своих собратьев в поршне с увеличенным до 79 мм диаметром, тогда как блок двигателя остался неизменным.

Есть еще инжекторный агрегат 21067, который отличается накрытым ГБЦ от инжекторного мотора Нива- 21214. Практика показала, что карбюратор «шестерки» более стабилен, чем инжектор.

В целом рядный двигатель ВАЗ 2106 имеет 4 цилиндра, верхнее расположение распредвала и цепной привод. Несмотря на возможный ресурс до 180-200 тысяч километров среди автомобилистов ВАЗ-2106 считается менее надежным, чем «трешка». Для благополучного функционирования двигателя «»шестерки» в зимнее время его приходится греть не менее пяти минут на 1500-2000 оборотах.

К недостаткам ВАЗ-2106 относятся повышенные требования к маслу, которое может повлиять на увеличение диаметра цилиндров. Часто случается, что расход масла составляет литр и более на тысячу километров, что требует замены колец, клапанов или прочего.

Также среди минусов «шестерки» повышенный износ распредвала, детонация мотора, стук двигателя из-за дефектов поршневых пальцев или шатунных подшипников. При неустойчивой работе карбюраторного двигателя обращают внимание на жиклеры. Глохнущий на холостых мотор требует регулировки воздушной заслонки.

При нагревании или закипании двигателя нужно проинспектировать термостат, радиатор и наличие воздуха в охладителе.

Троение мотора 2106 вызвано неправильно отрегулированными клапанами, прогоранием клапана, израсходованной прокладкой ГБЦ и низкооктановый бензин.

На вибрацию мотора оказывают влияние изношенные подушки 2106, а также дисбаланс коленвала и кардана.

Добавить мощности ВАЗ-2106 можно расточив двигатель на 33 мм под поршень на 82 мм, больше растачивать нельзя, так как стенки блока истончаются.

Двигатель ВАЗ 21011

Силовой агрегат ВАЗ 21011 на 1,3 литра является усовершенствованным вариантом мотора «копейки». Главным отличием является увеличение диаметра поршня до 79 мм, что позволило добавить объема и удачно скомпоновать короткий ход поршня и хороший диаметр цилиндра, гарантирующие агрегату высокие обороты, скромный расход горючего и уверенность на дороге.

Все минусы 21011 идентичны недостаткам двигателя 2101.

Двигатель ВАЗ 2101

Силовой агрегат ВАЗ 2101 на 1,2 литра стал базой для всего семейства ВАЗ. В отличие от своего прототипа — мотора FIAT 124, отечественные инженеры увеличили межцентровое расстояние, что позволило впоследствии «играть» с рабочим объемом мотора, который варьировался от 1,2 литров до 1,8 литра.

ВАЗ 2101 это рядный карбюраторный агрегат с 4-мя цилиндрами, верхним расположением распредвала и цепным приводом ГРМ. Двигатели 1970-74 гг. выпуска получились более надежными, так как их производство контролировали специалисты FIAT.

К недостаткам ВАЗ-2101 относится повышенный износ распредвала, необходимость постоянно регулировать зазоры клапанов. Расход масла на «копейке» достигает 0,7 литра на 1000 км.

Из-за дефектов термостата мотор часто греется. На перегрев мотора 2101 указывает также отказ вентилятора, поломка помпы, некачественное топливо.

Дымность ВАЗ 2101 вызвана прогоранием поршневых колец, износом сальников клапанов, переработкой направляющих втулок и прочее, что вынудит сдать авто на капремонт двигателя. Как отмечают опытные владельцы автомобилей с двигателем ВАЗ 2101 недостатки агрегата можно перечислять и ремонтировать бесконечно.

Двигатели

ВАЗ 2103

ВАЗ 2106

ВАЗ 21011

ВАЗ-2101

Производство

ВАЗ

ВАЗ

ВАЗ

ВАЗ

Марка двигателя

2103

2106

21011

2101

Годы выпуска

1972-наш время

1976-наше время

1976-2006

1970-1983

Материал блока цилиндров

чугун

Чугун

Чугун

чугун

Система питания

Карбюратор/инжектор

Карбюратор/инжектор

Карбюратор

Карбюратор

Тип

Рядный

Рядный

Рядный

Рядный

Количество цилиндров

4

4

4

4

Клапанов на цилиндр

2

2

2

2

Ход поршня, мм

80

80

66

66

Диаметр цилиндра, мм

76

79

79

76

Степень сжатия

8,5

8,5

8,8

8,5

Объем двигателя, куб.см

1452

1569

1294

1198

Мощность двигателя, л.с./об.мин

71/5600

75/5400

69/5600

59/5600

Крутящий момент, Нм/об.мин

104/3400

116/3000

94/3400

89

Топливо

АИ 93

АИ-92

АИ-93

АИ-92

Вес двигателя, кг

121

121

114

114

Расход топлива, л/100 км (для Celica GT)
— город
— трасса
— смешан.

9,4

6,9

8,9

10,3

7,4

10

11

8

9,5

9,4

6,9

9,2

Расход масла, гр./1000 км

До 700

До 700

До 700

До 700

Масло в двигатель

5W-30
5W-40
10W-40
15W-40

5W-30
5W-40
10W-40
15W-40

5W-30
5W-40
10W-40
15W-40

5W-30
5W-40
10W-40
15W-40

Сколько масла в двигателе

3,75

3,75

3,75

3,75

Ресурс двигателя, тыс. км
— по данным завода
— на практике

125

250

125

До 200

125

200

125

200

Тюнинг
— потенциал
— без потери ресурса


200

80

200

80

200

80

200

70-75

Двигатель устанавливался

ВАЗ 21023
ВАЗ 2103
ВАЗ 21043
ВАЗ 21053
ВАЗ 21061
ВАЗ 2107

ВАЗ 2106
ВАЗ 2121 «Нива»
ВАЗ 21074

ВАЗ 21011
ВАЗ 21021
ВАЗ 21033
ВАЗ 21063

ВАЗ 2101
ВАЗ 2102
ВАЗ 21035
ВАЗ 21041
ВАЗ 21051

ВАЗ 2103 1.5 МКПП, 75 л.с., 1975

Официальное изображение

Снято в

взятый

Камера

Показать обложку
  • ВАЗ
  • 2103
  • 2103
  • Год выпуска: 1975
  • 26

    Изображений
  • Характеристики
  • 24

    карта
  • 43

    подобно
Car.info logo
  • Мои списки
.

ВАЗ 2103 1973 1 поколение (1972 — 1984)

Официальное изображение

Снято в

взятый

Камера

Показать обложку
  • ВАЗ
  • 2103
  • 2103
  • 22

    Изображений
  • Технические характеристики
  • 43

    подобно
Car.info logo
  • Мои списки
  • оценка
  • Оставить отзыв об автомобиле
  • Загрузить изображения
  • Оставьте отзыв
.

ВАЗ 2103 1974 1 поколение (1972 — 1984)

Официальное изображение

Снято в

взятый

Камера

Показать обложку
  • ВАЗ
  • 2103
  • 2103
  • 85

    Изображений
  • Технические характеристики
  • 4

    карта
  • 43

    подобно
Car.info logo
  • Мои списки
  • оценка
  • Оставить отзыв об автомобиле
  • Загрузить изображения
  • Оставьте отзыв
.

ВАЗ 2103 1976 1 поколение (1972 — 1984)

Официальное изображение

Снято в

взятый

Камера

Показать обложку
  • ВАЗ
  • 2103
  • 2103
  • 59

    Изображений
  • Технические характеристики
  • 24

    карта
  • 43

    подобно
Car.info logo
  • Мои списки
  • оценка
  • Оставить отзыв об автомобиле
  • Загрузить изображения
  • Оставьте отзыв
.

2106 мощность двигателя: 2106 — двигатель ВАЗ 1.6 литра

ВАЗ 2106 Шестерка технические характеристики


Эксплуатационные характеристики ВАЗ 2106 шестерка

Максимальная скорость: 150 км/ч
Время разгона до 100 км/ч: 17.5 c
Расход топлива на 100км по городу: 10.1 л
Объем бензобака: 39 л
Снаряженная масса автомобиля: 1035 кг
Допустимая полная масса: 1435 кг
Размер шин: 175/70 SR13

Характеристики двигателя

Расположение: спереди, продольно
Объем двигателя: 1569 см3
Мощность двигателя: 75 л.с.
Количество оборотов: 5400
Крутящий момент: 116/3000 н*м
Система питания: Карбюратор
Турбонаддув: нет
Газораспределительный механизм: OHC
Расположение цилиндров: Рядный
Количество цилиндров: 4
Диаметр цилиндра: 79 мм
Ход поршня: 80 мм
Степень сжатия: 8.5
Количество клапанов на цилиндр: 2
Рекомендуемое топливо: АИ-92

Тормозная система

Передние тормоза: Дисковые
Задние тормоза: Барабанные

Рулевое управление

Тип рулевого управления: Червячный редуктор
Усилитель руля: нет

Трансмиссия

Привод: Задний
Количество передач: механическая коробка — 4
Передаточное отношение главной пары: 4,1

Подвеска

Передняя подвеска: Двойной поперечный рычаг
Задняя подвеска: Винтовая пружина

Кузов

Тип кузова: седан
Количество дверей: 4
Количество мест: 5
Длина машины: 4166 мм
Ширина машины: 1611 мм
Высота машины: 1440 мм
Колесная база: 2424 мм
Колея передняя: 1365 мм
Колея задняя: 1321 мм
Дорожный просвет (клиренс): 170 мм
Объем багажника: 345 л

Производство

Год выпуска: с 1976 по 2005

Модификации ВАЗ 2106

ВАЗ-21061 — двигатель ВАЗ-2103 объемом 1500 см3. Изначально этим индексом предполагалось обозначать специальную версию для Канады, предусматривавшую оснащение особенными бамперами — алюминиевыми, без клыков, с накладками и законцовками из черного пластика.

ВАЗ-21062 — экспортная модификация ВАЗ-2106 с правым рулем.

ВАЗ-21063 — двигатель ВАЗ-21011 улучшенной комплектации, с датчиком давления масла и с электровентилятором вместо приводимой ремнем крыльчатки (в вариантном исполнении допускался привод ремнём).

ВАЗ-21064 — экспортная модификация ВАЗ-21061 с правым рулем.

ВАЗ-21065 — модернизированная модификация с улучшенной комплектацией, выпускавшаяся в 1990 — 2001 гг. От базовой модели отличалась более мощным генератором, пятиступенчатой коробкой передач, редуктором заднего моста с передаточным числом 3.9, бесконтактной системой зажигания, карбюратором «Солекс» (21053-1107010), галогенными фарами, обивкой и подголовниками сидений, а также штатным наличием заднего противотуманного фонаря и электрообогрева заднего стекла. Комплектация 21065-01 оснащалась двигателем от модели 2103.

ВАЗ-21066 — экспортная модификация ВАЗ-21063 с правым рулем.

ВАЗ-21067 — сборки «ИжАвто». Двигатель ВАЗ-21067, отличающийся от базового наличием системы впрыска топлива с каталитическим нейтрализатором, что обеспечивало выполнение норм токсичности Евро-2.

ВАЗ-21068 — был выпущен как носитель агрегатов периода доводки новых моторов ВАЗ-2108 и ВАЗ-21083.

ВАЗ-21069 — автомобили изготавливались для спецслужб. Внешне полностью идентична ВАЗ-2106, но с двухсекционным РПД ВАЗ-411 мощностью 120 л.с. С 1983 года мог устанавливаться мотор ВАЗ-413 мощностью 140 л.с., а с 1997 года универсальный РПД для заднеприводных и переднеприводных ВАЗов ВАЗ-415.

ВАЗ-2106 «Турист» — пикап со встроенной в кузов палаткой, созданный по заказу технической дирекции. Проект был отвергнут головной дирекцией завода, а единственный серебристый экземпляр перекрасили в красный цвет и впоследствии использовали в качестве внутризаводской технички.

ВАЗ-2106 «Полседьмого» — единственный экземпляр, изготовленный по специальному заказу, поступившему от Л. И. Брежнева или кого-то из его окружения после демонстрации опытных ВАЗ-2107 высшему руководству СССР в 1979 г. Помимо экспортных бамперов, отличался сиденьями и решёткой радиатора от 2107, а также доработанным под ее установку капотом.

Размеры ВАЗ 2106 шестерка

О двигателях LADA 2106 1 поколение (1975 — 2005)

Движок ВАЗ 2106 1,6 л. является продолжением тройки и как следствие силового агрегата копейки. Разница между ВАЗ 2106 и 2103 прежде всего в поршне увеличенного диаметра, тогда как блок движка 2106 прежний. Есть вариант с индексом 21067 инжекторного типа, это банальный шестерочный движок, накрытый ГБЦ от инжекторного нива движка 21214 от инжекторной Нивы.

На практике, карбюраторный двигатель шестерки проявил себя лучше чем инжекторный. Движок 2106 может быть как инжекторного так и карбюраторного типа, он рядный с четырьмя цилиндрами, и имеет верхнее расположение распредвала. Привод ГРМ цепной. Движок является представителем «классической» серии, для которой характерен высокий блок.

НЕДОСТАТКИ ДВИГАТЕЛЯ

К основном и наиболее распространенным минусам двигателя ВАЗ 2106 относятся следующие. Движок требователен к маслу, а также к своевременной его замене. При игнорировании данного требования приводит к тому, что со временем диаметры цилиндров увеличиваются. Упомянув о масле необходимо отметить тот факт, что в части масла движок еще и довольно прожорлив. Если подобное переходит разумные границы необходимо замерить компрессию, по результату можно определить в чем проблема: клапанах или кольцах.

На движке быстро изнашивается распредвал. Кроме того необходимо своевременно регулировать клапана, иначе на холостых могут возникать стуки. Если говорить о посторонних шумах и звуках, нужно отметить что: характерные металлические звуки говорят о проблемах с поршневыми пальцами или шатунными подшипниками, стук во время прогрева движка говорит о проблемах с поршнями, скрипы свидетельствуют о проблемах с цепью ГРМ. Вообще движок довольно шумный и различные шумы и стуки для него частое явление.

Кроме того движок может неровно работать, глохнуть и перегреваться. Последнее, скорее всего, происходит из-за проблем с термостатом или забитого радиатора. Наконец движок может сильно дымить. Вероятнее всего проблема в маслосъемных кольцах или сальниках клапанов.

ДВИГАТЕЛЬ ВАЗ 2103

ВАЗ 2103 1,5 л. является рядным двигателем карбюраторного типа, имеет четыре цилиндра и верхнее расположение распредвала. Привад ГРМ в двигателе ВАЗ 2103 цепной. Это движок с высоким блоком в этом его отличие от силового агрегата ВАЗ 2101. Большая высота блока позволила использовать на движке коленвал, имеющий увеличенный ход поршня, что в свою очередь обеспечило увеличение объема двигателя до 1,5 литров.

Если обеспечить двигателю надлежащий уход и эксплуатацию, то вполне можно рассчитывать на превышение официального ресурса в 125 тыс.км. и на практике получить до 200 тыс.км. Владельцы отмечают общую неприхотливость и надежность двигателя, по сравнению с другими представителями «классики».

НЕДОСТАТКИ ДВИГАТЕЛЯ

Среди слабых сторон двигателя наиболее часто отмечают следующие. В первую очередь это быстрый износ распределительного вала. Кроме того, из-за отсутствия натяжителя на цепи привода приходится своевременно и регулярно регулировать клапана. Если же забыть об этом требовании, то через какое-то время напоминание придет в виде стука двигателя. Если проигнорировать и это, в итоге можно получить падение мощности и увеличение расхода топлива.

Есть у двигателя и проблемы с карбюраторами Вебер/Озон, их придется регулярно чистить и регулировать СО. Движок может перегреваться, с большой долей вероятности можно сказать, что проблема будет в помпе. Наконец двигатель может троить.

ДВИГАТЕЛЬ ВАЗ 21011

Движок ВАЗ 21011 1,3 л. является усовершенствованным 2101. В качестве основного отличия этих двух двигателей можно назвать разный диаметр поршня, который для ВАЗ 21011 увеличили до 79 мм. Что позволило увеличить объем ВАЗ 21011 до 1,3 л. по сравнению с 2101. Элементы движка удачно скомпонованы, в частности благодаря короткому ходу поршня и приличному диаметру цилиндра, получена высокая оборотистость, хорошие качества для трассы и уменьшен расход топлива.

Двигатель получил большое распространение, как представитель «классики».

НЕДОСТАТКИ ДВИГАТЕЛЯ

Основной проблемой движка можно назвать повышенный износ распределительного вала. Двигатель требует периодической регулировки клапанов. Кроме того необходимо регулярно прочищать карбюратор. Движок потребляет много масла и склонен к перегреву. Это может происходить, если отказал вентилятор, или сломалась помпа. Движок может дымить, проблема может быть в поршневых кольцах. Не редки проблемы с сальниками и втулками клапанов. Двигатель может троить и проблема чаще всего в неисправности системы зажигания.

Это основные, но не далеко не все проблемы движка.

Двигатель

ВАЗ 2106

ВАЗ 2103

ВАЗ 21011

Годы выпуска

1976 — наше время

1972 — наше время

1974 — 2006

Материал блока цилиндров

чугун

чугун

чугун

Система питания

карбюратор/инжектор

карбюратор/инжектор

карбюратор

Тип

рядный

рядный

рядный

Количество цилиндров

4

4

4

Клапанов на цилиндр

2

2

2

Ход поршня

80 мм

80 мм

66 мм

Диаметр цилиндра

79 мм

76 мм

79 мм

Степень сжатия

8,5

8,5

8,8

Объем мотора

1569 см. куб

1452 см. куб

1294 см. куб

Мощность

75 л.с. /5400 об.мин

71 л.с. /5600 об.мин

69 л.с. /5600 об.мин

Крутящий момент

116 Нм/3000 об.мин

104 Нм/3400 об.мин

94 Нм/3400 об.мин

Топливо

АИ92

АИ93

АИ93

Расход топлива

город

10,3 л/100 км

9,4 л/100 км

11 л/100 км

трасса

7,4 л/100 км

6,9 л/100 км

8 л/100 км

смешанн.

10 л/100 км

8,9 л/100 км

9,5 л/100 км

Расход масла

700 гр. на 1000 км

700 гр. на 1000 км

700 гр. на 1000 км

Тип масла

5W-30
5W-40
10W-40
15W-40

5W-30
5W-40
10W-40
15W-40

5W-30
5W-40
10W-40
15W-40

Сколько масла в двигателе

3.75 л

3.75 л

3.75 л

При замене лить

3.5 л

3.5 л

3.5 л

Ресурс

по данным завода

125 тыс.км

125 тыс.км

125 тыс.км

на практике

до 200 тыс.км

до 250 тыс.км

200 тыс.км

Тюнинг

потенциал

200 л.с

200 л.с

200 л.с

без потери ресурса

80 л.с

80 л.с

80 л.с

Двигатель устанавливался

ВАЗ 2106
ВАЗ 2121 «Нива»
ВАЗ 21074

ВАЗ 21023
ВАЗ 2103
ВАЗ 21043
ВАЗ 21053
ВАЗ 21061
ВАЗ 2107

ВАЗ 21011
ВАЗ 21021
ВАЗ 21033
ВАЗ 21063

Технические характеристики и обзор ВАЗ 2106: отзывы, фото и видео

Ваз 2106 – это легковой пятиместный седан с четырьмя дверями и задним приводом. Долгое время оставался одним из самых популярных авто отечественного производства.

Первые модели поступили в продажу в далеком 1976 году. Это был переработанный RAT 124 Speciale. Никто и не думал в то время, что «шестерка» станет пользоваться массовым спросом на протяжении несколько десятилетий.

Сегодня технические характеристики ВАЗ 2106 не воспринимаются нами, как что-то особенное. Главное, чтобы машина поехала. Но в конце семидесятых у любителей автопрома вызывал восторг мощный по тем временам мотор на 80 лошадиных сил. Владельцы «шохи» с гордостью заявляли, что объем ее двигателя составляет аж 1,6 литра.

По сравнению с Ваз 2103 в шестерку было внедрено много изменений. Иная схема электропитания, другая форма кузова, оснащение салона. К примеру, у передних фар появились «очки» из пластмассы, был иначе облицован радиатор, поставлены модные в то время пластмассовые бамперы с «агрессивными» уголками и клыками. Задний номерной знак подсвечивался фонарями.

Владельцы «Москвичей» завидовали хорошей динамике и комфортному интерьеру. То, что сегодня воспринимается нами как «колхоз», в начале 80-х воспринималось верхом комфорта и олицетворением престижа.

Только представьте себе, Ваз 2106 воспринимался обществом, как скоростной шикарный и дорогой автомобиль. Ничем не примечательные в наше время 150 км/ч с разгоном в 16 секунд до ста казались чем-то запредельно крутым. Сиденья были снабжены подголовниками и имели рельефную форму, на панели приборов красовался тахометр, а кузов был оснащен звукоизоляцией!

Автомобиль пережил несколько модернизаций:

1982 год. Новые моторы на 75 лошадей, приведенные в соответствие с новым ГОСТом. Убраны светоотражатели на заднем крыле.

1988 год. Усовершенствована система выпуска: появилась прокладка и одноразовая гайка.

1990 год. Появилась комплектация Люкс (версия 21065). Двигатель стал комплектоваться БСЗ, карбюратор поставлялся типа «Солекс», фары стали галогеновыми, появились более удобные подголовники, улучшена салонная обивка. Заднее стекло имело подогрев, коробка работала на пяти уровнях, а генератор приобрел повышенную мощность. Водители могли почувствовать понижение расхода топлива на трассе и снижение уровня шума от мотора.

К этому времени автомобиль перестал казаться шикарным и дорогим. В конце 80-х шестерка стала самой массовой моделью ВАЗ. Завод теперь мог позволить себе снизить себестоимость производства, снизим мощность мотора и придерживаясь более низких стандартов качества сборки и комплектующих.

То, что раньше казалось роскошным, но не практичным, превратилось в доступную «рабочую лошадку». 90-е годы – это годы небывалого подъема популярности ВАЗ 2106 в начале и постепенного угасания спроса к концу десятилетия. Дизайн автомобиля морально устаревал, а интерьер перестал казаться удивительным и престижным. Ездовые качества уже давно перешли в разряд низких по сравнению с современными конкурентами.

Да и производитель начал постепенно «сдавать позиции». В погоне за высокой маржой, завод резко понизил уровень качества производства. Плохая изоляция, недостатки в работе трансмиссии и двигателя привели к высокому уровню шума во время езды по трассе. Начали «сыпаться» балки переднего моста. Были убраны молдинги, а количество хрома свели к минимуму. Убрали обогрев заднего стекла. А рулевое колесо стало тонким и скользким.

Сегодня Ваз 2106 уже давно не выпускается. Но автомобиль приобретает «вторую жизнь» на рынке подержанных авто. Покупают его люди с небольшим уровнем дохода и любители тюнинга. Несомненным преимуществом «шестерки» является дешевизна в обслуживании, доступность всех комплектующих и податливость к доработкам.

Увеличение мощности двигателя ВАЗ 2106: основы, процессы

Многие автомобилисты задавались вопросом — как увеличить мощность двигателя ВАЗ 2106. Поскольку конструктивные особенности силового агрегата достаточно простые, то и процесс доработки мотора тоже не сложный, и с ним может справиться автомобилист со средними познаниями конструкции. Но, прежде чем начать расписывать сам процесс, необходимо знать, какие технические характеристики имеет двигатель 2106.

Тюннинг ВАЗ 2106

Технические характеристики

Мотор ВАЗ 2106 имеет стандартные технические характеристики, которые неразрывно связанные со всем представителями линейка «классика». Если смотреть с конструктивной точки зрения, то все двигатели внутреннего сгорания ВАЗ 2101-2107 на карбюраторной основе — похожи между собой. Прежде чем перейти непосредственно к доработке, рассмотрим, какими же техническими характеристиками обладает силовой агрегат с маркировкой 2106:

НаименованияХарактеристика
Марка, модельВАЗ 2106
ТипБензин с возможностью установки ГБО
Система впрыскаКарбюратор
Мощность81 л.с.
Количество цилиндров4
Количество клапанов8
Расход горючего10,5 л/100 км пробега
Диаметр цилиндра79 мм
Система охлажденияЖидкостная, с принудительным вентилятором

Увеличение мощности

Увеличение мощности двигателя ВАЗ 2106 проводится в несколько этапов. Конечно, можно нагнать мощностные характеристики поверхностно, но если говорить о полноценном тюнинге, то стоит понимать, что силовой агрегат подвергается доработке целиком и полностью. Процесс этот занимает не один час или день, поэтому стоит набраться терпения. С чего стоит увеличивать мощность движка — конечно с расточки.

Расточка

Растачивается силовой агрегат ВАЗ 2106 на специальном расточном стенде. Но, для начала стоит определиться с запасными частями, которые устанавливаются в блок цилиндров. Лучшей рекомендацией является поршневая группа с диаметром 82 мм от компании API.

При этом поршни легче стандартные на 160 грамм, что позволяет уменьшить вес силового агрегата. Так, под эти поршни будут необходимы комплекты маслосъемных колец, также производства этой компании.

Расточка блока ВАЗ 2106

Что касается коленчатого вала, то стоит понимать, что для достижения максимального мощностного эффекта, его также стоит заменить. Конечно, сама деталь стоит немало, поэтому большинство автолюбителей, которые проводят тюнинг самостоятельно, оставляют старый коленчатый вал.

Но, все-же если автомобилист решил идти до конца, то можно устанавливать коленвал, который предлагает польский производитель DDT. Стоит понимать, что его необходимо предварительно проточить до первого ремонта, поскольку коренные шейки не влезут в бугеля.

Еще одна доработка — замена распределительного вала и клапанов. Впускной и выпускной клапан можно приобрести компании API, а вот седла под них придется протачивать стандартные. Распредвал можно установить новый, родного производства, или облегченный от DDT.

Установка зажигания

Следующим этапом усовершенствований становиться установка бесконтактного зажигания. На сегодняшний день, его моно свободно найти на любом автомобильном рынке по доступной цене. Таким образом, придется заменить не только замок, но и свечи, а также катушку зажигания и высоковольтные провода. Самыми лучшими и бюджетными в этом случае становятся провода компании Tesla.

Тюннинг ВАЗ 2106

Система циркуляции ОЖ

Систему охлаждения также стоит заменить. При этом она меняется полностью. Существует несколько компаний, которые производят тюнинг комплекты системы охлаждения для классических автомобилей ВАЗ. К ним можно отнести таких известных производителей, как Mastersport, Brembo, AWD, Intenzo и другие.

Комплект тюнинг системы охлаждения состоит из:

  • Водяной насос повышенной мощности (в некоторых случаях можно найти с функцией принудительного электрического включения).
  • Термостат.
  • Комплект силиконовых патрубков системы охлаждения.
  • Алюминиевый радиатор увеличенной площади.
  • Электровентилятор.
  • Датчик системы ОЖ с проводкой.

Если установить такой комплект, то двигатель будет лучше охлаждаться даже на высоких оборотах, что обезопасит мотор от перегрева.

Карбюратор

Как правило, для увеличения мощности на ВАЗ 2106 устанавливают дополнительный карбюратор. Делается это с целью повысить количество топлива в цилиндрах, но при этом не обойтись без дополнительного нагнетания воздуха.

Тюннинг ВАЗ 2106

Турбина

Поскольку на двигатель установили дополнительный карбюратор, то потребуется восстановить баланс воздуха и топлива. Достигается это при помощи установки турбонаддува. Конечно, самый простой способ поставить турбину с трактора МТЗ, но придется многое переделать. Поэтому, уже существуют в продаже монотурбины, разработанные специально для установки на автомобили типа «классика». Средняя стоимость такого готового комплекта составляет около 500 долларов.

Сцепление

Если речь идет об увеличении мощностных характеристик двигателя ВАЗ 2106, то в обязательном порядке придется менять комплект сцепления. В него входят следующие элементы:

  • Выжимной подшипник.
  • Ведущий диск сцепления.
  • Ведомый диск сцепления или корзина.

Оптимальным вариантом для установки считается комплект сцепления производства Sachs, который идеально становиться по посадочным местам крепления, а передача крутящего момента значительно улучшается.

Другое

Последней доработкой можно считать улучшение подачи воздуха в цилиндры. Для этого автомобилисты на автомобили, вместо стандартного воздушного фильтра, устанавливают фильтрующий элемент «нулевого» сопротивления. Также, вместе с этой доработкой рекомендуется дополнительно модернизировать заслонку карбюратора, но делают это не все.

Шлифовка ГБЦ ВАЗ 2106

Кроме модернизации карбюратора, можно улучшить системы впрыска другим способом — установка моноинжектора, но при этом придется заменить головку блока цилиндров и смонтировать электронный блок управления двигателем. Эта процедура довольно дорогостоящая, поэтому владельцы «шестерок» останавливаются на монтаже двухкарбюраторной системы.

Вывод

Модернизировать и увеличить мощность двигателя ВАЗ 2106 достаточно просто, поэтому с этой процедурой может справиться даже автолюбитель без технического образования. Существует несколько вариантов и способов доработки силового агрегата. Так, все начинается с расточки и заканчивается заменой воздушного фильтра. Все вышеуказанные рекомендации позволят увеличить мощность силового агрегата на 50-80 лошадиных сил.

как увеличить мощность, установить компрессор, инструкции с фото и видео

Тюнинг мотора ВАЗ 2106 — занятие увлекательное, но одновременно и дорогостоящее. В зависимости от преследуемых целей и финансовых возможностей, двигатель можно доработать под конкретные цели начиная от простого увеличения объёма без кардинальных изменений конструкции агрегата и заканчивая установкой турбины.

Тюнинг двигателя ВАЗ 2106

ВАЗовскую «шестёрку» начали выпускать ещё в далёком 1976 году. Эта модель давно устарела как по внешнему виду, так и по техническим характеристикам. Однако и по сегодняшний день остаётся немало приверженцев эксплуатации таких автомобилей. Некоторые владельцы стараются сохранить машину в первоначальном виде, другие — оснащают её современными узлами и механизмами. Один из первостепенных агрегатов, который подвергается тюнингу, является двигатель. Именно на его доработках остановимся более подробно.

Расточка блока цилиндров

Мотор ВАЗ 2106 не выделяется своей мощностью, ведь она составляет от 64 до 75 л. с. при объёме от 1,3 до 1,6 л, в зависимости от установленного силового агрегата. Одной из распространённых доработок двигателя является расточка блока цилиндров, которая позволяет увеличить внутренний диаметр цилиндров и мощность. Процесс расточки предполагает снятие слоя металла с внутренней поверхности цилиндров. Однако нужно понимать, что чрезмерная расточка приведёт к утоньшению стенок и снижению надёжности и ресурса мотора. Так, стоковый силовой агрегат с объёмом 1,6 л и диаметром цилиндров 79 мм можно расточить до 82 мм, получив объём 1,7 л. При таких изменениях показатели надёжности практически не ухудшатся.

Блок цилиндров

Блок двигателя ВАЗ 2106 имеет диаметр цилиндров 79 мм

Любители экстрима могут увеличить цилиндры до 84 мм на свой страх и риск, потому что сколько пройдёт такой мотор, никому не известно.

Процесс расточки осуществляется на специальном оборудовании (расточном станке), хотя находятся умельцы, которые проводят эту процедуру практически в гаражных условиях, при этом точность остаётся сомнительной.

Расточка блока

Блок цилиндров растачивают на специальном оборудовании

По окончании процедуры в блок вставляются поршни, которые по своим характеристикам соответствуют новым размерам цилиндров. В целом расточка блока состоит из таких основных этапов:

  1. Демонтаж мотора с автомобиля.
  2. Полная разборка силового агрегата.
  3. Расточка блока цилиндров согласно желаемым параметрам.
  4. Сборка механизма с заменой поршней.
  5. Установка мотора на авто.
Видео: как растачивают блок цилиндров

Замена коленвала

На двигателе ВАЗовской «шестёрки» стоит коленвал ВАЗ 2103 с ходом поршня 80 мм. Помимо увеличения диаметра цилиндров, можно увеличить ход поршня, тем самым форсировав мотор. Для рассматриваемых целей мотор оснащается коленвалом ВАЗ 21213 с ходом поршня 84 мм. Таким образом удастся поднять объём до 1,65 л (1646 куб. см.). К тому же такой коленчатый вал имеет восемь противовесов вместо четырёх, что положительно отражается на динамических характеристиках.

Коленвал ВАЗ 21213

Установка коленвала от ВАЗ 21213 на «шестёрку» позволяет увеличить ход поршня и повысить мощность мотора

Читайте больше об установке и ремонте коленвала: https://bumper.guru/klassicheskie-modeli-vaz/dvigatel/kolenval-vaz-2106.html

Доработка системы впуска и выпуска

Модернизацию головки блока цилиндров и коллекторов при желании может выполнить каждый, кто владеет «шестёркой» или другой классической моделью «Жигулей». Основная преследуемая цель — увеличение мощности. Достигается она путём снижения сопротивления при подаче топливно-воздушной смеси на впуске, т. е. удалением шероховатостей. Для проведения процедуры ГБЦ необходимо демонтировать с автомобиля и разобрать. После этого узел рекомендуется помыть. Для этих целей можно использовать современные средства или обычный керосин, солярку. Из необходимого перечня инструментов и материалов понадобятся:

  • дрель с возможностью регулировать обороты;
  • сверло;
  • гибкая штанга;
  • шарошки;
  • шкурки разной зернистости;
  • ветошь;
  • штангенциркуль;
  • выпускной клапан и набор шайб для расточки более 32 мм;
  • графитная смазка;
  • тиски.
Впускной коллектор

Процедуру доработки впускного тракта лучше начинать с коллектора, по которому после будут растачиваться каналы в ГБЦ. Работу выполняем следующим образом:

  1. Зажимаем коллектор в тисках, на сверло или подходящую насадку наматываем тряпку, а сверху неё — наждачку зернистостью 60–80 внахлёст.Фиксация коллектора

    Для удобства работы коллектор устанавливаем в тиски

  2. Зажимаем сверло с наждачкой в дрель и вставляем в канал коллектора.Наждачка в канале

    Сверло или другое подходящее приспособление обматываем наждачкой, помещаем в коллектор и растачиваем

  3. Проточив первые 5 см, замеряем диаметр выпускным клапаном.Примерка канала

    Замер диаметра канала при помощи выпускного клапана

  4. Поскольку каналы коллектора выполнены с изгибом, для проточки необходимо использовать гибкую штангу либо топливный шланг, в который вставляем сверло или подходящее приспособление с наждачкой.Шланг для проточки

    Для проточки каналов в местах изгибов можно использовать топливный шланг

  5. Обрабатываем коллектор со стороны установки карбюратора. После наждачки зернистостью 80 используем бумагу на 100 и проходим все каналы снова.Площадка под карбюратор

    Коллектор со стороны установки карбюратора также обрабатываем шарошками или наждачкой

Доработка ГБЦ

Помимо впускного коллектора необходимо доработать каналы в самой головке блока, поскольку между коллектором и ГБЦ присутствует ступенька, препятствующая свободному прохождению топливно-воздушной смеси в цилиндры. На классических головках этот переход может достигать 3 мм. Доработка головки сводится к следующим действиям:

  1. Чтобы определить, где нужно снять часть металла, наносим смазку или пластилин на плоскость головки в местах прилегания коллектора. После этого будет чётко видно, где и сколько нужно сточить.Место для расточки

    После разметки каналов ГБЦ при помощи пластилина или смазки приступаем к удалению лишнего материала

  2. Сперва обрабатываем немного, чтобы вошёл клапан. Затем продвигаемся глубже и стачиваем направляющую втулку.Обработка канала

    Сперва углубляемся в канал немного, затем больше

  3. После прохождения всех каналов полируем их со стороны сёдел клапанов. Эту процедуру выполняем аккуратно, чтобы не поцарапать сами сёдла. Для этих целей удобно использовать шарошку, зажатую в дрель. Кроме этого, нужно сделать так, чтобы к седлу канал немного расширялся.Полировка каналов

    Каналы полируем со стороны сёдел клапанов, делая их слегка на конус

  4. По окончании обработки должно получиться так, чтобы в канал свободно проходил клапан.

Подробнее о диагностике и ремонте ГБЦ: https://bumper.guru/klassicheskie-modeli-vaz/grm/poryadok-zatyazhki-golovki-bloka-cilindrov-vaz-2106.html

Помимо расточки каналов, ГБЦ можно доработать путём установки тюнингованного распредвала. Наиболее часто автовладельцы устанавливают вал от ВАЗ 21213, реже — спортивные элементы по типу «Эстонец» и ему подобные.

Распредвал ВАЗ 21213

Чтобы изменить фазы газораспределения на ВАЗ 2106 и улучшить работу мотора, устанавливают распредвал от ВАЗ 21213

Замена штатного распределительного вала даёт возможность изменить фазы газораспределения. В результате цилиндры мотора лучше наполняются горючей смесью, а также очищаются от отработавших газов, что повышает мощность силового агрегата. Распредвал меняется таким же образом, как и при обычном ремонте, т. е. каких-то специальных приспособлений не потребуется.

Видео: доработка ГБЦ и впускного коллектора

Выпускной коллектор

Суть доработки коллектора выпуска та же, что и на впуске. Разница заключается лишь в том, что канал нужно точить не более чем на 31 мм. Многие не уделяют выпускному коллектору внимание, поскольку он выполнен из чугуна и плохо поддаётся обработке, но это всё же возможно. Стоит учитывать, что канал коллектора должен быть чуть больше по диаметру, чем в головке. В самой ГБЦ шлифовку выполняем описанным выше способом, а втулки рекомендуется сточить на конус.

Выпускной коллектор

Выпускной коллектор дорабатывают таким же образом, как и впускной

Система зажигания

При серьёзном подходе к доработке силового агрегата не обходится без установки бесконтактной системы зажигания (БСЗ) вместо традиционной контактной. БСЗ имеет ряд неоспоримых преимуществ:

  • более мощная искра;
  • точное размыкание цепи искрообразования;
  • высокая надёжность и долговечность.

Оснащение ВАЗ 2106 бесконтактным зажиганием делает работу двигателя более стабильной, исключает необходимость периодической регулировки постоянно подгорающих контактов, поскольку в БСЗ их попросту нет. Вместо контактной группы используется датчик Холла. Немаловажным моментом является и то, что в зимнее время двигатель с бесконтактным зажиганием запускается гораздо легче. Чтобы установить на «шестёрку» БСЗ, нужно будет приобрести комплект, состоящий из следующих элементов:

  • трамблёр;
  • свечи зажигания;
  • высоковольтные провода;
  • катушка зажигания;
  • коммутатор;
  • проводка.
Комплект БСЗ

Комплект бесконтактного зажигания состоит из таких основных элементов, как трамблёр, катушка, провода, свечи и коммутатор

Узнайте больше о бесконтактной системе зажигания ВАЗ 2106: https://bumper.guru/klassicheskie-modeli-vaz/elektrooborudovanie/zazhiganie/elektronnoe-zazhiganie-na-vaz-2106.html

Последовательность действий по замене контактной системы зажигания на БСЗ такова:

  1. Демонтируем старые свечные провода и крышку распределителя зажигания. Устанавливаем путём вращения стартера бегунок трамблёра перпендикулярно оси автомобиля, чтобы он указывал на первый цилиндр двигателя.Установка бегунка

    Перед снятием старого распределителя бегунок устанавливаем в определённое положение

  2. На блоке двигателя в месте установки трамблёра ставим метку маркером, чтобы при установке нового распределителя хотя бы приблизительно выставить необходимый угол опережения зажигания.Метки на трамблёре

    Чтобы зажигание на новом распределителе было проще выставить, делаем метки на блоке

  3. Снимаем распределитель и меняем его на новый из комплекта, устанавливая бегунок в нужное положение, а сам трамблёр — по меткам на блоке.Замена трамблёра

    Меняем старый трамблёр на новый, устанавливая бегунок в нужное положение

  4. Откручиваем гайки крепления проводки на катушке зажигания, а также крепление самой катушки, после чего заменяем деталь на новую.Замена катушки

    Катушки зажигания меняем местами

  5. Монтируем коммутатор, например, возле левой фары. Клемму с чёрным проводом из пучка проводки подсоединяем на массу, а разъём вставляем в сам коммутатор.Монтаж коммутатора

    Коммутатор устанавливаем возле левой фары

  6. Ответную часть проводки вставляем в трамблёр.
  7. Оставшиеся два провода подсоединяем к катушке. К контактам новой катушки также подключаются провода, которые были сняты со старого элемента. В результате должно получиться так, что на контакте «Б» будут зелёный и синий с полоской, а на контакте «К» — коричневый и сиреневый провода.Проводка катушки

    Провода к катушке подключаем согласно инструкции

  8. Меняем свечи зажигания.
  9. Устанавливаем крышку распределителя и подключаем новые провода согласно номерам цилиндров.

После установки БСЗ потребуется подкорректировать зажигание во время движения автомобиля.

Карбюратор

На ВАЗ 2106 наиболее часто использовался карбюратор «Озон». В качестве доработки силового агрегата многие автовладельцы оснащают его иным устройством — ДААЗ-21053 («Солекс»). Этот узел отличается экономичностью и обеспечивает лучшую динамику автомобиля. Для того чтобы мотор развивал максимальную мощность, вместо одного карбюратора иногда устанавливают два. Таким образом, удаётся добиться более равномерной подачи смеси из топлива и воздуха в цилиндры, что сказывается на увеличении крутящего момента и повышении мощности силовой установки. Основными элементами и узлами для такого переоборудования являются:

  • два карбюратора «Солекс» или «Озон»;
  • пара впускных коллекторов от «Оки»;
  • шланги, тройники, элементы управления дроссельными заслонками.
Два карбюратора

Установка на ВАЗ 2106 двух карбюраторов обеспечивает лучшую динамику автомобиля

Вся работа сводится к демонтажу штатного впускного коллектора и установке двух новых, при этом последние подгоняют, чтобы они плотно прилегали к головке блока. Доработка коллекторов заключается в удалении выступающих частей при помощи шарошки. После этого монтируют карбюраторы и выполняют одинаковую регулировку, т. е. выкручивают регулировочные винты на одно и то же количество оборотов. Для одновременного открытия заслонок в обоих карбюраторах изготавливают кронштейн, который будет соединяться с педалью акселератора.

Компрессор или турбина на «шестёрку»

Увеличить мощность двигателя можно путём установки компрессора или турбины, но для начала нужно разобраться, что для этого потребуется. Прежде всего, нужно понять, что на карбюраторный мотор в силу его конструктивных особенностей турбину установить можно, но довольно проблематично. Нюансы заключаются как в больших материальных, так и временных затратах. Наиболее важными моментами, над которыми придётся задуматься при оснащении автомобиля турбиной, являются:

  1. Обязательная установка интеркуллера. Эта деталь представляет своего рода радиатор, только в нём охлаждается воздух. Поскольку турбина создаёт высокое давление и воздух нагревается, его необходимо охлаждать для получения эффекта от установки. Если интеркуллер не использовать, эффект будет, но гораздо меньше.Интеркуллер на «Жигулях»

    При оснащении машины турбиной потребуется также установка интеркуллера

  2. Оснащение карбюраторного мотора турбиной — мероприятие опасное. По опыту автовладельцев, которые занимаются подобными доработками, выпускной коллектор может «бабахнуть», что и капот отлетит. Поскольку на инжекторном моторе впуск имеет иной принцип, то турбина для этого двигателя является более предпочтительным вариантом, хоть и дорогостоящим.
  3. Исходя из второго пункта, вытекает третий — потребуется переделка двигателя в инжекторный или установка такового.
Турбина на «классике»

Установка на автомобиль турбонагнетателя требует больших финансовых вложений

Если вы не настолько заядлый автогонщик, то стоит смотреть в сторону компрессора, который имеет следующие отличия от турбины:

  1. Не развивает высокое давление.
  2. Нет необходимости в установке интеркуллера.
  3. Можно оснастить ВАЗовский карбюраторный мотор.

Для оснащения ВАЗ 2106 рассматриваемым узлом потребуется компрессор-кит — комплект, в который входит всё необходимое для переоборудования мотора (патрубки, крепёжные элементы, нагнетатель и др.).

Комплект компрессора

Комплект компрессора для «классики» состоит из нагнетателя и необходимых комплектующих для установки

Устанавливается изделие согласно инструкции производителя.

Видео: установка компрессора на примере «пятёрки»

16-клапанный двигатель на ВАЗ 2106

Один из вариантов тюнинга «шестёрки» — замена 8-клапанного двигателя на 16-клапанный, например, от ВАЗ 2112. Однако весь процесс не заканчивается на банальной замене моторов. Предстоит довольно серьёзная, кропотливая и недешёвая работа. Основными этапами такого рода доработок являются:

  1. Для 16-клапанного двигателя устанавливаем инжекторную систему питания.
  2. Подгоняем крепление на подушках двигателя (используются классические опоры).
  3. На маховике меняем венец, для чего сбиваем старый, а на его место насаживаем деталь от ВАЗ 2101 с предварительным нагревом. Затем со стороны двигателя на маховике стачиваем буртик (придётся обратиться к токарю). Это необходимо для того, чтобы стартер стал на своё место. По окончании работ с маховиком выполняем его балансировку.Доработанный маховик

    Маховик дорабатываем путём установки венца от ВАЗ 2101

  4. На коленвал 16-клапанного мотора врезаем подшипник от коленчатого вала ВАЗ 2101, поскольку этот элемент является опорой для первичного вала КПП. Без замены подшипник довольно быстро выйдет из строя.Коленвал ВАЗ 2112

    На коленчатом валу необходимо заменить подшипник на «копеечный»

  5. Поддон также подвергаем доработке: заминаем рёбра жёсткости с правой стороны, чтобы двигатель не упирался в балку.Подгонка поддона

    Поддон нуждается в подгонке, чтобы он не упирался в балку

  6. Подгоняем моторный щит под новый блок при помощи молотка и кувалды.Подгонка моторного щита

    Моторный щит необходимо подрихтовать, чтобы новый двигатель становился нормально и не упирался в кузов

  7. Сцепление устанавливаем от ВАЗ 2112 через переходник с выжимным подшипником от «десятки». Вилка с рабочим цилиндром сцепления остаются родные.
  8. Систему охлаждения устанавливаем на своё усмотрение, поскольку её всё равно нужно видоизменять. Радиатор можно поставить, например, от ВАЗ 2110 с подбором соответствующих патрубков от ВАЗ 2121 и 2108, термостат — от «копейки».Система охлаждения

    При установке 16-клапанного мотора придётся установить иную конструкцию системы охлаждения

  9. По системе выпуска переделываем штатный выпускной коллектор либо изготавливаем выпуск с нуля.
  10. Устанавливаем навеску, подключаем проводку.16-клапанный мотор

    После установки двигателя монтируем навеску и подключаем проводку

Из перечисленных пунктов по установке 16-клапанного агрегата можно понять и предварительно оценить свои возможности как в финансовом, так и в техническом плане. При отсутствии необходимых комплектующих и знаний придётся обращаться за посторонней помощью и «вливать» в такой вид хобби дополнительные средства.

Видео: установка 16-клапанного мотора на «классику»

Двигатель «шестёрки» хорошо поддаётся форсированию, причём необязательно быть специалистом с большим опытом для увеличения объёма агрегата. Постепенно совершенствуя свою машину, в итоге можно получить довольно «бодрый» автомобиль, который позволит чувствовать себя увереннее на дороге.

P2106 Система управления приводом дроссельной заслонки

Код неисправности OBD-II Техническое описание

Статья от

John Ingalls
Бывший менеджер по обслуживанию и механик ВВС

Система управления приводом дроссельной заслонки — принудительная ограниченная мощность

Что это значит?

Этот общий диагностический код неисправности трансмиссии (DTC) обычно применяется ко всем транспортным средствам, оборудованным OBD-II, которые используют систему управления дроссельной заслонкой с электроприводом, включая, помимо прочего, автомобили Ford, Mercedes Benz, Mazda, Kia, Hyundai, Dodge / Ram, Land Rover, VW, Jaguar, т. Д.

Код неисправности P2106 OBD-II — это один из возможных кодов, который указывает, что модуль управления трансмиссией (PCM) обнаружил неисправность и ограничивает работу системы управления приводом дроссельной заслонки.


Эта ситуация известна как активация отказоустойчивого или тормозного режима, чтобы двигатель не разгонялся до тех пор, пока неисправность не будет исправлена ​​и соответствующий код не будет удален. Существует четыре кода, которые называются кодами силы, и это P2104, P2105, P2106 и P2110.

PCM устанавливает их, когда присутствуют другие коды, которые указывают на проблему, которая может быть связана с безопасностью или привести к повреждению двигателя или компонентов трансмиссии, если не устранить своевременно.

Код P2106 устанавливается PCM, чтобы заставить систему управления приводом дроссельной заслонки ограничивать уровень мощности двигателя.

Этот код может быть связан с неисправностью системы управления приводом дроссельной заслонки, но обычно установка этого кода связана с другой проблемой. Код неисправности P2106 запускается PCM, когда он получает ненормальный сигнал от различных компонентов.Система управления приводом дроссельной заслонки — это рабочий цикл, управляемый PCM, и функция системы ограничивается при обнаружении других кодов неисправности.

Уровень серьезности кода и симптомы

Степень серьезности этого кода может быть от средней до серьезной в зависимости от конкретной неисправности. Симптомы кода неисправности P2106 могут включать:

  • Двигатель не запускается
  • Низкая реакция дроссельной заслонки или ее отсутствие
  • Контрольная лампа двигателя горит
  • ABS Подсветка с подсветкой
  • АКПП не переключает
  • Дополнительные коды присутствуют

Общие причины этого кода неисправности

Наиболее распространенные ситуации, при которых этот код устанавливается и переводит двигатель в отказоустойчивый или аварийный режим, чтобы указать на проблему и действовать как красный флаг:

  • Перегрев двигателя
  • Утечки охлаждающей жидкости
  • Неисправность клапана рециркуляции ОГ
  • Неисправность датчика массового расхода воздуха
  • Модификации ведущего моста
  • АБС, противобуксовочная система или система курсовой устойчивости
  • Проблемы с автоматической коробкой передач
  • Ненормальные системные напряжения

Какие виды ремонта обычно выполняются?

  • Устранить утечку охлаждающей жидкости
  • Замена или чистка датчика ABS
  • Замена или очистка клапана рециркуляции ОГ
  • Замена или очистка датчика массового расхода воздуха
  • Очистка разъемов от коррозии
  • Ремонт или замена проводки
  • Перепрошивка или замена PCM

Процедуры диагностики и ремонта

Первым шагом в процессе поиска неисправностей для любой неисправности является изучение бюллетеней технического обслуживания (TSB) для конкретного автомобиля с разбивкой по годам, модели и силовой установке.В некоторых случаях это может сэкономить много времени в долгосрочной перспективе, указав вам правильное направление.

Это важный шаг. Например, некоторые Ford 2003-2005 гг. Подвержены воздействию кода P2106 и / или другого кода, и исправление заключается в перепрограммировании PCM.

Вторым шагом для этого кода является завершение сканирования PCM для определения других кодов неисправностей. Этот код является информационным, и в большинстве случаев функция этого кода состоит в том, чтобы предупредить драйвер о том, что PCM инициировал отказоустойчивый режим из-за неисправности или отказа в системе, которая не связана напрямую с исполнительным механизмом управления дроссельной заслонкой.

Если обнаружены другие коды, вам следует проверить TSB, связанные с конкретным транспортным средством и этим кодом. Если TSB не был сгенерирован, вы должны выполнить определенные шаги по устранению неполадок для этого кода, чтобы точно определить источник неисправности, которую обнаруживает PCM, чтобы перевести двигатель в отказоустойчивый или аварийный режим.

Как только все другие коды были очищены или если другие коды не обнаружены, если код исполнительного механизма управления дроссельной заслонкой все еще существует, необходимо оценить PCM и исполнительный механизм управления дроссельной заслонкой.В качестве отправной точки необходимо визуально осмотреть всю проводку и соединения на предмет очевидных дефектов.

Распространенная ошибка

Замена привода управления дроссельной заслонкой или PCM, когда другие неисправности устанавливают этот код.

Редкий ремонт

Заменить блок управления приводом дроссельной заслонки

Надеюсь, что информация в этой статье помогла вам указать правильное направление для решения проблемы с кодом силы вашей системы управления приводом дроссельной заслонки. Эта статья носит исключительно информационный характер, и конкретные технические данные и сервисные бюллетени для вашего автомобиля всегда должны иметь приоритет.

Внешние ссылки

Вот ссылки на некоторые обсуждения автомобилей Ford с кодом P2106:

Обсуждения связанных с DTC

  • 2005 Lincoln Town Car Несколько кодов P0102 P0174 P0351 P0352 P0353 P0354 P2106 P2195 P0183 P0194
    2005 Lincoln Town Car 4.6L двигатель с катушкой зажигания (COP) зажигания Я получаю коды пропусков зажигания на всем правом (пассажирском) берегу. Полный список кодов за вычетом ожидающих дубликатов): —— Проблема PO102 в датчике или цепи массового расхода воздуха (MAF).Более техническое описание было бы таково …
  • p2106 p2135 2000 Ford Expedition 5.4l 3v
    ❓ Re: p2106 p2135 2000 Ford Expedition 5.4l 3v …
  • 2004 F150 коды неисправностей P2106 P2006 P1000 P0645 P0443 и т. Д.
    У меня есть супергруппа 2004 F150 4X4 с двигателем 5.4 V8. У меня есть несколько кодов обслуживания, и я не совсем уверен, смогу ли я исправить это сам или нет. Я просто пытаюсь выяснить, является ли это сразу массой проблем или причиной всего остального является один датчик.Мои коды: P0010 P0645 P0020 …
  • Hyundai Santa Fe P2106, P1295, P0638, P1690, P0685
    Уважаемый форум У меня Hyundai Santa fe 2008 с бензином 2700 куб.см., двигатель внезапно выключается, и я пытаюсь запустить его снова, но не запустился.Я использовал сканер OBDII для сканирования системы, он показывает ошибки (P2106, P1295, P0638, P1690 и P0685) на прикрепленное изображение. Проверил предохранитель показывает 3 перегорел …
  • форд мустанг p061b p2106 p0135 p0141 p0151 p0161
    привет У меня 08 4.6 МКПП форд мустанг с кодами ошибок P061b P2106 (СИСТЕМА TAC ПРИНУДИТЕЛЬНАЯ ОГРАНИЧЕННАЯ МОЩНОСТЬ) P0135 (ЦЕПЬ НАГРЕВАТЕЛЯ ДАТЧИКОВ O2) P0141 (ЦЕПЬ НАГРЕВАТЕЛЯ ДАТЧИКА O2) P0151 (ЦЕПЬ ПОДОГРЕВА ДАТЧИКА O2) P0161 (ЦЕПЬ ПОДОГРЕВА ДАТЧИКА O2) Автомобиль очень богат …
  • 2004 Ford F150 FX4 5.4 P0606 P2106 P0345
    У меня 2004 F150 Fx4 с двигателем 5.4. у него 183k миль. Поменял цепи ГРМ и натяжители. Собираем все вместе, теперь я получаю 3 кода.P0606 Ошибка процессора PCM. P2106 ограниченная мощность привода дроссельной заслонки и P0345 неисправность цепи датчика положения распределительного вала. Может кто-нибудь сказать мне, что …
  • 2003 lincon LS коды P2196 P2198 P0102 P0113 P0355 P2106
    Привет, мне нужна помощь в выяснении, какие коды obd2 для моего lincon LS v8 2003 года, пожалуйста, помогите [код] P2196, P2198, P0102, P0113, P0355, P2106 …
  • Kia sedona 2006 года код p2106
    Потеря мощности после обгона более медленного автомобиля.У двигателя был шум трубопроводов. Свет двигателя горит. Дроссельная заслонка увеличивалась, но трескалась. Теперь он хочет набрать обороты. На холостом ходу нормально ….
  • Код P2106 2004 Ford F-150 5.4L
    Я установил новый двигатель и новую трансмиссию, и я получаю код p2106, и двигатель отказывает в безопасном режиме и по какой-то причине после пробега мойка моего пресса тоже пришла. Грузовик работает так, как будто он пропускает зажигание, но код не обнаружен. Я почистил дроссельную заслонку, но проблема все еще не устранена. Ford F-150 lar …
  • p2106 p2135 Ford explorer
    [код] [/ код] Ford explorer имеют коды 2106 и 2135…

Нужна дополнительная помощь с кодом p2106?

Если вам все еще нужна помощь относительно кода ошибки P2106, отправьте сообщение на наш БЕСПЛАТНЫЙ форум по ремонту автомобилей.

ПРИМЕЧАНИЕ: Эта информация представлена ​​только в информационных целях. Это не является советом по ремонту, и мы не несем ответственности за какие-либо действия. берешь на себя любую технику. Вся информация на этом сайте защищена авторским правом.

,

Двигатели ВАЗ 2106: особенности конструкции, описание, ремонт

автомобилей ВАЗ-2106 были оснащены моторами 100260. Кроме этого автомобиля они подходят и всем остальным классическим моделям ВАЗ от 2103 до 2107. Давайте разберемся, что такое двигатели ВАЗ-2106, как устроен двигатель, какие у него с ним проблемы, как ремонтировать.

общее описание

Данные силовые агрегаты предназначены для установки на легковые автомобили малого класса. Производство двигателей на Волжском автомобильном заводе началось в 1976 году.Такой же агрегат устанавливался на ВАЗ-21074, Нива-2121.

Двигатель имеет ресурс 125 000 км, однако это только паспортные данные. Практика показывает, что двигатели ВАЗ-2106 способны проходить от 200 тысяч км и выше. Естественно, это при условии качественного и своевременного обслуживания. Мотор имеет потенциал 80 л / с без потерь ресурса.

Технические характеристики

Итак, ВАЗ-2106-1000260 — бензиновый силовой агрегат. Система питания может быть разной. Старые двигатели ВАЗ-2106 были карбюраторными, современные — инжекторными.Его объем составляет 1568 см3. По паспорту мощность 77 л / с. Крутящий момент составляет 104 Нм при 3000 об / мин.

Расход топлива по городу 10,3 на 100км пробега. По бездорожью можно ездить немного экономичнее. Расход по паспорту 7,4 литра. При эксплуатации авто в смешанном цикле аппетиты составляют около 10 литров. Двигателям для эффективной работы необходимо не только топливо, но и моторные масла — агрегат расходует 0,7 литра смазочной жидкости на каждые 1000 км пробега.Залейте в агрегат 3,5 литра масла.

Отличительные особенности

Двигатели ВАЗ-2106 — вполне удачное завершение предыдущей модели. В процессе создания силового агрегата инженеры использовали самые современные на то время технологии. Производитель поставил задачу улучшить конструкцию и технические характеристики двигателя любой ценой и всеми доступными способами.

Увеличена мощность двигателя ВАЗ-2106 за счет увеличения общего полезного объема. Особое внимание при разработке и производстве инженеры уделили повышению качества камеры сгорания.Благодаря доработкам и модернизациям родился блок цилиндров 10002011. Других отличий от базовой конструкции в данном агрегате, кроме диаметра, нет.

В ходе технологических процессов производства инженеры и специалисты придают каждому блоку цилиндров определенный класс. Теперь вы можете выбрать пять или более из этих классов. Они отличаются на 0,01 мм. Этим классам присвоены символы — A, B, C, D, E. Чтобы узнать, к какому классу отнесен конкретный агрегат, достаточно заглянуть под движок.Буква указана внизу основания. Головка блока с индексом 21011-10005011-10 осталась без изменений. Чтобы скорректировать общий размер цилиндров, разработчикам и инженерам пришлось применить новые прокладки ГБЦ.

Что касается стандартных и принятых во всем мире поршней, то они имеют много схожих характеристик. В этом двигателе использовались детали поршневой системы от агрегата 21011. Номинальный диаметр этого поршня 79 мм по паспортным данным.

Новая модификация двигателя имеет специальные цилиндрические колодцы. Также увеличились объемы. В процессе работы на каждом участке поршень нагревается более равномерно и не сразу, а постепенно. Таким образом, разработчикам удалось компенсировать тепловую деформацию. Также инженеры решили разместить в бобышках поршней специальные терморегулирующие пластины. С 1990 года силовые агрегаты комплектовались карбюраторами «ОЗОН» 2107-1107010-20, а также вакуумным распределителем зажигания.

Особенности эксплуатации

Двигатели для этой модели имеют определенные особенности, которые необходимо учитывать при использовании автомобиля.Рассмотрим, как правильно эксплуатировать этот двигатель. Также перечислим типовые неисправности.

Предварительный нагрев

Чтобы силовой агрегат мог работать долго, с ним нужно быть осторожным. Итак, любой механизм, прежде чем начать активно работать, должен прогреться. Для нормального прогрева двигателя необходимо дать ему поработать пять минут на оборотах, близких к 2000 тысячам. Как понять, что можно начинать движение? Мотор может стабильно работать на холостом ходу.

Распредвал

В работе двигателя ВАЗ-2106 есть еще одна особенность.В процессе эксплуатации наблюдается повышенный износ распредвала. Об износе детали водитель может узнать по характерному стуку на холостом ходу.

Его будет слышно даже при закрытом капоте и в салоне автомобиля. В целях защиты распредвала от преждевременного и интенсивного.

P2106 FORD Система управления приводом дроссельной заслонки

Уровень важности ремонта: 3/3

P2106 FORD Возможные причины

  • Управляющий электродвигатель привода дроссельной заслонки заедает в открытом или закрытом положении
  • Неисправный электродвигатель привода дроссельной заслонки
  • Блок управления приводом дроссельной заслонки Обрыв или короткое замыкание в жгуте проводов двигателя
  • Управление приводом дроссельной заслонки Плохое электрическое соединение в цепи электродвигателя
  • Неисправный модуль управления трансмиссией (PCM)

Как исправить код P2106 FORD?

Проверьте «Возможные причины», перечисленные выше.Осмотрите соответствующий жгут проводов и разъемы. Проверьте наличие поврежденных компонентов и поищите сломанные, погнутые, выдвинутые или корродированные контакты разъема.

Технические заметки

Код P2106 является информационным кодом и может быть установлен в сочетании с рядом других кодов, вызывающих FMEM. Сначала диагностируйте другие коды. Не устанавливайте новый корпус электронной дроссельной заслонки (ETB) для этого кода.





Видео, отправленное пользователем

Стоимость диагностики P2106 FORD код

Работа: 1.0

Стоимость диагностики кода P2106 FORD составляет 1,0 час труда. Стоимость ремонта автомобиля зависит от местоположения, марки и модели вашего автомобиля и даже от типа двигателя. Большинство автомастерских берут от 75 до 150 долларов в час.

Возможные симптомы

  • Горит индикатор двигателя (или предупреждающий сигнал о скором обслуживании двигателя)

P2106 FORD Описание

Электронное управление приводом дроссельной заслонки (TAC) — это двигатель постоянного тока, управляемый модулем управления трансмиссией ( PCM ).Существует 2 варианта исполнения TAC: параллельный и встроенный. В параллельной конструкции двигатель расположен под отверстием параллельно валу пластины. Корпус двигателя интегрирован в основной корпус. Линейная конструкция имеет отдельный корпус двигателя. В обеих конструкциях используется внутренняя пружина для возврата дроссельной заслонки в исходное положение. Положение по умолчанию обычно составляет угол дроссельной заслонки от 7 до 8 градусов от угла жесткого упора. Жесткий упор закрытой дроссельной заслонки предотвращает заедание дроссельной заслонки в канале ствола.Этот параметр жесткого останова не регулируется и настроен на меньший поток воздуха, чем минимальный воздушный поток двигателя, необходимый на холостом ходу. Код P2106 устанавливается, когда система TAC находится в режиме управления эффектами режима отказа (FMEM) принудительного ограничения мощности. P2106 указывает на то, что действие FMEM происходит из-за проблемы в компоненте или модуле электронного управления дроссельной заслонкой (ETC).

Информация для конкретных моделей Ford

Комментарии

Помогите нам улучшить AutoCodes.com. Оставьте комментарий ниже или сообщите нам, поможет ли приведенная выше информация исправить код.Каковы симптомы кода P2106 Ford на вашем автомобиле? Вы заменили какие-либо части?
Любая информация приветствуется. Спасибо ,

Принцип работы топливного насоса инжекторного двигателя: Как работает бензонасос на инжекторе: конструктивные особенности

Как устроен инжекторный топливный насос?

Как известно, сначала все автомобили оснащались только карбюраторным двигателем. При этом топливная смесь образовывалась за счет разряжения во впускном коллекторе, затягивающем бензин в тракт потоком воздуха. Конечно, сегодня такое устройство также довольно распространено, но все большую популярность приобретает инжектор ВАЗ 2110.

Главные преимущества

ВАЗ 2110ВАЗ 2110

Инженеры решили усовершенствовать двигатель, поэтому стала популярной инжекторная электросхема и в автомобилях ВАЗ 2110. В таком случае топливная смесь попадает под давлением прямо в камеру сгорания из форсунок.

Инжектор получил огромное преимущество над карбюраторным двигателем, и, несмотря на то, что его стоимость намного выше, применение карбюраторных систем практически нигде уже не практикуется. Ведь вся информация о двигателе собирается компьютером, поэтому возникает возможность точно дозировать количество топлива во всех режимах работы двигателя. За счет этого можно значительно уменьшить расход топлива и эффективнее использовать ресурсы бензонасоса.

Вне зависимости от вида впрыска, а он может быть двух видом — многоточечным или одноточечным, инжектор ВАЗ 2110 мгновенно реагирует на меняющиеся нагрузки.

Холодный пуск и прогрев

Инжектор по-разному работает в зависимости от температуры воздуха и двигателя. В любом случае система топливного насоса точно дозирует подачу топлива на форсунки, за счет чего можно быстро набрать необходимые обороты холостого хода.

Однако если электросхема топливного насоса перегорает, то могут появиться проблемы во время его работы. Из-за этого реакция на изменение нагрузок при минимальных расходах топлива и оптимальных крутящих моментах может быть замедленной, что может привести к выходу из строя насоса.

Бензонасоса ВАЗ 2110Бензонасоса ВАЗ 2110

Распыление топлива

В карбюраторных системах автомобилей ВАЗ 2110, топливный насос распыляет капли размером 100-120 мкм, а инжектор – 20-60 мкм.

Принцип работы

Электросхема нуждается в постоянной проверке, ведь если один из ее контактов будет нарушен, то топливный насос начнет работать неверно, поэтому принцип работы изменится.

Собственно, при нормальной работе топливного насоса происходят такие основные этапы:

  • Топливо подается к фильтру через топливный насос. В автомобиле ВАЗ 2110, этот фильтр может располагаться как внутри насоса, так и на топливной магистрали;
  • После этого горючее переходит в топливную рампу, где под давлением подается к форсункам;
  • Электросхема топливного насоса построена таким образом, что если остаются какие-либо излишки топлива, то они отсекаются регулятором давления, после чего сливаются обратно в бензобак;
  • Устройство компьютера дает импульс, который открывает форсунки в нужный момент, после чего горючее подается через топливный насос.

Задачи

Устройство необходимо для выполнения таких основных функций:

  • Обеспечивает двигатель необходимым количеством топлива, поступающего через топливный насос;
  • Электросхема способствует поддержанию оптимального давления в топливной магистрали.

Топливный насос инжекторного двигателя. — Автомастер

Топливный насос инжекторного двигателя.

Подробности

По мере развития электронного впрыска на автомобилях, топливный насос стали устанавливать внутри топливного бака. Ранее насос устанавливался снаружи.

Рис 1 — Топливный насос установленный в баке.

Электрический топливный насос должен обеспечить двигатель достаточным количеством топлива с заданным давлением на всех режимах его работы.

Поэтому он должен удовлетворять следующим критериям:

  • его производительность должна лежать в пределах от 60 до 200 литров в час при номинальном напряжении.
  • Обеспечивать давление в топливной магистрали 3 — 4.5 бар.
  • Обеспечивать заданное давление и показывать ту же производительность при 50 — 60 % напряжения питания от номинального.

Электрический топливный насос состоит (Рис 2):

  1. из крышки, в которую при необходимости могут встраиваться элементы, служащие для защиты от радиопомех;
  2. Электродвигателя;
  3. Непосредственно сам насос. В зависимости от типа это может быть поршневой или центробежный.

Рис 2 – Конструкция топливного насоса на примере центробежного.

1 – Электрический разъем. 2 – Гидравлический разъем (выход топлива). 3 – Обратный клапан. 4 – Графитовые щетки. 5 – Якорь двигателя с постоянными магнитами. 6 – Рабочее колесо лопастного насоса. 7 – Подача топлива.

Поршневой (плунжерный) топливный насос.

В поршневом насосе топливо вначале всасывается, затем сжимается. К данному виду топливных насосов можно отнести:

  1. шиберный роликовый насос;
  2. 1 – Ротор с пазами. 2 – Ролик. А – впускное окно. В – выход насоса.

  3. шестеренчатый насос;
  4. 3 – Ведущее колесо. 4 – Ротор.

К плюсом данной разновидности топливных насосов относятся:

  • — могут давать высокое давление 400 кПа и выше; — обеспечивают требуемое давление при низком напряжении питания;
  • КПД насоса составляет 25%;

К минусам можно отнести следующее:

  • в зависимости от конструктивного исполнения не устраняемая пульсация давления может вызывать посторонние шумы.
  • при нагреве топлива в нем могут возникать пузырьки, в результате происходит снижение давления подачи. Поэтому чтобы избежать этого негативного фактора, насосы снабжаются предварительной камерой для дегазации жидкого топлива.

В инжекторных топливных насосах, постепенно поршневые насосы были заменены на центробежные. Но в виду того, что они могут обеспечить высокое давление их стали успешно применять на двигателях с непосредственным впрыском.

Центробежный лопастной топливный насос.

Данная разновидность насосов устроена следующим образом: Имеется рабочее колесо 5, по периметру которого располагаются лопатки 6. Рабочее колесо с лопатками вращается в камере образованной двумя неподвижными секциями корпуса, каждая из которых имеет примыкающий к лопаткам канал 7. Затвор 8 находящийся между впускным и выпускным каналом препятствуют внутренней утечки топлива.

Для того чтобы не ухудшались характеристики при нагнетании горячего топлива, на определенном расстоянии и под нужным углом возле всасывающего канала располагается небольшое отверстие для дегазации нагретого топлива.

5 – Рабочее колесо. 6 – Лопатка рабочего колеса. 7 — Канал. 8 – Затвор.

Центробежные насосы в отличии от поршневых создают мало шума, так как рост давления происходит непрерывно и практически без пульсаций. КПД данных насосов составляет от 10 до 20%. Давление могут обеспечить до 450 кПа, которого вполне достаточно.

В виду своей простоты, дешевизны и отсутствия шума в нынешнее время устанавливаются практически на всех двигателях с искровым зажиганием.

Принцип работы бензонасоса инжекторного двигателя


Проверка работы бензонасоса инжекторных двигателей

После поворота ключа зажигания включается главное реле ЭСУД и реле бензонасоса. Характерный звук работающего насоса может служить первым признаком его работы. Если насоса не слышно (мешают посторонние звуки, насос тихо работает и т.п.), откройте заднее сидение и доберитесь до лючка бензобака — в этом месте гарантировано слышно работающий насос.

рис. 1

Конечно, работу насоса легче всего проверить по результату его работы — померить давление топлива в топливной рампе, например, при помощи манометра МТЛ-2, но манометра под рукой может не оказаться. Снимите колпачок со штуцера на топливной рампе для подключения манометра. Нажмите на запорный клапан. Наличие топлива в рампе под давлением подтверждается характерным выбросом топлива при работающем насосе. При выключенном насосе давление быстро падает, и топливо перестает вытекать из-под клапана. Сбросьте давление в рампе, снова поверните ключ замка зажигания. Насос включится, если зажигание было выключено секунд на 10. Повторите процедуру с клапаном. При наличии топлива в баке и работающем насосе в рампе должно появиться давление.

Если давления топлива в рампе нет, нужно разбираться с функционированием насоса и регулятора давления, установленного на топливной рампе. Неисправности топливных трубопроводов (перегиб шлангов и трубок), засоренность топливного фильтра, утечка топлива могут иметь место, но вероятность этих дефектов мала. Тем более что эти неисправности или определяются визуальным осмотром, или проявляются постепенно, давая о себе знать заранее ухудшающимися ездовыми качествами, повышенным расходом топлива, запахом топлива и т.д.

Работа регулятора давления проверяется пережимом обратного трубопровода. При исправной работе насоса давление топлива в системе должно вырасти до 6 кг/см2 . В этом случае нарастание давления свидетельствует о неисправности регулятора.

Звук включенного насоса не всегда гарантирует его работоспособность, так же как и наличие напряжения бортовой сети на входных клеммах к насосу не гарантирует исправность электрических цепей. Плохое заземление, плохой контакт в клемном соединении предохранителя, главного реле или разъеме, неисправность реле бензонасоса или предохранителя могут не позволить работать исправному насосу. Работающий насос потребляет ток до 7А, электрические цепи должны обеспечить протекание такого тока. Сопротивление исправных обмоток катушек двигателя насоса составляет 1,2 Ом.

autoruk.ru

Инжекторный двигатель: коротко о бензонасосе

Эра карбюраторных двигателей внутреннего сгорания прошла. Во всяком случае, применительно к автомобилям. На смену им пришли более совершенные и современные  инжекторные силовые агрегаты.  Это принципиально изменило систему питания авто, но не отменило необходимости доставки топлива из бака к двигателю. Эта функция по-прежнему возлагается на насосы.  В отличие от аналогичного узла в карбюраторном, бензонасос инжекторного двигателя имеет другую конструкцию,  а значит иной принцип действия и свойственные только ему неисправности. Об этом и поговорим.

Инжекторный двигатель: конструкция насоса

Наверное, нет такого автолюбителя, который бы не знал устройство классического бензонасоса.  И конечно все помнят, а кто – то, наверное, и до сих пор сталкивается, что установлен он непосредственно на двигателе. Это очень удобно, не нужно думать о дополнительном приводе, не нужна автономная система смазки. Но есть один существенный минус. Давление, которое способен создать механический бензонасос, недостаточно для корректной работы инжекторного двигателя.

Кроме того, в инжекторном двигателе бензонасос должен работать в строгом соответствии с командами, поступающими с электронного блока управления. Именно ЭБУ выбирает режим работы насоса, на основе анализа многих параметров. Реализовать такой алгоритм на шестернях практически невозможно. Вот почему в отличие от карбюраторного двигателя, бензонасос инжекторного не механический, а электрический. Кроме того, устанавливается он в топливном баке. Это позволило решить целый ряд проблем:

  1. Существенно повысить производительность благодаря тому, что насос стал погружным;
  2. Решить проблему охлаждения. Бензин имеет очень маленькое удельное сопротивление, то есть, практически является изолятором. Этим и воспользовались конструкторы. Обмотки электродвигателя находятся в бензине и охлаждаются им.

Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство

Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство

Сегодня мы узнаем, что представляет из себя инжекторная топливная система двигателя автомобиля, каково ее строение, устройство и принцип работы, а также чем отличается механизм от карбюраторных установок

ЧТО ТАКОЕ ТОПЛИВНАЯ СИСТЕМА ИНЖЕКТОРА. ПРИНЦИП РАБОТЫ, ОСОБЕННОСТИ, СТРОЕНИЕ И УСТРОЙСТВО


Добрый день, сегодня мы узнаем, что представляет из себя инжекторная топливная система двигателя автомобиля, каково ее строение, устройство и принцип работы, а также чем отличается механизм от карбюраторных установок. Кроме того, расскажем про то, из каких компонентов и узлов состоит топливная система инжекторного типа, насколько она эффективна в работе, а также каков уровень ремонтопригодности установка. В заключении поговорим о том, какие детали топливной системы играют ключевую роль в ее оптимальном функционировании и на что стоит обращать внимание при эксплуатации бензинового двигателя оснащенного инжекторным механизмом, чтобы устройства отработали весь свой срок службы без поломок.

Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство


Сама по себе топливная система автомобиля – это своего рода его “кровеносная“ система машины, срок службы которой зависит от большого количества факторов и условий эксплуатации. Эффективность работы инжекторной системы бензинового двигателя напрямую зависит от производственных свойств узлов, их конструкторских особенностей, строения компонентов, надежности деталей, которыми оснащен механизм, а также от своевременной замены расходных элементов (на примере топливного фильтра, свечей зажигания), качества заправляемого топлива и в положенный ли регламентом срок проводится техническое обслуживание транспортного средства.

Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство 

Что такое топливная система инжектора. Принцип работы, особенности, строение и устройствоЧТО ТАКОЕ СИСТЕМА ВПРЫСКА ТОПЛИВА COMMON RAIL

 

Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство 

Современные автомобильные топливные системы оснащенные инжектором зачастую идут с электронным впрыском топлива. Такие системы имеют ряд особенностей по сравнению с карбюраторным мотором. Как мы знаем каждое новое поколение той или иной автомобильной системы становится сложнее, более технологичней, проще в эксплуатации, но к сожалению дороже в обслуживании, да и срок службы таких механизмов порой значительно сокращается. Чтобы знать, как работает инжекторный топливный механизм своего автомобиля, необходимо в первую очередь понимать основные задачи, функции и устройство системы. Эти вопросы мы и рассмотрим в нашей статье, чтобы у нас появилось четкое понятие всей совокупности деталей и узлов, которые обеспечивают функционирование топливной системы двигателя машины.

1. Особенности, строение, устройство и задачи топливной системы инжектора

Главной задачей любой инжекторной топливной системы автомобиля является обеспечение подачи нужного количества горючего в силовую установку на всех рабочих режимах. Подача топлива в системе осуществляется при помощи специальных форсунок, которые устанавливаются во впускной трубе. Сама по себе топливная система автомобиля является довольно сложным механизмом, без которой не сможет функционировать не один двигатель.

Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство


Строение топливной системы инжектора основывается на следующих компонентов:


– Бензонасос электрического типа (электробензонасос): конструктивно входит в специальный модуль предназначенный для насоса и зачастую устанавливается на машинах оборудованных системой инжектора внутри топливного бака. Данный модуль бензонасоса включает в свой состав не только насос, но также датчик контроля уровня топлива, топливный фильтр и завихритель, который удаляет пузырьки пара из горючего.

Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство

Главной задачей бензонасоса электрического типа является нагнетание горючего из топливного бака машины в подающий топливопровод. Что касается инжекторных двигателей, то в таких системах применяется модуль погружного вида, который располагается в самом бензобаке и охлаждается он за счет топлива. Справочно заметим, что создаваемое бензонасосом давление топлива намного больше необходимого для оптимальной работы силовой установки, причем независимо от того или иного режима работы мотора.

Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство
Стоит отметить, что бензонасос электрического типа на инжекторных двигателях управляется при помощи контроллера системы через специальное реле, которое предназначено сугубо для этих целей. Что касается реле, то оно останавливает подачу топлива, как при работающем моторе, так и при неработающей силовой установке.Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство
– Топливный фильтр: системы топливной подачи необходим для четкой и точной регулировки объема поступающего топлива в силовую установку. Дело в том, что зачастую топливо на заправках идет с различными примесями в виде отложений и грязи, которая приводит к тому, что работа форсунок, а также регулятора давления становится неустойчивой. В свою очередь загрязненность топлива приводит к ускоренному износу форсунок и регулятора давления, а затем как следствие к их ремонту или замене. Таким образом, к чистоте топлива, независимо бензин это или солярка должны предъявляться особые требования.
Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство
Заметим, что в системе топливоподачи предусматривается специальный фильтр, основу или сердцевину которого составляет компонент на бумажной основе с особой пористостью, составляющей около 10 милимикрон. Стоит также помнить, что интервал обслуживания, то есть замены топливного фильтра напрямую зависит от объема фильтрующего элемента, а также степени его загрязнения.Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство
– Подающий и сливной трубопроводы системы: необходимы для транспортировки топлива по инжекторной системе. Трубопроводы подразделяются на прямой и обратный. Что касается прямого, то он необходим для топлива, которое поступает из модуля электрического бензонасоса в топливную рампу. В свою очередь обратный трубопровод системы осуществляет доставку избытка топлива после регулятора давления назад в бензобак.Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство
– Топливная рампа с форсунками: представляет из себя металлическую трубку с отверстиями, по которой топливо равномерно курсирует, а затем распределяется на все форсунки. Кроме форсунок на топливной рампе зачастую располагаются штуцер контроля давления в системе и регулятор давления горючего. Благодаря определенным размерам и конструкции, топливная рампа позволяет устранить локальные колебания давления горючего из-за возникающих в нем резонансов при функционировании форсунок.Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство
– Регулятор давления топлива: отвечает за количество впрыскиваемого топлива в камеры сгорания цилиндров. Заметим, что количество подаваемого горючего регулятором давления зависит от длительности впрыска, то есть от периода времени открытого состояния инжекторной форсунки. Исходя из этого давление топлива в рампе и показатель давления во впускной трубе, то есть перепад на форсунках, должен всегда быть постоянным. Вот именно для этого и нужен специальный регулятор, который поддерживает необходимое давление в системе. Кроме того, образующиеся излишки топлива, регулятор направляет снова в бензобак.Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство
– Штуцер для контроля давления топлива: является очень важным компонентом, который отвечает за нужную дозировку топлива. Форсунка электромагнитного типа оснащается клапанной иглой, которая снабжена магнитным сердечником. В обычном режиме работы, спиральная пружина форсунки, как бы прижимает клапанную иглу к уплотнительному седлу распылителя и тем самым закрывает выходное отверстие предназначенное для топлива. В тот момент, когда поступает электрический ток на сердечник с клапанной иглой, то он приподнимается примерно на 50-100 милимикрон и в этот момент происходит впрыскивание горючего через четко откалиброванное выходное отверстие
Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство
Заметим, что в зависимости от способа впрыска топлива с частотой вращения, а также от текущей нагрузки силовой установки, время включения подачи горючего равняется в среднем 10 милисекундам. Кроме того, стоит учитывать, что важнейшим показателем функционирования той или иной форсунки является зависимость количества прошедшего через данный элемент топливной системы горючего от времени открытия отверстия при постоянной разности давлений.Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство
Справочно стоит сказать, что не стоит менять форсунки на отечественном автомобиле на дорогие по цене от иномарки, так как уже неоднократно установлено многими автовладельцами, что никакого положительного эффекта этот процесс не дает. Наиболее эффективным вариантом обновления форсунок является их очистка методом промывки. Таким образом, как можем видеть такой элемент топливной системы инжектора, как форсунка является особенно важной и ценной деталью всего механизма впрыска. Вот поэтому данная деталь требует к себе особого отношения и систематического обслуживания.

2. Принцип работы инжекторной топливной системы двигателя

Чтобы силовая установка функционировала в штатном режиме, необходимо обеспечить нужный объем поступления в камеру сгорания мотора топливно-воздушной смеси, причем оптимального состава. Как мы знаем топливная смесь создается во впускной трубе, когда происходит смешивание горючего с воздухом, причем в определенной пропорции компонентов. Далее после приготовления смеси, контролер системы подает на форсунку специальный управляющий импульс электрического типа, который производит открытие закрытого клапана форсунки. После этих действий, топливо под нужным давлением устремляется во впускную трубу, которая располагается перед клапаном.

Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство
В связи с тем, что перепад давления горючего поддерживается на постоянной основе, то количество направляемого топлива пропорционально периоду времени, в течение которого такие элементы системы, как форсунки находятся в режиме открытого состояния. Что касается оптимального соотношения топливно-воздушной смеси, то за это отвечает специальный контроллер, который при помощи изменения длительности импульсов меняет параметры впрыска топлива. Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство

Чтобы смесь была больше обогащена воздухом, контроллер увеличивает длительность электрического импульса на форсунки. А для того, чтобы смесь наоборот была обедненная, то контроллер уменьшает длительность электрического импульса на форсунки, тем самым происходит, как бы замедление процесса впрыска топлива в камеру сгорания цилиндра двигателя.



Видео обзор: “Что такое топливная система инжектора. Принцип работы, особенности, строение и устройство”


В заключении отметим, что кроме точной и необходимой дозировки впрыскиваемого объема горючего, довольно важное значение в процессе работы топливной системы инжектора двигателя играет такой показатель, как момент подачи. Вот поэтому количество форсунок инжектора всегда соответствует количеству цилиндров силовой установки и никак иначе.

БОЛЬШОЕ СПАСИБО ЗА ВНИМАНИЕ. ОСТАВЛЯЙТЕ СВОИ КОММЕНТАРИИ, ДЕЛИТЕСЬ С ДРУЗЬЯМИ. 
ЖДЕМ ВАШИХ ОТЗЫВОВ И ПРЕДЛОЖЕНИЙ.

Устройство системы питания инжекторного двигателя

Система подачи топлива инжекторного двигателя получила распространение в современных автомобилях и имеет ряд преимуществ перед топливной системой карбюраторного двигателя. В этой статье мы рассмотрим устройство инжектора и узнаем, как работает система подачи топлива инжекторного двигателя и электронная система питания.

Устройство инжектора

Основная задача системы питания инжекторного двигателя заключается в обеспечении подачи оптимального количества бензина в двигатель при разных режимах работы. Подача бензина в двигатель осуществляется с помощью форсунок, которые установлены во впускном трубопроводе.

Устройство инжекторной системы питания

Устройство системы питания инжектора:

1. Электробензонасос – устанавливается в модуле, который располагается в топливном баке. Модуль также включает в себя такие дополнительные элементы, как топливный фильтр, датчик уровня бензина и завихритель.

Электробензонасос предназначен для нагнетания бензина из топливного бака в подающий топливопровод. Управление электробензонасосом осуществляется с помощью контроллера через реле.

2. Топливный фильтр – предназначен для очистки топлива от грязи и примесей, которые могут привести к неравномерной работе двигателя, неустойчивой работе инжектора, загрязнению форсунок. В инжекторных системах к качеству топлива предъявляются высокие требования.

Топливная рампа инжекторного двигателя3. Топливопроводы – служат для подачи топлива от бензонасоса к рампе и обратно от рампы в топливный бак. Соответственно существует прямой и обратный топливопроводы.

4. Рампа форсунок с топливными форсунками – конструкция рампы обеспечивает равномерное распределение топлива по форсункам. На топливной рампе располагаются форсунки, регулятор давления топлива и штуцер контроля давления в топливной системе инжектора.

5. Регулятор давления топлива – предназначен для поддержания оптимального перепада давления, который способствует тому, что количество впрыскивания топлива зависит только от длительности впрыска. Излишки топлива регулятор подает обратно в бак.

Как работает инжекторная система питанияКак работает система питания инжекторного двигателя?

Для стабильной работы двигателя необходимо обеспечить сбалансированное поступление топливовоздушной смеси в камеру сгорания. Приготовление топливовоздушной смеси происходит в впускном трубопроводе, благодаря смешиванию бензина с воздухом. Контроллер с помощью управляющего импульса открывает клапан форсунки и путем изменения длительности импульса регулирует состав топливовоздушной смеси.
Регулятор давления топлива поддерживает перепад давления топлива постоянным, соответственно количество топлива, что подается пропорционально времени, при котором форсунки находятся в открытом состоянии. Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Если длительность импульса увеличивается – смесь обогащается, если уменьшается – смесь обедняется.

Впрыск дизельного топлива

Впрыск дизельного топлива

Magdi K. Khair, Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Целью системы впрыска топлива является подача топлива в цилиндры двигателя с точным контролем момента впрыска, распыления топлива и других параметров.К основным типам систем впрыска относятся насос-форсунка, насос-форсунка и common rail. Современные системы впрыска достигают очень высокого давления впрыска и используют сложные электронные методы управления.

Основные принципы

Назначение системы впрыска топлива

На характеристики дизельных двигателей сильно влияет конструкция их системы впрыска. Фактически, наиболее заметные успехи, достигнутые в дизельных двигателях, были непосредственно связаны с превосходной конструкцией системы впрыска топлива.Хотя основная цель системы — подавать топливо в цилиндры дизельного двигателя, именно то, как это топливо подается, определяет разницу в характеристиках двигателя, выбросах и шумовых характеристиках.

В отличие от своего аналога двигателя с искровым зажиганием, система впрыска дизельного топлива подает топливо под чрезвычайно высоким давлением впрыска. Это означает, что конструкция компонентов системы и материалы должны быть выбраны таким образом, чтобы выдерживать более высокие нагрузки, чтобы работать в течение продолжительных периодов времени, соответствующих целевым показателям долговечности двигателя.Для эффективной работы системы также необходимы более высокая точность изготовления и жесткие допуски. Помимо дорогих материалов и производственных затрат, системы впрыска дизельного топлива характеризуются более сложными требованиями к управлению. Все эти функции составляют систему, стоимость которой может составлять до 30% от общей стоимости двигателя.

Основное назначение системы впрыска топлива — подавать топливо в цилиндры двигателя. Чтобы двигатель эффективно использовал это топливо:

  1. Топливо необходимо впрыскивать вовремя, то есть необходимо контролировать время впрыска и
  2. Необходимо подать правильное количество топлива для удовлетворения требований к мощности, то есть необходимо контролировать дозирование впрыска.

Однако для достижения хорошего сгорания недостаточно подавать точно отмеренное количество топлива в нужное время. Дополнительные аспекты имеют решающее значение для обеспечения надлежащей работы системы впрыска топлива, включая:

  • Распыление топлива — обеспечение распыления топлива на очень мелкие топливные частицы является основной задачей при проектировании систем впрыска дизельного топлива. Маленькие капли гарантируют, что все топливо испарится и участвует в процессе сгорания.Любые оставшиеся капли жидкости плохо горят или выходят из двигателя. В то время как современные системы впрыска топлива способны обеспечивать характеристики распыления топлива, намного превосходящие то, что необходимо для обеспечения полного испарения топлива в течение большей части процесса впрыска, некоторые конструкции систем впрыска могут иметь плохое распыление в течение некоторых коротких, но критических периодов фазы впрыска. Конец процесса закачки — один из таких критических периодов.
  • Массовое смешивание —Хотя распыление топлива и полное испарение топлива имеют решающее значение, обеспечение достаточного количества кислорода в испарившемся топливе во время процесса сгорания не менее важно для обеспечения высокой эффективности сгорания и оптимальной производительности двигателя.Кислород поступает из всасываемого воздуха, захваченного в цилиндре, и достаточное количество должно быть увлечено топливным жиклером, чтобы полностью смешаться с имеющимся топливом во время процесса впрыска и обеспечить полное сгорание.
  • Использование воздуха —Эффективное использование воздуха в камере сгорания тесно связано с объемным смешиванием и может быть достигнуто за счет комбинации проникновения топлива в плотный воздух, который сжимается в цилиндре, и деления общего количества впрыскиваемого топлива на число струй.Должно быть предусмотрено достаточное количество форсунок, чтобы захватить как можно больше доступного воздуха, избегая при этом перекрытия форсунок и образования зон, богатых топливом, с дефицитом кислорода.

Основное назначение системы впрыска дизельного топлива графически представлено на Рисунке 1.

Рисунок 1 . Основные функции системы впрыска дизельного топлива

Определение терминов

Для описания компонентов и работы систем впрыска дизельного топлива используется множество специализированных понятий и терминов.Некоторые из наиболее распространенных из них включают [922] [2075] :

Сопло относится к части узла сопла / иглы, которая взаимодействует с камерой сгорания двигателя. Такие термины, как P-тип, M-тип или S-тип сопла, относятся к стандартным размерам параметров сопла в соответствии со спецификациями ISO.

Держатель форсунки или Корпус форсунки относится к части, на которой устанавливается форсунка. В обычных системах впрыска эта часть в основном выполняла функцию крепления форсунки и предварительного натяга игольной пружины форсунки.В системах Common Rail он содержит основные функциональные части: сервогидравлический контур и гидравлический привод (электромагнитный или пьезоэлектрический).

Инжектор обычно относится к держателю сопла и соплу в сборе.

Начало впрыска (SOI) или Время впрыска — время начала впрыска топлива в камеру сгорания. Обычно он выражается в градусах угла поворота коленчатого вала (CAD) относительно ВМТ хода сжатия.В некоторых случаях важно различать , указанный SOI, и фактический SOI. SOI часто обозначается легко измеряемым параметром, таким как время, в течение которого электронный триггер отправляется на инжектор, или сигнал от датчика подъема иглы, который указывает, когда игольчатый клапан инжектора начинает открываться. Точка в цикле, где это происходит, — это обозначенная SOI. Из-за механического отклика форсунки может быть задержка между указанным КНИ и фактическим КНИ, когда топливо выходит из сопла форсунки в камеру сгорания.Разница между фактическим SOI и указанным SOI заключается в запаздывании инжектора .

Начало поставки. В некоторых топливных системах впрыск топлива согласован с созданием высокого давления. В таких системах начало подачи — это время, когда насос высокого давления начинает подавать топливо в форсунку. Разница между началом подачи и SOI зависит от продолжительности времени, необходимого для распространения волны давления между насосом и инжектором, и зависит от длины линии между насосом высокого давления и инжектора, а также от скорости звука. в топливе.Разница между началом подачи и SOI может обозначаться как задержка впрыска .

Конец впрыска (EOI) — это время в цикле, когда впрыск топлива прекращается.

Количество впрыскиваемого топлива — это количество топлива, подаваемое в цилиндр двигателя за рабочий такт. Часто выражается в мм 3 / ход или мг / ход.

Продолжительность впрыска — это период времени, в течение которого топливо поступает в камеру сгорания из форсунки.Это разница между EOI и SOI, связанная с количеством впрыска.

Схема впрыска. Скорость впрыска топлива часто меняется в течение периода впрыска. На рисунке 2 показаны три распространенные формы нормы: пыльник, пандус и квадрат. Скорость открытия и скорость закрытия относится к градиентам скорости впрыска во время открывания и закрывания сопла иглы, соответственно.

Рисунок 2 . Общие формы скорости закачки

События множественного впрыска. В то время как обычные системы впрыска топлива используют одно событие впрыска для каждого цикла двигателя, более новые системы могут использовать несколько событий впрыска. На рисунке 3 определены некоторые общие термины, используемые для описания событий множественной инъекции. Следует отметить, что терминология не всегда последовательна. Основной впрыск Событие обеспечивает основную часть топлива для цикла двигателя. Один или несколько впрысков перед основным впрыском, предварительные впрыски , обеспечивают небольшое количество топлива перед событием основного впрыска.Предварительный впрыск может также обозначаться как пилотный впрыск . Некоторые называют предварительный впрыск, который происходит относительно долго до основного впрыска, как пилотный, а тот, который происходит за относительно короткое время до основного впрыска, как предварительный впрыск. Впрыски после основных впрысков, пост-впрыски, , могут происходить сразу после основного впрыска (, закрытый пост-впрыск ) или относительно долгое время после основного впрыска (, поздний пост-впрыск ).Постинъекции иногда называют после инъекций . Хотя терминология сильно различается, близкая повторная инъекция будет называться повторной инъекцией, а поздняя повторная инъекция — повторной инъекцией.

Рисунок 3 . Множественные события инъекции

Термин разделенный впрыск иногда используется для обозначения стратегий множественного впрыска, когда основной впрыск разделяется на два меньших впрыска приблизительно равного размера или на меньший предварительный впрыск, за которым следует основной впрыск.

В некоторых системах впрыска топлива могут возникать непреднамеренные последующие впрыски, когда форсунка на мгновение повторно открывается после закрытия. Иногда их называют вторичными впрысками .

Давление впрыска постоянно не используется в литературе. Это может относиться к среднему давлению в гидравлической системе для систем Common Rail или к максимальному давлению во время впрыска (пиковое давление впрыска) в обычных системах.

Основные компоненты топливной системы

Компоненты системы впрыска топлива

За некоторыми исключениями топливные системы можно разделить на две основные группы компонентов:

  • Компоненты стороны низкого давления — Эти компоненты служат для безопасной и надежной доставки топлива из бака в систему впрыска топлива.Компоненты стороны низкого давления включают топливный бак, топливный насос и топливный фильтр.
  • Компоненты стороны высокого давления —Компоненты, создающие высокое давление, дозирующие и подающие топливо в камеру сгорания. К ним относятся насос высокого давления, топливная форсунка и форсунка для впрыска топлива. Некоторые системы могут также включать аккумулятор.

Форсунки для впрыска топлива можно разделить на тип отверстий или дроссельных игл, а также на закрытые или открытые.Закрытые форсунки могут приводиться в действие гидравлически с помощью простого подпружиненного механизма или с помощью сервоуправления. Открытые форсунки, а также некоторые новые конструкции форсунок с закрытыми форсунками могут приводиться в действие напрямую.

Дозирование количества впрыскиваемого топлива обычно осуществляется либо в насосе высокого давления, либо в топливной форсунке. Существует ряд различных подходов к измерению топлива, включая: измерение давления с постоянным интервалом времени (PT), измерение времени при постоянном давлении (TP) и измерение времени / хода (TS).

Большинство систем впрыска топлива используют электронику для управления открытием и закрытием форсунки. Электрические сигналы преобразуются в механические силы с помощью привода определенного типа. Обычно эти исполнительные механизмы могут быть либо электромагнитными соленоидами, либо активными материалами, такими как пьезоэлектрическая керамика.

Основные компоненты системы впрыска топлива рассмотрены в отдельной статье.

###

,

КАК РАБОТАЕТ ЭЛЕКТРОННЫЙ ВПРЫСК ТОПЛИВА

Электронный впрыск топлива (EFI) пришел на смену карбюраторам еще в середине 1980-х годов как предпочтительный метод подачи воздуха и топлива в двигатели. Основное отличие состоит в том, что карбюратор использует вакуум на впуске и перепад давления в трубке Вентури (узкая часть горловины карбюратора) для перекачивания топлива из топливного бака карбюратора в двигатель, тогда как впрыск топлива использует давление для распыления топлива непосредственно в двигатель.

В карбюраторе воздух и топливо смешиваются вместе, поскольку воздух протягивается двигателем через карбюратор.Затем воздушно-топливная смесь проходит через впускной коллектор к цилиндрам. Одним из недостатков этого подхода является то, что впускной коллектор является влажным (содержит капли жидкого топлива), поэтому топливо может образовывать лужу в зоне нагнетания коллектора при первом запуске холодного двигателя. Изгибы и повороты впускных направляющих также могут вызвать разделение смеси воздуха и топлива, как если бы она текла в цилиндры, что приводит к неравномерному распределению топливной смеси между цилиндрами. Центральные цилиндры обычно работают немного богаче, чем концевые цилиндры, что затрудняет настройку для максимальной экономии топлива, производительности и выбросов с карбюратором.

ВПРЫСК ДРОССЕЛЬНОЙ ЗАСЛОНКИ

При системе впрыска в корпус дроссельной заслонки (TBI) одна или две форсунки, установленные в корпусе дроссельной заслонки, распыляют топливо во впускной коллектор. Давление топлива создается электрическим топливным насосом (обычно установленным в топливном баке или рядом с ним), а давление регулируется регулятором, установленным на корпусе дроссельной заслонки. Топливо впрыскивается в двигатель, когда компьютер двигателя подает питание на форсунку (форсунки), что происходит скорее в виде быстрой серии коротких всплесков, чем непрерывного потока.Это вызывает жужжание форсунок при работающем двигателе.

Из-за этой настройки те же проблемы с распределением топлива, которые влияют на карбюраторы, также влияют на системы TBI. Однако системы TBI имеют лучшие характеристики холодного запуска, чем карбюратор, потому что они обеспечивают лучшее распыление и не имеют проблемного механизма дросселирования. Система TBI также упрощает регулирование топливной смеси электронной системе управления двигателем, чем карбюратор с электронной обратной связью.Системы впрыска дроссельной заслонки использовались недолго в течение 1980-х годов, когда производители автомобилей в США перешли с карбюраторов на впрыск топлива, чтобы соответствовать требованиям по выбросам. К концу 1980-х годов большинство систем TBI были заменены системами впрыска топлива с многоточечным впрыском (MPI).

ВПРЫСК МНОГОПОРТНОГО ТОПЛИВА

В системах многопортового впрыска для каждого цилиндра предусмотрена отдельная топливная форсунка. Преимущество этого подхода заключается в том, что топливо впрыскивается непосредственно во впускной канал головки блока цилиндров.Поскольку через впускной коллектор проходит только воздух, впускной коллектор остается сухим, и не возникает проблем с лужами топлива при холодном двигателе или разделением топлива, вызывающим неравномерность топливных смесей в центральном и крайнем цилиндрах. Это позволяет более равномерно распределить топливную смесь во всех цилиндрах для лучшей экономии топлива, выбросов и производительности.

Некоторые ранние серийные системы многоточечного впрыска топлива были чисто механическими и датировались 1950-ми годами (например, Corvette 1957 года с системой впрыска топлива Rochester, и системы Bosch D-Jetronic и K-Jetronic с их механическими распределителями топлива и инжекторами).Более поздние системы впрыска топлива, такие как системы Bosch L-Jetronic конца 1970-х годов, заменили механические форсунки электронными. Сегодня все производственные системы EFI полностью электронные с компьютерным управлением и электронными инжекторами.

Большинство систем EFI, которые предлагались в конце 1980-х и начале 1990-х годов, запускают все форсунки одновременно, обычно один раз за каждый оборот коленчатого вала. Более сложные системы последовательного впрыска топлива (SFI), появившиеся позже, запускают каждую форсунку отдельно, как правило, при открытии впускного клапана.Это позволяет гораздо более точно контролировать расход топлива для лучшей экономии топлива, производительности и выбросов.

ВПРЫСК ПРЯМОГО ТОПЛИВА БЕНЗИНА

В 2000-х годах некоторые производители автомобилей начали предлагать новый тип системы впрыска топлива под названием Gasoline Direct Injection (GDI). При такой настройке для каждого цилиндра по-прежнему используется отдельный инжектор, но инжекторы перемещаются на двигателе, чтобы распылять топливо непосредственно в камеру сгорания, а не во впускной канал. Это похоже на дизельный двигатель, который распыляет топливо прямо в цилиндр.Преимущество этого подхода — значительное улучшение (на 15–25 процентов!) Экономии топлива и мощности. Однако для этого требуются специальные топливные форсунки высокого давления и гораздо более высокое рабочее давление. Некоторые современные примеры прямого впрыска топлива включают двигатели VW TDI, двигатели Mazda с прямым впрыском, двигатели General Motors EcoTech и двигатели Ford EcoBoost.


ТОПЛИВНЫЙ ИНЖЕКТОР ИМПУЛЬС

Относительное богатство или обедненность топливной смеси в двигателе с впрыском топлива определяется изменением длительности импульсов форсунки (называемой шириной импульса).Чем больше длительность импульса, тем больше объем подаваемого топлива и тем богаче смесь.

Время и продолжительность работы форсунки контролируются компьютером двигателя. Компьютер использует данные различных датчиков двигателя, чтобы регулировать дозирование топлива и изменять соотношение воздух / топливо в ответ на изменение условий эксплуатации. Первичным датчиком контроля топливной смеси является кислородный датчик. Датчик O2 генерирует сигнал RICH или LEAN, который компьютер двигателя использует для регулировки топливной смеси.Для получения дополнительной информации об управлении подачей топлива с обратной связью и корректировках корректировки топливоподачи см. Что такое корректировка расхода топлива?

Компьютер откалиброван с помощью программы подачи топлива, которую лучше всего описать как трехмерную карту. Программа указывает компьютеру, как долго форсунка будет пульсировать при изменении частоты вращения двигателя и нагрузки. Во время запуска, прогрева, разгона и увеличения нагрузки двигателя карта обычно требует более богатой топливной смеси. Когда двигатель движется при небольшой нагрузке, карта позволяет использовать более бедную топливную смесь для повышения экономии топлива.А когда автомобиль замедляется и двигатель не нагружен, карта может позволить компьютеру на мгновение полностью выключить форсунки.

Программирование, управляющее системой EFI, содержится на микросхеме PROM (Program Read Only Memory) внутри компьютера двигателя. Замена микросхемы PROM может изменить калибровку системы EFI. Иногда это необходимо для обновления заводского программирования или для устранения проблемы с управляемостью или выбросами. Микросхему ППЗУ на некоторых автомобилях также можно заменить микросхемой для повышения производительности послепродажного обслуживания, чтобы улучшить работу двигателя.

На многих автомобилях 1996 года и новее программирование осуществляется на микросхеме EEPROM (электронно удаляемое запоминающее устройство для чтения программ) в компьютере. Это позволяет обновлять или изменять программу путем перепрошивки компьютера. Новое программирование загружается в компьютер через диагностический разъем OBD II с помощью диагностического прибора или инструмента перепрограммирования J2534.

ВХОДЫ ДАТЧИКА ТОПЛИВНОГО ВПРЫСКА

Электронный впрыск топлива требует ввода данных от различных датчиков двигателя, чтобы компьютер мог определять частоту вращения двигателя, нагрузку и рабочие условия.Это позволяет компьютеру регулировать топливную смесь по мере необходимости для оптимальной работы двигателя.

Существует два основных типа систем EFI: системы скорости-плотности и системы массового расхода воздуха. Системы измерения плотности скорости, такие как те, что используются во многих двигателях Chrysler и некоторых двигателях GM, на самом деле не измеряют поток воздуха в двигатель, а оценивают поток воздуха на основе входных сигналов от датчика положения дроссельной заслонки (TPS), датчика абсолютного давления в коллекторе (MAP) и оборотов двигателя. Преимущество этого подхода заключается в том, что для двигателя не требуется дорогостоящий датчик расхода воздуха, и на смесь воздуха и топлива меньше влияют небольшие утечки воздуха во впускном коллекторе, вакуумной системе или корпусе дроссельной заслонки.


Датчик массового расхода воздуха Ford также включает внутри датчик температуры воздуха на впуске (IAT).

В системах массового расхода воздуха некоторые типы датчиков воздушного потока используются для прямого измерения расхода воздуха, поступающего в двигатель. Это может быть датчик воздушного потока с механической заслонкой, датчик воздушного потока с нагревательной проволокой или вихревой датчик воздушного потока. Компьютер также использует входные данные от всех других своих датчиков, но полагается в первую очередь на датчик воздушного потока для управления топливными форсунками.

Система EFI обычно работает без сигнала от датчика MAP, но она будет работать плохо, потому что компьютер должен полагаться на другие входные данные датчика для оценки воздушного потока.Распространенная проблема с датчиками массового расхода воздуха скопление грязи или лака на нагретом проводе внутри датчика. Очистка провода массового расхода воздуха внутри датчика с помощью очистителя для электроники часто восстанавливает нормальную работу и устраняет бедную смесь, вызванную загрязнением датчика воздушного потока.

В системах обоих типов (скорость-плотность и массовый расход воздуха) входные данные от подогреваемого кислородного датчика (HO2) также являются ключевыми для поддержания оптимального соотношения воздух / топливо. Датчик кислорода (или датчик воздуха / топлива на многих более новых автомобилях) установлен в выпускном коллекторе и контролирует уровень несгоревшего кислорода в выхлопных газах как индикатор относительного богатства или бедности топливной смеси.На двигателях V6 и V8 будет отдельный датчик кислорода для каждого ряда цилиндров, а на некоторых рядных шестицилиндровых двигателях (например, BMW) могут быть отдельные датчики кислорода для первых трех цилиндров и последних трех цилиндров. Сигнал обратной связи от кислородного датчика или датчика воздуха / топлива используется компьютером двигателя для постоянной точной настройки топливной смеси для достижения оптимальной экономии топлива и выбросов.

Когда датчик кислорода сообщает компьютеру, что двигатель работает на обедненной смеси (более высокий уровень несгоревшего кислорода в выхлопных газах), компьютер компенсирует это за счет обогащения топливной смеси (увеличения ширины импульса форсунок).Если двигатель работает на богатой смеси (меньше кислорода в выхлопе), компьютер сокращает ширину импульса форсунок для обеднения топливной смеси.

Ввод положения дроссельной заслонки обеспечивается датчиком положения дроссельной заслонки (TPS). Он расположен сбоку на корпусе дроссельной заслонки и использует переменный резистор, который изменяет сопротивление при открытии и закрытии дроссельной заслонки.

Нагрузка двигателя измеряется датчиком абсолютного давления в коллекторе (MAP). Он может быть установлен на впускном коллекторе или прикреплен к впускному коллектору с помощью вакуумного шланга.

Также необходимо контролировать температуру воздуха, поступающего в двигатель, чтобы компенсировать возникающие изменения плотности воздуха (более холодный воздух более плотный, чем горячий). Это контролируется датчиком температуры воздуха на входе (IAT) или датчиком температуры воздуха в коллекторе (MAT), который может быть встроен в датчик воздушного потока или установлен отдельно на впускном коллекторе.

Температура охлаждающей жидкости контролируется датчиком температуры охлаждающей жидкости (CTS). Это сообщает компьютеру, когда двигатель холодный, а когда он имеет нормальную рабочую температуру.Компьютер должен знать температуру, потому что холодный двигатель требует более богатой топливной смеси при первом запуске. Когда охлаждающая жидкость достигает определенной температуры, двигатель переходит в режим замкнутого цикла, что означает, что он начинает использовать входные сигналы от кислородных датчиков для точной настройки топливной смеси. Когда он работает в разомкнутом контуре (в холодном состоянии или когда нет сигнала от датчика охлаждающей жидкости), топливная смесь фиксирована и не изменяется.

Неправильные входные сигналы от любого из датчиков двигателя могут вызвать проблемы с управляемостью, выбросами или производительностью.Многие проблемы с датчиками приводят к установке диагностического кода неисправности (DTC) и включению контрольной лампы двигателя. Считывание кода (ов) с помощью диагностического прибора поможет вам диагностировать проблему.


Корпус дроссельной заслонки EFI.

СИСТЕМА УПРАВЛЕНИЯ СКОРОСТЬЮ ХОЛОСТОГО ХОДА ТОПЛИВА ВПРЫСКА

Обороты холостого хода двигателей с впрыском топлива контролируются компьютером через перепускной контур холостого хода на корпусе дроссельной заслонки. Небольшой электродвигатель или соленоид используется для открытия и закрытия байпасного отверстия.Чем больше отверстие, тем больший объем воздуха может пройти в обход дроссельных заслонок и тем выше скорость холостого хода.

На новых автомобилях с электронным управлением дроссельной заслонкой компьютер также управляет открытием дроссельной заслонки, когда водитель нажимает на педаль газа. Датчики положения в педали газа сигнализируют компьютеру, насколько далеко открыть дроссельную заслонку.

Проблемы на холостом ходу в системах EFI могут быть вызваны отложениями лака и грязи в цепи управления холостым ходом корпуса дроссельной заслонки.Очистка корпуса дроссельной заслонки с помощью Очиститель корпуса дроссельной заслонки часто может решить проблемы на холостом ходу (следуйте инструкциям на изделии). Проблемы на холостом ходу также могут быть вызваны утечками воздуха между датчик расхода воздуха и дроссельная заслонка, корпус дроссельной заслонки и впускной коллектор, а также впускной коллектор и головка (и) цилиндров, или в системах PCV или EGR, или в вакуумных шлангах.


В большинстве систем EFI напряжение подается непосредственно на форсунки, и PCM подает питание на форсунку, заземляя цепь.

ИНЖЕКТОРЫ

Топливная форсунка — это не что иное, как подпружиненный электромагнитный игольчатый клапан. При подаче питания от компьютера соленоид открывает клапан. Это позволяет топливу брызгать из форсунки в двигатель. Когда компьютер отключает цепь питания форсунки, клапан внутри форсунки закрывается, и подача топлива прекращается.

Общее количество поданного топлива регулируется путем очень быстрого включения и выключения напряжения форсунки.Чем больше длительность импульса, тем больше объем подаваемого топлива и тем богаче топливная смесь. Уменьшение длительности импульса сигнала форсунки приводит к уменьшению количества подаваемого топлива и вымыванию смеси.

Грязные топливные форсунки — частая проблема. Накопление отложений топливного лака внутри наконечника форсунки форсунки может ограничить подачу топлива и помешать созданию хорошей формы распыления. Это может привести к обеднению топлива и пропускам зажигания.Очистка форсунок очистителем для впрыска топлива или снятие форсунок и их очистка на машине для очистки топливных форсунок обычно может восстановить нормальную работу. Использование бензина высшего уровня, содержащего достаточное количество очистителя форсунок, также может предотвратить образование отложений лака.


Регулятор давления топлива обычно устанавливается на топливной рампе, которая питает форсунки.

КОНТРОЛЬ ДАВЛЕНИЯ ТОПЛИВА

Еще один важный фактор, который помогает определить, сколько топлива подается через форсунку в импульсном режиме, и это давление топлива за ней.Чем выше давление за форсункой, тем больший объем топлива вылетит из форсунки при ее открытии.

Давление топлива создается электрическим топливным насосом высокого давления, который обычно устанавливается внутри или рядом с топливным баком. Давление на выходе насоса может находиться в диапазоне от 8 до 80 фунтов. в зависимости от приложения. Насос обычно имеет напорный клапан для сброса избыточного давления и обратный клапан для поддержания давления в системе при выключенном зажигании.

В многопортовой системе EFI перепад давления между топливом за форсунками и разрежением или давлением во впускном коллекторе является постоянно изменяющейся переменной.При небольшой нагрузке или на холостом ходу во впускном коллекторе существует относительно высокий вакуум. Это означает, что для распыления определенного объема топлива через форсунку требуется меньшее давление топлива. При большой нагрузке вакуум в двигателе падает почти до нуля. В этих условиях требуется большее давление для подачи того же количества топлива через форсунку. А в двигателях с турбонаддувом разрежение в коллекторе может составлять от 8 до 14 фунтов. положительного давления, когда в игру вступает турбо наддув. Требуется еще большее давление топлива, чтобы пропустить такое же количество топлива через форсунку.

В многопортовой системе EFI должно быть предусмотрено средство регулирования давления топлива в соответствии с вакуумом двигателя, чтобы поддерживать одинаковый относительный перепад давления между топливной системой и впускным коллектором. Это делает регулятор давления топлива. Регулятор установлен на топливной рампе, питающей форсунки. В безвозвратных системах EFI регулятор является частью топливного насоса в топливном баке.

Регулятор давления топлива имеет простую подпружиненную вакуумную диафрагму с вакуумным подключением к впускному коллектору.Регулятор снижает давление топлива при небольшой нагрузке и увеличивает его при большой нагрузке или режиме наддува. Избыточное давление топлива отводится через перепускной канал обратно в топливный бак для поддержания требуемого перепада давления. Большинство систем откалиброваны для поддержания перепада давления от 40 до 55 фунтов на квадратный дюйм.

В более старых системах TBI регулятор выполняет более простую работу, поскольку форсунки установлены над дроссельными заслонками. Поскольку вакуум / наддув двигателя не влияет на подачу топлива из форсунки в системе TBI, регулятор должен только поддерживать равномерное давление.В системах TBI General Motors регулятор давления откалиброван для поддержания примерно 10 фунтов на квадратный дюйм в топливной системе, но большинство других работают около 40 фунтов на квадратный дюйм.

Низкое давление топлива приведет к ухудшению характеристик двигателя, возможным пропускам зажигания и может помешать запуску двигателя. Низкое давление топлива может быть вызвано слабым топливным насосом (изношенным насосом или низким напряжением в насосе, из-за которого он работал медленно), ограничениями в топливной магистрали, засоренным топливным фильтром или негерметичным регулятором давления топлива.Для нормальной работы двигателя давление топлива ДОЛЖНО соответствовать техническим характеристикам. Давление топлива можно проверить с помощью манометра, подключенного к сервисному клапану на топливной рампе или в топливопроводе.


Щелкните здесь, чтобы загрузить или распечатать эту статью.






fuel injection Другие статьи о впрыске топлива:

Тест самопроверки системы впрыска топлива (Загрузите или распечатайте файл PDF)

Соотношение воздух / топливо

Диагностика впрыска топлива

Проблемы с впрыском топлива

Как впрыск топлива влияет на выбросы

Впрыск топлива: диагностика системы EFI без возврата топлива

Что такое регулировка топливной системы?

Что такое прямой впрыск бензина (GDI)?

Отложения на впускных клапанах в двигателях с прямым впрыском бензина

Топливные форсунки (очистка)

Топливные форсунки (поиск неисправностей)

Диагностика топливного насоса

Советы по диагностике топливного насоса от Carter

Топливный насос (как заменить насос в баке)

Топливный насос (электрический)

Топливные фильтры

Toyota Fuel Injection

Системы впуска холодного воздуха

Датчик EFI Статьи по теме:
Определение датчиков двигателя

Датчики температуры воздуха

Датчики охлаждающей жидкости

Датчики положения коленчатого вала CKP

Общие сведения о датчиках кислорода (O2)

Расположение датчиков кислорода

Датчики воздуха с широким соотношением сторон (WRAF)

Датчики массы

MAP Датчики воздушного потока MAF

Датчики воздушного потока VAF

Датчики положения дроссельной заслонки

Общие сведения о системах управления двигателем

.

Ошибка

Перейти к основному содержанию

☰Боковая панель

MyCourses Мои курсы
  • Школы Школа искусств, дизайна и архитектуры (ARTS) Школа бизнеса (BIZ) Школа химической инженерии (CHEM) –SРуководства для студентов (CHEM) — Инструкция по написанию отчета (ХИМ) Школа электротехники (ELEC) Школа инженерии (ENG) Школа наук (SCI) Языковой центр Открытый университет Библиотека Программа педагогической подготовки университета Аалто UNI (экзамены) песочница
  • КОРОНАВИРУС ИНФОРМАЦИЯ Opetus ja opiskelu kampuksella syksyllä 2020 Обучение и обучение в кампусе осенью 2020 г. Undervisning och studier på campus hösten 2020 Коронавирус — tietoa opiskelijalle Коронавирус — информация для студентов Коронавирус — информация для студента Corona в помощь учителям
  • Ссылки на услуги Мои курсы — Инструкции для учителей — Цифровые инструменты для обучения — Инструкции по защите персональных данных для учителей — Инструкции для студентов — Рабочее место для авторского надзора WebOodi В портал для студентов Курсы.aalto.fi Библиотечные услуги — Ресурсы — Имагоа / Открытая наука и изображения IT услуги Карты кампуса — Искать места и смотреть часы работы Рестораны Отаниеми otaniemi Студенческий союз АГУ Аалто Торговая площадка Аалто
  • ВСЕ ХОРОШО? Учебные навыки Поддержка учебы Отправная точка благополучия О AllWell? изучить анкету благополучия
  • (О) (О) (Ц) (SV)
.

Бензиновый порт впрыска топлива

Система впрыска бензина через порт впрыска топлива — самая популярная система привода для бензиновых двигателей во всем мире. Система трансмиссии убеждает низкими затратами, сокращенными технологиями и новыми инновационными разработками.

При использовании двигателей с удельной мощностью ок. 60 кВт / л и концепция уменьшения габаритов до 25%, впрыск бензина через порт обеспечивает значительные преимущества по стоимости по сравнению с системами прямого впрыска высокого давления. Как система низкого давления (давление в системе прибл.6 бар), система впрыска топлива через порт для бензина работает со сравнительно простой стратегией работы. Сложные требования к контролю высокого давления (давление в системе до 350 бар) не учитываются, как и насос высокого давления, датчик высокого давления, клапан регулировки объема и форсунки высокого давления для многоточечного впрыска. Результатом является менее сложное управление впрыском за счет различий в сроках впрыска. Устойчивый процесс сгорания бензинового порта впрыска топлива также допускает использование топлива более низкого качества.

От

до

60 кВт / л

мощность двигателя

эффективное

Снижение выбросов CO 2 — и HC благодаря дальнейшим инновационным разработкам, таким как e.грамм. Расширенный PFI или уменьшение размера

От

до

25%

Концепции уменьшения габаритов с турбонаддувом

экономически эффективным

по сравнению с системами высокого давления из-за менее сложного программного обеспечения и управления впрыском

,

Что может стучать в двигателе: Двигатель стучит: причины и варианты устранения

Двигатель стучит: причины и варианты устранения

Многим владельцам автомобилей знакома ситуация, вдруг ни с того ни с сего в двигателе начинается стук. Водители на интуитивном уровне понимают, что ни до хорошего этот звук не может довести, автолюбителям приходится спешно ехать в автосервис. 

Неприятный стук в двигателе может возникнуть по многим причинам, но основная причина всегда одна: Так как в двигателе, что то стучит, означает, что одна рабочая деталь бьется о другой элемент двигателя, как правило, из-за стандартного нарушения уровня зазора. В непосредственной зависимости от того, какие элементы двигателя стучат и какой образовался зазор, достаточно скоро может произойти выход рабочего состояния непосредственно двигателя.

Итак, какие возможные причины характерного стука? 

  • Первая — как уже говорилось, из-за отклонения зазора. Такое отклонение чаще всего связано с долгой эксплуатацией автомобильного транспорта. 
  • Вторя, звук может идти когда «(кривые) детали, то есть когда звук стука возникает из-за деформации деталей. Перекос происходит из-за стандартного механического воздействия на детали в течении долгого времени или со стороны водителя, либо со стороны специалистов — механиков. 
  • Третья, характерно стучать могут и основные детали, между которыми стандартный зазор, к примеру когда разрывается специальная масляная пленка что исключается если использовать высококачественное масло Shell. 
  • Четвертая – Довольно редкая, могут стучать и основные детали с стандартным зазором (брак), но тогда возможная причина в деформации деталей и недочет производителя.

Что же делать, если двигатель все таки застучал? 

Основное и главное, не паниковать, нужно постараться установить возможную причину характерного стука. Ведь известны такие курьезные случаи, когда водитель, ошибочно считая, что двигатель стучит, вынужденно отдавал его на капитальный ремонт, но потом выяснялось, что причина вовсе и не в самом двигателе. Поэтому необходимо внимательно прислушаться, где именно стучит и как, при каких переменных условиях стук уменьшается и усиливается.  

Если всетаки стучин в моторном отсеке продолжать движение не рекомендуется. В первую очередь необходимо определится как можно добраться до ближайшего автосервиса или гаража: на эвакуаторе или своим ходом. Квалифицированные специалисты осмотрят ваше транспортное средство и определят причину возникновения стуков, и скажут можно ли продолжать движение.


Что может стучать в двигателе?

Стук коленчатого вала

Возникает из-за больших зазоров в шатунных или коренных подшипниках, образовавшихся вследствие износа вкладышей или (и) шеек вала. В исправном двигателе зазор небольшой и составляет примерно 0,020-0,040 мм, увеличение зазора до 0,070 мм для современных высокооборотных двигателей является неприемлемым и говорит о необходимости ремонта. Причиной увеличения зазора может быть:

  • Механические примеси, попадающие в подшипник с маслом. Масляные фильтры со своей задачей справляются довольно хорошо, но если фильтр долго не менять, то он забьется и сработает клапан, который открывает обводной канал для масла, в случаях, когда пропускная способность фильтра становится недостаточной для прохождения необходимого количества масла ( такой клапан имеется не на всех масляных фильтрах, имеющихся в продаже )
  • Некачественное масло. К сожалению сейчас можно купить подделку, под марки масел, известные во всём мире и не вызывающие сомнения в их качестве
  • Недостаточное количество смазки, подаваемое на подшипники. Это может происходить из-за неисправного масляного насоса, засорённого масляного фильтра, не имеющего обводной клапан, или засоренного масляного канала ( что маловероятно ). При таких неисправностях загорается лампочка сигнализирующая о недостаточном давлении масла подаваемого к подшипникам
  • Недопустимая шероховатость или царапины на шейках вала после ремонта или, в результате неправильного хранения
  • Недопустимая овальность шеек вала ( или постелей вкладышей ), например, после замены коленчатого вала на, якобы, хороший, который оказался со «стуканутого» двигателя или двигателя, должного вот-вот начать стучать. По этой причине, покупая коленчатый вал, обязательно обмеряйте все шейки вала микрометром на предмет овальности ( допускается до 0,005 мм, в крайнем случае до 0,010 мм, но тогда подшипники прослужат очень мало 5000-15000 километров )
  • Наличие воды или тосола в масле
  • Работа двигателя без масла

Эти стуки отчётливо слышны при запуске холодного двигателя, когда ещё масло не дошло до подшипников; в некотором диапазоне частот вращения коленчатого вала стук может пропадать, если двигатель только начал стучать.

По тональности стук коленвала глухой на холостом ходу и становится более звонким по мере возрастания частоты вращения и очень частый, даже если стучит только один подшипник.

Стук распределительного вала

По тональности глухой и появляется из-за износа подшипников распредвала, причинами которого могут быть: не качественное масло, наличие механических примесей или воды в масле, недостаточное количество масла, подаваемое на подшипники, работа двигателя без масла, царапины, недостаточная шероховатость или овальность шеек ( что иногда также встречается ).

О том, что распредвал застучал узнают по глухому стуку при запуске холодного двигателя, который пропадает после начала поступления масла на подшипники ( примерно 1-2 секунды ). На таком двигателе можно ещё смело проехать до 50000 км, если только клапана без гидрокомпенсаторов, т.к. при стуке распредвал совершает перемещения ( хоть и очень небольшие ) вверх-вниз. Когда вал переместится вверх образуется зазор между окружностью кулачка ( при закрытом клапане ) и толкателем, и гидрокомпенсатор «выберет» этот зазор, а когда вал займёт нижнее положение, он приоткроет клапан ( ведь зазора больше нет ), отсюда падение компрессии и, как следствие, падение мощности, увеличение расхода топлива, ухудшение пусковых качеств двигателя, отложение нагара на седле клапана, перегрев клапана и, возможно его прогарание.

По мере износа стук будет уже не только при запуске холодного двигателя, но и при запуске тёплого двигателя, а так же, при работе непрогретого двигателя. Частота стука распредвала в два раза меньше частоты стука коленвала.

При раннем впрыске топлива на дизельных или раннем зажигании на бензиновых двигателях происходит детонационное сгорание топливовоздушной смеси, сопровождаемое стуками. Для бензиновых — говорят «пальцы стучат» , для дизельных — жёсткая работа дизеля. Стук клапанов появляется вследствие больших зазоров или, на двигателях с гидрокомпенсаторами, из-за их ненаполнения маслом. Такой стук по частоте совпадает со стуком распредвала, по тональности — звонкий.

Также на дизелях может стучать ТНВД ( топливный насос высокого давления ).

Может стучать поршень, доставая клапана при сбитых фазах газораспределения.

Следующий тип стука, на мой взгляд, является необычным и затрудняющим выявление неисправности — это стук поршня о головку, вследствие того, что головка стала немного ближе к поршню. Это случается из-за установки под головку прокладки меньшей толщины, чем должна быть или её сильного выжимания. Такая неисправность была у моего приятеля.

Купил он автомашину TOYOTA CROWN 91 года выпуска с 3-х летним пробегом. Всё было нормально, как вдруг, после 3 с половиной месяцев эксплуатации, появился звонкий частый стук в двигателе ( двиг. 1G-GZE ), по мере прогрева он становился немного слабее, но полностью не исчезал. Были подозрения на коленвал, но всё таки смущало то, что звук был звонкий. Разобрал двигатель — вкладыши и коленвал в отличном состоянии, проверил клапана и распредвал — всё в порядке. Кто-то из соседей по гаражу сказал ему, что может стучать поршень о головку, а для выяснения этого надо внимательно осмотреть поршня, в месте контакта не будет нагара.

Так и сделал — всё просмотрел и, на удивление, обнаружил небольшое пятнышко без нагара на поршне 4-го цилиндра. На головке напротив поршня в том же месте было аналогичное еле заметное пятнышко. Даже не верилось, что такой сильный стук был из-за такой ерунды. Обработал слегка поршень напильником, купил новую прокладку, собрал и … нет стука!!!

Как позже выяснилось, предыдущий хозяин два раза перегревал двигатель и после этого обжал «головку», в результате прокладка сильно выжалась и, видимо, на поршне был небольшой дефект в виде выступа, что и послужило причиной стука.

Если в работе двигателя вашего автомобиля появились посторонние стуки и вы не уверены в их природе, посоветуйтесь со знакомыми и со специалистами ( лучше, если оба в одном лице ), и может быть для его устранения не придётся разбирать весь двигатель, а удастся обойтись лёгким и недорогим ремонтом, например, регулировкой тепловых зазоров клапанов.

Стук в двигателе — в чем причина?

Если слышится стук при запуске двигателя, это верный признак появления проблем, которые необходимо решить как можно скорее. В большинстве случаев данное явление говорит о том, что некоторые комплектующие имеют выработку и, как следствие, образовался люфт. Если это так, то будет слышен стук в двигателе на горячую, холодную или во время нагрузки. Определить, что проблема касается именно двигателя, можно по звуку, исходящему из-под капота, а также по падению давления моторного масла в незначительных количествах. Его можно определить по световой индикации на панели управления, сигнализирующей о пониженном давлении смазочного материала. В зависимости от запчасти, вызывающей такую проблему, возникает стук в двигателе при нагрузке или на холостом ходу. Основные узлы, в которых может возникать шум:

  • клапана;
  • поршневая группа;
  • распредвал;
  • коренные шейки.

Проблемы с вышеперечисленными деталями приводят к тому, что стучит двигатель на холодную, при высокой температуре, на холостом ходу и при высоких нагрузках. Рассмотрим каждую проблему индивидуально.

Стук двигателя на холодную из-за клапанов

Такие симптомы в клапанах проявляются чаще всего. Они не критичны и автомобиль может эксплуатироваться, если раздается стук в двигателе при сбросе газа. Однако это говорит о том, что в скором времени этой проблеме придется уделить внимание. Появление шума предупреждает о том, что может быть изношен рокер клапана. Как правило, эта проблема характеризуется звонкими щелчками. Также причиной могут быть забитые отверстия в конструкции распредвала, предназначенные для подачи на рокер масла. В этом случае особенно будет проявляться стук двигателя под нагрузкой.

Детонация двигателя нередко выступает источником стука в выпускных клапанах. Характеризуется такое явление металлическим цокотом, снижением мощности двигателя, а также появлением черного дыма. Тревожным симптомом считается стук двигателя на холостых, потому что это означает превышение зазора между такими элементами, как кулачки распредвала и рычаги. Эту проблему необходимо сразу решать, так как, по мере увеличения зазора, повреждения будут масштабнее, что в итоге приводит двигатель к полному выходу из строя. Чтобы этого не произошло, рекомендуется выполнять регулирование клапанов после преодоления пробега в 10-15 тысяч.

Чтобы понять причину стука, необходимо проверить клапан на предмет оптимальной регулировки, а также в обязательном порядке необходимо уточнить давление масла. Основная причина, почему стучит двигатель на холодную, заключается в износе толкателя или перебоях с подачей смазки из-за скопившейся влаги. Также наличие протечек влияет на смазочный материал. Если давление в норме, то причину следует искать в зазорах клапанов. Когда проблема возникает при разгоне автомобиля, это говорит о нехватке смазочного материала. Достаточно долить масло, чтобы шум прекратился, а если результат нулевой, и стук в двигателе при наборе оборотов только усиливается, это говорит о повреждении подшипников коленвала. Этот случай уже относится к критичным, а потому не следует дальше эксплуатировать двигатель, чтобы избежать необходимости серьезного ремонта.

Металлический стук при запуске двигателя от распредвала

Когда проблема касается распредвала, то стук в двигателе на холостых оборотах не слышен. В основном он проявляет себя при запуске холодного двигателя, при этом звук не такой звонкий, как издают клапана. Все объясняется тем, что во время простоя двигателя вся смазка сходит с поверхности деталей, а потому запуск мотора выполняется на сухую первые несколько оборотов. Поэтому при запуске двигателя слышен стук, однако он исчезает, как только поверхность деталей снова покрывается смазочным материалом. Этого короткого промежутка времени достаточно, чтобы по стуку определить наличие проблемы. А если при повышении оборотов звук усиливается, то необходимо срочно отправить авто на диагностику. В противном случае под угрозой находится гидрокомпенсатор, подшипники и сам вал. Эксплуатировать автомобиль со стуком в распределительном валу и без гидрокомпенсатора можно не более 50 000 километров.

Причины стука в двигателе по вине распредвала заключаются в следующем:

  • износ распредвала не подлежащий реставрации;
  • деформация вала, сломанные шейки или лопнувшие опоры;
  • некорректная работа системы смазки;
  • нарушена динамика подачи топлива;
  • выработка кулачков.

Как правило, выработку кулачков можно определить только если стук появляется на горячую.

Почему стучит двигатель в поршневой группе

Появление подобных проблем в поршневой группе не редкость, так как сам поршень не является идеальной цилиндрической формой, а потому могут возникать следующие проблемы:

  • перекос поршня;
  • удары во время движения о стенки цилиндра;
  • удар кольцами во время работы о стопоры пальца;
  • смещенная ось поршня;
  • тяжелый ход опоры пальца.

Также посторонний стук в двигателе, исходящий из поршневой системы, может возникать в редких случаях, когда рабочая поверхность поршня касается прокладки головки.

Появился стук в двигателе, возможно, это коленвал?

Если металлический стук в двигателе на холостых не относится ни к одному из вышеперечисленных случаев, следует искать проблему в коленчатом вале. Основная причина заключается в износе подшипников, и проявляется она в двигателях внутреннего сгорания любого типа. Проблема возникает за счет масла низкого качества, наличия в нем абразивных составляющих, не своевременной замены фильтра и даже банального перегрева мотора. В основном такой металлический стук в двигателе на холодную проявляет себя, потому что смазочный материал при запуске двигателя не сразу достигает подшипников коленвала. Звук глухой при работе двигателя на низких оборотах, но стоит им повысится, как он станет громче.

Глухой стук в двигателе коренных шеек коленчатого вала

Независимо от оборотов, звук бьющихся коренных шеек свидетельствует о низком давлении смазочного материала. При появлении таких симптомов рекомендуется заменить масло, причем выбрать смазочный материал на класс выше. Минеральное масло заменить на полусинтетику, а если она заливалась до этого, то сменить на синтетический смазочный материал. Если после этого металлический стук в двигателе не прекратится, то рекомендуется воспользоваться услугами автосервиса. Возникает звук по причине износа вкладышей или шеек. В результате выработки зазор подшипников не соответствует заводским установкам, и если он достигает 0,07 миллиметров, то требуется ремонт двигателя. До этого значения стук будет нарастать, а меняется зазор из-за того, что в подшипник со смазкой попадают посторонние частицы. Поэтому следует своевременно менять масляный фильтр.

Как определить стук в двигателе или в КПП

Иногда специфика звука может быть такой, что сразу не понятно откуда доносится стук: из двигателя или из КПП. Чтобы это определить, необходимо выжать педаль сцепления, когда двигатель заведен. Если после этого стук прекратился, то проблема в коробке передач. Выжатая педаль сцепления разрывает контакт коробки передач с силовым приводом, а потому она не работает и не стучит, позволяя определить, находится проблема в ней или в моторе. Следовательно, как и с двигателем, возможно причина возникновения стука в КПП в низком уровне масла или в износе подшипников.

Звонкий стук в двигателе и глухой

В процессе эксплуатации смазочный материал теряет свои свойства, и его коэффициент вязкости повышается. Это усиливает трение между парными деталями, что влечет к повреждению поверхностей и ускоренному износу. Когда двигатель стучит на горячую, это говорит о критическом износе деталей. Если смазочного материала не хватает, то глухим стуком характеризуется запуск двигателя. Таким образом, от смазочного материала многое зависит, и чтобы исключить большинство шумов при работе двигателя, рекомендуется своевременно менять масло. Однозначно, если звук глухой, то причина заключается именно в проблемах с маслом. Когда раздается звонкий звук, решение проблемы необходимо искать в регулировке или замене клапанов.

Теперь, зная как определить, что стучит в двигателе, каждый сможет понять, насколько этот стук критичен, сколько еще можно эксплуатировать автомобиль и когда отправиться в автосервис. Рекомендуется своевременно менять комплектующие, как только их выработка достигла критического уровня. Это способствует более продолжительной работе других запчастей, функционирующих в конструкции одного агрегата.

Стук в двигателе: посторонние звуки, шум, цоканье в моторе и их причины

Стук в двигателе – это признак неисправности, но какой? Вариантов достаточно много:

  • Стук вследствие износа деталей.
    Это самое простое объяснение и самая распространенная причина стука в ДВС. В результате износа комплектующих увеличиваются зазоры между сопряженными деталями, что и приводит к стуку. Поэтому если двигатель у автомобиля с большим пробегом начинает «стучать», вероятно, дело в простом износе.
  • Стук вследствие перекоса деталей.
    Подобное можно наблюдать в тех случаях, когда автомобиль побывал в руках недобросовестного автомеханика. При использовании последним некачественных комплектующих детали перекашиваются, происходит их быстрый износ, появляются зазоры и стук в двигателе. Избежать этого очень просто: обращайтесь только в лучшие техцентры, например в Вилгуд.
  • Стук вследствие разрушения пленки масла между сопряженными деталями.
    Разрушение пленки масла может произойти при превышении допустимого значения нагрузок на двигатель. Еще одна причина – это малые зазоры между сопряженными деталями, что ведет к увеличению нагрузок, трения и повышению температуры, что, в свою очередь, ухудшает условия смазки. Малые зазоры можно наблюдать при обслуживании двигателя неумелым механиком, который стремится «понадежнее» затянуть все узлы. Также стук в двигателе может возникнуть вследствие его перегрева.
  • Стук вследствие сильной деформации одной из деталей.
    Стук может возникать и при соприкосновении несопряженных деталей, хотя это наиболее редкий случай. Он также может быть спровоцирован неумелым вмешательством в конструкцию автомобиля.

Как определить поломку?

Определить поломку по стуку может только специалист или очень опытный водитель. Имеет значение все: характер стука, его громкость, периодичность, реакция на увеличение оборотов и так далее. Существуют и более надежный способ узнать, почему возник стук в двигателе – это осмотр автомобиля в техцентре Вилгуд.

Опытные сотрудники нашего автотехцентра осмотрят ваш автомобиль, диагностируют неполадки и устранят их. И все это будет сделано максимально оперативно, качественно. В своей работе мы используем только качественные комплектующие и технические жидкости, что позволяет нам гарантировать отличное качество выполнения ремонтных работ. 


Стук в двигателе на холодную

Двигатель конструктивно состоит из множества деталей, которые подвержены серьезным нагрузкам в процессе эксплуатации ДВС. Также любой мотор оснащается рядом систем, что предполагает установку дополнительных навесных агрегатов.  Появление стуков в двигателе как на холодную, так и на горячую зачастую указывает на неисправность. В ряде случаев стук мотора требует немедленного определения и устранения. Проблема стука на холодном двигателе может проявиться как в теплое время года, так и в зимний период. Далее мы поговорим об основных причинах стуков двигателя на холодную, параллельно затрагивая возможные причины стука прогретого двигателя.

Содержание статьи

Почему стучит двигатель

Возможных причин стука двигателя может быть достаточно много. В списке основных специалисты отмечают износ деталей внутри ДВС, а также детонационные стуки. От степени износа и ряда других факторов будет зависеть характер стука, который может быть от тихого и приглушенного до отчетливых металлических ударов внутри двигателя. После того как мотор заводится на холодную, становится слышен стук в двигателе, который с прогревом может:

  • полностью исчезнуть;
  • стать менее заметным;
  • остаться на том же уровне;
  • усиливаться с ростом температуры и нагрузки;
Рекомендуем также прочитать статью о том, почему бензиновый мотор может «дизелить», то есть по своему звуку работы напоминать дизель. Из этой статьи вы узнаете о причинах такого «дизеления» бензинового двигателя.

Износ мотора

Холодный двигатель, который не демонстрирует никаких других признаков неисправности, зачастую может начать стучать в том случае, если тепловые зазоры не соответствуют норме. Другими словами, стук мотора может указывать на необходимость регулировки клапанов.

Причиной стука на холодную также могут быть гидрокомпенсаторы, которые потеряли работоспособность в результате износа, использования неподходящего типа моторного масла или несвоевременной его замены в процессе эксплуатации автомобиля. Для устранения стука гидрокомпенсаторов на холодную зачастую может быть достаточно обычной промывки двигателя, после чего осуществляется замена масла и масляного фильтра.

Еще одной причиной стука двигателя может быть увеличение зазора коренных вкладышей. Характерной особенностью является отчетливый звук на холодную в первые секунды после пуска, который пропадает с ростом давления в системе смазки. Также стучать вкладыши и другие элементы могут в результате снижения производительности масляного насоса.

Отдельно стоит выделить стук шатунов. Появление такого стука сопровождается глухими ударами металла об металл, изношенный шатун ударяется о шейку коленвала. Шатунный и поршневой стук на дизельном двигателе может быть более отчетливым и звонким, так как конструктивно поршни в дизеле приближаются очень близко к головке блока. Эксплуатация двигателя независимо от его типа с таким стуком категорически запрещена, так как мотор может неожиданно заклинить.

Стучать на холодную может и сам ГРМ. Причиной снова выступают увеличенные зазоры в постели распредвала. С прогревом стук становится менее интенсивным или полностью уходит. Одной из не менее серьезных поломок является стук поршня. Поршень может стучать в результате разрушения или критического износа. Изношенные поршни «гуляют» в цилиндре, создавая металлические удары юбкой поршня. Также к подобному стуку в отдельных случаях приводит поломка поршневых колец.

Детонационные стуки

Детонация возможна как на холодном двигателе, так и на прогретой силовой установке. Детонационные стуки после запуска двигателя или при езде характеризуется достаточно звонким стуком, частота которого увеличивается с ростом оборотов. Причиной выступает неравномерность и несвоевременное воспламенение топливно-воздушной смеси, что приводит к возникновению взрывов внутри цилиндров. Нагрузка на ЦПГ и КШМ сильно возрастает, приобретая ударный разрушительный характер.

Детонация может привести к дефектам поршня и механическим повреждениям стенок цилиндров, вызывает ускоренный износ других деталей двигателя. Для компенсации рисков на большинстве автомобилей сегодня устанавливается специальный датчик детонации, задачей которого является отслеживание колебаний в цилиндрах мотора. Сигналы от датчика поступают в ЭБУ, который корректирует состав топливно-воздушной смеси и зажигание. Необходимо отметить, что возможность такой подстройки при помощи блока управления находится в узких рамках, что не позволяет полностью исключить возможность появления детонационных стуков. При детонации двигатель может стучать:

  • на холостом ходу после запуска;
  • в момент ускорения при резком нажатии на газ;
  • во время движения под нагрузкой;
  • в случае выбора передачи, которая не соответствует нагрузке и т.д.;
Что касается холодного мотора, тогда частой причиной детонационных стуков выступает заправка топливом низкого качества с октановым числом, которое ниже рекомендованного производителем для конкретного типа двигателя. Второй причиной детонации на холодную может быть повышение степени сжатия. Это происходит при установке более тонкой прокладки ГБЦ, а также в результате неудачного ремонта или вмешательств в конструкцию ДВС в целях повышения его мощности.

Детонация на прогретом двигателе возможна во всех случаях, описанных выше, а также если поршень или цилиндр перегревается. Причиной может быть степень сжатия, которая самостоятельно увеличилась по причине образования обильного слоя нагара на днище поршня.

Рекомендуем также прочитать статью о том, что такое степень сжатия двигателя. Из этой статьи вы узнаете о том, что характеризуется этим параметром и как степень сжатия влияет на работу ДВС.

Еще нагар может тлеть, самопроизвольно воспламеняя топливную смесь в цилиндре. Детонация проявляется при сильной нагрузке на ДВС в тот момент, когда обороты не высокие (коленчатый вал вращается с низкой частотой). Дополнительной причиной детонационных стуков может оказаться установка свечей зажигания, которые не подходят для данного типа ДВС. Как известно, свечи бывают «холодными» или «горячими», то есть подбираются в соответствии с определенными тепловыми режимами работы того или иного двигателя.

Почему еще может стучать мотор

Стуки в подкапотном пространстве могут проявляться вследствие поломок навесного оборудования: привода ГРМ, помпы, генератора, гидроусилителя рулевого управления, других шкивов и т. п. В дизелях можно столкнуться со стуком плунжерных пар ТНВД.

Очень часто холодный пуск стук может сопровождаться металлическим стуком, который возникает в результате проблем с натяжителем цепи ГРМ. Не стоит исключать и то, что стучать может какая-либо наружная деталь, которая слабо затянута или крепление элемента ослабло.

Самостоятельное определение причины стуков двигателя

  1. Для проведения диагностики необходимо убедиться в том, что стук появился в двигателе, а не в других узлах и агрегатах. Первым делом нужно оценить характер звука и его тональность. Звонкие удары, нарастающие при повышении оборотов и локализованные в верхней части ГБЦ, укажут на проблемы с зазорами клапанов.
  2. Стук гидрокомпенсатора напоминает удары небольшого металлического шарика по клапанной крышке, который увеличивается по частоте вместе с повышением оборотов двигателя.  Шелестящие, свистящие и скрипящие звуки могут быть признаком проблем с цепью, ремнем ГРМ или ремнем генератора. Такие звуки могут быть постоянными и не зависеть от оборотов.
  3. Стуки ЦПГ обычно приглушенные, не имеют явного оттенка стучащего металла. Частота таких стуков обычно увеличивается с ростом оборотов. Детонационные стуки проявляются в виде высокочастотного звонкого постукивания. Опытные автолюбители характеризуют это явление как «пальцы звенят». Для быстрой проверки можно воспользоваться следующими рекомендациями:
  4. На автомобилях с МКПП нужно выжать сцепление, что означает разъединение трансмиссии и ДВС. Так можно определить, что стучит именно в моторе или других узлах, а не в коробке передач.

Следующим шагом станет проверка опор двигателя (так называемых подушек) и ходовой части автомобиля. Для точной диагностики нужно воспользоваться подъемником или смотровой ямой. В полевых условиях можно воспользоваться описанным ниже методом.

  • капот нужно открыть, после чего двигатель запускают;
  • далее необходимо пригласить помощника, который становится сбоку автомобиля;
  • затем машину раскачивают легкими «рывками» вперед и назад на первой и задней передаче;
  • во время таких раскачиваний помощник определяет тот факт, не являются ли подушки двигателя причиной стука;

Читайте также

Стук мотора, возможные причины и варианты устранения проблемы

 27.12.2017

Современные автомобили отечественного и импортного производства комплектуются надежными, производительными, износостойкими силовыми агрегатами. Но любые моторы имеют определенный ресурс, основные элементы и комплектующие двигателей изнашиваются при интенсивной эксплуатации. Со временем любой силовой агрегат подлежит капитальному ремонту, стоимость которого зависит от марки и модели техники.

 

Определить необходимость технического обслуживания и ремонта можно по нескольким визуальным признакам: 

 

  • владелец может услышать нехарактерный стук, который силовой агрегат издает при работе, из выхлопной трубы появляется густой, черный дым;
  • постепенно возрастает расход моторного масла, топлива, снижается мощность, ухудшается динамика;
  • наибольшее беспокойство вызывают стуки мотора.  

 

Исправный силовой агрегат работает без каких-либо шумов, поэтому появление стуков говорит о необходимости обращения в сервисный центр.

 

Стуки в силовом агрегате вызваны ударами металлических элементов друг об друга. В местах соприкосновения комплектующих  возникают большие нагрузки, поэтому быстрый износ деталей является наибольшей проблемой. Чем интенсивнее стук, тем быстрее комплектующие приходят в негодность, мотор выходит из строя. Если при первых появлениях посторонних шумов не принять мер, последующий ремонт будет стоить дорого.

 

Посторонние шумы возникают также при увеличении зазоров между рабочими элементами агрегата. Тональность звука при работе неисправного мотора сильно меняется. Опытному специалисту достаточно послушать шум силового агрегата, чтобы понять, в чем может быть причина. Если вовремя не принимать необходимых мер, стук будет прогрессировать, его тональность зависит от материалов соприкасающихся деталей.  

 

Если причина посторонних шумов заключается в износе комплектующих ГРМ, стук остается постоянным в течение длительного времени. Изменение его тональности и интенсивности говорит об износе деталей из высокопрочных сплавов, а также о скором выходе ГРМ из строя. Если изношены мягкие детали силового агрегата, например, шатунный и коренной вкладыши, подшипники распределительного вала, стук двигателя быстро проявляется и также интенсивно усиливается.

 

 

 

 

Для любого собственника появление посторонних шумов мотора – это всегда неприятность, дополнительные затраты на техобслуживание и ремонт. Для того, чтобы избежать больших проблем, необходимо оперативно посетить сервисный центр. Определить самостоятельно причину стука достаточно сложно, так как источником шумов могут быть различные узлы и элементы. В двигателе могут стучать подшипники, шатуны, навесное оборудование и другие элементы.

 

Как определить причину стука самостоятельно

 

Мастера сервисного центра при диагностике стуков силового агрегата используют современное оборудование. Чаще всего возможные причины определяют по тональности шума, постепенно локализуя место его появления. Многие специалисты применяют специальный стетоскоп.

 

Каждый владелец транспортного средства может воспользоваться простым приспособлением, с помощью которого удается самостоятельно определить причину стука с высокой точностью. Для этого потребуется пустая консервная банка, которая прикрепляется к куску арматуры. Металлический прут прикладывается к разным частям работающего мотора, звук усиливается банкой, приложенной к уху. 

 

На разных силовых агрегатах тональность посторонних шумов не всегда является определяющим критерием. Для моторов объемом 1,4 литра и 3 литра стуки и посторонние звуки могут быть различной интенсивности и громкости. 

 

Особенности определения причины стуков силового агрегата:

 

  • на интенсивность постороннего шума и его тональность влияет марка и модель мотора, при одинаковой неисправности стуки на разных двигателях могут сильно отличаться;
  • характер посторонних шумов может быть трех типов: постоянный повторяющийся стук, звуки определенной частоты или проявляющиеся эпизодически;
  • в большинстве случаев громкость и интенсивность зависит от работы мотора, оборотов коленвала и текущей нагрузки;
  • в зависимости от режима работы мотора меняется тональность посторонних шумов на неисправном силовом агрегате.

 

При увеличении частоты вращения вала двигателя шум в большинстве случаев усиливается, что определяется ростом нагрузки на подвижные элементы ГРМ и кривошипного механизма. На холостом ходу посторонние шумы могут совсем пропасть или проявлять себя эпизодически. Поэтому привлечение к диагностике грамотного специалиста является оптимальным вариантом для поиска причины дефекта. На начальной стадии, периодически проявляющиеся посторонние звуки можно услышать с помощью специального оборудования.

 

Техническое обследование мотора проводится при увеличении оборотов силового агрегата, соответственно давления масла в ДВС также возрастает. В результате посторонний шум может стать слабее или совсем пропасть, даже если нагрузка на силовой агрегат последовательно растет.

 

 

 

 

Еще одной особенностью диагностики стука является изменение температуры ДВС. При прогреве двигателя масло разжижается, посторонний шум усиливается. На холодном моторе звук может практически отсутствовать. Также нередки обратные ситуации, двигатель стучит при запуске, после прогрева посторонний звук пропадает. Пытаясь определить причину возникновения стука, необходимо учитывать все вышеприведенные факторы. Для достоверного выявления причин необходимо обладать большим опытом и навыками, поэтому лучше всего обращаться в сервисный центр.

 

Причины стуков холодного мотора

 

Для многих владельцев транспортных средств первые признаки дефекта силового агрегата проявляются в виде стуков при запуске холодного мотора. После прогрева двигателя посторонние шумы пропадают. Пользоваться автомобилем в таких случаях можно, но при первой возможности лучше всего посетить сервисный центр. При интенсивной эксплуатации мотора основные детали изнашиваются, увеличиваются зазоры между ними. После прогрева происходит расширение элементов, соответственно зазоры уменьшаются и стук пропадает.

 

Чаще всего причиной стуков непрогретого двигателя является износ поршневой группы. Основными факторами, определяющими посторонние шумы, являются:

 

  • при интенсивной эксплуатации мотора гильзы у цилиндров изнашиваются, увеличивается зазор между поршнем и стенкой, превышение максимально допустимых показателей гарантирует наличие стука мотора;
  • для изготовления цилиндров применяются алюминиевые сплавы, обладающие высокой теплоемкостью, при нагревании металл расширяется, а в холодном состоянии сильно сжимается;
  • прогретый мотор перестает генерировать стуки, так как зазор между цилиндром и поршнем сужается и входит в границы, определенные производителем.

 

Кроме стуков в поршневой группе аналогичный эффект может присутствовать в приводе ГРМ. При наличии гидравлической системы натяжения цепи, на основные детали подается масло. В холодном силовом агрегате смазка не поступает в контур сразу после запуска мотора, возникают посторонние металлические звуки. По аналогичным причинам возникают стуки на уровне гидрокомпенсаторов. Если звук не пропадает при прогреве силового агрегата до оптимальной температуры, гидрокомпенсаторы меняются.

 

Причины стуков прогретого силового агрегата

 

Необходимость обращения в сервисный центр возникает, если при запуске мотор не стучит, а по мере прогрева силового агрегата посторонние шумы отчетливо слышатся. В первую очередь опытный мастер предположит износ коленвала или элементов поршневой группы. Более детально разобраться в причине стука можно после изучения алгоритма работы двигателя:

 

  • при запуске силового агрегата, особенно при низкой температуре, масло густое и вязкое, имеющиеся зазоры заполнены смазкой, при трении деталей посторонние шумы не проявляют себя;
  • с ростом температуры внутри силового агрегата происходит разжижение смазки, при большом износе деталей стук становится отчетливо слышен;
  • посторонние звуки на прогретом двигателе возникают при увеличении зазора между шейками коленвала и коренными вкладышами в подшипниках;
  • аналогичные ситуации возможны даже при незначительном износе шеек коленвала, при увеличении зазора между шатунной опорой и шейкой посторонние шумы не пропадают даже по мере прогрева мотора;
  • трещины в поршневом пальце и юбке также приводят к металлическому гулу при работе мотора.

 

Чаще всего причиной стуков является недостаточный уровень смазки. Если гул проявил себя в пути, можно долить масло до необходимого уровня. В любом случае после окончания поездки необходимо посетить сервисный центр. При обнаружении подобных дефектов следует обратить внимание на интенсивность стука. Если тональность и частота растут по мере увеличения нагрузки  в процессе движения транспортного средства, причина заключается в износе подшипников коленвала. ПО возможности необходимо прекратить эксплуатацию автомобиля и вызвать эвакуатор для доставки техники в сервис.

 

Многие причины возникновения стуков заключаются в заправке автомобиля некачественным топливом. Для устранения посторонних шумов можно добавить в бензобак присадку. В результате детонационные характеристики бензина улучшаются. После этого рекомендуется заправиться на проверенной АЗС.

 

 

 

Причины стука на холостых оборотах двигателя

 

Случаи, при которых мотор стучит на холостом ходу, встречаются довольно часто. В большинстве ситуаций такая проблема не является серьезной. При росте оборотов мотора посторонний звук пропадает.  При этом определить причину необходимо, для этого достаточно пройти диагностику в специализированном сервисе. Посторонние звуки на холостом ходу фиксируются по следующим причинам:

 

  • происходит касание помпы или шкива генератора корпусом мотора вследствие вибраций при работе;

  • защита двигателя или кожух ГРМ недостаточно хорошо зафиксированы, возможно ослабло одно или несколько креплений;

  • при наличии в силовом агрегате шестеренчатой передачи появился люфт в распредшестернях;

  • ослабло крепление шкива коленвала.

 

Наиболее сложным дефектом является появление одной или нескольких трещин в маховике. Такие поломки фиксируются на автомобилях, оснащенных автоматической трансмиссией. Для механических коробок такой дефект маловероятен, так как маховик имеет массивную, прочную конструкцию. На холостом ходу посторонние звуки могут возникать при ослаблении крепления звездочки или шестерни коленвала. Опытный специалист может быстро определить причины стуков с большой достоверностью.

 

Что делать, если стучат поршни

 

Износ деталей силового агрегата является следствием интенсивной эксплуатации. В результате увеличивается зазор между цилиндром и поршнем. При росте зазора до 0,3-0,4 мм возможно возникновение сильного стука. При обращении в сервисный центр мастер предложит варианты решения проблемы. Кроме износа, причинами шумов становится отсутствие своевременного технического обслуживания и неправильная эксплуатация. Перегрев негативно сказывается на состоянии цилиндро-поршневой группы.

 

 

 

Если появляющийся стук напоминает постукивание по глиняной посуде, причина дефекта находится в блоке цилиндров. Кроме постукивания локализовать проблему можно по наличию легких щелчков. Стук дает о себе знать на силовом агрегата, только что заведенном или работающем на небольших оборотах. По мере прогрева мотора происходит расширение поршней, соответственно посторонний шум постепенно сходит на нет.

 

Причины стуков поршневых пальцев

 

Ярко выраженный металлический стук чаще всего свидетельствует об износе поршневых пальцев. Звонкое и тонкое звучание отчетливо слышится при перегазовке, когда водитель резко нажимает или отпускает педаль акселератора. Посторонние шумы фиксируются в районе блока цилиндров, возникают при увеличении зазора до 0,1 мм.

 

Определить источник звонкого стука можно самостоятельно, для этого требуется выкрутить свечу зажигания. Отсутствие свечи останавливает процесс сгорания топлива в цилиндре, соответственно нагрузки на поршень и стуки отсутствуют. Поочередно выкручивая свечи можно определить цилиндр с увеличенными зазорами. Другими возможными причинами возникновения металлического звона могут быть использование некачественного топлива, когда силовой агрегат испытывает детонации. Если двигаться в подъем при большой нагрузке и на повышенной передаче, силовой агрегат также начинает стучать.

 

Причины посторонних шумов вкладыша коленвала

 

В некоторых случаях владельцы транспортных средств обращают внимание на посторонние шумы в районе картера силового агрегата. Приглушенный металлический стук может быть вызван износом коренных подшипников коленвала. При резком нажатии на педаль акселератора, сопровождающемся увеличением оборотов, стук увеличивается. Такой же эффект фиксируется при движении на низких оборотах, резком сбросе газа, использовании некачественной смазки.

 

Стуки в районе коленчатого вала нельзя игнорировать, необходимо немедленно обращаться в сервисный центр. Использование масла низкого качества или расходных материалов, не соответствующих допускам производителя, являются наиболее частыми причинами проблем с коленвалом. В первую очередь меняется смазка. Если результат отрицательный, может потребоваться ремонт мотора.

 

Причины стука вкладышей шатунов

 

Высокая тональность, отчетливость и слышимость характеризуют стуки вкладышей шатунов. Дефект возникает при износе данных элементов, вызванных интенсивной эксплуатацией. Последствие посторонних звуков в кривошипно-шатунном механизме могут быть самыми серьезными. Эксплуатация автомобиля в таких ситуациях запрещена. Лучше всего на эвакуаторе доставить автомобиль в сервис.

 

Если внезапно появившийся стук начинает быстро прогрессировать, становиться более выраженным при увеличении оборотов коленвала, желательно прекратить эксплуатацию транспортного средства. Оптимальный вариант – заглушить и больше не запускать мотор. В профессиональном сервисе производится демонтаж двигателя и его капитальный ремонт. 

 

 

 

 

Водители, не прислушивающиеся к рекомендациям опытных инженеров, доводят коленвал до полной деградации. Ремонт узла становится невозможным, подойдет только его замена на аналогичную деталь. При дальнейшей эксплуатации автомобиля отрывается крышка шатуна, далее следует пробивание головки блока цилиндров. Ремонтировать такой мотор слишком дорого, дешевле обойдется его замена.

 

Услышать стук шатунной рейки можно самостоятельно. Резкий, металлический звон лучше всего проявляется при открытии дроссельной заслонки. Одновременно падает давление моторного масла. При отсутствии смазки коленвал заклинивает максимум через 15 минут, в большинстве случаев раньше. Такой двигатель нуждается в замене или дорогостоящем ремонте.

 

Коренные шейки коленчатого вала могут стучать по двум причинам. Посторонний звук низкой тональности, соответствующий вибрации мотора, проявляется при сильном износе коренных шеек. В таких случаях существенно увеличивается зазор между опорами блока цилиндров и шейками коленчатого вала. 

 

Еще одной причиной стука коренных шеек считается низкий уровень давления масла в системе. Следствие такой проблемы – образование задиров на металлических элементах. Но даже при таких последствиях можно некоторое время продолжать эксплуатацию техники. Но лучше всего немедленно обратиться в сервисный центр и отдать автомобиль на ремонт.

 

Посторонние звуки в механизме газораспределения

 

Стук клапана является самым неприятным явлением, услышать которое может любой автовладелец. Посторонние металлические звуки могут проявляться в силовых агрегатах различной конструкции, например с гидрокомпенсаторами в комплекте или с механическими клапанами. Для моторов с гидрокомпенсаторами причиной может их износ. В результате механизм перестает выдерживать давление масла. В первую очередь следует демонтировать и промыть гидрокомпенсатор. Если это не поможет, лучше всего заменить гидравлические толкатели на аналогичные устройства.

 

В силовых агрегатах с клапанным приводом механического типа появление стука также возможно. Для устранения постороннего шума производится регулировка клапанов. Для автомобилей, изготовленных АвтоВАЗом, для регулировки используется набор специальных шайб. Для других марок и моделей техники настройка механизма выполняется другими способами.

 

 

 

 

Неверный зазор в клапанных механизмах является не единственной причиной стука. Посторонние звуки могут проявлять себя в следующих случаях:

 

  • при высокой степени износа кулачка распределительного вала;
  • если между посадочным местом толкателя и самим механизмом образовался большой зазор;
  • износ одного или нескольких клапанов является распространённой причиной появления стука;
  • аналогичные последствия фиксируются при выходе из строя регулировочной шайбы;
  • стуки в газораспределительном механизме вызывают износ ремня ГРМ и натяжных роликов.

 

В любых ситуациях при появлении посторонних звуков проверяется состояние моторного масла. Если смазки недостаточно, падает давление, стук проявит себя практически в 100% случаев. При штатном объеме и давлении масла производится локализация проблемы. Поочередно исключаются сбор в топливной аппаратуре, приводных механизмах, навесном оборудовании. После локализации проблемы определяются особенности стука, проверяется его интенсивность при увеличении и снижении нагрузки. Если посторонний звук усиливается при росте нагрузки, скорее всего необходимо диагностировать ЦПГ и КШМ.

 

Одной из причин ярко выраженного стука является проблема с ГРМ. В штатном режиме коленчатый и распределительный вал имеют скорость вращения, отличающуюся в 2 раза. При частоте стука, идентичной вращению коленвала, причина именно в ГРМ. После запуска силового агрегата посторонний шум может быть практически незаметен, с увеличение температуры громкость возрастает. Причина – увеличение зазоров в клапанах из-за температурного расширения. При росте нагрузки стук может оставаться неизменным, так как не зависит от режима эксплуатации агрегата.

 

Полную диагностику мотора необходимо выполнять при первых симптомах неполадки силового агрегата. Обращение к профессионалам – это возможность безошибочно выявить проблему и определить пути ее устранения. В сложных случаях потребуется демонтаж силового агрегата, его разборка, дефектовка и замена поврежденных элементов. В лучшем случае потребуется частичная разборка мотора.

 

Для продления срока эксплуатации силового агрегата без дефектов и поломок необходимо регулярно выполнять его диагностику и техобслуживание. Для бензиновых автомобилей периодичность замены расходных материалов составляет 10-15 тысяч километров. Дизельные моторы необходимо обслуживать через каждые 7,5-10 тысяч. При эксплуатации техники в жестких условиях периодичность ТО оговаривается индивидуально.

 

Анти лидеры в рейтинге моторов

 

Современные моторы. Для отечественных импортных автомобилей уступают в надежности агрегатам, выпущенным 10-15 лет назад. Одним из самых неудачных считается двигатель для Volkswagen Polo объемом 1,6 литра. Все три модификации, производимые с 2010 года, оснащались цепным приводом. Система изменения фаз в моторах отсутствует.

 

Многие владельцы автомобилей данной марки замечают стук поршней в момент запуска и прогрева мотора. Несмотря на неприятные звуки, особого негативного воздействия на состояние мотора подобные шумы не оказывают. После прогрева до рабочей температуры стук прекращается. Еще одной проблемой силовых агрегатов является стук гидрокомпенсаторов, но такие ситуации фиксируются крайне редко.

 

 

Дизельные моторы DCi для Renault также имеют характерные дефекты. Моторы объемом от 1,5 до 2,2 литра, изготовленные в период с 2001 по 2009 годы не отличаются надежностью  и износостойкостью. Наиболее проблемным узлом является кривошипно-шатунный механизм. При сильном перегреве и большой нагрузке мотор начинает стучать. В первую очередь меняется моторное масло. Для силовых агрегатов объемом 1,5 литра проворот шатунных вкладышей возможен уже после 130 тысяч километров пробега.

 

 

 

Бензиновые моторы по своим характеристикам надежности и износостойкости превосходят дизельные аналоги. В таких двигателях кривошипно-шатунный механизм практически не доставляет проблем. Поломка коленвала фиксируется при масляном голодании. Использование некачественной смазки также приводит к появлению стука.

Простейшая диагностика: что стучит из-под капота машины?

КЛУБ

Автолюбителей

ПРОСТЕЙШАЯ ДИАГНОСТИКА: ЧТО СТУЧИТ?

Исправный автомобиль должен работать тихо. А если из-под капота и слышно «журчание» двигателя, то желательно, чтобы оно было ровным, без вызывающих звуков: свиста, визга, скрежета и, особенно, стука. Однако сплошь и рядом встречаются машины именно с такими вот звуковыми эффектами. О том, что за этим может последовать,

размышляет Андрей ЛАДЫГИН.

Многие водители, обратив внимание на необычный звук, проявляют известное беспокойство, но, выяснив вскоре, что на скорость это не влияет, так и продолжают ездить. Смеем заверить — до поры до времени. Даже плохо закрепленная крышка воздухофильтра, соскочив в конце концов со своих шпилек, может такого натворить! А потому лучше все же выявить и устранить причину странных звуков, не откладывая это в долгий ящик.

Итак, что же может в машине стучать, скрипеть, визжать?

СОВСЕМ

НЕ СОЛОВЬИНАЯ ТРЕЛЬ

Свист чаще всего носит аэродинамический характер, то есть появляется при движении с определенной скоростью и усиливается, когда она возрастает. «Свистеть» могут антенна, багажник на крыше или перевозимый на нем груз. Если эти причины исключены, но свист досаждает, найти его источник будет сложнее. Проверьте плотность прилегания дверей к кузову, стыки и надежность крепления декоративных деталей передка, посмотрите, нет ли висящих на «пути» воздуха проводов. Иногда в передке обнаруживаешь отверстия, назначение которых остается загадкой: все необходимые приборы (фары, подфарники, «поворотники», звуковой сигнал и др.) вроде бы на месте, а для вентиляции эти дырочки слишком уж малы. Заклейте их изолентой, вставьте в них винты с гайками или подходящие пластмассовые пистоны — вполне возможно, что назойливый свист пропадет.

Иное дело, если звук проявляется не на скорости, а хорошо слышен даже при низких оборотах холостого хода. В поисках его источника соблюдайте осторожность: повредить руку вращающейся крыльчаткой вентилятора или шкивом приводного ремня можно совершенно неожиданно. А тут еще высоковольтные провода… Особенно опасно совать голову в моторный отсек, пока двигатель не выключен. Словом, старайтесь быть аккуратными.

При открытом капоте источник свиста обычно сразу выдает себя. Если же нет, советуем проверить состояние и натяжение всех клиновидных ремней: не проскальзывают ли в ручьях шкивов, не замаслены ли они, не перекручены ли. Если начинающему водителю досталась сильно подержанная машина, он может стать свидетелем того, как резинотканевый ремень способен постепенно «проесть» металлические шкивы едва не до дыр. В ручье, утратившем клиновидное сечение, ремень наверняка будет проскальзывать и свистеть.

Другой возможный источник свиста — подшипники качения навесных агрегатов: генератора, водяного насоса, а на иномарках — еще и гидроусилителя руля или насоса кондиционера. Утратившие смазку подшипники «просвистят» недолго — вскоре они начнут издавать резкий визг, за которым последует их разрушение. Неисправные выявить несложно: достаточно снять ремень, приводящий данный агрегат, и пустить двигатель. Исчезновение свиста подскажет, что несмазанные подшипники, к примеру, помпы вы определили верно. Но этот способ проверки исключен для машин, у которых помпа приводится в действие зубчатым ремнем привода распредвала («Самара», «Ока», «Таврия», » Опель Кадет», » Фольксваген Гольф II» и др.). Износ подшипников здесь можно проверить, сняв ремень и провернув помпу за шкив рукой. Она должна проворачиваться легко и беззвучно.

Конструкция подшипников в большинстве такова, что без разборки агрегата пополнить смазку невозможно. Впрочем, снятый подшипник лучше заменить новым — он прослужит дольше старого со свежей смазкой.

А вот нетипичный случай. Проявившийся на двигателе «Запорожца» осенью, когда похолодало, свист пропал сам собой, когда заменили густое моторное масло на «жигулевское» всесезонное. Видимо, густая смазка не поступала к шариковому подшипнику балансирного механизма.

ЭТИ

«НЕПРАВИЛЬНЫЕ ПЧЕЛЫ»

Жужжание, зудящие звуки могут быть вызваны чересчур сильно натянутыми приводными ремнями навесных агрегатов. Опытные владельцы «самар» знают, что зубчатый ремень привода распредвала начинает прямо-таки реветь при перетяжке. На высокой ноте может выть и стартер, шестерня которого не вышла из зацепления с зубчатым венцом маховика. Обычно это кончается аварийной поломкой — «разносом» стартера. Обращаем внимание новичков и неопытных, выезжающих в путь с таким дефектом: в следующий раз вы уже не сможете пустить машину стартером.

И еще кое-что для «чайников». До сих пор можно услышать, что электровентилятор системы охлаждения включается в работу только при перегреве двигателя. Заверяем (хотелось бы верить, в последний раз), что это заблуждение и пугаться звука работающего пропеллера вовсе не стоит — если только он за время эксплуатации машины не стал издавать оглушительный вой или визг. В этом случае моторчик надо снять, чтобы отремонтировать или заменить.

Активно шуметь на ходу могут и близко расположенные, но не закрепленные жестко металлические детали: оболочки тросиков, тормозные трубки и топливопроводы, а иногда и просто утратившие крепеж части. Плохо закрепленная «защита» картера на любой из отечественных машин также может вибрировать и даже бренчать. Однажды на «Москвиче» «запела» крышка воздушного фильтра (открутилась гайка крепления) — словно под капотом бензопилу включили… На «тавриях» нередко «напевают» штампованный из металла или пластмассовый кожух плоскозубчатого ремня, а также металлическая облицовка передка.

КАНИСТРА?

ПОДВЕСКА?! КОЛЕНВАЛ??!

Запомните правило: какой бы неопасной или даже смешной ни казалась вам причина стука, не определив ее, не продолжайте движения. Не раз пугали нас пустые канистры, домкрат, насос, что-нибудь из инструментов, прыгающих по пустому багажнику, или запасное колесо, небрежно туда брошенное. Но иногда стук, приписанный канистре, оборачивался весьма серьезными неприятностями. Что бы вы сказали, например, по поводу ослабленного крепления бензобака, пусть он и заполнен едва на четверть?

Обнаружив причину стука, непременно устраните ее. Иногда, впрочем, диагностировать это непросто: на ходу стучит, а остановишься — «молчит». Особенно коварна подвеска — не у всякого водителя хватит сил так раскачать машину, как она сама себя раскачивает на неровной дороге. Представьте, что у вас плохо закреплен аккумулятор: на ходу он будет прямо-таки прыгать, но сколько бы вы ни качали стоящую машину за крыло, он даже не шелохнется. Кстати, стучит он глухо, можно и не уловить в общем шуме езды, но следить за его крепежом надо постоянно: вибрация и толчки не продлевают срок службы батареи.

Всем известно, что неисправные амортизаторы стучат. А вот автору довелось как-то больше двухсот километров проехать, пока он наконец обнаружил причину неприятного звонкого «молоточка» откуда-то спереди. «Виновата» была ослабленная гайка штока амортизатора (на «Таврии»). Покачивание кузова за крыло ничего не показало (и неудивительно), так что пришлось подвергнуть ревизии рычаги подвески, их сайлент-блоки, даже шаровую опору. Дефект обнаружился совершенно случайно… В другой раз ослабла затяжка обеих гаек передних ступиц. Этот стук не выявить даже энергичным покачиванием колеса в вертикальной плоскости — надо попытаться подтянуть гайку либо подергать за полуось (которую на переднеприводных машинах принято называть ШРУСом).

Трещины в деталях подвески, износ резинометаллических шарниров (сайлент-блоков) сначала проявляется скрипом и скрежетом. Заметив это, не доводите дело до полного их разрушения: трещину можно хотя бы временно заварить в любой придорожной мастерской, а сломанную деталь поскорее заменить.

УДАР,

ЕЩЕ УДАР…

Довольно частая причина стука (вернее сказать, грохота) из-под капота — разрушение одной из опор силового агрегата. В январском номере нынешнего года мы писали о замене «подушки» двигателя на «Мерседесе» («Жестко спать», стр. 121), а в этом номере — о последствиях разрушения правой опоры двигателя на VAZ 2108, 2109 («Самара» глазами механика», стр. 107). Есть и другие примеры. Владелец «Таврии» был озадачен странным стуком (вернее, ударом) при троганье автомобиля с места. Так проявилось отсоединение правой опоры двигателя от кузова: отклоняясь по инерции назад, мотор ударялся корпусом воздушного фильтра о щиток передка. Когда дефект, наконец, вскрылся, пришлось еще и помятую «кастрюлю» менять. А вот как проявило себя разрушение задней опоры силового агрегата на «Запорожце» (хотя, по сути, она является передней…) — при выжиме сцепления машина словно бы получала сильнейший «пинок под зад». Дефект устранили, подложив вместо штатной «подушки» толстое резиновое кольцо… от холодильника (амортизатор компрессора) — ничего, служит уже не одну сотню километров.

Наиболее серьезную опасность представляет стук работающего двигателя. В руководствах по эксплуатации отечественных автомобилей нередко подробно описывается, как распознать стук изношенных коренных или шатунных вкладышей, поршней, клапанного механизма и др. Не думаю, что средний автомобилист обязан четко различать стуки — достаточно помнить, что любой из них потенциально опасен.

Известно, что основной признак скорой кончины мотора — горение лампы аварийного давления масла на любом из режимов работы. Появившийся при этом отчетливый стук — уже не предупреждение, а требование немедленно остановиться и больше не пускать двигатель до разборки и ремонта. Многие покупались на том, что, немного остыв, двигатель начинал стучать менее отчетливо, даже сохранял подобие давления в масляной магистрали (лампочка-«масленка» иногда гасла). Как правило, за этим следовало разрушение или заклинивание деталей. Если же сразу прекратить попытки пуска и эксплуатации машины, можно немного сэкономить на ремонте.

Но бывают случаи, когда лампочка не горит, а посторонний звук в двигателе все же слышен. Что ж, есть в моторе детали, которые не «завязаны» напрямую на систему смазки. Встречаются, например, случаи ослабления крепления маховика. Поршни и клапанный механизм при износе также вряд ли «зажгут» лампочку, однако могут заявить о себе достаточно громко. Но это не надо путать с холодным («утренним») перестуком клапанов в двигателях, оборудованных гидрокомпенсаторами. Здесь после прогрева перестук обязан исчезнуть. Итак: в случаях появления стука одновременно с падением давления в системе смазки двигатель надо безоговорочно останавливать, а при сохранении давления можно еще некоторое время проехать — до ближайшего сервиса, где выяснить причину.

НАЙДЕТЕ —

СЭКОНОМИТЕ

Из нетривиальных случаев стука известны, например, такие. У владельца «Жигулей» расслоился ремень привода помпы и генератора. Образовавшийся «хвостик» звонко стучал о защиту картера. О неисправности водитель догадался лишь по мелким частицам резины, которыми покрылось подкапотное пространство, — а хотел уже было мотор разбирать. А один владелец «Запорожца», услышав стук мотора в пути, обнаружил, что с торца стержня одного из выпускных клапанов слетела «шапочка», отчего клапанный зазор вырос сразу в несколько раз. Но, несмотря на то, что клапан фактически перестал открываться, мотор почему-то не потерял в мощности и продолжал как ни в чем не бывало катить груженую машину со скоростью около 90 км/ч. Впрочем, водителю улыбнулась удача: злополучная «шапочка» не успела закупорить отверстие для стока масла из головки цилиндров в картер. Так, вовремя обратив внимание на стук из-под капота, удалось предотвратить действительно серьезные поломки и дорогостоящий ремонт.

Некоторые скажут: «Опять о „Запорожце“! А у меня „Форд“… Тем читателям, которые откладывают статью в сторону, если речь в ней идет не конкретно об их моделях, хотелось бы сказать: сходные узлы и детали есть на многих автомобилях, так что при желании нетрудно провести нужную аналогию.

…Весна на дворе. Все мы заждались ее и рвемся ездить, ездить, ездить. Счастливого пути! Но не забудьте, что он должен быть без стуков, скрипов, свистов.

Что значит «стучит» двигатель?

Предполагается, что двигатель внутреннего сгорания работает без сбоев от пуска до выключения. Иногда двигатель издает шумы, которые трудно диагностировать. Иногда, когда вы слышите странный звук, исходящий из-под капюшона, вы можете не знать, что делать. Стук — это наиболее типичный шум двигателя, указывающий на механическую проблему, которую можно устранить при правильной и своевременной диагностике.

Ниже приведены некоторые факты о том, почему двигатель стучит, и что можно сделать для решения этих проблем.

Что такое стук двигателя?

Стук в вашем двигателе, также называемый пингом, может означать одну из нескольких проблем. Некоторые из них могут быть легко устранены, в то время как другие могут указывать на серьезные повреждения. Детонационный звук часто возникает при неправильной топливовоздушной смеси, в результате чего топливо сгорает в неровных карманах, а не равномерно. При отсутствии лечения это может вызвать повреждение поршня и стенки цилиндра. Стук также может быть вызван недостатком смазки в верхней части головки блока цилиндров.Обычно это тикающий звук, создаваемый плохо закрепленными клапанами и подъемниками или недостаточным количеством масла.

Как правило, наиболее частая причина детонации двигателя связана со способностью двигателя работать эффективно. Ниже перечислены 3 распространенных причины детонации в системе зажигания и топливе.

1. Топливо с низким октановым числом

Если вы залите топливо с октановым числом, слишком низким для вашего автомобиля, это может вызвать детонацию. Октановое число — это мера способности типа топлива противостоять преждевременной детонации топливовоздушной смеси в двигателе.Горение вызывает слышимый вами звук «стука» или «звона».

Чтобы этого не произошло, используйте бензин с октановым числом не ниже рекомендованного производителем. Бустер октанового числа, который можно купить в магазине автозапчастей, может помочь восстановить правильное октановое число и остановить детонацию.

2. Отложения углерода ограничивают эффективное сжигание топлива

Топливо для транспортных средств должно содержать моющее средство для очистки угля, но оно не может предотвратить образование нагара.Когда топливо смешивается с кислородом, оно сжигается. Поскольку бензин и дизельное топливо состоят из нескольких молекул углерода, остаточный углерод образуется на клапанах, свечах зажигания и других компонентах, участвующих в процессе сгорания. Это уменьшает объем внутри цилиндра и увеличивает степень сжатия.

В большинстве случаев эту проблему можно решить с помощью специального очистителя топливных форсунок или присадки, предназначенной для удаления нагара на деталях двигателя.

3. Неправильные свечи зажигания или неправильный зазор свечи зажигания

Использование свечей зажигания, отличных от рекомендованных производителем, может вызвать слышимый вами стук.Свеча зажигания имеет определенный тепловой диапазон, что означает, что она забирает тепло из камеры сгорания. Использование неправильной детали может помешать ее правильной работе. Также часто возникает детонация двигателя, когда зазор свечи зажигания установлен неправильно.

Зазор свечи зажигания — это место, где свеча зажигания воспламеняет топливовоздушную смесь, которая помогает двигать автомобиль. Слишком узкий зазор создает искру, слишком слабую для выполнения этой задачи, а слишком широкий зазор может вообще остановить искру или привести к быстрому пропуску зажигания.

Устранение таких проблем с детонацией двигателя обычно довольно просто, и большинство владельцев автомобилей могут это сделать сами. В других случаях было бы разумно обратиться к профессиональному технику, чтобы правильно диагностировать источник детонации и порекомендовать правильный ремонт.

Стук, стук… Стучит ли ваш двигатель? — Beckley Automotive Services

Если бы каждый мог позволить себе водить новую машину, то, скорее всего, так бы и поступил. Услышать новый, идеально настроенный двигатель — это почти волшебный звук (даже если вы не механик). Но реальность такова, что вы не сможете менять машину так часто, как хотите. Это означает, что ваш автомобиль обязательно должен пробежать несколько миль, испытать некоторый износ и нуждаться в регулярном техническом обслуживании.

Так что же происходит, когда вы заводите машину и слышите стук из-под капота? Вы игнорируете это и продолжаете ездить, надеясь, что он уйдет? Вы открываете капот и пытаетесь определить, откуда исходит стук? Или вы сразу же отвезете машину в магазин?

Хотя мы предпочитаем последнее, иногда может помочь простота изменения стиля вождения и обслуживания автомобиля.

3 способа устранения детонации двигателя

Стук двигателя — нечего игнорировать. Обычно это вызвано плохой смесью топлива и воздуха, необходимых для работы двигателя. Когда бензин в вашем двигателе горит неравномерно, он создает своего рода ударную волну «POP», которая издает звук стука. Эксплуатируйте машину очень долго с такой проблемой, и это может привести к серьезному повреждению двигателя.

Хорошая новость в том, что в некоторых случаях проблему можно легко решить. Вот три вещи, которые мы рекомендуем, если вы слышите стук двигателя.

  1. Залейте неэтилированный бензин высшего качества. Типичный низкосортный и дешевый бензин в насосе может быть проблемой. Если вы обычно используете этот тип газа, в следующий раз долейте неэтилированный бензин высшего качества. Топливо с более высоким октановым числом часто может помочь устранить детонацию в двигателе.
  1. Добавьте моющее средство в топливо. Залейте моющее средство в посудомоечную или стиральную машину, оно поможет очистить посуду и одежду. Точно так же действует моющее средство для топлива. В состав большинства бензинов входит моющее средство, но если двигатель стучит, вам может понадобиться что-нибудь посильнее.Это похоже на использование моющего средства для удаления пятен, когда вы хотите удалить с одежды пятна от травы или жира. Добавление правильного моющего средства в топливо может помочь удалить отложения углерода, которое могло быть частью проблемы детонации.
  1. Заменить свечи зажигания . Если ваш автомобиль когда-либо обслуживался, возможно, оригинальные свечи зажигания были заменены на неподходящие. Они все еще могут стрелять, но не так, как должны. Установка правильных свечей зажигания для вашего автомобиля часто помогает заглушить стук.

Это несколько основных способов самостоятельной работы, которые следует учитывать, если вы слышите стук двигателя. Устраните неисправность самостоятельно или принесите на осмотр. Устранение источника стучащего звука двигателя раньше, чем позже, может сэкономить ваше время и деньги.

Beckley Imports работает на всех марках и моделях автомобилей. От BMW до Ford и всего остального. Если стук или другие странные звуки начинают беспокоить вас, позвоните нашей команде профессиональных техников по телефону 515-243-8185 или щелкните здесь, чтобы запланировать обслуживание вашего автомобиля .После более чем 30 лет работы в отрасли мы совершенно уверены, что сможем решить эту проблему и быстро вернуть вас в путь.

Почему у меня стучит двигатель? 3 Возможные объяснения. — Блог AMSOIL

Существует несколько различных причин, по которым ваш двигатель может издавать стук, тиканье или свистящий звук. Давайте разберем каждую из них и поговорим о том, что может происходить.

Это звук, тик или гудок двигателя?

Стук одного водителя , тик другого водителя .Или пинг . Третьи сравнивают звук стука двигателя, который они слышат, с шариками, катящимися внутри банки из-под кофе.

Самовозгорание воздуха / топлива внутри цилиндров является частым источником детонации в двигателе.

Хотя описание звука может отличаться, обстоятельства, при которых он возникает, часто одинаковы — низкая скорость и высокий крутящий момент обычно возникают при ускорении.

Детонация в двигателе обычно возникает на низких оборотах с высоким крутящим моментом, например, при ускорении.

Как происходит детонация в двигателе

Предположим, часы пробили 5:00, и вы пролетаете мимо своего грузовика и отправляетесь домой. Когда вы выезжаете на стоянку, вы слышите стук двигателя. Или пинг. Когда вы отпускаете газ, он уходит.

Вероятно, это произошло из-за преждевременного воспламенения или детонации. По сути, это одно и то же явление, но происходит в разное время.

В правильно работающем двигателе искровое зажигание обычно происходит за несколько градусов до того, как поршень достигнет верхней мертвой точки (ВМТ). Такой тщательный расчет времени гарантирует, что направленная вниз сила взрывающейся топливно-воздушной смеси работает в тандеме с направленным вниз импульсом поршня, что приводит к оптимальной эффективности и мощности.

Плохое время

Pre-ignition (и его родственник, low-speed pre-ignition [LSPI]) представляют собой аномальные события сгорания, которые нарушают этот точный баланс. При определенных условиях топливо / воздух может самовоспламеняться слишком рано в цикле сгорания. Иногда виновато низкооктановое топливо; иногда это налет на днище поршня.

Топливо со слишком низким октановым числом для вашего двигателя может спорадически воспламениться до того, как поршень достигнет ВМТ.

Или куски углерода могут нагреваться и создавать горячую точку, которая эффективно воспламеняет топливо / воздух до того, как загорится свеча. Затем, когда свеча действительно срабатывает через долю секунды, два фронта пламени сталкиваются. В определенных условиях они могут столкнуться с движущимся вверх поршнем. Возникающая в результате ударная волна сотрясает поршень внутри цилиндра, создавая слышимый вами звук стука, звона или мраморной плитки.

Детонация имеет тот же эффект, за исключением того, что она происходит после срабатывания свечи.

Компьютеры в современных транспортных средствах могут определять детонацию в двигателе и компенсировать ее, регулируя синхронизацию двигателя. Хотя это спасает ваш двигатель от разрушения, производительность и экономия топлива могут пострадать.

Тик, тик, тик

Допустим, ваш двигатель тикает как бомба замедленного действия, особенно утром, когда холодно. Вероятно, у вас проблема с клапанным механизмом.

Ваш двигатель использует впускные клапаны для подачи чистого воздуха в цилиндры и выпускные клапаны для удаления отработанных газов сгорания.Клапаны открываются и закрываются тысячи раз в минуту в организованном вихре активности.

Точно сбалансированная система деталей — коромысла, стержни клапанов, кулачки, подъемники — контролирует их движения. Зазоры между этими частями, известные как lash , могут становиться неплотными (или sloppy в автомобильной номенклатуре). Когда это происходит, все эти движущиеся части, стучащие друг о друга, могут издавать тикающий звук.

Это особенно заметно утром, когда масло еще не успело циркулировать в верхней части двигателя.

Во многих двигателях используются гидравлические подъемники, в которых используются поршень и пружина, работающие под давлением масла, для компенсации зазора, помогая гарантировать плавную и тихую работу системы.

Надлежащее давление масла играет большую роль в работе клапанного механизма и шума. Низкое давление масла может снизить эффективность гидравлических подъемников, увеличивая зазор. Скорее всего, это произойдет с обычным маслом низкого качества, которое разжижается при высоких температурах, не позволяя двигателю развивать хорошее давление масла.

Если штанги выбивают…

Стук штанги — еще одно возможное объяснение звука стука двигателя.

В вашем двигателе предусмотрен заданный зазор между шейками коленчатого вала и шатунами. В правильно работающем двигателе, использующем хорошее масло, моторное масло заполняет эти зазоры и предотвращает контакт металла с металлом.

Но, допустим, вы использовали некачественное обычное масло.

При высоких температурах масло истончается, а пленка жидкости ослабевает.Давление между шейками кривошипа и шатунами выдавливает масло из зазоров. Теперь металл скользит по металлу, стирая поверхности и увеличивая зазоры. В конце концов зазоры увеличиваются настолько, что вы начинаете слышать стук металлических поверхностей друг о друга. В конце концов, они свалятся вместе и разрушат двигатель.

Уменьшение шума при работе двигателя

Звучит ужасно. Но иногда вы можете решить проблему преждевременного зажигания, используя газ с более высоким октановым числом или очистив двигатель от отложений с помощью очистителя топливной системы, такого как AMSOIL P. я. Улучшитель производительности.

Использование более качественного масла, которое лучше течет в холодную погоду и сохраняет свою вязкость в горячем состоянии, иногда может успокоить тикание клапана.

Удар по стержню — худший из трех. После того, как зазоры между шейками кривошипа и шатунами увеличились из-за износа, катастрофическое повреждение станет лишь вопросом времени.

В любом случае посетите своего механика и решите проблему, пока она не усугубилась.

Итог…

Мораль этой истории состоит в том, чтобы просто заплатить немного больше сейчас за обслуживание вашего автомобиля, а не тратить много времени на его ремонт.

Используйте высококачественное масло, которое выдерживает экстремальные температуры и поддерживает правильное давление масла. Периодически очищайте отложения в камере сгорания топливной присадкой, такой как AMSOIL P.i.

Это поможет вашему автомобилю работать исправно и тихо в течение многих лет.

Обновлено. Первоначально опубликовано: 2 июня 2017 г. .

Много шума: правда о причинах стука в двигателе | Гиды по покупкам

Двигатели издают много разных шумов, но именно стук часто утомляет водителей и заставляет их приходить к дорогостоящему механику.Однако детонация в двигателе — это нечто большее, чем возможный отказ двигателя, и то, что шум звучит ужасно, не всегда означает, что это так. Вот правда о том, что вызывает детонацию в двигателе, а также несколько простых способов ее устранения.

Что означает стук двигателя?

Вам нужно выложить деньги за полную перестройку двигателя или просто профинансировать небольшой ремонт? Трудно понять, когда ваш двигатель начинает стучать, серьезная проблема это или незначительное раздражение.Обычно стук двигателя означает, что машине нужно немного внимания. Но потребуется небольшое исследование, чтобы определить, решит ли это простое решение или капитальный ремонт двигателя.

Типы стуков в двигателе

Одиночный громкий стук может означать, что что-то просто взорвалось под капотом. Но когда это непрерывный регулярный шум без видимого источника, иногда бывает трудно различить, какой тип удара вы испытываете.

Детонационный стук — это когда что-то взрывается или треснет под капотом.Детонационный стук может даже звучать как оторвавшаяся деталь — что тоже возможно. После этого вы можете обнаружить, что ваш автомобиль умирает или начинает издавать другие типы шума. В этом случае очень важно остановиться и все проверить как можно скорее и безопасно.

С другой стороны, стук коленчатого вала имеет тенденцию происходить, когда вы ускоряетесь или особенно сильно работаете с двигателем. Шум клапанного механизма может проявляться как щелчки или стук, и обычно это происходит на более низких скоростях, но исчезает при ускорении.

Шум поршневых колец часто звучит как стук или звон — металлический звук — и может происходить при сломанных поршневых кольцах, низком натяжении или даже изношенных стенках цилиндра.

Но помимо этих специфических типов ударов, которые могут указывать на необходимость значительного ремонта, есть также незначительные удары, которые со временем возникают и становятся все более и более заметными. Во многих случаях вы можете не заметить стук, пока пассажир не упомянет о нем, просто потому, что вы привыкли к шуму.

К счастью, этот тип детонации обычно не является аварийным. Но все же важно понимать, что вызывает детонацию в двигателе и как это исправить.

Почему возникает стук двигателя

Вы едете по шоссе, как вдруг двигатель вашего пикапа начинает стучать. Вы предполагаете, что проверка просрочена, или решаете, что, вероятно, пришло время обменять ее? Или, может быть, вы думаете, что ваш двигатель восстает против некачественного топлива, которое вы только что купили? Ответ: это могло быть что угодно.

Пропуск регулярного обслуживания

В зависимости от типа детонации в двигателе (будь то настоящий удар металла по металлу или просто звенящий звук), это может быть связано с пропуском регулярного обслуживания. Если это недавно приобретенный автомобиль (новый или подержанный), возможно, техническое обслуживание не всегда проводилось по графику.

Проверка отчета об истории автомобиля перед покупкой обычно показывает, проводилось ли регулярное техническое обслуживание. Но, к сожалению, вы не всегда знаете точную историю своего автомобиля или, может быть, вы владелец, пренебрегавший стандартным обслуживанием.

В любом случае пропуск регулярного технического обслуживания может привести к тому, что сломанные или незакрепленные детали выскочат в моторный отсек. Конечно, это не единственная причина детонации двигателя — всего лишь одно возможное объяснение.

Как это исправить:

Стук двигателя из-за отсутствия регулярного технического обслуживания чаще встречается в старых автомобилях, но часто может помочь поездка в ремонтную мастерскую. Затраты, связанные с ремонтом транспортных средств, сильно различаются, но регулярное обслуживание часто бывает более доступным, чем полная перестройка двигателя или другие радикальные меры из-за пренебрежения.

Низкокачественное топливо

Некоторые водители полагают, что более дорогое топливо — это мошенничество и что все топливо соответствует минимальным стандартам, поэтому подойдет любой тип. Но для некоторых автомобилей качество топлива может существенно повлиять на нормальную работу.

Двигатели высокого давления (и часто более сложные) требуют топлива с более высоким октановым числом, поэтому пропуск этой рекомендации в пользу экономии денег на насосе приводит только к детонации и счетам за ремонт позже. Высокопроизводительному двигателю требуется топливо с более высоким октановым числом, чтобы избежать преждевременного воспламенения топлива до того, как это сделает свеча зажигания.

Как это исправить:

Если производитель транспортного средства говорит, что нужно выбирать более качественное топливо, это один из способов уменьшить детонацию в двигателе вашего высокопроизводительного автомобиля. Даже в обычных легковых и грузовых автомобилях — не обязательно в моделях высшего класса — использование топлива более высокого качества может помочь продлить срок службы двигателя.

Также примите во внимание тип топлива, которое вы покупаете, и наличие в формуле присадок. Если вы заметили, что ваш двигатель стучит после заправки топливом с определенной заправки или определенной марки бензина, это стоит отметить.

Отложения в двигателе

Еще одним вредным побочным эффектом дешевого или некачественного топлива является то, что оно может оставлять наросты внутри стенок цилиндров вашего двигателя. Отложения блокируют нормальную работу двигателя, забивают быстродействующие каналы и повышают компрессию. Подобные блокировки могут вызвать детонацию, в основном из-за повышения давления, и даже могут привести к полному отказу двигателя, если вы не решите проблему.

Как это исправить:

После того, как вы убедитесь, что отложения в двигателе или накопление нагара являются причиной необычных шумов в вашем двигателе, тщательная очистка может помочь устранить стук.Удаление нагара и других отложений, будь то добавка для автомобильного магазина или физическая очистка, может оказаться возможным даже при минимальном бюджете.

Несовместимые свечи зажигания

Использование неподходящих свечей зажигания также может вызвать детонацию в двигателе, поскольку неправильная установка может снизить производительность. Двигатели — это точные машины, а это означает, что вы не можете заменить свечу зажигания на опцию вторичного рынка, которая подходит почти , потому что производительность, вероятно, пострадает.

Как это исправить:

Используйте правильные свечи зажигания — согласно производителю — даже если они более дорогие, и вы, вероятно, увидите, что стук прекращается.Даже если свечи зажигания стандартные, все равно подумайте о том, чтобы проверить их. Вы должны заменять свечи зажигания примерно каждые 30 000 миль, и если они прослужили дольше, их нужно заменить.

Другие решения для детонации двигателя

Если ваш двигатель работает примерно в целом, но это не внезапная или новая проблема, подумайте о некоторых альтернативных шагах по устранению шума. По мнению экспертов, использование топлива с более высоким октановым числом всегда является благом для вашего двигателя, так что это разумный (хотя и дорогой) первый шаг.

Вам также следует подумать об использовании присадки в бензобак, чтобы предотвратить накопление и очистить неприятные отложения. Топливные присадки обычно доступны в магазинах автозапчастей и не очень дороги, особенно если более чистое топливо помогает избежать визита к механику.

Регулярное техническое обслуживание автомобиля — еще одно решение, которое рекомендуется делать независимо от возраста или состояния вашего автомобиля. Стандартная замена масла, многоточечные проверки, замена фильтров и проверка шлангов могут гарантировать, что ваш автомобиль будет работать (без детонации) в течение многих лет.

Затраты, связанные с прекращением детонации в двигателе

Если ваш автомобиль более старый и начинает стучать в двигателе, вы можете подумать, что пора покупать новый автомобиль. К счастью, приняв вышеуказанные меры, вы часто можете решить проблему, не отправляясь на стоянку подержанных автомобилей.

Однако даже «новый» подержанный автомобиль может иметь детонацию в двигателе и связанные с этим проблемы. Стоимость подержанных автомобилей зависит от рыночных условий, спроса и целого ряда других факторов, поэтому даже автомобиль по разумной цене может все еще нуждаться в техническом обслуживании для бесперебойной работы с партией.

В целом профилактическое обслуживание намного более доступно, чем экстренное придорожное обслуживание и ремонт в магазине. Рассмотрим разницу между разумной заменой масла за 50 долларов и совершенно новым двигателем для вашего редкого Ford или запасными частями для дизельных грузовиков Ram.

Все, что вам нужно знать! ❤️ Покупатель наличных денег

Чтобы определить, что вызывает детонацию в двигателе вашего автомобиля, вам нужно сначала выяснить, что такое детонация в двигателе, как определить детонацию, как предсказать, что детонация может произойти, и как контролировать детонацию в будущем.К сожалению, детонация в двигателе может означать одну из нескольких различных проблем. К счастью для вас, мы здесь, чтобы помочь вам выяснить причину проблемы, признаки проблемы и способы ее устранения. Давайте углубимся в настоящие подробности о детонации двигателя вашего автомобиля.

Авторемонт ДОРОГО


Прежде всего — что такое детонация двигателя?

Детонация, также известная под другими названиями, как детонация, искровой стук или звон, в двигателях внутреннего сгорания с искровым зажиганием, это происходит, когда сгорание некоторой части смеси воздуха и топлива не вызывает пламени или искры в свече зажигания. но вместо этого за пределами обычного механизма сгорания взрывается карман из смеси воздуха и топлива — опасная и смертельная комбинация.

Топливно-воздушная смесь в вашем автомобиле — это массовое отношение воздуха к твердому, жидкому или газообразному топливу, которое присутствует в процессе сгорания. Возгорание может происходить в незначительной степени, например, внутреннее сгорание, или может привести к взрыву, что плохо для вас и вашего автомобиля.

Предполагается, что эта драгоценная смесь в вашем автомобиле воспламеняется от свечи зажигания и только в одной определенной точке во время хода поршня, но иногда это может иметь неприятные последствия.Стук часто возникает, когда высота процесса сгорания не достигается в нужное время в течение четырехтактного цикла, то есть когда поршень совершает четыре отдельных хода при вращении коленчатого вала.

Затем эта ударная волна создает «стук», который, в свою очередь, приводит к удачно названному стуку двигателя. Этот звук вызывает резкое повышение давления, вызывая различные проблемы с вашим автомобилем, минимальные или чрезвычайно разрушительные.

Итак, что такое ненормальное сгорание в моей машине? Как я узнаю, что это стук двигателя?

Если смесь топлива и воздуха подвергается воздействию тепла и давления в правильном сочетании, это может привести к взрыву или детонации.Детонация — это когда взрывное воспламенение одного или нескольких карманов с воздухом и топливом происходит за пределами фронта пламени, создавая ударную волну и увеличивая давление в цилиндре.

Если эта опасная детонация продолжает происходить в различных условиях и происходит много раз, детали двигателя могут быть серьезно повреждены и разрушены, что приведет к необходимому ремонту и замене. Такими эффектами могут быть эрозия, расплавленные отверстия в поршне или головке блока цилиндров или утечка продуктов сгорания в масляную систему.

Детонацию можно предотвратить, следуя некоторым полезным методам, которые должны знать все автовладельцы о детонации в двигателе. Попробуйте использовать один из этих методов, уменьшив пиковое давление в цилиндре, уменьшив давление в коллекторе, снизив нагрузку на двигатель, используя топливо с высоким октановым числом и улучшив соотношение воздуха и топлива, что может снизить давление и температуру сгорания.

Основные причины детонации двигателя

Стук в двигателе может быть вызван многими причинами в вашем автомобиле.Однако есть несколько основных причин, которые вы должны рассмотреть, прежде чем пытаться диагностировать свой автомобиль.

Низкое октановое число

Во-первых, топливо в вашем автомобиле может иметь низкое октановое число. Октановое число — это стандартная мера производительности двигателя или бензина, при этом более высокое октановое число является лучшим числом для вашего автомобиля. Производители обычно рекомендуют как минимум определенное количество октанового числа для достижения высоких характеристик в вашем автомобиле — если вы не укажете это число, ваш автомобиль не будет работать плавно.

Если вы используете бензин со слишком низким октановым числом, то вы можете повысить уровень бензина, добавив бустер с октановым числом. Если вы не используете топливо, подходящее для вашего автомобиля, преждевременное сгорание топливовоздушной смеси может вызвать стук двигателя в вашем сердце.

Углеродные отложения

Во-вторых, следующей основной причиной детонации в двигателе является отложение нагара на стенках цилиндров. Все виды топлива, которые вы можете использовать в Соединенных Штатах, обычно должны содержать определенный уровень моющего средства, обеспечивающего отсутствие прилипания углерода.Хотя это закон, некоторые магазины не выполняют это требование, что означает, что на ваших цилиндрах могут образовываться отложения, а объем цилиндра уменьшается, вызывая детонацию в двигателе.

Чтобы исправить это, попробуйте добавить моющие присадки в магазин автозапчастей и попробуйте сменить топливо, которое вы обычно выпускаете. В большинстве случаев использование определенного очистителя топливных форсунок или присадки, специально разработанной для очистки углеродных отложений на стенках цилиндров на компонентах двигателя, может помочь решить эту проблему с течением времени и является относительно недорогим способом помочь спасти ваш автомобиль.

ГРМ

В-третьих, синхронизация двигателя имеет решающее значение для срока службы свечи зажигания и предотвращения детонации в двигателе. Синхронизация двигателя определяет, с какой скоростью зажигаются свечи зажигания в вашем автомобиле. Если это неправильно контролируется компьютером автомобиля, это может вызвать детонацию в цилиндре и привести к детонации в двигателе, поскольку искра не зажигается, как должна.

Зазор свечи зажигания — это место, где свеча зажигания объединяет воздух и топливную смесь, которая помогает управлять автомобилем и приводит в действие двигатель.Если этот зазор между свечами зажигания окажется слишком узким, это может создать искру, недостаточно мощную для выполнения задачи, а слишком большой зазор может помешать искре вообще загореться, что приведет к быстрому пропуску зажигания. .

Проблемы с датчиком

В-четвертых, в вашем автомобиле могут быть проблемы с датчиками кислорода, топливными форсунками, топливными насосами или датчиком воздушного потока, что может привести к детонации двигателя из-за обедненной смеси воздуха и топлива в двигателе. «Бедная» топливно-воздушная смесь означает, что в смеси газа и жидкости слишком много воздуха и недостаточно топлива, а это означает, что без достаточного количества топлива смесь не сможет гореть с правильной скоростью и допускает множественные детонации — вызывая детонацию в двигателе.

Плохой датчик детонации

В-пятых, в вашем автомобиле может быть неисправный датчик детонации, поскольку эта проблема обычно не характерна для большинства современных автомобилей по другой причине. S В современных автомобилях с более высокими технологиями соотношение воздуха и топлива, топливные форсунки и синхронизация все искры управляются компьютером, что не оставляет места для ошибки. На современных автомобилях используется даже датчик детонации, который должен обнаруживать детонацию в двигателе и предупреждать блок управления двигателем, чтобы он мог почти сразу устранить проблему в вашем автомобиле.Однако, если у вас есть детонация в двигателе более новой машины, это может означать, что ваш датчик детонации неисправен.

Штанга Rock

В-шестых, в вашей машине также может быть удар по штоку. Это тип детонации двигателя, который возникает, когда поршни перемещаются вверх и вниз по двигателю, передавая мощность на колеса, позволяя подшипникам штока обеспечивать плавное движение поршня — но, к сожалению, эти подшипники штока и поршни изнашиваются со временем. Поскольку подшипники изнашивают коленчатый вал, звук может напоминать стук двигателя, а это означает, что вам может потребоваться новый коленчатый вал, а ремонт может оказаться очень дорогостоящим.

Нерабочие натяжители ремня

В-седьмых, у вас могут быть неисправные натяжители ремня и шкивы, вызывающие стук двигателя в вашем автомобиле. Хотя это детонация охлаждаемого двигателя, проблема может быть вовсе не в самом двигателе, а в дополнительном ремне. Этот ремень — основная часть двигателя, которая вращается во время работы двигателя и соединяется с различными шкивами. Для того, чтобы этот ремень работал плавно, он должен находиться под правильным натяжением, а это означает, что если он станет слишком растянутым со временем, он может деформироваться и повредить шкивы, вызывая щелчки и дребезжащий звук, которые часто могут быть думал как стук двигателя.

Неправильные свечи зажигания

Наконец, основная причина детонации в двигателе заключается в том, что в вашем автомобиле установлены свечи зажигания, не соответствующие марке и модели. Производители имеют определенный уровень свечей зажигания, которые рекомендуются для каждого отдельного автомобиля, поэтому, если свеча зажигания неправильная, свеча может не выполнять свою работу по отбору тепла из камеры сгорания.

Как определить детонацию в двигателе?

Многие двигатели современных автомобилей теперь содержат различные технологии и механизмы, которые могут обнаруживать детонацию в двигателе или изменять давление в зависимости от того, что вам нужно сделать, и могут улучшить производительность и снизить риск детонации двигателя при работе на низкооктановом топливе.

Примером одной из этих систем является система автоматического управления производительностью в двигателях Saab, которая была первой системой контроля детонации и наддува двигателя, которая была введена для всех двигателей Saab H в 1982 году.

Используются и другие устройства мониторинга, например тюнеры, чтобы прослушивать и видеть, находится ли автомобиль под безопасной нагрузкой, предотвращая детонацию в двигателе.

Как я могу предсказать детонацию в двигателе?

Поскольку вы действительно хотите избежать детонации в двигателе, чтобы продлить срок службы вашего автомобиля и обеспечить его безопасную работу, были разработаны различные технологии, которые могут идентифицировать определенные типы или конструкции двигателей, которые в большей степени связаны с детонацией двигателя, чем другие варианты.

Поскольку начало детонации в двигателе чувствительно к давлению в цилиндре, температуре и химическому составу, связанным с составом воздуха и топлива в камерах сгорания, существуют определенные модели, которые могут определить лучшие методы работы для этих конкретных технологий.

Как я могу контролировать детонацию в двигателе?

Основной метод предотвращения детонации в двигателе вашего автомобиля — это попытаться защитить двигатель от детонации и максимизировать выходной крутящий момент, тем самым не влияя на производительность, не подвергая риску себя и свой автомобиль.К сожалению, удары научного двигателя случайны и не зависят от других ситуаций, их трудно контролировать и определять лучшие методы для обеспечения повторяемого результата предотвращения.

Как исправить стук двигателя?

Несмотря на то, что детонация в двигателе — не самая простая проблема, которую можно решить на вашем автомобиле, есть несколько общих решений, которые могут облегчить или устранить проблемы со стуком.

Во-первых, может потребоваться замена ремня ГРМ.Большинство современных автомобилей — это четырехцилиндровые автомобили, в которых используется резиновый ремень для управления синхронизацией двигателя и зажигания. Как мы знаем, для правильной работы ремень должен иметь правильное натяжение. Попробуйте заменять ремень привода ГРМ через рекомендуемые интервалы для вашего конкретного автомобиля, чтобы убедиться, что он не растягивается, и снова выровнять все правильно в вашем автомобиле. Замена ремня ГРМ — один из самых дорогих ремонтов автомобиля при текущем ремонте автомобиля. Средняя цена замены составляет от 500 до 2000 долларов.

Во-вторых, вам может потребоваться сменить топливо, которое вы используете. Детонация двигателя, связанная с топливом, возникает из-за того, что топливо, которое вы используете, не имеет октанового числа, подходящего для вашего автомобиля, поэтому вам может потребоваться более высокий уровень октанового числа и переключиться на топливо премиум-класса, прежде чем ваш автомобиль взорвется.

В-третьих, вам, возможно, придется заменить подшипники двигателя в вашем автомобиле, что потребует от вас посещения автомобильного магазина, чтобы получить опыт у квалифицированного специалиста.Механику потребуется отрегулировать подшипники, которые сместились из-за вибрации двигателя, поэтому лучше оставить это решение профессионалу.

Наконец, вам может потребоваться замена кривошипа двигателя. Это одна из наиболее распространенных механических причин, по которым ваш таймер может сбиться, вызывая стук двигателя. Сломанный кривошип не позволяет поршням срабатывать в нужное время, что приводит к множеству проблем в вашем автомобиле, таких как неисправные подшипники, вторичные взрывы и другие, еще более опасные проблемы.Как и подшипники, это интенсивный ремонт, поэтому для этого вам нужно обратиться в профессиональный магазин.

Вот и все! Теперь вы знаете, что такое детонация в двигателе, как определить детонацию в двигателе вашего автомобиля, признаки детонации в двигателе и процесс ненормального сгорания, основные причины детонации в двигателе и шаги по устранению детонации в двигателе.

Зная, как определить, страдает ли ваш автомобиль от детонации двигателя, и зная правильные шаги по его устранению, вы можете сэкономить тысячи долларов на ремонте или спасти свою жизнь и жизнь других людей в вашем автомобиле.

Детонация в двигателе

— определение, причины и способы устранения

Определение детонации в двигателе

Для целей этой статьи мы будем говорить конкретно о детонации искры, которая вызывается преждевременным зажиганием (воспламенение смеси до искры). зажигание свечи) или детонация (самовозгорание оставшейся топливно-воздушной смеси в камере). Посмотрите это видео с F-150 для примера искрового детонации.

Причины искрового детонации

  1. Низкооктановое топливо
  2. Накопление углерода в камере сгорания
  3. Обедненная топливно-воздушная смесь
  4. Опережение опережения зажигания
  5. Неправильные свечи зажигания
  6. Слишком высокая температура сгорания
  7. Неисправный детонаж Датчик

Как исправить детонацию в двигателе

Первый шаг к решению этой проблемы — выяснить, почему именно двигатель стучит.Первый вопрос, который нужно задать: когда это началось? Вы недавно перешли на новую заправку, изменили октановое число топлива или заметили, что это началось сразу после того, как вы залили бак? Если вы сказали «да», проверьте номер один. У вашей машины большой пробег? Если так, посмотрите номер два. Вы недавно работали в магазине? Если да, то посмотрите числа от трех до пяти. Эти вопросы могут помочь сузить круг вопросов, почему двигатель начал стучать, и тогда мы сможем выяснить, как это исправить.В этой статье мы разберем различные причины искрового детонации и способы их устранения.

Низкооктановое топливо

Прежде всего, давайте рассмотрим октановое число топлива. Что такое октановое число? Что ж, fueleconomy.gov утверждает: «Октановое число — это мера способности топлива противостоять« детонации »или« звону »во время сгорания, вызванным преждевременной детонацией топливно-воздушной смеси в двигателе. В США неэтилированный бензин обычно имеет октановое число 87 (обычный), 88–90 (средний) и 91–94 (премиум) ».Большинство автомобилей работают на обычном топливе с октановым числом 87. Он доступен по цене и отлично справляется со своей задачей, но для многих дорогих, роскошных и спортивных автомобилей требуется более высокое октановое число. (Обратитесь к руководству по эксплуатации, чтобы узнать точное октановое число, для которого предназначен ваш конкретный автомобиль.) Причина этого в том, что они используют двигатели с более высокой степенью сжатия, которые вырабатывают больше лошадиных сил. Компромисс заключается в том, что эти двигатели требуют топлива с более высоким октановым числом, чтобы избежать детонации. Если у вас есть один из этих автомобилей, для которого требуется топливо среднего или премиум-класса, и вместо этого вы используете обычное топливо, это определенно может вызвать детонацию.

Как исправить топливо с низким октановым числом

Если вы уже залили в машину топливо с обычным октановым числом, в качестве временного решения вы можете добавить бустер октанового числа в свой текущий бак. (Их легко найти в вашем местном магазине автозапчастей.) Это повысит октановое число установленного в данный момент топлива до лучшего диапазона, что позволит вам вести автомобиль до тех пор, пока бак не станет почти пустым, а затем заправляться топливом надлежащего номинала.

Накопление углерода в камере сгорания

Далее идет накопление углерода; это обычно присутствует только в автомобилях с большим пробегом, но может появиться раньше из-за низкого качества топлива.Что вызывает накопление углерода? Это один из обычных побочных продуктов сгорания — этот углерод образуется в верхней части поршня и в камере сгорания. Ознакомьтесь с этими фотографиями скопления углерода для пояснения. Проблема с подобным наростом заключается в том, что он увеличивает степень сжатия, уменьшая пространство внутри цилиндра.

Как исправить скопление углерода

Есть несколько способов исправить это. Самый экономичный способ — добавить в топливный бак «заливную» топливную присадку.Эти типы чистящих средств очень просты в использовании. В вашем местном магазине автозапчастей можно будет выбрать из различных марок, и вы просто следуете указаниям на бутылке и заливаете ее в топливный бак. В зависимости от того, насколько сильно накоплен углерод, этот метод может потребовать обработки двух или более топливных баков, прежде чем вы увидите результаты. Следующий вариант — очистка верхнего воздухозаборника. Эта услуга обычно выполняется в магазине и включает в себя впрыскивание очистителя либо через топливные форсунки, либо через впускной коллектор с помощью специального инструмента, предназначенного для этого.Этот метод дает гораздо более быстрые результаты, но он стоит дороже, чем несколько обработок топливом.

Обедненная воздушно-топливная смесь

Перво-наперво с обедненной топливной смесью у вас может загореться индикатор проверки двигателя на коды P0171 и P0174, отсутствие мощности, проблемы с остановкой и не говоря уже о причине, по которой вы здесь , стук двигателя. Это может быть вызвано отсоединением вакуумной линии, протекающими впускными прокладками или слабым топливным насосом. Если автомобиль движется в наклоне, это может привести к серьезным повреждениям, если вы продолжите движение.

Как исправить обедненную воздушно-топливную смесь

Если вы недавно выполнили некоторую работу, подумайте о том, чтобы вернуть ее в мастерскую, которая ее выполнила, и попросить их проверить. Часто во время обслуживания вакуумная линия может быть случайно отключена, что может стать причиной такого беспокойства. Если вы не выполняли никаких работ, подумайте о проверке всасывания и утечек вакуума. Ознакомьтесь с этим подробным руководством по поиску утечек вакуума. Если вы не обнаружите утечек вакуума, проверьте давление топлива.

Превышение угла опережения зажигания

Если угол опережения зажигания превышен, это означает, что двигатель зажигает свечу зажигания слишком рано.Когда это происходит, топливно-воздушная смесь воспламеняется слишком рано и вызывает детонацию, из-за которой вы слышите стук. Это может быть чрезвычайно разрушительным для двигателя и требует немедленного устранения.

Как исправить превышение времени зажигания

Если вы недавно выполнили некоторую работу, например, ремень ГРМ, распределитель или настройку, подумайте о том, чтобы вернуть ее в мастерскую, которая ее выполнила, и попросить их проверить ваш сроки. Большинство современных автомобилей не имеют регулируемого угла опережения зажигания, но могут иметь неисправные компоненты синхронизации.Если угол опережения зажигания на вашем автомобиле можно отрегулировать, магазин может относительно легко установить время.

Неправильные свечи зажигания

Если свечи зажигания, установленные в вашем автомобиле, неправильные, они могут стать слишком горячими и вызвать преждевременное воспламенение топливно-воздушной смеси, вызывая преждевременное зажигание. Это чрезвычайно разрушительно для двигателя и требует немедленного устранения. Существует не только множество различных типов свечей зажигания, но и разные диапазоны нагрева каждого типа свечей.Дополнительные сведения о диапазонах нагрева свечей зажигания можно найти в этом блоге производителя свечей зажигания NGK.

Как исправить неправильные свечи зажигания?

Проще говоря, установите правильные свечи зажигания с правильным диапазоном нагрева. Если вы начали замечать проблему после настройки, возможно, в магазине были вставлены не те вилки для вашего автомобиля или неправильный диапазон нагрева правильной вилки. Обратитесь к руководству по обслуживанию вашего автомобиля и убедитесь, что детали правильные.

Слишком высокая температура сгорания

Если температура сгорания становится слишком высокой, это может вызвать преждевременное воспламенение топливно-воздушной смеси, что приведет к преждевременному воспламенению.Это может быть побочным эффектом отложения углерода, обедненной топливно-воздушной смеси, превышения угла опережения зажигания или неправильных свечей зажигания. Также это может быть связано с перегревом двигателя. Если двигатель стучит только при перегреве, устраните проблему перегрева, и стук должен исчезнуть.

Как исправить высокие температуры сгорания

Если автомобиль перегревается, устраните эту проблему. Если он не перегревается, проверьте наличие нагара, бедной топливно-воздушной смеси, превышения опережения зажигания или неправильных свечей зажигания.

Неисправный датчик детонации

Это гораздо более редкая причина для этой проблемы, но, тем не менее, она может быть причиной. Большинство двигателей оснащено одним или несколькими датчиками детонации. Эти датчики детонации отслеживают, насколько сильная детонация производит ваш двигатель, и если она становится чрезмерной, они корректируют синхронизацию соответствующим образом, чтобы решить проблему. Если датчик детонации не работает должным образом, он может не обнаружить детонацию, а это означает, что модуль управления двигателем (ECM) не знает, как отрегулировать время. Это может установить контрольную лампу двигателя или может установить код, но не включить свет.Проверьте систему на наличие кодов P0325 и / или P0330.

Как исправить неисправный датчик детонации

Следуйте процедуре диагностики для любого установленного вами кода датчика детонации. Если у вас нет кодов и вы исчерпали все остальные причины, вы можете попросить магазин проверить ваш автомобиль на этом этапе, если проблема с детонацией не решена. Некоторые датчики детонации чрезвычайно труднодоступны, и их замена очень трудоемка.

Стук двигателя | Что делать со стуком в стержне двигателя


Какой звук от ударов штока или двигателя?

Ваша машина работает на холостом ходу, а вы с нетерпением ждете, прислушиваясь к шуму двигателя.Тебе есть где быть, а время уходит. Звучит так, будто кто-то продолжает стучать молотком по твоему масляному поддону, ритмично постукивая рэп-рэп. Если у вашего автомобиля сломался двигатель, вы можете продать его через Интернет или прочитать о детонации в стержне двигателя.

Но под твоей машиной никого нет, и никто не стучит тебе в двигатель. Шум исходит из глубины вашего мотора. Когда вы увеличиваете обороты двигателя, высота и частота меняются. В какой-то момент это звучит так, как будто стук почти исчезает.Когда вы отпускаете газ, он продолжается и, возможно, даже становится громче.

Так звучит стук удочки. Само по себе это никогда не станет лучше, хотя, когда ваш двигатель холодный, шум может быть меньше. Эти звуки двигателя автомобиля также широко известны как стук двигателя, искровой разряд и стук двигателя.

Получите мгновенное онлайн-предложение для своего автомобиля!

Введите свой почтовый индекс ниже, чтобы БЕСПЛАТНО получить оценку и узнать, сколько стоит ваша машина.
Получите реальную стоимость автомобиля в течение 24-48 часов!

Знаете ли вы

В среднем стоимость ремонта стержня двигателя может составлять от 2500 долларов и более в зависимости от автомобиля. Потенциально вы можете потратить больше, чем стоит машина. Если вы хотите избежать перерасхода средств на ремонт двигателя. тогда ваш следующий лучший вариант — продать эту машину КАК ЕСТЬ. С CarBrain вы можете получить онлайн-предложение на свой неидеальный автомобиль всего за 90 секунд! Доставим оплату и эвакуируем машину БЕСПЛАТНО! Всего за 1-2 рабочих дня.

Что такое стук в двигателе?

Технически это состояние возникает из-за чрезмерного люфта. Поршни вашего двигателя движутся вверх и вниз от зажигания за счет свечи зажигания с силой, достаточной для вращения коленчатого вала.Соединяет поршень и коленчатый вал шатун. И ваши шатуны прикреплены болтами с нижней стороны вокруг коленчатого вала с гладкими тонкими металлическими подшипниками между поверхностями.

Во время вращения двигателя все эти металлические компоненты перегреваются и заедают вместе, если бы не моторное масло. Он смазывает движущиеся части, позволяя им скользить друг по другу без трения. Он также заполняет мельчайший зазор между подшипниками и коленчатым валом.

Как я могу мгновенно узнать цену на мою машину с детонацией двигателя?

Это просто, а занимает менее 90 секунд… Нажмите кнопку ниже, чтобы начать и узнать, сколько стоит ваш автомобиль!

Доставка автомобиля БЕСПЛАТНА по всей стране. Без торга. Без комиссии. Наша компания имеет рейтинг A + на уровне BBB.

Что вызывает стук в двигателе?

Стук по штоку происходит, когда подшипник частично или полностью разрушен. Обычно это происходит из-за масляного голодания, хотя износ подшипников может произойти естественным образом на расстояниях в сотни тысяч миль.

На оборотной стороне (буквально) находится булавка на запястье. Это полый штифт, который удерживает поршень в верхней части шатуна. Когда на запястье изнашивается палец, возникает состояние, известное как удар поршня. Поршень немного болтается и качается в цилиндре, создавая дополнительный шум.

Имейте в виду, что стук штока и удар поршня вызваны невероятно малыми изменениями допусков. Мы не говорим о четверти дюйма — мы говорим о тысячных долях дюйма! Этот, казалось бы, незначительный зазор позволяет совершить достаточное движение, чтобы вызвать шум подшипника штока, потому что металлические части теперь могут удариться друг о друга.

Что происходит, если игнорировать звуки двигателя

Ваш двигатель никогда не будет прежним, детонация штока в конечном итоге превратится в гораздо более серьезную проблему. Этот раздражающий звук стука двигателя переходит в грохот по мере того, как поверхность подшипника разрушается все больше и больше. Когда подшипник разрушен — что не занимает много времени — подшипник приваривается к коленчатому валу, и шатун болтается вокруг коленчатого вала. Если шатун заедает или заклинивает, он может оторваться от коленчатого вала, что называется брошенным штоком.Он действительно перемалывает нижнюю часть вашего двигателя, возможно, даже пробивает дыру прямо в блоке двигателя.

Стучит ли шток двигателя?

Что такое фиксатор шатуна?

Стоимость ремонта ударов по штоку имеет ряд переменных:

  • Как долго длится шум?

  • Насколько сильно поврежден двигатель?

  • В двигателе циркулирует металлическая стружка?

  • Двигатель высокопроизводительный или специализированный?

  • Можно ли восстановить двигатель?

Если вы обнаружите проблему достаточно рано, капитальный ремонт двигателя может помочь вам всем починить.Двигатель должен быть полностью разобран до оголенного блока цилиндров для проверки. Если стенки цилиндра сильно поцарапаны, возможно, вам придется полностью заменить двигатель. Иногда можно отточить минимальные задиры и использовать поршневые кольца увеличенного размера. Таким образом, вы можете столкнуться с решением: отремонтировать машину или продать ее как есть.

Как исправить стук штанги

Затраты на замену подшипников шатуна также должны учитывать все дополнительные детали. Вам понадобятся новые уплотнения и прокладки двигателя, болты головки блока цилиндров, шатунные подшипники и кучка денег, чтобы промыть двигатель и трубопроводы радиатора.В зависимости от объема ремонта вам могут потребоваться новые поршни и шатуны, подшипники распределительного вала, цепи привода ГРМ и, возможно, новый коленчатый вал. Если вам нужны все дополнительные детали, лучше заменить весь двигатель в сборе.

Средний ремонт шатуна будет стоить от $ 2500 до . На некоторых автомобилях, таких как Subaru Forester, , стоимость работ по замене запчастей и работ на ремонт двигателя составляет 5000 долларов, а на замену двигателя — более 6000 долларов.

Лучший вариант позволяет избежать простоев и расходов на ремонт без дополнительных средств. Вы можете продать свой автомобиль CarBrain по справедливой цене, как есть. Вам не нужно беспокоиться о текущем состоянии вашего автомобиля — мы сделаем вам гарантированное предложение с учетом его текущего состояния. Как только вы примете наше предложение, мы пришлем кого-нибудь забрать вашу машину, и вам заплатят на месте. Это быстрое решение дорогостоящей и затяжной проблемы.

Получите гарантированное предложение

.

Замена переднего сальника двигателя: Замена сальника, цена работы

Замена переднего сальника коленвала Нива Шевроле


Признаком необходимости замены переднего сальника коленчатого вала является течь масла через его кромку. При этом масло разбрызгивается вращающимся шкивом коленчатого вала, вследствие чего замасленной оказывается вся передняя часть двигателя и моторного отсека.

Устанавливаемые сальники

    РЕКОМЕНДАЦИЯ
Прежде чем заменять передний сальник коленчатого вала при появлении течи, проверьте чистоту системы вентиляции картера двигателя (см. тут), так как в случае ее засорения повышенное давление газов в картере вызывает течь даже при исправном сальнике.

Вам потребуются: ключи «на 10», специальный ключ для гайки крепления шкива коленчатого вала, отвертка, монтажная лопатка, молоток, бородок.
1. Снимите защиту масляного картера и брызговик моторного отсека (см. тут).
2. Снимите ремень привода насоса гидроусилителя рулевого управления (см. тут).
3. Ослабьте гайку крепления генератора к натяжной планке и,…
4. …переместив генератор к двигателю, снимите ремень его привода .
5. Отверните гайку крепления шкивов коленчатого вала.


Модель без кондиционера


Модель с кондиционером

    РЕКОМЕНДАЦИЯ
Если гайка затянута очень туго, используйте в качестве удлинителя ключа трубу подходящего диаметра или строньте гайку ударами молотка по рукоятке ключа.

6. Снимите шкивы.

7. Поддев отверткой, извлеките сальник.

8. Смажьте новый сальник моторным маслом и установите его в крышку привода газораспределительного механизма, сориентировав рабочей кромкой внутрь двигателя.
   ЗАМЕТКА
Рабочая кромка отличается наличием пружины.

9. Запрессуйте сальник в крышку, используя старый сальник в качестве оправки.

Видео

Замена переднего сальника коленвала Land Rover Discovery 4

Дизельные двигатели 3,0 ТД и 2,7 ТД имеют характерные неисправности. Одна из них – это утечка масла из сальника коленчатого вала, расположенного спереди. Подобная проблема способна привести к негативным последствиям. Чаще всего подобная неприятная ситуация возникает в зимнее время года, протекает она быстро и, как правило, совсем неожиданно. Сальник спереди выдавливается из посадочного места, а после этого наблюдается слишком сильная течь масла. В основном владельцы кроссоверов Дискавери 4 просто доливают новое масло, видя, что есть течь, о это не помогает. Масло все равно успевает вытекать, что приводит к возникновению характерных стуков в двигателе, именно с этой проблемой чаще всего приезжают к нам в сервис.

Ранее сальник попросту меняли, искренне полагая, что такой подход устранит неполадку. Но это было тогда, когда проблемы была не изучена должным образом. Течь не купировалась, и автолюбитель приезжал на ремонт снова. Производитель детально рассмотрел сложившуюся ситуацию и пришел к выводу, что сальник на некоторых моторах выдавливается из-за того, что посадочное место масляного насоса требует конструктивной доработки. Выходом из ситуации стала доработка этого насоса, поэтому старые модели были полностью изъяты с производства. Дополнительно для владельцев Ленд Ровер были выпущены специальные памятки или, как их называют, технические бюллетени, согласно которым старые насосы подлежали замене на новые модели. Несмотря на это сальник также придется менять.

Еще одна причина, по которой сальник может выдавливаться, является перемерзание вентиляции картерных паров. Это основная магистраль, которая поддается негативному влиянию при низких температурах. Давление начинает возрастать, не только выдавливая сальники, но и провоцируя вытекание масла. Проблема не осталась незамеченной со стороны разработчика и также нашла свое решение. Специально для дизельных двигателей был выпущен догреватель, работающий от электричества. Эта запасная часть была внесена в номенклатуру, а относительно ее были даны техрекомендации.

Технические требования к сальникам Дискавери 4

Многие автовладельцы не имеют понятия о существовании подобных технических бюллетеней. Нужно сразу сказать, что подобная замена требуется далеко не всем, поэтому мы выборочно предлагаем такую работу клиентам. Замена осуществляется только в том случае, если наблюдается течь масла. При этом крайне важно использовать насос LR013487, именно он является моделью нового образца.

Также мы советуем совмещать замену этого фильтра с заменой сальника и ремня ГРМ, это удобно и целесообразно, поскольку все работы сопряжены между собой. Конечно, вы всегда можете отказаться от дополнительных сервисов, но в дальнейшем будете вынуждены их сделать, потратив лишние денежные средства. Мы за то, чтобы ремонт был максимально выгодным для клиента, поэтому всегда даем советы, которые носят рекомендательный характер.

Если вам необходимо осуществить замену переднего сальника коленчатого вала вместе с масляным фильтром или требуется ремонт Ленд Ровер Дискавери 2 — звоните по телефону 8 (495) 280-00-75 или оставляйте свои заявки на сайте LR King, чтобы профессиональные мастера выполнили эту работу качественно и с гарантией. Мы используем исключительно оригинальные запчасти, знаем все об автомобилях Дискавери 4, поскольку являемся специализированным сервисом. Предлагаем конкурентоспособную и доступную стоимость услуг при максимально высоком качестве. Убедитесь в этом сами, связавшись с нами прямо сейчас.

Замена сальника — цена в Москве, сколько стоит замена сальника, стоимость замены сальника на YouDo

Специалисты, зарегистрированные на сайте Юду, подскажут стоимость замены сальника коленвала и выполнят всю работу в минимальные сроки. Они используют только качественные материалы и современное оборудование, что позволяет выполнять замену неисправного сальника качественно и по приемлемым ценам.

Преимущества работы профессионалов

Исполнители Юду ремонтируют сальники по всем правилам и в соответствии с техническими требованиями. У мастеров, зарегистрированных на Юду, вы всегда можете узнать, сколько стоит их работа, и оформить заказ по приемлемой для себя цене. При обращении к исполнителям Юду вы получите массу преимуществ, среди которых следующие:

  • оформление заказа в кратчайшие сроки
  • профессиональные консультации специалистов по вопросу ремонта задних или передних сальников
  • выполнение всего объема работ в удобное для вас время
  • согласование стоимости услуги с мастером

Исполнители Юду принимают заказы круглосуточно, поэтому вы в любое время получите квалифицированную помощь. Узнайте стоимость замены сальника коленвала у мастера и оформите заказ на сайте Юду прямо сейчас.

Услуги, которые оказывают исполнители Юду

Профессионалы, зарегистрированные на Юду, после первичного осмотра определят причину поломки и займутся устранением течи. Смена сальника вилки выполняется мастерами Юду в следующем порядке:

  • снятие защиты двигателя и ослабление клапанов
  • снятие ремня сцепления
  • поднятие колеса и снятие вариатора
  • демонтаж коленчатого вала
  • удаление масла и демонтаж старого уплотнителя
  • установка нового топливного механизма
  • сборка

Уплотнители, установленные на заднем мосте, демонтируются исполнителями Юду по приемлемым ценам. Профессионалы выполняют замену ремней сцепления, повышая мощность мотоблоков.

Как определить размер оплаты мастеру?

Мастера Юду выполнят замену в минимальные сроки и по приемлемым для вас расценкам. В стоимость работ входит:

  • смена коробки и маховика
  • шлифовка поверхности распредвала, хвостовика
  • регулировка водяного насоса, гребной полуоси
  • снятие и установка системы привода

На размер оплаты влияет срочность выполнения работы, ее объем и степень сложности. В расценки не включена цена запасных деталей и расходных материалов, использованных в работе.

Исполнители Юду гарантируют профессионализм, минимальные сроки выполнения работ и высокое качество предоставляемых услуг. Уточняйте стоимость замены сальника коленвала у профессионалов, зарегистрированных на сайте Юду, и оформляйте заказ прямо сейчас.

Замена сальника коленвала цена | Замена заднего и переднего сальника коленвала

Основным назначением сальника коленвала является защита от подтекания масла из двигателя, другими словами – функция герметизации. Однако со временем сальник изнашивается и все хуже справляется со своей задачей. В такой ситуации без замены сальника не обойтись.

Наименование работ Цена, руб
Замена сальника коленвала от 1490
Сальник от 250


Почему замена сальника коленвала относится к категории неотложных ремонтных работ?

Такую работу как замена сальника откладывать в долгий ящик ни в коем случае нельзя, и вот почему:

  • Изношенный сальник не защитит от протечки масла, следовательно, расход этой рабочей жидкости увеличится в разы;
  • Из-за постоянных протечек силовой агрегат будет забиваться налипающей пылью и грязью;
  • Протечки из-за износа сальника могут привести к выходу из строя ДВС, а это уже повлечет весьма внушительные затраты на капермонт двигателя.

Если необходимо провести замену сальника, не откладывайте визит к специалисту. Цена услуги по замене сальника вполне доступна, она гораздо ниже стоимости тех работ, которые потребуются в случае более серьезных неисправностей.

Где быстро и недорого произвести замену сальника коленвала?

Если вам требуется выполнить замену заднего или переднего сальника коленвала, мы всегда готовы предложить вам свои услуги. Наш автосервис оснащен самым современным оборудованием для диагностики и устранения любых видов поломок. Цены на наши услуги вполне доступны, а качество сервиса всегда остается неизменно высоким.

Обратившись к нам, вы можете быть уверены в том, что замена переднего или заднего сальника коленвала будет выполнена оперативно и профессионально.

Отчет Замена переднего сальника Коленвала (КВ) GA16De — Двигатель

Обсуждение темы ТУТ

Предистория: пробег двигателя 286000км, конечно же сальники за такое время просто должны потечь. Ну вот заказал я сальник оригинальный 13510-1F700 за 260р пришел мне.

1. Снимаем колесо правое

2. Снимаем подкрылок

И начинаем снимать все 3 ремня
3. Ослабляем болт крепления генератора на 14″

4. Ослабляем контрагающий болт на 12″ который стоит на оси натяжного болта.

5. Ослабляем натяжной болт генератора. Все ремни пометьте лучше чтобы не перепутать потом.

6. Ослабляем болт на 14″ ролика натяжного кондиционера

7. Ослабляем болт натяжной на 12″ (вниз смотрит) кондиционера

8. Ослабляем болт крепления насоса гидроусилителя на 14″

9. Ослабляем контрагающий болт натяжки ремня ГУРа

10. Ослабляем болт натяжки ремня ГУРа. И снимаем ВСЕ ремни.

11. Просим помошника сесть в машину, он вкл 5 скорость и давит на тормоз, вы откручиваете болт шкива коленвала на 23″ чтоли головка.

12. Вставляем что то типо монтировки(лучше использовать съемник чтобы ничего не сломать), и начинаем вбивать, так чтобы шкив отходил, чуток вбили, вытащили прокрутили двигатель буквально чуток, вбиваем еще раз. и так повторяем пока он не начнет слазеть.

Вот после того как сняли перед нами картина потекшего сальника

13. Берем подходящий инструмент ну или отвертку и выковыриваем старый сальник

Теперь сравнение.
Для начала наглядное, видим что сальник стоял оригинальный, это уже хорошо, и видим что он стерся, внутренний диаметр явно меньше у нового значит и прилегать будет лучше..


А теперь чтобы было лучше видно насколько он стерся, надеваем его на шкив, и смотрим расстояние от внутреннего диаметра до наружнего. Чем больше тем больше сальник стерся отсюда и течь масла.

А теперь новый, зазоры по минимуму.

14. Начинаем собирать. вытираем все чистой тряпкой, место посадки сальника и все вокруг чтобы не попала грязь.
Смазываем сальник маслом моторным, а так же смазываем шкив в том месте где прилегает сальник.
Сальник вбивал через пробойник подходящего диаметра, вбиваем за подлицо с крышкой, и потом буквально на 1мм глубже и все.

15. Ставим шкив, через пробойник подходяшего диаметра вбиваем его до того момента пока он не перестанет садиться. И закручиваем болт шкива.

16. Собираем все в обратной последовательности.

Замена сальников коленвала ЗМЗ-406

Замена передней манжеты коленчатого вала

Признаком необходимости замены переднего сальника коленчатого вала является течь масла через его кромку.

Масло разбрызгивается вращающимся шкивом коленчатого вала, вследствие чего замасленными оказывается вся передняя часть двигателя и моторного отсека.

Моторное и трансмиссионное масла различаются по запаху, поэтому при определенном навыке по нему можно определить, какой из сальников дефектный.

Есть еще один способ определения типа масла. Капните масло в воду, налитую в сосуд тонким слоем (можно в лужу).

Трансмиссионное масло растечется по всей поверхности воды в виде радужной пленки, а моторное масло останется в виде капли, похожей на зерно чечевицы.

Прежде чем заменять передний сальник коленчатого вала при появлении течи, проверьте чистоту системы вентиляции картера двигателя, так как в случае ее засорения повышенное давление газов в картере вызывает течь даже при исправном сальнике.

Снятие

Снимаем радиатор системы охлаждения

1. Головкой «на 36» отворачиваем болт крепления шкива коленчатого вала. От проворачивания удерживаем его отверткой, вставленной между зубьями.

2. Двумя монтажными лопатками равномерно отжимаем шкив коленчатого вала от передней крышки блока цилиндров

3.  Снимаем шкив.

Иногда шкив запрессован очень туго, поэтому снять его монтажными лопатками не удается.

В этом случае придется воспользоваться универсальным съемником

4. Поддев отверткой, извлекаем манжету.

5. Заполнив на две трети полость между рабочей кромкой и пыльником новой манжеты смазкой Литол- 24, запрессовываем ее на место, используя старую манжету как оправку

Замена задней манжеты коленчатого вала

Признаком необходимости замены заднего сальника коленчатого вала является течь масла через его кромку.

Масло разбрызгивается вращающимся маховиком внутри картера сцепления и затем вытекает наружу через щели между картером и его усилителем.

При сильной течи возможно замасливание накладок ведомого диска сцепления и, как следствие, пробуксовка сцепления.

Причинами замасливания дисков сцепления и утечки масла из картера сцепления, может быть, течь сальника первичного вала коробки передач.

Снимаем КПП

Снимаем картер сцепления

1. Ключом «на 12» отворачиваем шесть болтов крепления нажимного диска сцепления, удерживая маховик от проворачивания отверткой, вставленной между его зубьями.

2. Снимаем ведомый и нажимной диски.

3. Головкой «на 17» отворачиваем шесть болтов крепления маховика, удерживая его от проворачивания отверткой, вставленной между зубьями.

4. Снимаем шайбу.

5. Снимаем маховик

6. Поддев отверткой или пробив ее бородком, извлекаем манжету

7. Заполнив на две трети полость между рабочей кромкой и пыльником новой манжеты смазкой Литол-24, запрессовываем ее на место, используя старую манжету как оправку.

Снятые узлы устанавливаем в обратном порядке.

Замена сальников коленвала ЗМЗ-406 ГАЗ-3110

Признаком необходимости замены переднего сальника коленчатого вала является течь масла через его кромку. Масло разбрызгивается вращающимся шкивом коленчатого вала, вследствие чего замасленными оказывается вся передняя часть двигателя и моторного отсека.

Признаком необходимости замены заднего сальника коленчатого вала является течь масла через его кромку. Масло разбрызгивается вращающимся маховиком внутри картера сцепления и затем вытекает наружу через щели между картером и его усилителем.

При сильной течи возможно замасливание накладок ведомого диска сцепления и, как следствие, пробуксовка сцепления.
Причинами замасливания дисков сцепления и утечки масла из картера сцепления может быть течь сальника первичного вала коробки передач.

Моторное и трансмиссионное масла различаются по запаху, поэтому при определенном навыке по нему можно определить, какой из сальников дефектный.
Есть еще один способ определения типа масла. Капните масло в воду, налитую в сосуд тонким слоем (можно в лужу).

Трансмиссионное масло растечется по всей поверхности воды в виде радужной пленки, а моторное масло останется в виде капли, похожей на зерно чечевицы.
Прежде чем заменять передний сальник коленчатого вала при появлении течи, проверьте чистоту системы вентиляции картера двигателя, так как в случае ее засорения повышенное давление газов в картере вызывает течь даже при исправном сальнике.

Замена передней манжеты коленчатого вала

Снимаем брызговик двигателя, ремень привода навесных агрегатов, датчик синхронизации, электровентилятор радиатора.

1. Для удобства работы, отвернув ключом на 17 два болта и не отсоединяя шлангов, положить гидроусилитель на полку аккумуляторной батареи (для автомобиля с гидроусилителем руля).

2. Головкой на 36 отворачиваем болт крепления шкива коленчатого вала. От проворачивания удерживаем его отверткой, вставленной между зубьями.

3. Двумя монтажными лопатками равномерно отжимаем шкив коленчатого вала от передней крышки картера двигателя

4. Снимаем шкив коленчатого вала.

5. Поддев отверткой, извлекаем манжету.

6. Заполнив на две трети полость между рабочей кромкой и пыльником новой манжеты смазкой Литол-24, запрессовываем ее на место, используя старую манжету как оправку

Замена задней манжеты коленчатого вала

Для того чтобы заменить задний сальник коленчатого вала, выполните следующие операции.
Снимите коробку передач (см. «Снятие установка КПП ГАЗ -3110»).
Снимите сцепление (см. «Снятие и установка сцепления ГАЗ-3110»).

Снимите маховик (см. «Маховик ЗМЗ-406 ГАЗ-3110»).

1. Головкой на 17 отворачиваем шесть болтов крепления маховика, удерживая его от проворачивания отверткой, вставленной между зубьями.

2. Сняв шайбу, снимаем маховик.

3. Поддев отверткой, извлекаем манжету.

4. Заполнив на две трети полость между рабочей кромкой и пыльником новой манжеты смазкой Литол-24, запрессовываем ее на место, используя старую манжету как оправку

Снятые узлы устанавливаем в обратном порядке.

Как заменить сальник коленчатого вала

Назначение уплотнения коленчатого вала — отводить масло обратно в масляный картер или масляный поддон, чтобы поддерживать надлежащий уровень масла и предотвращать утечку на землю. Ваш двигатель имеет два сальника кривошипа; одно уплотнение расположено в передней части двигателя за гармоническим балансиром коленчатого вала, а одно — в задней части двигателя, за маховиком.

В этой статье речь пойдет о замене переднего сальника коленвала. Хотя приведенные ниже шаги аналогичны для большинства двигателей, существует много различных конструкций двигателей, поэтому, пожалуйста, обратитесь к заводскому руководству по обслуживанию для получения подробных инструкций для вашего конкретного автомобиля.

Часть 1 из 1: Замена переднего сальника коленвала

Необходимые материалы

Шаг 1: Подготовьте автомобиль . Поднимите автомобиль домкратом достаточно высоко, чтобы получить доступ к гармоническому противовесу, который расположен на передней части двигателя и прикреплен к коленчатому валу. Закрепите его на опорных стойках.

Шаг 2: Снимите ремни привода вспомогательных агрегатов . На многих современных транспортных средствах имеется автоматический подпружиненный натяжитель ремня, который можно повернуть для ослабления ремня.

В зависимости от конструкции может потребоваться гаечный ключ с открытым зевом или храповая рукоятка. Старые автомобили, и даже некоторые новые, требуют ослабления механического натяжителя.

  • Совет : сделайте снимок расположения ремня для использования в будущем.

Шаг 3: Отверните болт балансира гармоник. Снимите болт гармонического балансира, используя ленточный ключ, чтобы удерживать балансир в неподвижном состоянии, ослабляя болт с помощью торцевого ключа и рукоятки с храповым механизмом или прерывателя. Он будет очень тугим, так что потяните сильно

Шаг 4: Снимите блок гармонического баланса . Используйте съемник шестерен, чтобы снять блок гармонического баланса. Разместите крючки в таком месте, которое не будет легко сломаться, например на выступе секции шкива.

У некоторых автомобилей есть отверстия под болты с резьбой в балансире, которые можно использовать для крепления съемника. Затягивайте центральный болт с помощью рукоятки с храповым механизмом или прерывателя, пока балансир не освободится.

  • Совет : Большинство гармонических балансиров предотвращается от вращения на коленчатом валу с помощью полукруглой шпонки.Не теряйте деревянный ключ, он понадобится вам при повторной сборке.

Шаг 5: Снимите старое уплотнение коленчатого вала . С помощью съемника уплотнений осторожно отсоедините старое уплотнение от картера.

Цель состоит в том, чтобы попытаться зацепить сальник между сальником и коленчатым валом и освободить его. Для полного освобождения уплотнения может потребоваться несколько попыток в разных положениях.

Шаг 6: Установите новое уплотнение коленчатого вала .Смажьте новое уплотнение свежим моторным маслом, чтобы предотвратить разрыв уплотнения и облегчить установку. Затем поместите уплотнение кромкой в ​​сторону блока цилиндров и надавите на него рукой.

Поместите уплотнение на коленчатый вал с помощью отвертки для уплотнения и используйте ударный молоток, чтобы осторожно постучать по нему, чтобы он встал на место.

  • Примечание : Вы также можете использовать большой глубокий патрубок или трубную муфту в качестве отвертки для уплотнения, если он имеет такой же внешний диаметр, как и само уплотнение.

Убедитесь, что новый сальник коленвала выглядит правильно установленным.

Шаг 7: Установите новый гармонический балансир . Совместите паз под шпонку в новом балансире с шпонкой и осторожно наденьте балансир на коленчатый вал, убедившись, что шпоночный паз остается в правильном положении.

Установите центральный болт и затягивайте до достижения требуемого крутящего момента.

Шаг 8: Установите на место ремни .Поверните или ослабьте натяжитель ремня, чтобы установить на место все снятые вспомогательные ремни.

  • Примечание : Обратитесь к любым сделанным вами фотографиям или к заводскому руководству по обслуживанию, чтобы определить правильную прокладку ремня.

Шаг 9: Опустите автомобиль . Поддерживая автомобиль напольным домкратом, осторожно снимите опоры домкрата и опустите автомобиль. Запустите автомобиль, чтобы убедиться в правильности сборки и работы.

Замена сальника коленчатого вала выполнима, если вы выполните правильные действия.Однако, если вам неудобно выполнять такую ​​задачу самостоятельно, у сертифицированного специалиста, такого как специалист из YourMechanic, будут инструменты и навыки, необходимые для выполнения замены переднего сальника коленчатого вала за вас.

Замена переднего уплотнения коленчатого вала Обслуживание и стоимость

Что такое переднее уплотнение коленчатого вала?

Несколько механизмов должны работать вместе, чтобы ваш автомобиль двигался вперед. Одним из наиболее важных является коленчатый вал, который преобразует вращательное движение в поступательное; я.е., он преобразует силу, создаваемую поршнями двигателя, движущимися вверх и вниз, в силу, которая движется по кругу, заставляя колесо автомобиля поворачиваться. Заключенный в так называемый картер — самую большую полость в блоке двигателя, чуть ниже цилиндров — коленчатый вал должен быть полностью смазан, по существу погружен в масло, чтобы вращаться почти без трения и правильно выполнять свою работу.

Следовательно, на обоих концах коленчатого вала расположены уплотнения, которые позволяют ему свободно вращаться и предотвращают утечку моторного масла из блока цилиндров, а также предотвращают попадание загрязняющих веществ и другого мусора в механизм и их повреждение. Поскольку коленчатый вал имеет два конца, существует два типа уплотнений: переднее уплотнение коленчатого вала и заднее уплотнение коленчатого вала, также известные как переднее основное и заднее основные уплотнения.

Наша рекомендация:

Уплотнения коленчатого вала, одна из самых важных частей вашего автомобиля, обычно изготавливаются из прочного материала, такого как синтетический каучук или силикон, и предназначены для выдерживания экстремальных давлений и температур, а также едких химикатов в моторном масле. Поскольку они подвергаются такому злоупотреблению, основные уплотнения подвержены значительному износу.И независимо от того, говорите ли вы о переднем или заднем основном уплотнении, замена — единственное лекарство, когда оно выходит из строя.

Хорошая новость в том, что уплотнения — это относительно недорогие компоненты. Плохая новость в том, что ни то, ни другое нельзя просто заменить.

Переднее уплотнение: Переднее уплотнение расположено за главным шкивом, который приводит в движение все ремни, которые, конечно, всегда вращаются. Главный шкив выбрасывает вытекшее масло по большому кругу. Он может попасть на генератор, насос рулевого управления, ремни, короче говоря, на все, что прикреплено к передней части двигателя, и вызвать настоящий беспорядок и, в конечном итоге, серьезные повреждения.Следовательно, он должен быть удален вместе со многими компонентами, прикрепленными к передней части блока, чтобы заменить переднее основное уплотнение.

Сальник задний: Сальник коленчатого вала задний размещается вместе с трансмиссией; поэтому процесс его замены требует снятия трансмиссии, а также сцепления и маховика в сборе. Это очень сложная работа.

Насколько важна эта услуга?

Если какое-либо уплотнение коленчатого вала продолжает протекать, это может отрицательно сказаться на продолжительной работе вашего автомобиля.Помимо болезней, вызванных ездой с небольшим или нулевым потоком масла в двигателе, неисправное уплотнение будет распространять масло по моторному отсеку и ходовой части вашего автомобиля во время движения, беспорядок, который трудно убрать и который может стать пожаром. опасность. Лучше заняться заменой раньше, чем позже.

Замена прокладок и сальников

Прокладки и сальники следует заменять в случае износа или утечки, а также при снятии во время обслуживания. Замена простая, но некоторые двигатель чтобы добраться до них, может потребоваться демонтаж.Купите у дилера комплекты прокладок в зависимости от марки автомобиля и четко укажите, для каких деталей они нужны.

Замена прокладки коромысла или крышки распредвала

Снимите крышку. Для его освобождения может потребоваться легкое прикосновение сбоку.

Перед тем, как снимать крышку, обратите внимание на положение любых труб и проводов вокруг нее или прикрепленных к ней, которые необходимо удалить, прежде чем ее можно будет освободить.

Возможно, вам придется снять воздухоочиститель (Видеть Замена воздушного фильтра ), который также может иметь трубные соединения.

Крышка крепится гайками или болтами сверху или винтами по краю. Ослабьте их все и снимите с помощью шайб. Если под каждым креплением находится несколько сальников, обратите внимание на их порядок.

Закройте шестерню клапана и соскребите старую прокладку.

Осторожно снимите крышку. Если он прилипнет, осторожно постучите по нему сбоку молотком из сыромятной кожи или нейлона с мягким лицом или пятка вашей руки.

При необходимости, рычаг осторожно с помощью широкой отвертки, но старайтесь не погнуть фланец или повредить голову.

Снимите прокладку с фланца крышки или крышка цилиндра , отметив, как он прикреплен. У некоторых прокладок есть язычки, которые поместиться вырезы во фланце; другие прикреплены к фланцу с помощью герметик ; некоторые просто подходят к фланцу канавка .

Накройте клапан механизм чистой тканью, чтобы грязь не попала в рабочие части двигателя.

С помощью куска дерева соскребите все следы старой прокладки с головки и крышки. Если полное удаление окажется затруднительным, используйте широкую отвертку, но будьте осторожны, чтобы не поцарапать посадочное место.

Снимите ткань, следя за тем, чтобы мусор не попал в механизм клапана.

Установите новую прокладку на крышку или головку — в зависимости от того, к чему была прикреплена старая прокладка.

Если он прилип к крышке, нанесите герметик для прокладок вдоль фланца крышки и верхней прокладки и дайте ему высохнуть на несколько минут.

Установите прокладку на крышку, убедившись, что отверстия для винтов совпадают. Если у прокладки есть язычки, вставьте их в соответствующие вырезы.

Некоторые прокладки состоят из двух или трех частей, соединенных вместе.Убедитесь, что части правильно соединены.

Установите на место коромысло или крышку кулачка, совместив их крепежные отверстия с отверстиями на головке. Убедитесь, что край прокладки выравнивает с фланцем крышки по всему периметру и не деформирована. При необходимости аккуратно отрегулируйте его с помощью пинцета или плоскогубцев. Равномерно затягивайте болты, чтобы просто сжать прокладку.

Установите все трубы и провода, а также воздушный фильтр. Запустите двигатель и проверьте, нет ли утечек масла.

Замена прокладки бензонасоса

Отсоединив аккумулятор, открутите соединения топливопровода.

Это относится только к механический топливный насос сбоку от двигателя.

Сначала отключите аккумулятор земной шар Терминал , чтобы избежать риска короткое замыкание в то время как топливо трубы отсоединены.

Заглушите топливную трубку — подойдет старый огрызок карандаша.

Имейте две заглушки, например старые карандаши, для установки на трубы. Открутите патрубки и сразу заглушите их.

Снимите насос крепежные гайки или болты.Снимите насос и прокладку или прокладки с двигателя.

Заглушите топливную трубку — подойдет старый огрызок карандаша.

Может быть толстый распорка прокладка между двумя тонкими бумажными. Проверить проставку на наличие трещин. Если его необходимо заменить, убедитесь, что новый имеет правильную толщину, потому что от этого зависит топливный насос рычаг Инсульт .

Удалите все следы старой прокладки с насоса и двигателя, при необходимости используя скребок для краски.

Нанести герметик для прокладок на сопрягаемые поверхности насоса и двигателя.Установите на место насос и прокладку или прокладки и затяните крепления.

Снимите насос вместе с его прокладками и распорками.

Убедитесь, что соединения топливных трубок чистые. Отключите их и снова подключите к насосу.

Подключите аккумулятор . Запустите двигатель и внимательно проверьте, нет ли утечек масла или топлива.

Подготовка к замене прокладки поддона

Поднимите домкрат двигателя под деревянную распорку, чтобы защитить поддон.

На большинстве автомобилей не требуется снимать двигатель, чтобы добраться до отстойник . Но часто приходится немного поднять и клин его на креплениях так, чтобы поддон не касался передней части приостановка поперечина.

Посмотрите на конец поддона. Если вы не можете четко определить, нужно ли снимать двигатель, обратитесь к руководству по обслуживанию автомобиля или к дилеру.

Опора двигателя

Вставьте деревянные клинья в подушки двигателя.

Поднимите переднюю часть автомобиля на пандусах, примените ручник и заклинить задние колеса. Очистите поддон и картер , схватить и коробка передач. Слейте моторное масло (см. Как слить моторное масло и снять фильтр ). Поднимите двигатель подходящим домкратом.

Поместите деревянный брусок не менее 6 дюймов (150 мм) в квадрат и 1 дюйм (25 мм) в качестве прокладки между домкратом и поддоном, чтобы предотвратить повреждение.

Поднимите домкрат, чтобы снять вес двигателя с его опор.Убедитесь, что вы не напрягаете радиатор шланги или другие связи. В случае сомнений слейте воду из радиатора и отсоедините шланги (см. Как снять радиатор автомобиля ).

Отметьте, как установлены крепежные гайки или болты, затем ослабьте их. Приготовьте несколько деревянных клиньев для использования в качестве опор и надежного помощника для устойчивости двигателя.

Медленно поднимите двигатель примерно на 11 дюймов (38 мм) и вставьте клинья между резиновыми прокладками и колодки .

Если это невозможно, вы можете вставить нижний фиксирующий болт в верхнюю монтажную опору, чтобы удерживать двигатель ровно.Или, возможно, придется поднять и опереть коробку передач.

Как только двигатель будет надежно закреплен, опустите и снимите домкрат.

Замена прокладки поддона

Освободите большинство креплений, затем поддерживайте поддон рукой, пока снимаете остальные.

Ослабьте все гайки или болты масляного поддона с помощью торцевой головки, длинного удлинителя и храпового механизма.

На некоторых двигателях необходимо удалить корпус сцепления крышка, чтобы добраться до задних гаек.

Удалите большую часть креплений, затем поддержите поддон одной рукой, вынимая последние несколько.

Возможно, вам придется снять крышку, чтобы добраться до гаек задней стойки.

Осторожно опустить поддон из картера.

Может потребоваться повернуть коленчатый вал чтобы он меньше выступал. Поверните болт переднего шкива гаечным ключом или головкой.

Соскребите все следы грязи и старую прокладку с двигателя и фланцев поддона скребком для краски.

Чистый осадок из отстойника бензином и жесткой щетка . Просушите безворсовой тканью.

В комплект прокладок входят изогнутые полууплотнения, которые подходят к коленчатому валу, а не к фланцу поддона.

Прокладки поддона обычно состоят из нескольких частей, часто с отдельными изогнутыми уплотнения которые подходят под переднюю и заднюю части основной подшипник кожухи коленвала.

Разложите части новой прокладки на чистой газете и обратите внимание на стыки стыков.

Нанесите на фланец поддона прокладку-герметик и установите на него плоские части прокладки, убедившись, что они точно расположены и соединены.

Нанесите на фланец герметик для прокладок, затем аккуратно установите плоские части прокладки.

Если есть изогнутые уплотнения, установите их на двигатель. Нанесите герметик на канавку уплотнения, приклейте уплотнение на место и нанесите каплю герметика на каждый конец уплотнения, где он соединяется с прокладкой.

Установите поддон, стараясь не повредить прокладку.Поднимите его рукой и установите два передних болта и два задних, чтобы удерживать его на месте, пока вы устанавливаете остальные.

Последовательно затяните все крепления до правильной крутящий момент (обратитесь к руководству по обслуживанию или к дилеру, если вы не уверены в крутящем моменте).

Поместите домкрат и деревянную распорку под поддон и поднимите двигатель ровно настолько, чтобы освободить опоры.

Вместе с помощником, удерживающим двигатель, снимите клиновые опоры, опустите двигатель и неплотно подсоедините опоры.

Плотно закрутите пробку сливного отверстия поддона и залейте в двигатель необходимое количество масла нужного сорта.

Запустите двигатель и проверьте, нет ли утечек масла вокруг фланца поддона. Остановите двигатель и затяните крепления.

Замена прокладки ГБЦ

Снимите цилиндр голова (см. Как снять головку блока цилиндров ), аккуратно отклеив старую прокладку от головки или блока. Убедитесь, что нет грязи или углерод попадает в двигатель.

Сопрягаемые поверхности головки или блока должны быть идеально чистыми, плоскими и гладкими.

Набить чистую ветошь в отверстия. Соскребите старый клей для прокладок. Избегайте царапин на обработанных поверхностях блока и головки. Проверьте плоскостность с помощью линейки, уложенной по диагонали. Затем измерьте зазоры с помощью щупа.

Набить в цилиндр чистую ветошь. отверстия а также все каналы для воды и масла, а также отверстия для болтов для сбора царапин и грязи.

Используйте плоский скребок для краски или гладкую сторону старого ножовочного полотна, чтобы очень осторожно удалить все следы нагара и старой прокладки с обеих сторон.

Будьте осторожны с фонариком сплав блок или голова. Очень важно избегать царапин на обработанной поверхности.

Вытащите ветошь, чтобы грязь не попала в двигатель, отверстия или проходы.

Проверить поверхности головки и блока на плоскостность. В частности, головки из сплава могут деформироваться и затем протекать.

Блок вряд ли деформируется, кроме как после сильного перегрева, но все равно проверяйте с помощью стальной линейки или аналогичной высококачественной линейки.

Поместите линейку или линейку на край по диагонали поперек головы и блока и ищите просветы, показывающие свет где-либо между линейкой и блоком.

Повторите то же самое, положив линейку по диагонали между двумя другими углами.

Если вы обнаружите зазор, измерьте его, сдвинув щуп под правителем.

Если зазор в какой-либо точке превышает 0,002 дюйма (0,05 мм), специалист должен проверить головку или блок и обработать его ровно.

Протрите головку и блок абсолютно чистой тканью, смоченной в бензине.

Убедитесь, что новая прокладка чистая, и проверьте, с какой стороны она подходит. Верхняя сторона обычно обозначается как «верх», «хаут» или «обен».

Установите прокладку на блок и убедитесь, что все отверстия идеально выровнены перед установкой головки (см. Как снять головку блока цилиндров ).

Замена прокладки боковой крышки картера

Боковая крышка может удерживаться одним или несколькими болтами. Снимите их и осторожно оторвите.

На некоторых двигателях необходимо удалить один или оба коллекторы (Видеть Замена прокладки выпускного коллектора ) до боковой крышки картера.

Боковая крышка может удерживаться одним или несколькими центральными болтами или винтами вокруг фланца. Отверните болты или винты и снимите их.

Освободите крышку, осторожно повернув ее по краю отверткой; будьте осторожны, чтобы не погнуть фланец.

Используйте старую отвертку или скребок, чтобы аккуратно удалить все следы старой прокладки с крышки и фланцев двигателя.

Нанесите немного герметика для прокладок вокруг фланца крышки и установите на него новую прокладку. Убедитесь, что он ровный и прямой.

Нанесите герметик для прокладок на фланец двигателя и установите крышку. Затяните крепления, но не перетягивайте их.

Если коллекторы были сняты, установите на них новые прокладки (см. Замена прокладки выпускного коллектора ).

Запустите двигатель и проверьте, нет ли утечек масла.

Замена переднего сальника коленвала

При откручивании болта шкива коленчатого вала зажмите зубчатый венец маховика, чтобы двигатель не проворачивался.

На большинстве автомобилей вам нужно снять несколько деталей, чтобы добраться до пломбы.

Ослабьте генератор или регулятор динамо-машины и поворотные болты, протолкните блок внутрь и ослабьте приводной ремень. Полностью снимите ремень.

Снимите радиатор (см. Как снять радиатор автомобиля ) при необходимости, чтобы освободить место для снятия шкива коленчатого вала.

Если в автомобиле есть механическая коробка передач , выберите первую или заднюю передачу и полностью включите ручной тормоз. В противном случае отключите аккумулятор и снимите пусковой двигатель .

При откручивании болта шкива коленчатого вала зажмите зубчатый венец маховика, чтобы двигатель не проворачивался.

Вставить шина рычаг или большую отвертку в стартер отверстие так, чтобы оно застряло в зубах кольцевая шестерня на маховик .

Выкрутить болт шкива против часовой стрелки с помощью торца и планки. Начните поворот с резкого удара по перекладине.

На двигателях, вращающихся против по часовой стрелке (вид спереди) болт шкива выкручивается по часовой стрелке.

Для снятия шкива может потребоваться универсальный съемник.

Шкив может легко соскользнуть; В противном случае используйте универсальный съемник, который вы можете взять напрокат.

Шкив удерживается от проворачивания коленчатого вала с помощью шпонки, вставленной в канавки на коленчатом вале и шкиве.

Выньте ключ и храните его, пока он не будет готов к установке шкива.

Выдавите старое уплотнение отверткой. Будьте осторожны, чтобы не забить корпус.

Тщательно очистите область вокруг сальника и проверьте, как оно установлено. Если вы не видите внешний конец уплотнения, снимите ремень ГРМ крышка или крышка цепи (не ремень или цепь) и, возможно, Помпа (Видеть Замена водяного насоса ), чтобы раскрыть это. На двигателе с ременным приводом верхний распредвал , снимаем ремень и его привод звездочка .

Вытолкните уплотнение отверткой, действуя осторожно, чтобы не порезать корпус уплотнения.

Очистите корпус от грязи и масла и установите новое уплотнение открытой (пружинной) стороной к двигателю.

Вставьте новое уплотнение деревянным бруском так, чтобы оно оставалось абсолютно прямым.

Приставьте деревянный брусок или кусок большой трубки к уплотнению и аккуратно постучите им по корпусу до упора. Установите крышку привода ГРМ, если она была снята.

Тщательно очистите рукав сзади шкива и поищите на нем неровности в местах соприкосновения с уплотнением. При необходимости разгладить тонкой влажной и сухой наждачной бумагой.

Смажьте чистым моторным маслом втулку шкива и уплотнение, затем установите шкив с помощью ключа и шпоночный паз выровнен.Затяните болт с правильным моментом затяжки (в случае сомнений обратитесь к руководству по обслуживанию или к дилеру).

Установите все компоненты в порядке, обратном разборке.

Замена сальника или прокладки распределителя

Снимите крышка распределителя . Перед удалением распределитель (Видеть Снятие и установка распределителя ), отметьте положение рычага ротора, чтобы вы могли установить его в прежнем виде.

Для этого поверните двигатель головкой на болте шкива коленчатого вала до тех пор, пока плечо ротора не будет направлено на штекерный контакт цилиндра привода ГРМ (обычно No. 1, проверьте в руководстве по обслуживанию автомобиля), а отметки времени на шкиве или позади него показывают точно верхнюю мертвую точку ( ВМТ ).

Отметьте положение рычага ротора, слегка нацарапав линию на корпусе распределителя. Отсоедините провод LT от корпуса распределителя.

Ослабьте болт крепления зажима в основании распределителя, затем осторожно извлеките распределитель.

Если ведущая шестерня имеет косые зубья, они могут вызвать вращение рычага ротора. Если это так, отметьте его новое положение, чтобы облегчить установку

.

Некоторые распределители можно снимать, не отделяя шестерни, поэтому рычаг не вращается.

Вокруг основания распределителя может быть резиновое 0-образное кольцо сальника или бумажная прокладка под пластина зажима. Снимите любое уплотнение, очистите всю грязь и масло и установите новое.

Установите распределитель, убедившись, что рычаг ротора точно совпадает с первой отметкой. Если нет, снимите дистрибьютора и попробуйте снова.

Признаки неисправного или неисправного сальника коленчатого вала

Уплотнение коленчатого вала — это уплотнение, расположенное на передней части двигателя, которое уплотняет конец коленчатого вала с крышкой привода ГРМ.Большинство сальников коленчатого вала изготавливаются из резины и металла и имеют круглую форму. Обычно они устанавливаются в передней крышке привода ГРМ и уплотняют конец коленчатого вала при его вращении. Несмотря на то, что они являются относительно простыми компонентами, они служат важной цели, удерживая масло, которое постоянно используется и выбрасывается коленчатым валом во время вращения, от утечки из картера двигателя. Когда они выходят из строя, они могут вызвать утечки, которые могут привести к беспорядку, а если их оставить без присмотра, они могут поставить двигатель под угрозу серьезного повреждения.Обычно сальник коленчатого вала проявляет несколько симптомов, которые могут предупредить водителя о том, что может возникнуть проблема, которую необходимо устранить.

Большой пробег

Если ваш автомобиль приближается к большому пробегу, возможно, более ста тысяч миль, то срок службы уплотнения коленчатого вала может приближаться к концу рекомендованного срока службы. Все производители рекомендуют интервалы обслуживания для большинства компонентов автомобиля. Обслуживание уплотнения коленчатого вала в соответствии с рекомендуемыми интервалами обслуживания может предотвратить выход уплотнения из строя в первую очередь, что может вызвать другие проблемы.

Утечки масла

Утечки масла являются наиболее частым признаком неисправности сальника коленчатого вала. Если уплотнение коленчатого вала высохнет, потрескается или сломается, это может вызвать утечку масла. Небольшие утечки могут привести к скоплению масла на нижней стороне двигателя, в то время как при более крупных утечках может образоваться капля масла из передней части двигателя.

Уплотнение коленчатого вала устанавливается за главным шкивом коленчатого вала двигателя, поэтому для его обслуживания необходимо снять ремни, шкив коленчатого вала и гармонический балансир, прежде чем к нему можно будет получить доступ. По этой причине, если вы подозреваете, что уплотнение коленчатого вала протекает или приближается к концу срока службы, обратитесь к профессиональному специалисту, например, из YourMechanic, для осмотра автомобиля. Они смогут осмотреть ваш автомобиль и определить, нуждается ли он в замене сальника коленчатого вала.

Руководство по стоимости замены переднего уплотнения коленчатого вала 2020 (обновленное)

Передний сальник коленчатого вала удерживает масло в передней части двигателя. Основная причина замены переднего сальника кривошипа — это источник утечки масла.

Стоимость замены сальника кривошипа может варьироваться в зависимости от нескольких факторов, таких как тип и модель транспортного средства, от того, используете ли вы заводскую замену или запасную часть, а также от вашего местоположения, где будет определяться ставка оплаты труда.

Сколько стоит передний сальник коленчатого вала?

Чтобы проиллюстрировать некоторые оценки затрат на замену переднего сальника коленчатого вала, вот некоторые общие затраты на обслуживание автомобилей с использованием ставки оплаты труда 100 долларов в час:

  • 2003 Honda Accord с двигателем 2. Двигатель 4 литра

Рабочее время оценивается в 4,4 часа (с учетом снятия крышки ГРМ). Запасная часть для замены на заводе стоит около 14 долларов, а запчасть ACDelco — примерно столько же. Общая стоимость работ составит около 454 долларов в любом случае, а затем процедура замены также потребует около галлона дополнительной охлаждающей жидкости и некоторого материала прокладки.

  • 2004 Volkswagen Jetta с 2,0-литровым двигателем

Расчетное рабочее время составит около 3 часов (включая снятие ремня ГРМ).Заводская замена детали стоит около 15 долларов, а уплотнение Timken — около 9 долларов. Общая стоимость работ составит около 300 долларов при использовании оригинальных запчастей и около 309 долларов при использовании запчастей на вторичном рынке.

  • 2000 Ford Expedition с 5,4-литровым двигателем

Расчетное время работы составляет около 1,6 часа. Заводская деталь стоит около 15 долларов, а печать Fel-pro — около 6 долларов. Общая стоимость работ составит около 175 долларов с использованием оригинальных запчастей и около 166 долларов с использованием запчастей на вторичном рынке.

  • Для Jeep Wrangler 2014 года с двигателем 3.6-литровый двигатель

Рабочее время оценивается в 0,7 часа. Заводская часть стоит около 18 долларов, а национальная — около 6 долларов. Общая стоимость замены уплотнения коленчатого вала составит около 88 долларов с использованием оригинальных запчастей и около 76 долларов с использованием запчастей.

  • 2005 Toyota 4Runner с 4,7-литровым двигателем

Рабочее время составит около 0,9 часа. Заводская деталь стоит около 13 долларов, а уплотнение Apex — около 7 долларов. Общая стоимость выполнения работы составит около 103 долларов при использовании оригинальных запчастей и около 97 долларов при использовании запчастей на вторичном рынке.

Замена переднего сальника коленчатого вала

Существует два основных типа механизмов синхронизации двигателя, которые имеют большое значение в отношении того, насколько легко или сложно заменить переднее уплотнение кривошипа. В двигателе, который управляет синхронизацией от коленчатого вала с помощью цепи, цепь находится внутри крышки привода ГРМ и смазывается моторным маслом.

Конец коленчатого вала выступает через крышку привода ГРМ, на который болтами закреплен гармонический балансир. Переднее уплотнение коленчатого вала прижимается к отверстию крышки ГРМ, а его уплотнительная кромка упирается в обработанную поверхность гармонического балансира.

На большинстве двигателей этого типа замена переднего уплотнения проста. Хотя некоторые заводские процедуры требуют снятия крышки привода ГРМ для установки уплотнения с помощью специальных инструментов.

В компоновке второго типа синхронизация двигателя приводится в движение резиновым ремнем, который работает всухую и находится внутри кожуха. Переднее уплотнение кривошипа вдавливается в корпус за узлом привода ГРМ, и для доступа к нему требуется более длительная и сложная процедура разборки.

Это часто включает слив системы охлаждения. Однако могут быть задействованы и другие части.

Прочие вопросы, связанные с

Другие вещи, которые могут возникнуть, очень зависят от автомобиля. Во многих случаях замена переднего сальника кривошипа включает только снятие змеевикового ремня и гармонического балансира.

Ремень резиновый, а балансир имеет резиновый компонент, резина может быть повреждена маслом. Если уплотнение вызвало утечку масла, эти детали следует проверить на предмет повреждений и при необходимости заменить.

Кроме того, если уплотнительная поверхность гармонического балансира изношена, это может привести к утечке нового уплотнения, и его следует заменить.

На двигателе, на котором ремень ГРМ должен быть снят для замены переднего сальника коленчатого вала, если на ремне есть повреждение маслом, его следует заменить. Если ремень ГРМ приближается к плановому техническому обслуживанию, рекомендуется заменить его, когда он снят. В дальнейшем это сэкономит на трудозатратах, даже если выглядит нормально.

На двигателе, в котором для привода водяного насоса используется ремень ГРМ, обычно рекомендуется заменять водяной насос и ремень ГРМ вместе.

На двигателе, работающем от цепи, если процедура требует снятия крышки привода ГРМ, это включает в себя открытие системы охлаждения и масла. Иногда это делается таким образом, чтобы можно было некоторое перемешивание.

Слив системы масла и охлаждающей жидкости и замена этих жидкостей является хорошим профилактическим обслуживанием, когда возможно загрязнение.

Все, что вам нужно знать —

В автомобилях в процессе владения могут возникать различные проблемы с компонентами двигателя.Некоторые из этих проблем просты, но немного раздражают, в то время как другие становятся немного более серьезными, но все же легкими и недорогими. Третьи довольно дороги и необходимы, но их легко выполнить в вашем гараже, если вы хорошо разбираетесь в двигателе. Затем идут большие: проблемы, которые являются срочными, дорогостоящими и очень трудно устранимыми, а бездействие может стать концом вашего автомобиля. Главная проблема последнего типа — утечка заднего главного уплотнения.

В этой статье:

В следующем руководстве мы выявим причины и симптомы утечек заднего главного уплотнения и подробно рассмотрим решения этой проблемы.В число продуктовых решений, упомянутых в этой статье, входят:

Чем раньше вы отреагируете на автомобильные симптомы, описанные в этой статье, тем выше вероятность, что вы сэкономите деньги и избавите себя от разочарования из-за неисправного автомобиля.

1. Все дело в утечках масла — что такое заднее главное уплотнение?

В моторном отсеке вашего автомобиля находится заднее основное уплотнение, которое предназначено для предотвращения утечек масла между блоком и коленчатым валом. В качестве труднодоступного компонента производители изначально планировали, что задние уплотнения продлят срок службы автомобиля без необходимости замены, в отличие от различных деталей под капотом, которые водители должны заменять каждые пару лет.

К сожалению, масло может легко вытечь из заднего главного уплотнения из-за его размещения в задней части двигателя. Задние основные утечки опасны двояко. Во-первых, негерметичное заднее главное уплотнение быстро истощит запас масла.

В современных автомобилях заднее главное уплотнение является цельным. В большинстве старых автомобилей, построенных в США, использовались тросовые или фитильные уплотнения, хотя иногда производители заменяли их на разъемные уплотнения, которые впервые появились в конце 1950-х годов в двигателях Chevy V8:

  • Rope / Wick Seal — Это уплотнение, названное так из-за его сходства с тросами и фитилями ламп, разработано инженерами, способными выдерживать удары при интенсивном вращении коленчатого вала и трение, вызванное колебаниями температуры.Следовательно, пломба из веревки / фитиля может выйти из строя одним из двух способов: сжаться в холодную погоду или расшириться в жаркую погоду. Сальник предохраняется от высыхания с помощью небольшого количества масла, которое также удерживает его на своем месте рядом с коленчатым валом. В современных автомобилях канатным уплотнениям не хватает прочности по сравнению с более старыми аналогами, когда речь идет о предотвращении утечки масла. По мнению различных специалистов по автомобилям, отстающие характеристики новых канатов / фитилей связаны с изменением проектных работ и ужесточением экологических норм, которые ограничивают использование таких материалов, как асбест.Из-за сокращающегося рынка уплотнений этого типа производители, как утверждается, срезали углы, чтобы сделать более дешевые версии продукта. Тросовое / фитильное уплотнение уязвимо для таких факторов, как контакт коленчатого вала и частота вращения двигателя, и поэтому должно соответствовать требованиям к частоте вращения вашего двигателя. Чтобы избежать плохой замены уплотнений этого типа, покупайте только у надежных поставщиков запчастей.
  • Неопрен / разделенное уплотнение — Изготовлен из резиноподобного материала, неопрен имеет форму кромки, установленной в одном направлении для предотвращения прохождения масла.Несмотря на свою эффективность, неопреновые уплотнения так же уязвимы к утечкам, как и уплотнения из троса / фитиля.
  • Цельное уплотнение — Цельное уплотнение уникальной круглой формы работает только на специально изготовленных коленчатых валах, и поэтому ему не хватает универсальности тросовых и неопреновых уплотнений. Следовательно, невозможно установить неразъемные уплотнения в старые двигатели без замены коленчатого вала. С другой стороны, это одно из самых сложных уплотнений в обслуживании.

2. Каковы симптомы утечки через заднее главное уплотнение?

Если вы подозреваете, что у вас есть утечка заднего главного уплотнения, проблему может быть трудно идентифицировать, потому что рассматриваемые детали относительно неизвестны большинству владельцев автомобилей.Фактически, труднодоступное расположение заднего главного уплотнения свидетельствует о том, что эта часть автомобиля никогда не предназначалась для замены в течение всего периода владения автомобилем, в отличие от аккумулятора, фильтра и других компонентов, которые лежат непосредственно под капотом.

Основным признаком утечки заднего уплотнения является ускоренная утечка моторного масла из автомобиля. Если ваш автомобиль начал оставлять черные лужи на подъездной дорожке или на парковке, что-то определенно не так с ситуацией под автомобилем.Еще одним признаком является то, что вам необходимо чаще доливать масло, несмотря на то, что вы едете по тем же маршрутам, что и раньше. Например, если индикатор давления масла загорится красным через несколько недель после новой замены масла, существует большая вероятность того, что у вас есть утечка моторного масла, вызванная разрывом заднего главного уплотнения. Таким образом, ключевые индикаторы утечки включают:

  • Масляные пятна, оставленные на проездах и стоянках
  • Быстрая / агрессивная потеря масла

На ранней стадии утечки утечка масла может быть недостаточно быстрой, чтобы ее можно было определить по пятнам на участок бетона, на котором припаркован автомобиль.Хотя вы можете увидеть, как со временем на подъездной дорожке растет масляное пятно, протечка может быть недостаточно быстрой, чтобы оставить свой след на парковках супермаркетов или в часы, когда автомобиль припаркован параллельно на городских улицах. Поэтому вам может потребоваться провести тесты, чтобы определить, теряете ли вы масло или нет.

Простой способ проверить, не течет ли масло в вашем автомобиле, — это дать двигателю поработать на холостом ходу в течение 15 минут, чтобы посмотреть, не появилось ли масло на поверхности под ним. Поскольку движение автомобиля и другие автомобильные детали могут скрывать симптомы утечки масла, большая часть свидетельств утечки остается незамеченной.Например, масло может попасть на детали шасси, когда вы едете на работу и с работы на скоростях. Запустив автомобиль на месте, вы сможете лучше понять, как расходуется масло во время поездок по дорогам и автомагистралям.

3. Почему в автомобилях возникают утечки через заднее главное уплотнение?

В некоторых случаях заднее уплотнение выходит из строя после короткого периода в дороге, несмотря на использование качественных деталей. Когда это происходит, наиболее вероятной причиной являются близлежащие компоненты двигателя, такие как коленчатый вал или крышки. Или проблема может заключаться в некачественной установке, когда детали не совпадали или терлись друг о друга на этапе повторной сборки. Когда утечки становятся серьезными, обычно проблема заключается в неисправном коленчатом валу. Если на коленчатом валу есть заусенцы (неровности или выступы), это быстро повлияет на заднее уплотнение. Проблема также могла быть связана с основными крышками, которые могли быть неправильно выровнены по размеру.

Для поклонников хот-родов и классических автомобилей 1950-х годов протечка заднего главного уплотнения может быть одной из самых неприятных неисправностей.Присутствие лужи свежего масла на чистом парковочном месте действительно ограничило бы стиль любого гордого владельца мощного автомобиля. Как будто утечки недостаточно, масло может разбрызгиваться по ходовой части вашего автомобиля. Это, в свою очередь, притягивает пыль и грязь, что может привести к образованию отложений и коррозии на открытых частях автомобиля, таких как втулки шасси. Более того, случайное масло может попасть в выхлопную систему, что приведет к неприятному запаху и даже дыму, если количество масла достаточно велико.

В автомобилях с передним приводом замена заднего главного уплотнения особенно трудна, поскольку уплотнение размещается на противоположном конце, где расположены шкивы и элементы доступа к двигателю.Утечка масла из главного уплотнения обычно происходит в точке соединения двигателя и трансмиссии. Следовательно, чтобы получить доступ к заднему главному уплотнению, механику обычно приходится снимать части трансмиссии и близлежащие компоненты. Обычно это означает почти полную разборку двигателя, снятие каждого компонента с транспортного средства один за другим и откладывание их в сторону до тех пор, пока не будет достигнуто неисправное основное уплотнение внизу и, в конечном итоге, замена его на новый.

В некоторых автомобилях коленчатый вал также может нуждаться в снятии, что может побудить механика порекомендовать ремонт двигателя.Как и в большинстве крупных работ по техническому обслуживанию, механик будет убеждать владельца автомобиля вкладывать средства в замену различных других компонентов, которые находятся рядом или рядом с рассматриваемой деталью. Хотя иногда это может быть хорошей идеей из-за возраста определенных деталей и вероятности их выхода из строя, заказчик может потратить значительно больше, чем просто стоимость первоначального ремонта.

Чтобы не пойти по этому пути, важно иметь общее представление о типе ремонта, который действительно необходим при устранении утечек моторного масла.Если есть еще одна труднодоступная деталь, которая может вскоре выйти из строя, но будет доступна во время замены заднего уплотнения, это будет примером мудро выбранной дополнительной работы для автомобиля. Кроме того, по нашему опыту, если заднее основное уплотнение не повреждено безнадежно, лучшим вариантом может стать средство для остановки утечки масла (химический ремонт).

Задние основные уплотнения обычно состоят из силикона или резины. Таким образом, уплотнения подвержены износу, который может быть вызван следующими факторами:

  • Возраст — частая причина в старых автомобилях
  • Повторяющееся вращение коленчатого вала — с течением времени коленчатый вал изнашивается. движения
  • Воздействие дорожной соли — обычное явление в холодных странах в зимние месяцы
  • Коррозия — извечный враг всех деталей автомобиля
  • Атмосферные элементы — такие как пыль, мусор и т. д. мусор на обочине дороги

Из-за высокой стоимости и больших затрат труда, требуемых в большинстве случаев устранения утечек заднего главного уплотнения, механики часто советуют заменять уплотнение во время любого ремонта автомобиля, который включает снятие трансмиссии.Таким образом, вы предотвратите возможность возникновения утечки заднего главного уплотнения и избежите дорогостоящих ремонтных работ, которые могут возникнуть в результате. Даже если ваши финансы заставляют вас в целом осторожничать, когда дело доходит до таких решений, приведенные здесь описания утечек масла заднего уплотнения могут служить предупреждением против откладывания этого типа обслуживания по любой причине. Мы говорим с клиентами об утечках масла каждый день, и мы слышали ужасные истории о том, что происходит с автомобилем, когда реальная утечка масла через главное уплотнение слишком долго игнорируется.

Уплотнение может постепенно погружаться в металлический коленчатый вал и изнашивать канавки. Пытаясь решить эту проблему, компании-производители запасных частей выпускают уплотнения альтернативной конструкции, которые регулируют положение кромок уплотнения. Втулки из нержавеющей стали также можно прижать к коленчатому валу, чтобы обновить изношенную поверхность и дать уплотнению новое место для движения. Однако эти дополнения сложно установить и легко повредить из-за их размещения под автомобилем.

Когда автомобиль припаркован под углом, утечка масла будет более серьезной.Поэтому, если ваша подъездная дорога построена на склоне, припаркуйте машину на улице перед своим домом, пока проблема не будет устранена. На автомобилях с механической коробкой передач диск сцепления может пропитаться маслом, если оставить утечку слишком долго.

4. Какова стандартная стоимость ремонта заднего главного уплотнения?

Согласно средним показателям по стране, собранным Repair Pal, стоимость ремонта заднего главного уплотнения составляет от 659 до 836 долларов. Эти итоговые значения основаны на сочетании затрат на рабочую силу, которые обычно составляют от 624 до 789 долларов, и затрат на запчасти, которые соответственно колеблются от 35 до 47 долларов.Конечно, затраты могут варьироваться в зависимости от марки и модели данного автомобиля, а также налогов и сборов, которые могут применяться в определенных штатах. Поэтому, прежде чем заняться ремонтом заднего главного уплотнения, убедитесь, что утечка масла правильно диагностирована, и рассмотрите альтернативные варианты решения проблемы.

Если вы определили, что в вашем автомобиле течет масло, проверьте трансмиссию и масляный поддон на предмет доказательств. Если масло появляется на передней части первого и на задней части второго, это может быть связано с утечкой заднего главного уплотнения, но есть и другие возможности. Поэтому важно дополнительно проверить моторный отсек на предмет подтеков. В конце концов, вы не захотите ошибочно диагностировать другую, менее дорогостоящую проблему, требующую устранения утечки масла, из-за гораздо более сложной (и дорогостоящей) проблемы утечки заднего главного уплотнения. Фактически, вы можете почувствовать облегчение, обнаружив критическую, но другую проблему с вашим автомобилем, которую в конечном итоге будет проще и дешевле исправить.

Другими местами для проверки на утечки являются прокладка клапанной крышки и поддон ендовы, но вам нужно залезть под автомобиль с фонариком, чтобы проверить эти детали.Для дополнительной защиты вы, вероятно, захотите надеть грязь, очки и защитное снаряжение на голову, прежде чем упадете на землю. По общему признанию, такие задачи относятся к числу наиболее неприятных и грязных аспектов самостоятельной работы с автомобилем. Тем не менее, прокладку крышки и поддон ендовы легче и дешевле заменить, чем заднее основное уплотнение, замена которого обычно включает снятие большинства деталей двигателя.

Один из способов определить утечку в автомобиле — использовать краситель. Нанесите краситель на автомобиль, проехав на нем, используйте специальный свет, чтобы определить источник утечки.

Если все более быстрая потеря масла в вашем автомобиле на самом деле связана с утечкой в ​​заднем основном уплотнении, вам необходимо решить, что делать дальше: оплатить ремонтные работы заднего главного уплотнения или просто продать автомобиль. Однако, в зависимости от характера и степени утечки, вы также можете рассмотреть профессиональный, проверенный временем продукт для остановки утечки масла, который устранит зазор в заднем уплотнении. В дополнение к продуктам для герметизации утечек масла, некоторые водители переходят на более густые масла, такие как 10W30 вместо 5W20, для уменьшения текучести двигателя, хотя это временное решение, и в конечном итоге утечка вернется по мере усугубления проблемы с основным уплотнением.

Ваши варианты могут быть уже, если заднее уплотнение сильно повреждено, что может иметь место в старинном автомобиле с устаревшими деталями двигателя. Если автомобиль относительно старый, возможно, выполните следующие действия по порядку:

  • Узнайте у местных специалистов по автомобилям текущую стоимость вашего автомобиля «как есть».
  • Поищите в Интернете информацию о текущей стоимости при перепродаже неремонтированных автомобилей той же марки и модели.
  • Если вы не можете определить текущую стоимость «как есть», посмотрите, можете ли вы пожертвовать автомобиль на благотворительность в качестве списания налога.
  • Определите, перевесит ли стоимость ремонта заднего главного уплотнения стоимость замены автомобиля.

Опять же, вы можете оставить автомобиль себе, независимо от проблемы или стоимости ремонта. Например, если рассматриваемый автомобиль является ценным предметом старины, вы вряд ли позволите ему переехать неисправный компонент двигателя. Точно так же, если вы владеете автомобилем в течение нескольких десятилетий и он имеет сентиментальную ценность, вы, вероятно, много раз шли по пути дорогостоящего ремонта в прошлом. В любом случае вы можете выбрать решение для остановки утечки масла профессионального уровня, такое как средство для устранения утечек моторного масла в главном уплотнителе Bar’s Leaks Main Seal (MS-1), которое быстро восстанавливает протекающие задние основные уплотнения и позволяет вам снова выехать на дорогу.

Утечка заднего главного уплотнения — одна из худших вещей, которые могут случиться с автомобилем, поскольку она затрагивает труднодоступный компонент двигателя. Для многих водителей известие о такой проблеме означает, что, возможно, пора купить новый автомобиль, потому что затраты на ремонт заднего главного уплотнения (деньги, время и хлопоты) обычно превышают стоимость автомобилей, достаточно старых, чтобы возникла такая утечка.Из-за этого протечка заднего уплотнения — это тип автомобильной проблемы, которой хочет избежать любой владелец транспортного средства, потому что последствия буквально превышают стоимость многих транспортных средств и сокращают бюджет на ремонт среднего водителя в современной экономике.

Независимо от того, имеет ли водитель опыт и знания в области обслуживания автомобилей, задача замены протекающего заднего уплотнения обычно слишком сложна или требует много времени. Если вас не пугает мысль о разборке двигателя по частям только для того, чтобы получить доступ к проблемному компоненту, вы можете принять вызов, но специалисты в этой области часто говорят, что легче сказать, чем сделать.Что характерно, даже специалисты по ремонту автомобилей отказались от мысли о необходимости замены задних основных уплотнений. По сути, утечки через заднее уплотнение — плохая новость, потому что они:

  • Вопрос ремонта или замены
  • Дороже, чем общая стоимость многих подержанных автомобилей
  • Трудно получить доступ

Однако альтернатива дорогостоящему обслуживанию и прискорбно Обмен автомобилей действительно существует благодаря отмеченным наградами формулам устранения утечек моторного масла, предлагаемым Bar’s Leaks. Если вашему автомобилю срочно требуется устранить утечку масла из-за зазора в главном заднем уплотнении, следующие решения могут устранить большинство утечек заднего главного уплотнения и предотвратить утечку масла в дороге:

Краткое примечание: если вы замечаете, что ваша машина теряет или сжигает масло с несколько большей скоростью, чем обычно, вы не видите характерных масляных луж на земле, и вы заметили, что выхлоп из выхлопной трубы вздымается каждый раз, когда вы запускаете двигатель, проблема, вероятно, не связана с утечкой заднего главного уплотнения. Вместо этого это может быть вызвано утечкой уплотнения клапана — распространенной проблемой, о которой мы все время слышим от клиентов.

Распространенные причины утечек клапана уплотнения включают возраст автомобиля и пробег. Однако одной из наиболее вероятных причин утечки уплотнения является длительное хранение автомобиля. Когда вы храните автомобиль в гараже в течение нескольких недель или месяцев, уплотнение может высохнуть и затвердеть, что в конечном итоге может привести к трещинам и утечкам. Хотя утечки такого рода не такие серьезные или потенциально дорогостоящие, как утечки через заднее главное уплотнение, они по-прежнему являются проблемой, требующей внимания.

Чтобы предотвратить выход из-под контроля утечки масла из-за уплотнения клапана, устраните проблему с помощью средства «Ремонт расхода масла в уплотнителе клапана утечки» (VS-1), доступного в компании Bar’s Leaks. Этот продукт специально разработан для герметизации протечек в уплотнении клапана и предотвращения дальнейшего сжигания и чрезмерного расхода моторного масла.

Чтобы узнать больше о продуктах Bar’s Leaks для устранения утечек через заднее главное уплотнение, утечек клапанов, двигателей, систем охлаждения, гидравлики, гидроусилителя руля и т. Д., Щелкните здесь, чтобы просмотреть каталог всей продукции Bar’s Leaks.

Как обычно, если у вас есть какие-либо вопросы, напишите нам в Facebook или свяжитесь с нашей службой поддержки. Мы всегда рады помочь.

Как заменить сальник коленчатого вала

Сальник коленвала, наверное, одна из самых важных вещей под капотом. Его основная цель — закрыть отверстия на обоих концах коленчатого вала — спереди и сзади. Это также помогает поддерживать уплотнение картера, и, хотя оно изготовлено из прочного материала, способного выдерживать давление, тепло и масло, оно со временем изнашивается.

В зависимости от типа, с которым вы имеете дело, замена может быть простой. Передний сальник коленчатого вала может быть отремонтирован любым мастером-мастером в правильном направлении, но если у вас нет всего необходимого оборудования, рекомендуется заменить задний сальник коленвала автомехаником.

Шаг 1. Поднимите автомобиль

Перед тем, как начать, вам нужно поднять автомобиль. С помощью гаечного ключа снимите переднее колесо и поместите опору под домкрат, чтобы поддержать его.

Шаг 2 — Снимите ремень

Затем вам нужно снять змеевик с двигателя.Установите на натяжитель рычаг средней длины и поднимите. Вытяните ремень из генератора и снимите его с коленчатого вала, чтобы полностью снять.

Шаг 3 — Снимите брызговик

Брызговик, в котором находится переднее масляное уплотнение коленчатого вала, также должен будет снять. Он расположен внутри колесной арки рядом с двигателем. Чтобы удалить его, начните с вытягивания штифтов сверху. Затем с помощью съемника панели извлеките центр штифта, прежде чем снимать остальную часть.Как только все штифты вынуты наружу, вы также можете удалить щит.

Этап 4 — Снимите сальник коленчатого вала

Снимите болт, удерживающий шкив коленчатого вала; затем вытащите болты и сам шкив. Теперь вы должны увидеть коленчатый вал.

Выдавите экран, который представляет собой круглое кольцо из металла, расположенный в центре, с помощью отвертки достаньте сальник.

Шаг 5 — Вставьте новое уплотнение

Перед тем, как произвести замену, проверьте, насколько глубоко оно заходит, чтобы убедиться, что вы можете правильно установить новое уплотнение.Если он заходит слишком глубоко, чтобы вы не могли его вытащить, тогда вам лучше отдать автомобиль профессионалу, а не продолжать.

После снятия старого уплотнения вставьте новое на место. Удостоверьтесь, что он надежно закреплен, постучав по нему мягким молотком до надежной фиксации.

Шаг 6 — Замените все

После того, как вы установили новый сальник коленчатого вала, вы можете снова надеть щиток и затянуть его всеми вынутыми болтами. Установите обратно брызговик и замените нажимные штифты, прежде чем устанавливать змеиный ремень на место.Перед установкой колеса на место убедитесь, что болты и ремень установлены правильно.

.

Назначение устройство и работа системы охлаждения двигателя: Схема, устройство и принцип работы системы охлаждения двигателя

Как это работает: система охлаждения ДВС

    Сегодня из нашей постоянной рубрики «Как это работает» Вы узнаете устройство и принцип работы системы охлаждения двигателя, для чего нужен термостат и радиатор, а так же почему не получила широкого распространения воздушная система охлаждения.

 

 

 

 

 

 

    Система охлаждения двигателя внутреннего сгорания осуществляет отвод теплоты  от деталей двигателя и передачу её в окружающую среду. Кроме основной функции система выполняет ряд второстепенных: охлаждение масла в системе смазки; нагрев воздуха в системе отопления и кондиционирования; охлаждение отработавших газов и др.


    При сгорании рабочей смеси, температура в цилиндре может достигать 2500°С, в то время как рабочая температура ДВС составляет 80-90°С. Именно для поддержания оптимального температурного режима существует система охлаждения, которая может быть следующих типов, в зависимости от теплоносителя: жидкостная, воздушная и комбинированная. Следует отметить, что жидкостная система в чистом виде уже практически не используется, так как не способна длительное время поддерживать работу современных двигателей в оптимальном тепловом режиме.

 

 

    Комбинированная система охлаждения двигателя:


    В комбинированной системе охлаждения в качестве охлаждающей жидкости часто используется вода, так как имеет высокую удельную теплоемкость, доступность и безвредность для организма. Однако вода имеет ряд существенных недостатков: образование накипи и замерзание при отрицательных температурах. В зимнее время года в систему охлаждения необходимо заливать низкозамерзающие жидкости – антифризы (водные растворы этиленгликоля, смеси воды со спиртом или с глицерином, с добавками углеводородов и др.).

 

 

 

 

    Рассматриваемая система охлаждения состоит из: жидкостного насоса, радиатора, термостата, расширительного бачка, рубашки охлаждения цилиндров и головок, вентилятора, датчика температуры и подводящих шлангов.

    Стоит оговорить, что охлаждение двигателя принудительное, а значит в нём поддерживается избыточное давление (до 100 кПа), вследствие чего температура кипения охлаждающей жидкости повышается до 120°С.

 

 

    При запуске холодного двигателя происходит его постепенный нагрев. Первое время охлаждающая жидкость, под действием жидкостного насоса, циркулирует по малому кругу, то есть в полостях между стенками цилиндров и стенками двигателя (рубашка охлаждения), не попадая в радиатор.  Это ограничение необходимо для быстрого введения двигателя в эффективный тепловой режим. Когда температура двигателя превышает оптимальные значения, охлаждающая жидкость начинает циркулировать через радиатор, где активно охлаждается (называют большим кругом циркуляции).

 

малый круг циркуляции

большой круг циркуляции 

 

 

 

    Далее рассмотрим отдельно каждый элемент системы охлаждения двигателя.

 

 

    ТЕРМОСТАТ.  По своей сути, это маленькое устройство работает как автоматический клапан. Термостат в закрытом состоянии не позволяет охлаждающей жидкости проникнуть в радиатор. Но при температуре среды 85-95°С он открывается и тогда циркуляция жидкости проходит по большому кругу (через радиатор). Причем чем выше температура среды, тем шире термостат открывается, что увеличивает его пропускную способность.

    Устройство и принцип работы:

 

    Термостат сделан из латуни и меди. Состоит из цилиндра наполненного смесью воска и пыли графита (различные производители применяют свои собственные разработки и компоненты). В цилиндр с смесью вдавлен штырь и соединен с клапаном. Нагреваясь, искусственный воск значительно расширяется, выталкивая штырь, который открывает проход охлаждающей жидкости к радиатору. Стальная пружина, по мере остывания рабочего тела, возвращает клапан в закрытое состояние.
   

    ЖИДКОСТНОЙ НАСОС. Насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. Чаще всего применяют лопастные насосы центробежного типа.

 

     Вал 6 насоса установлен в крышке 4 с использованием подшипника 5. На конце вала напрессована литая чугунная крыльчатка 1. При вращении вала насоса охлаждающая жидкость через патрубок 7 поступает к центру крыльчатки, захватывается ее лопастями, отбрасывается к корпусу 2 насоса под действием центробежной силы и через окно 3 в корпусе направляется в рубашку охлаждения блока цилиндров двигателя.

     

    РАДИАТОР обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. Радиатор состоит из верхнего и нижнего бачков и сердцевины. Его крепят на автомобиле на резиновых подушках с пружинами.

    Наиболее распространены трубчатые и пластинчатые радиаторы. У первых сердцевина образована несколькими рядами латунных трубок, пропущенных через горизонтальные пластины, увеличивающие поверхность охлаждения и придающие радиатору жесткость. У вторых сердцевина состоит из одного ряда плоских латунных трубок, каждая из которых изготовлена из спаянных между собой по краям гофрированных пластин. Верхний бачок имеет заливную горловину и пароотводную трубку. Горловина радиатора герметически закрывается пробкой, имеющей два клапана: паровой для снижения давления при закипании жидкости, который открывается при избыточном давлении свыше 40 кПа (0,4 кгс/см2), и воздушный, пропускающий воздух в систему при снижении давления вследствие охлаждения жидкости и этим предохраняющий трубки радиатора от сплющивания атмосферным давлением. Используются и алюминиевые радиаторы: они дешевле и легче, но теплообменные свойства и надёжность ниже.

 


    Охлаждающая жидкость «бегая» по трубкам радиатора, охлаждается при движении встречным потоком воздуха.

 

 

    ВЕНТИЛЯТОР усиливает поток воздуха через сердцевину радиатора. Ступицу вентилятора крепят на валу жидкостного насоса. Они вместе приводятся во вращение от шкива коленчатого вала ремнями. Вентилятор заключен в установленный на рамке радиатора кожух, что способствует увеличению скорости потока воздуха, проходящего через радиатор. Чаще всего применяют четырех- и шестилопастные вентиляторы.

 

   
   

    РАСШИРИТЕЛЬНЫЙ БАЧОК служит для компенсации изменений объема охлаждающей жидкости при колебаниях ее температуры и для контроля количества жидкости в системе охлаждения. Он также содержит некоторый запас охлаждающей жидкости на ее естественную убыль и возможные потери.

 

    ДАТЧИК температуры охлаждающей жидкости относится к элементам управления и предназначен для установления значения контролируемого параметра и дельнейшего его преобразования в электрический импульс. Электронный блок управления получает данный импульс и посылает определенные сигналы исполнительным устройствам. При помощи датчика охлаждающей жидкости компьютер определяет количество топлива, требуемое для нормальной работы ДВС. Также, основываясь на показаниях датчика температуры охлаждающей жидкости блок управления, формирует команду включения вентилятора.
 

 

 

    Воздушная система охлаждения:

 

    В воздушной системе охлаждения отвод теплоты от стенок камер сгорания и цилиндров двигателя осуществляется принудительно потоком воздуха, создаваемым мощным вентилятором. Эта система охлаждения является самой простой, так как не требует сложных деталей и систем управления. Интенсивность воздушного охлаждения двигателей существенно зависит от организации направления потока воздуха и расположения вентилятора.


    В рядных двигателях вентиляторы располагают спереди, сбоку или объединяют с маховиком, а в V- образных — обычно в развале между цилиндрами. В зависимости от расположения вентилятора цилиндры охлаждаются воздухом, который нагнетается или просасывается через систему охлаждения.


    Оптимальным температурным режимом двигателя с воздушным охлаждением считается такой, при котором температура масла в смазочной системе двигателя составляет 70… 110°С на всех режимах работы двигателя. Это возможно при условии, что с охлаждающим воздухом рассеивается в окружающую среду до 35 % теплоты, которая выделяется при сгорании топлива в цилиндрах двигателя.


    Воздушная система охлаждения уменьшает время прогрева двигателя, обеспечивает стабильный отвод теплоты от стенок камер сгорания и цилиндров двигателя, более надежна и удобна в эксплуатации, проста в обслуживании, более технологична при заднем расположении двигателя, переохлаждение двигателя маловероятно. Однако воздушная система охлаждения увеличивает габаритные размеры двигателя, создает повышенный шум при работе двигателя, сложнее в производстве и требует применения более качественных горюче-смазочных материалов. Теплоёмкость воздуха мала, что не позволяет равномерно отводить от двигателя большое количество тепла и, соответственно, создавать компактные мощные силовые установки.

 

 

Система охлаждения двигателя автомобиля

Внимание
Система охлаждения двигателя выполняет одну из самых важных функций в ДВС, поэтому выход из строя всей системы или какого-либо элемента может привести к перегреву и выходу из строя двигателя. Движение и эксплуатация транспортного средства с неисправной системой охлаждения нежелательна или запрещена.

Назначение и действие системы охлаждения


Рисунок 4.31 Принципиальная схема системы охлаждения двигателя.

Система охлаждения служит для принудительного отвода тепла от цилиндров двигателя и передачи его окружающему воздуху. Необходимость в системе охлаждения вызвана тем, что детали двигателя, соприкасающиеся с раскаленными газами, при работе сильно нагреваются. Если не охлаждать внутренние детали двигателя, то вследствие перегрева может произойти выгорание слоя смазки между деталями и заедание движущихся деталей вследствие чрезмерного их расширения.

Системы охлаждения практически всех современных автомобилей не отличаются друг от друга. Принципиальная, обобщенная схема работы системы охлаждения приведена на рисунке 4.31, где красным цветом отмечена жидкость нагретая от деталей двигателя и синим – охлажденная в радиаторе системы.

В систему водяного охлаждения с принудительной циркуляцией жидкости входят водяные рубашки соответственно головки и блока цилиндров (о рубашках мы писали выше, изучая одноцилиндровый двигатель), радиатор, нижний и верхний соединительные патрубки со шлангами и водяной насос с водораспределительной трубой, вентилятор и термостат.

При работе двигателя, приводимый от него в действие водяной насос (он же —помпа) создает круговую циркуляцию воды через водяную рубашку, патрубки и радиатор. По водораспределительной трубе вода в первую очередь направляется к наиболее нагреваемым местам блока. Проходя по водяной рубашке блока и головки, вода омывает стенки цилиндров и камер сгорания, охлаждая двигатель. Нагретая вода по верхнему патрубку поступает в радиатор, где, разветвляясь по трубкам на тонкие струйки, охлаждается воздухом, который просачивается мимо трубок под действием тяги, создаваемой вращающимися лопастями вентилятора. Охлажденная вода вновь поступает в водяную рубашку двигателя.


Рисунок 4.32 Схема системы охлаждения.

Основные элементы системы охлаждения

 Радиатор


Рисунок 4.33 Радиатор.

Представляет собой набор тонких трубок, на которые нанизаны тонкие пластины для увеличения площади поверхности, предназначенной для отвода тепла. Вся работа радиатора заключается в том, чтобы охлаждать жидкость, которая циркулирует в его трубках.

На рисунке 4.34 приведен пример участка радиатора с различными вариантами исполнения.


Рисунок 4.34 Варианты исполнения радиатора системы охлаждения.

На верхней и нижней частях радиатора могут быть бачки, к которым подсоединены верхний и нижний патрубки системы охлаждения соответственно. Если есть бачки, то в верхнем, обычно расположена горловина для заливания охлаждающей жидкости. Если бачков нет, то горловина располагается прямо на радиаторе.

Для лучшего охлаждения жидкости трубки делают плоскими и располагают рядами в шахматном порядке. Поперек трубок установлены в большом количестве тонкие латунные пластины, называемые охлаждающими ребрами, которые увеличивают поверхность охлаждения сердцевины и способствуют более интенсивной отдаче тепла от воды воздуху, проходящему через сердцевину.

В системе охлаждения закрытого типа горловину радиатора плотно закрывают специальной пробкой с двойным паровоздушным клапаном (смотрите рисунок 4.35). Воздушный клапан пробки нагружен слабой пружиной и пропускает внутрь радиатора атмосферный воздух, устраняя возможность возникновения в бачке радиатора разрежения, появляющегося при конденсации паров воды. Паровой клапан нагружен более сильной пружиной и открывается для выпуска пара только тогда, когда давление в радиаторе превышает атмосферное и доходит до 1,28—1,38 кг/см2.


Рисунок 4.35 Крышка радиатора.

 Водяной насос

Водяной насос (он же помпа) заставляет охлаждающую жидкость циркулировать по системе. Тип насоса – центробежный. Вращается насос при помощи приводного ремня, установленного на шкив коленчатого вала.

Насос представляет собой довольно простую конструкцию: вал, на одном конце которого установлена крыльчатка (показана на рисунке 4.36), а на втором – шкив для приводного ремня. Вал опирается на подшипник, установленный в крышке помпы. Зачастую корпусом для насоса служит полость или прилив в блоке цилиндров. Вода по подводящему патрубку поступает внутрь корпуса и подводится к центру вращающейся крыльчатки. При этом вода увлекается крыльчаткой, приобретает вращательное движение, под действием центробежной силы отбрасывается к стенкам корпуса и через выходной канал под напором поступает в водяную рубашку двигателя.


Рисунок 4.36 Водяной насос. Крыльчатка.

 Вентилятор

В былые времена вентилятор устанавливался на одной оси с валом водяного насоса, жестко крепился к приводному шкиву и гнал воздух для дополнительного охлаждения радиатора постоянно, пока работал двигатель, так как привод был от коленчатого вала. Летом это, может, и хорошо, а вот зимой, когда температуры окружающего воздуха и так достаточно для охлаждения, дополнительное охлаждение не на пользу. Так же при движении на автомобиле летом, когда часто приходится стоять в пробках, а двигателю работать на низких оборотах, охлаждение будет недостаточное ввиду отсутствия нормального потока воздуха от вентилятора.

Примечание
Здесь стоит отметить важность определенного (довольно узкого) диапазона рабочей температуры двигателя вне зависимости от времени года или нагрузки при работе. Как вывод: перегрев плохо, но и переохлаждение далеко не на пользу.

Но прогресс не стоял и не стоит на месте, потому, поняв, что в постоянно «включенном» вентиляторе пользы ни зимой, ни летом нет, решили установить вентилятор с электромотором, который включается по команде датчика температуры. Удобно – автомобиль быстро прогревается, а при достижении определенной температуры, начинает работать электровентилятор. В современных автомобилях у электровентилятора еще и два режима работы: быстрый и медленный. Управляет этим электроника.

Но есть и еще один способ заставить без электроники работать вентилятор в заданных режимах работы – установить вяскостную муфту. Эта муфта приводится во вращения ремнем от шкива коленчатого вала. Вентилятор «сидит» на оси и при отсутствии надобности в нем не вращается. Как только возникает необходимость в охлаждении, муфта срабатывает и вентилятор начинает вращаться, как бы соединяясь через приводной ремень с коленчатым валом.

 Термостат

Термостат — это клапан, установленный в корпус, который открывается при прогреве охлаждающей жидкости до нормальной рабочей температуры. Пример устройства и работы термостата приведен на рисунке 4.37. Система охлаждения двигателя устроена так, что имеет два круга обращения – малый и большой. Когда клапан термостата закрыт, охлаждающая жидкость при помощи водяного насоса циркулирует только в пределах головки и блока цилиндров, таким образом она быстро прогревается (малый круг). По мере прогрева охлаждающей жидкости, в частности, и двигателя в целом, начинает открываться клапан термостата, пуская охлаждающую жидкость циркулировать через радиатор – большой круг.

Примечание
При чрезмерном перегреве охлаждающей жидкости мощность двигателя и его экономичность снижаются. Если же охлаждающая жидкость, а следовательно, и двигатель, не прогреваются, то увеличивается конденсация топлива, вызывающая смывание смазки со стенок цилиндров и разжижение ее в картере, а также возрастают тепловые потери, что ведет к снижению мощности двигателя и увеличению расхода топлива.


Рисунок 4.37 Работа термостата.

Система охлаждения двигателя: как она работает?

При работе автомобиля сгорает топливная смесь, освобождая огромное количество тепла. Чтобы не перегревался и не подвергался разрушению двигатель, в транспортные средства устанавливается система охлаждения (СО), состоящая из нескольких элементов, о функциях каждого из них расскажем подробно.

Работа системы охлаждения

Как только запускается мотор, начинают вращение лопасти помпы. Они принуждают охлаждающую жидкость (ОЖ) циркулировать по малому кругу обращения СО. Мотор прогревается и выходит на отметки рабочей температуры. После этого открывается термостат, ОЖ переходит в режим циркуляции по большому кругу СО, уже включая и радиатор. Уже в охлаждённом виде технические жидкости попадают в рубашку мотора. Если температура ОЖ поднимается до 100 градусов и выше, включается вентилятор, усиливающий воздушные потоки, которые проходят через радиатор, тем самым, делая процесс охлаждения намного эффективней. У автомобилей, выпущенных пару десятков лет назад, вентилятор соединён с валом помпы ремнём, и потому вращение происходит постоянно.


Что заливать в систему охлаждения?

В качестве ОЖ используются тосол или антифриз. Они имеют в составе химические элементы и соединения, не позволяющие воде превращаться в лёд даже при самых низких температурах. ОЖ также содержат вещества, благодаря которым предотвращается:

  • Вспенивание;
  • Появление коррозии и ржавчины;
  • Смазывается водяной насос.

А вот воду использовать в качестве ОЖ нельзя, поскольку она очень скоро разрушит металл СО. Нагреваясь, ОЖ увеличивается в объёме, и её излишки начинают выбрасываться в расширительный бачок, соединённый с горловиной радиатора гибким шлангом. Через расширительный бачок ОЖ заливают и, при необходимости, доливают.

В салоне машины есть ещё один радиатор, так называемая печка. Зимой автовладельцы, как правило, открывают заслонку печки и нагретая ОЖ циркулирует по теплообменнику, согревая и воздух салона в автомобиле.

СО довольно проста и практически не требует никакого обслуживания. При отсутствии утечек ОЖ система работает без проблем 2 года. По истечении двух лет ОЖ в системе следует заменять, и при этом постоянно отслеживать состояние патрубков: резина от старости может пересохнуть и растрескаться, и произойти это может в дороге. Тогда продолжать движение будет невозможно. Следовательно, через каждые 5 – 6 лет надо производить замену всех резиновых патрубков.

В транспортных средствах, выпущенных недавно, СО ещё работает и для:

  • Охлаждения масла;
  • Воздуха системы вентиляции;
  • Турбонаддува;
  • Кондиционера;
  • Печки салона;
  • Газа в рециркуляционной системе;
  • Рабочей жидкости АКПП.

Виды систем охлаждения

Нужно отметить, что современное автомобилестроение использует три вида систем охлаждения:

  • Жидкостную;
  • Воздушную;
  • Комбинированную.

Жидкостная СО, которая отводит тепло потоком жидкости, применяется чаще всех остальных. Она функционирует с гораздо меньшим шумом, чем её воздушная сестра, причём, равномерно и очень эффективно охлаждает детали мотора.

Типичные поломки в системе охлаждения

Поломки СО не относятся к неисправностям, с которыми движение запрещено, однако, каждый разумный автовладелец весьма заинтересован в продлении срока службы своего железного коня, и его сердца – двигателя. И в первую очередь, это касается необходимости интенсивного отвода тепла.

К самым распространённым причинам поломок в СО относится:

  • Течь;
  • Не герметичность.

Это может произойти из-за резкой смены температуры окружающей среды. Ещё одна популярная поломка – закоксованность шлангов и патрубков системы. Они теряют эластичность под воздействием тех же высоких температур. ОЖ может протекать и ввиду повреждений радиатора от удара, или в результате химического воздействия составляющими тосола. Из строя может выйти и термостат. Он находится в контакте с жидкостью, и потому коррозирует, а потом может и заклинить. Серьёзная неприятность для системы – поломка помпы, или циркуляционного насоса из-за некачественной запчасти, или износа. Понять и уловить это можно по характерному свисту подшипника. Это означает, что пришло время замены циркуляционного насоса. Иногда СО банально засоряется из-за отложения солей в каналах. Циркуляция ОЖ нарушается, отвод тепла при этом ухудшается, что приводит к перегреву двигателя.

Уход за системой охлаждения

Элементарные правила эксплуатации СО и их соблюдение позволяет автовладельцам избегать, или минимизировать негативное воздействие неисправностей на работу машины. Следует постоянно контролировать уровень охлаждающей жидкости в системе. Её объём может меняться, а зависит это от условий эксплуатации автомобиля. Если уровень ОЖ понижается постоянно, значит, нужно искать место утечки тосола. Нередко пятна ОЖ обнаруживаются на узлах и агрегатах в моторном отсеке. Перегрев двигателя может происходить, когда:

  • Заклинивает термостат,
  • Засоряются каналы,
  • Уровня ОЖ в системе недостаточно.

Причину же недостаточного нагрева двигателя следует искать в заклиненном термостате.

Термостат двигателя. Устройство, принцип работы и возможные поломки

Поддержание оптимальной температуры двигателя важно не столько для эффективной работы печки (хотя её водитель ощущает в первую очередь), сколько для полного сгорания рабочей смеси, снижения токсичности отработанных газов и увеличения ресурса двигателя. На некоторых моторах даже устанавливают несколько термостатов и/или термостаты с электронным управлением, чтобы более точно регулировать температуру в каждом контуре системы охлаждения.

Причины и признаки неисправности термостата

Иногда термостат выходит из строя, попросту заклинивая. Чаще всего это происходит из-за коррозии внутри радиатора, некачественного или старого антифриза: частицы накипи или ржавчины оседают на термоэлементе термостата, из-за чего тот становится нечувствительным к изменению температуры жидкости в системе и перестаёт двигать клапан. Но иногда термостат заклинивает и механически.

Термостат может заклинить в разных положениях: в полностью открытом, закрытом или промежуточном. Если термостат полностью закрыт, антифриз циркулирует только по малому кругу, что вызовет перегрев двигателя практически в любом режиме работы, при этом радиатор останется холодным. Полностью открытый заклинивший термостат тоже нетрудно вычислить: с ним двигатель будет прогреваться очень долго, а зимой даже не достигнет рабочей температуры.

А вот заклинивший в промежуточном положении термостат вычислить непросто. Поэтому, в случае проблем с системой охлаждения, термостат часто меняют превентивно, на всякий случай — просто чтобы исключить его из списка возможных причин. Благо, стоит он недорого.

Другая распространённая проблема — утечка охлаждающей жидкости — связана не с самим термостатом, а с его прокладкой, которая со временем перестаёт обеспечивать герметичность. Если вы меняете термостат, обязательно смените и прокладку, чтобы не пришлось сливать антифриз и разбирать систему охлаждения заново, обнаружив утечку.

Как проверить термостат

Снятый с машины термостат можно проверить в домашних условиях. Для этого его помещают в закипающую воду и смотрят, открывается ли клапан. Выглядит эффектно, но такая проверка, к сожалению, мало что даёт — лишь подтверждение, что термостат сохранил подвижность. Но при какой температуре он открывается? Чтобы тест был действительно полезным, нужно использовать термометр и контролировать температуру воды, сравнивая её с номинальной температурой начала открытия термостата.

Система воздушного охлаждения двигателя

Воздушная система охлаждения двигателя пользовалась огромной популярностью после Второй мировой войны, когда у людей не было денег на покупку дорогих автомобилей. Простая и надежная система, построенная на принудительном обдуве разогретого блока цилиндров потоком воздуха, отлично зарекомендовала себя на маломощных микролитражках европейского производства.

Назначение воздушного охлаждения двигателя

При работе двигателя внутреннего сгорания, температура отдельных деталей может повышаться до 800-900 градусов, а цилиндры разогреваются до 2000 градусов Цельсия и выше. Если не охлаждать двигатель, его мощность заметно снизится, а расход топлива и масла увеличится. Перегрев деталей мотора, к тому же, приводит к их быстрому износу и поломке.

До 2001 года двигатели воздушного охлаждения от Volkswagen Beetle использовались в качесте двигателей подъемников на австралийском горнолыжном курорте Тредбо

Чрезмерное охлаждение действует на двигатель не менее негативно. При переохлаждении наблюдаются практически те же признаки: снижение мощности, ускоренный износ деталей, повышенный расход топлива.

В современных автомобилях система охлаждения помимо основной задачи выполняет еще и ряд второстепенных. Прежде всего, это нагрев воздуха в системе отопления салона. Помимо этого, средствами системы охлаждения зачастую охлаждают моторное масло, рабочую жидкость автоматической коробки передач, а в некоторых случаях, приемный коллектор или даже дроссельный узел.

Для выполнения всех этих задач в современной системе охлаждения, воздушной или жидкостной, рассеивается около 35% тепла, полученного в результате сгорания топлива.               

Устройство воздушной системы охлаждения

Теплоносителем в воздушной системе охлаждения служит поток воздуха.

Он отводит тепло от цилиндров, головки блока и масляного радиатора. Система включает в себя: вентилятор, охладительные ребра цилиндров и головки (или головок), съемный кожух, дефлекторы и контрольные приборы.

Возможно, самый мощный автомобильный двигатель воздушного охлаждения был установлен на Porsche 911 (933) Turbo S в 1997 году. Этот двигатель с двумя турбинами развивал 400 лошадиных сил

Блок и головку блока цилиндров двигателей с воздушным охлаждением оснащают дополнительными ребрами, увеличивающими площадь поверхности, контактирующей с воздухом. Воздушный поток подается к корпусу двигателя принудительно, при помощи вентилятора с лопастями из прочного, но легкого алюминиевого сплава.

Конструкция вентилятора системы воздушного охлаждения

Вентилятор — главный узел системы, а ротор вентилятора — его основная деталь. Для оптимизации потока воздуха форму и конструкцию деталей вентилятора тщательно просчитали инженеры. Он состоит из направляющего диффузора и  ротора, как правило, состоящего из 8 лопаток, расположенных радиально.

В направляющем аппарате — диффузоре — есть свои лопасти переменного сечения, служащие для направления потока. Они неподвижны и равномерно располагаются по окружности.

Двигатели с воздушным охлаждением ставились на полноприводные военные грузовики чешской компании Tatra

Лопасти направляющего аппарата меняют направление воздушного потока, заставляя его двигаться в сторону противоположную вращению ротора. Это позволяет увеличить воздушное давление, а следовательно, охлаждение двигателя.

Вентилятор приводится в движение от шкива коленчатого вала при помощи ремня. Направляющий аппарат неподвижно закреплен на двигателе.

Вентилятор оснащен защитной сеткой, позволяющей избежать попадания посторонних предметов в направляющий аппарат.

Как работает воздушное охлаждение двигателя

Поскольку цилиндры и их головки нагреваются больше других деталей, мощный воздушный поток направляется, в первую очередь на них, вдоль каналов между ребрами охлаждения. Затем воздух равномерно распределяется на все детали двигателя с помощью направляющих поток дефлекторов – тонких металлических пластин.

Объем воздуха, подаваемого вентилятором в систему охлаждения, составляет примерно 30 куб. м в минуту. Это обеспечивает нормальную работу двигателя невысокой мощности и небольшого объема в температурных пределах от -40 до +40 градусов.

Интенсивность охлаждения двигателя с воздушной системой регулируется автоматически при помощи термостатов и заслонок.                                   

Преимущества и недостатки воздушной системы охлаждения

Преимуществом воздушной системы охлаждения двигателей является простота эксплуатации, технического обслуживания и ремонта.

Воздушное охлаждение позволяет значительно снизить массу мотора и  упростить холодный запуск.

К недостаткам воздушной системы охлаждения принято относить увеличение габаритов двигателя и повышенный уровень шума. К тому же, в подобных системах некоторые элементы испытывают большую тепловую нагрузку за счет неравномерности обдува.

Двигатели с воздушным охлаждением чувствительнее к качеству топлива, смазочных материалов и запасных частей, так как работают, в целом, в более экстремальном режиме эксплуатации. Кроме того, необходимо тщательно следить за чистотой в моторном отсеке, так как даже тонкий налет грязи на корпусе двигателя существенно снижает характеристики охлаждения.             

Характерные поломки системы воздушного охлаждения двигателя

Признаком плохой работы охлаждающей системы служит повышение температуры масла в картере двигателя, регистрируемое специальным датчиком.

Самая распространенная поломка воздушной системы охлаждения — это обрыв ремня вентилятора. На приборной панели автомобилей, в которых применена система воздушного охлаждения, имеется лампа, которая сигнализирует об этой неисправности.

Автомобили с воздушным охлаждением двигателя

Пик применения двигателей воздушного охлаждения в автомобилестроении пришелся на шестидесятые годы двадцатого века. В тот период в мире выпускалось максимальное количество автомобилей с воздушным охлаждением двигателя. Наиболее известны модели концерна Volkswagen – такие как знаменитый «Жук», Transporter T1 и T2 и другие. Модели, построенные на основе такого двигателя, строили американские инженеры из GM (Chevrolet Corvair), французские (Citroën 2CV, GS и GSA) и японские (Honda 1300). Отдельного упоминания достойны автомобили с двигателями воздушного охлаждения другого германского концерна – Porsche. Одна из наиболее известных моделей, выпускающаяся и в наше время Porsche 911, в течение долгого времени оснащалась двигателем с воздушным охлаждением. Благодаря гению Фердинанда Порше, мощными двигателями воздушного охлаждения оснащались только автомобили этой компании. 

Большая часть излишков тепла, то есть около 44% отводится от двигателя через выхлопную трубу, вне зависимости от типа системы охлаждения

В современном автомобилестроении двигатели с воздушным охлаждением утратили популярность. Главным образом, вследствие доминирования переднеприводных моделей с поперечным расположением двигателя. При такой конструкции, во-первых, трудно организовать эффективную систему воздушного охлаждения, а во-вторых, нетрудно установить радиатор водяного охлаждения.

Отечественный автопром также не обошел популярную концепцию стороной. Все автомобили Запорожского автозавода, выпущенные в период существования СССР, обладали двигателями воздушного охлаждения с приводом на задние колеса, установленными в задней части кузова, по той же концепции Фердинанда Порше.

Радиатор охлаждения двигателя. Основы и принцип работы

При работе двигателя автомобиля каждый цилиндр постоянно повышает свою температуру за счет детонации подаваемого топлива. Если температуру не понижать, постоянные микровзрывы приведут к доведению мотора до критической температуры, превышение которой разрушит силовой агрегат.

Чтобы предотвратить это, устанавливается система охлаждения двигателя автомобиля. В представленной статье мы рассмотрим все базовые сведения о данном узле.

Система охлаждения: что такое

Многие автолюбители задаются вопросом – система охлаждения: что такое?

Система охлаждения предназначена для охлаждения деталей двигателя, нагреваемых в результате его работы. На современных автомобилях система охлаждения, помимо основной функции, выполняет ряд других функций, в том числе:

  • нагрев воздуха в системе отопления, вентиляции и кондиционирования;
  • охлаждение масла в системе смазки;
  • охлаждение отработавших газов в системе рециркуляции отработавших газов;
  • охлаждение воздуха в системе турбонаддува;
  • охлаждение рабочей жидкости в автоматической коробке передач.

В зависимости от способа охлаждения различают следующие виды систем охлаждения: жидкостная (закрытого типа), воздушная (открытого типа) и комбинированная. В системе жидкостного охлаждения тепло от нагретых частей двигателя отводится потоком жидкости. Воздушная система для охлаждения использует поток воздуха. Комбинированная система объединяет жидкостную и воздушную системы.

Предназначение и разновидности

Отвод тепла — далеко не единственное назначение системы охлаждения двигателя. Она дополнительно отвечает за выполнение ряда иных задач:

  • нагрев воздушной массы для отопления салона транспортного средства;
  • уменьшение времени ожидания, необходимого для доведения мотора до рабочей температуры;
  • уменьшение температуры смазочных материалов, используемых для ДВС;
  • если применяется рециркуляция —уменьшается температура выхлопных газов от двигателя внутреннего сгорания;
  • если присутствует автоматическая КПП — охлаждается смазка, расположенная внутри.

Схема системы охлаждения двигателя напрямую зависит от того, каким является ее способ функционирования и принцип работы. Соответственно, принято классифицировать узел на несколько категорий:

  • жидкостное — тепло отводится за счет постоянной циркуляции техжидкости;
  • воздушное— при применении рассматриваемойсхемы систем охлаждения двигателей тепло будет отводиться циркулируемым воздухом;
  • комбинированное — включает в себя применение 1-го и 2-го варианта одновременно.

Практика показывает, что комбинированный вариант является наиболее эффективным, обеспечивая стабильную работу мотора в целом.

Устройство

Рассматривая конструкцию, по которой создана система охлаждения двигателя внутреннего сгорания, можно заметить, что здесь практически отсутствует бак, в котором происходит хранение жидкости. В данном случае такой элемент конструкции не нужен, потому что жидкость постоянно находится в каналах/полостях ДВС и радиаторе.

Хотя бачок все же присутствует — его называют расширительным. Главная задача этой детали — комфортный залив рабочей жидкости в систему, а также возможность залива дополнительного количества жидкости, если ее герметичность по тем или иным причинам нарушена.

На картинке ниже можно посмотреть на устройство системы охлаждения двигателя.

Начнем ознакомление с водяного насоса, именуемого в народе «помпой». Это своеобразная мельница, в которой жидкость циркулирует по каналам ДВС под давлением. Конечной целью данной конструкции является проход воды через полости, расположенные в блоке мотора. Последние, исходя из компоновки двигателя автомобиля, могут быть разными.

Именно в цилиндрах присутствует максимально высокая температура, которая передается на другие детали. При отводе тепловой энергии охлаждается блок цилиндров, но сам антифриз нагревается. Соответственно, работа системы охлаждения двигателя обеспечивает выполнение простых физпроцессов, позволяющих уравнять температуру. Далее рабочая жидкость протекает по другим узлам мотора и проникает в радиатор.

С конструктивной точки зрения, радиатор охлаждения двигателя являет собой решетку, образованную из большого количества небольших вертикальных каналов, на поверхности которых находятся поперечные пластины. Устройство радиатора охлаждения двигателя может быть разным, исходя из того, насколько большой объем двигателя и насколько часто ему приходится набирать обороты.

Естественно, в спортивных моторах радиатор двигателя имеет увеличенные размеры. Возрастает и площадь обдува.Из чего состоит радиатор охлаждения двигателя? Большого количества сот, монтажных креплений, а также бачка, в который заливается антифриз. Он постепенно стекает вниз, в результате чего происходит охлаждение. В конструкции предусматривается наличие емкости снизу, которая снова передает антифриз в водяной насос.

Радиатор системы охлаждения двигателя эффективно справляется со своей задачей благодаря большому количеству каналов. Обеспечение качественного результата его работы также гарантируется за счет постоянного обдува корпуса воздушным потоком. Именно поэтому деталь практически всегда монтируется на «морде» авто.

Но даже этого порой может оказаться недостаточно, особенно тогда, когда транспортное средство находится в неподвижном состоянии. Поэтому с целью охлаждения дизельного двигателя (как и бензинового, в целом) используется специальный вентилятор. Он закреплен между мотором и радиаторным узлом, помогая усилить циркуляцию воздушной массы.

Чтобы гарантировать надежную работу системы, надо убедиться в исправном состоянии радиатора. Многие задаются вопросом — как проверить радиатор охлаждения двигателя? Сделать это достаточно просто — нужно быть уверенным в отсутствии повреждений каналов, а на асфальте должны отсутствовать следы течи из-за разгерметизации.

Проверять радиатор охлаждения двигателя надо перед каждой поездкой. Невыполнение этого требования может привести к детонации мотора, приводящей к невозможности восстановить его работоспособность.

Выше мы разобрались с тем, из чего состоит система охлаждения двигателя большинства транспортных средств. Но есть также и другая функция, которую выполняет система — это прогрев силового агрегата. Несмотря на ее противоречивость названию, при эксплуатации авто в зимнее время низкая температура сильно затрудняет процесс запуска мотора.

Охлаждение двигателя происходит немного хуже из-за мороза и повышенной влажности, топливо распыляется более проблематично, а технические жидкости страдают от повышения вязкости. Чтобы гарантировать нормальный принцип работы системы охлаждения двигателя, придется быстрее ее разогреть. Достичь требуемого эффекта позволяет работающий термостат. Он блокирует попадание антифриза в радиаторные соты.

Минуя данный узел, она перетекает опять в водяной насос, нагревая цилиндры. Термостат самостоятельно совершает подачу антифриза при достижении температуры 70-80 градусов Цельсия (исходя из настроек блока управления и компоновки силового агрегата). Патрубок, открытый в процессе разогрева, сразу же закрывается.

Последним прибором, благодаря которому работает схема охлаждения двигателя, является температурный датчик. Его обычно устанавливают в салоне транспортного средства. Водитель постоянно получает актуальную информацию о температуре мотора в режиме реального времени. При отклонении показателей от нормы владелец авто сможет быстро принять меры по локализации и ремонту поломки.

Практика показывает, что система охлаждения дизельного двигателя наиболее часто выходит из строя в связи с нарушением герметичности. В такой ситуации температура сразу повышается, потому что антифриза в системе становится меньше, и имеющегося объема недостаточно для полноценной работы.

Принцип работы

Принцип работы системы охлаждения двигателя постоянно контролируется штатнымблоком управления силовым агрегатом. В нынешних моделях транспортных средств детали охлаждения проверяются специальным математическим алгоритмом, позволяющим принимать во внимание самые разные параметры работы не только мотора, но и сопутствующих систем.

Отталкиваясь от того, как работает система охлаждения двигателя в нормальном режиме при исправных деталях, система стремится поддерживать их на нормальном уровне. Поэтому электроника включает или выключает на некоторое время те или иные элементы.

Чтобы более подробно узнать, как работает система охлаждения двигателя, рекомендуем посмотреть схему ниже.

Поскольку антифриз принудительно протекает по системе, за него отвечает центробежный насос. Благодаря ему техжидкость прокачивается посредством «рубашки». При выполнении данной работы применение систем охлаждения позволяет добиться охлаждения мотора и нагрева антифриза. Исходя из типа мотора и его схемы, жидкость протекает:

  • продольно;
  • поперечно.

Схема системы охлаждения двигателя предусматривает два циркуляционных круга — «малый» и «большой». Например, при включениизажигания, когда все детали не нагреты, термостат закрыт, жидкость протекает по малому кругу. Она не доходит до радиатора охлаждения двигателя.

Когда температурный режим доведется до требуемого уровня, происходит открывание термостата — антифриз проникает в радиатор, где и будет происходить уменьшение температуры за счет обдува. Это и есть большой цикл, повторяющийся многократно.

В этом и состоит общий принцип работы радиатора охлаждения двигателя вне зависимости от марки и модели транспортного средства.

В авто с турбиной охлаждение двигателя происходит по несколько иной схеме. Здесь присутствует два контура, где первый установлен с цельюснижения температуры анифриза, а второй охлаждает воздух. При этом первый контур также разделяется на 2 части — для обслуживания головки блока и блока цилиндров в целом.

Это сделано потому, что схема работы системы охлаждения двигателя предусматривает разницу температуры головки и блока на 15-20 градусов. Таким образом, степень вероятности детонации значительно уменьшается, да и камеры сгорания эффективнее наполняются горючим. В устройство системы охлаждениядобавлена одна особенность — в моторе с турбиной все рабочие контуры имеют собственный термостат.

Выводы

Система охлаждения двигателя присутствует на каждом транспортном средстве. Основноеназначение системы охлаждения — поддержаниеоптимальной температуры мотора автомобиля.

Базовые детали системы охлаждения двигателя следующие — радиатор, термостат, датчик температуры и вентилятор. Система состоит из нескольких контуров, отвечающих за правильность функционирования всей системы.

Устройство радиатора достаточно сложное, поскольку конструкция состоит из большого количества маленьких каналов, по которым протекает подогретая жидкость. Своевременная проверка позволяет гарантировать нормальную работу силовой установки в целом.

Жидкостная система охлаждения двигателя.


Жидкостная система охлаждения



Виды жидкостных систем охлаждения

Жидкостная система охлаждения может быть термосифонной и принудительной, открытой и закрытой.
Большинство современных автомобильных двигателей оснащены принудительной системой охлаждения закрытого типа из-за ряда существенных преимуществ.

При термосифонной системе охлаждения жидкость циркулирует по рубашке охлаждения и соединенному с ней радиатору благодаря разнице плотности горячей и холодной жидкости в верхней и нижней части системы (горячая жидкость поднимается, а холодная опускается самотеком, без применения перекачивающих устройств). Такая система проста, но малоэффективна и требует радиатор увеличенной емкости.
Поэтому термосифонная система жидкостного охлаждения распространения на автомобильных двигателях не получила; обычно применяется принудительная система охлаждения, в которой циркуляция охлаждающей жидкости обеспечивается жидкостным насосом.

Открытая система сообщается с окружающей средой (атмосферой) непосредственно, т. е. в такую систему постоянно может поступать воздух, а из системы выпускаться пар.
Закрытая система сообщается с окружающей средой посредством специальных клапанов, размещенных в пробке радиатора или крышке расширительного бачка. Такая система сообщается с атмосферой лишь в случае значительного превышения давления в ней, выпуская пар и горячий воздух через клапана. Это позволяют поднять давление и температуру кипения охлаждающей жидкости, благодаря чему можно уменьшить габаритные размеры радиатора.

Закипевшая охлаждающая жидкость резко снижает эффективность системы охлаждения, так как в этом случае в жидкости образуются пузырьки пара, препятствующие циркуляции жидкости и теплообменным процессам. Поэтому современные автомобильные двигатели оснащаются закрытой системой охлаждения, позволяющей использовать более высокий нагрев жидкости без закипания.

***

Устройство и работа жидкостной системы охлаждения

В классическом исполнении жидкостная система охлаждения двигателя состоит из жидкостного и воздушного трактов. Жидкостный тракт системы включает в себя (см. рис. 1): рубашку 6 охлаждения, термостат, радиатор 1, жидкостный насос 5, расширительный бачок 4 и трубопроводы.

Воздушный тракт системы состоит из радиатора 1, вентилятора 9 и направляющих элементов тракта (диффузора).

Принцип действия системы охлаждения заключается в следующем: жидкостный насос 5, приводимый от коленчатого вала двигателя, засасывает охлаждающую жидкость из нижней части радиатора и нагнетает ее в рубашку охлаждения 6. Проходя по каналам и полостям рубашки, жидкость забирает избыток теплоты у цилиндров и головки блока цилиндров, охлаждая детали.
Затем охлаждающая жидкость через систему патрубков и термостат поступает в верхний бачок 12 (рис. 1,б) радиатора, откуда по множеству трубок, составляющих сердцевину радиатора, скатывается в нижний бачок, отдавая по пути теплоту и охлаждаясь.
Далее охлаждающая жидкость опять засасывается насосом и циркуляция повторяется.
Описанный путь охлаждающей жидкости называют циркуляцией по большому кругу (рис. 2,б).



На пути охлаждающей жидкости из рубашки охлаждения в верхнем патрубке устанавливается специальный прибор — термостат, представляющий собой температурный клапан, который автоматически, в зависимости от степени нагрева, изменяет направление движения охлаждающей жидкости.
Если жидкость холодная, т. е. еще не прогрелась до рабочей температуры, клапан термостата перекрывает проход жидкости в радиатор и направляет ее сразу в насос, откуда она вновь поступает к рубашке охлаждения двигателя.
Такой путь жидкости, когда она перемещается, минуя радиатор, называется циркуляцией по малому кругу (рис. 2,а).

По малому кругу жидкость циркулирует при пуске холодного двигателя, обеспечивая его быстрый прогрев до рабочих температур. Когда двигатель прогревается, термостат обеспечивает циркуляцию охлаждающей жидкости по большому кругу, через радиатор.

Клапан термостата начинает открываться, пропуская охлаждающую жидкость в радиатор при температуре 70…87 ˚С.

***

Интенсивному охлаждению жидкости в радиаторе способствует поток воздуха, создаваемый вентилятором 9. Скорость потока охлаждающего воздуха зависит от скорости движения автомобиля. Изменить скорость воздушного потока можно с помощью жалюзи 2 (рис. 2,а), установленных перед радиатором.
На современных автомобилях изменение интенсивности обдува радиатора воздухом осуществляется автоматическими устройствами, например, вентиляторами с приводом от управляемого термодатчиком электродвигателя, гидромуфтами различных конструкций и т. п.

Охлаждающая жидкость может подводиться к рубашке охлаждения двигателя через нижний пояс цилиндров, верхний пояс и головку блока цилиндров. Подвод охлаждающей жидкости через нижний пояс цилиндров характерен для дизелей, которые допускают повышение температуры головки блока цилиндров, способствующее лучшему воспламенению рабочей смеси от сжатия.

В двигателях с принудительным воспламенением, склонных к детонации при наличии в камере сгорания перегретых зон, охлаждающая жидкость подводится через верхние пояса (рис. 1,б) или даже через головку блока цилиндров (рис. 1,в). В последнем случае нагретые участки головки блока цилиндров охлаждаются наиболее интенсивно.

Для подвода охлаждающей жидкости в рубашку охлаждения иногда применяют водораспределительные трубы 14 (рис. 1,в), имеющие окна против каждого цилиндра. Благодаря этому достигается параллельный подвод охлаждающей жидкости одинаковой температуры ко всем цилиндрам и улучшается равномерность их охлаждения.

Контроль над работой системы охлаждения осуществляется с помощью датчиков и указателя температуры, а также сигнализатора аварийной температуры охлаждающей жидкости.

Датчики устанавливаются в системе охлаждения двигателя, а указатель и сигнализатор – на приборной доске (щитке приборов) в кабине водителя.

Теплота, отводимая жидкостью от деталей двигателя, используется для подогрева впускного трубопровода, улучшения смесеобразования, а также для отопления кабины или салона автомобиля в холодную погоду.

***

Назначение и устройство радиатора


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Вопрос недели: Почему в системе охлаждения двигателя есть термостат и влияет ли он на расход охлаждающей жидкости?

Вопрос месяца, представленный Биллом Маклелланом, Пасадена, Калифорния, на который ответила Мелани Хант, доцент кафедры машиностроения Калифорнийского технологического института.

Система охлаждения — важная часть автомобильного двигателя. Я определенно стал лучше осознавать этот факт после того, как моя машина перегрелась на шоссе Санта-Моника.

Система охлаждения выполняет три важные функции.Во-первых, отводит излишки тепла от двигателя; во-вторых, он поддерживает рабочую температуру двигателя там, где он работает наиболее эффективно; и, наконец, он максимально быстро доводит двигатель до нужной рабочей температуры.

Система охлаждения состоит из шести основных частей: двигателя, радиатора, водяного насоса, охлаждающего вентилятора, шлангов и термостата. В процессе сгорания часть энергии топлива превращается в тепло. Это тепло передается охлаждающей жидкости, которая циркулирует в двигателе с помощью водяного насоса.Шланги несут горячую охлаждающую жидкость к радиатору, где тепло передается воздуху, который протягивается мимо двигателя охлаждающим вентилятором. Затем охлаждающая жидкость возвращается к водяному насосу и рециркулирует.

Когда двигатель холодный, например, первым делом утром, двигатель работает немного иначе. Для максимальной эффективности двигатель разработан с возможностью быстрого прогрева. Как только двигатель достигает нужной рабочей температуры, он рассчитывается на поддержание стабильной температуры, что и является целью термостата.Термостат похож на клапан, который открывается и закрывается в зависимости от температуры. Термостат изолирует двигатель от радиатора до тех пор, пока он не достигнет определенной минимальной температуры. Без термостата двигатель всегда будет отдавать тепло радиатору, и ему потребуется больше времени для прогрева. Как только двигатель достигает желаемой рабочей температуры, термостат регулирует поток в радиатор для поддержания стабильной температуры.

Иногда охлаждающая жидкость настолько горячая, что термостат полностью открывается, что делает двигатель полностью зависимым от радиатора для поддержания стабильной температуры.Пока через радиатор проходит достаточно воздуха, двигатель остается холодным. Если по какой-либо причине расход воздуха будет слишком низким, радиатор не справится со своей работой и двигатель может перегреться. В этот момент, если скорость потока охлаждающей жидкости увеличивается, двигатель будет передавать больше тепла охлаждающей жидкости, что усугубит ситуацию. Ограничение потока термостата способствует увеличению давления в системе охлаждения, что затрудняет закипание охлаждающей жидкости в водяном насосе. Однако это мало помогает радиатору охладить двигатель.

Как работает система охлаждения двигателя

А автомобильный двигатель при работе выделяет много тепла, и его необходимо постоянно охлаждать, чтобы избежать двигатель повреждать.

Обычно это делается путем обращения охлаждающая жидкость жидкость обычно вода, смешанная с антифриз раствор через специальные охлаждающие каналы. Некоторые двигатели охлаждаются воздухом, проходящим через ребра. цилиндр оболочки.

Как циркулирует охлаждающая жидкость

Типичная система водяного охлаждения с вентилятором с приводом от двигателя: обратите внимание на перепускной шланг, отводящий горячую охлаждающую жидкость для нагревателя. На герметичной крышке расширительного бачка есть подпружиненный клапан, который открывается при превышении определенного давления.

Система охлаждения с водяным охлаждением

А с водяным охлаждением Блок двигателя и крышка цилиндра имеют соединенные между собой каналы охлаждающей жидкости, проходящие через них. Вверху головки блока цилиндров все каналы сходятся к единому выходному отверстию.

А насос , приводимый шкивом и ремнем от коленчатый вал , выталкивает горячую охлаждающую жидкость из двигателя в радиатор , который является формой теплообменник .

Нежелательное тепло передается от радиатора в воздушный поток, а затем охлажденная жидкость возвращается к входному отверстию в нижней части блока и снова течет обратно в каналы.

Обычно насос подает охлаждающую жидкость вверх через двигатель и вниз через радиатор, пользуясь тем фактом, что горячая вода расширяется, становится легче и поднимается над холодной водой при нагревании. Его естественная тенденция — течь вверх, а насос способствует циркуляции.

Радиатор соединен с двигателем резиной. шланги , и имеет верхний и нижний резервуары, соединенные стержнем из множества тонких трубок.

Трубки проходят через отверстия в стопке тонких пластин из листового металла, так что сердцевина имеет очень большую площадь поверхности и может быстро отдавать тепло более холодному воздуху, проходящему через нее.

В старых автомобилях трубки проходят вертикально, но современные автомобили с низким фасадом имеют радиаторы поперечного потока с трубками, которые проходят из стороны в сторону.

В двигателе с нормальной рабочей температурой охлаждающая жидкость лишь немного ниже нормальной точки кипения.

Риск закипания можно избежать, увеличив давление в системе, что повышает температуру кипения.

Дополнительное давление ограничивается крышкой радиатора, в которой находится давление клапан в этом. Избыточное давление открывает клапан, и охлаждающая жидкость вытекает через переливной патрубок.

в система охлаждения этого типа происходит постоянная небольшая потеря охлаждающей жидкости, если двигатель работает очень горячо. Систему необходимо время от времени пополнять.

Более поздние автомобили имеют герметичную систему, в которой любой перелив проходит в расширительный бак , из которого он всасывается обратно в двигатель при остывании оставшейся жидкости.

Как помогает вентилятор

Радиатор нуждается в постоянном потоке воздуха через его сердцевину для надлежащего охлаждения. Когда машина движется, это все равно происходит; но когда он неподвижен поклонник используется для улучшения воздушного потока.

Вентилятор может приводиться в движение двигателем, но, если двигатель не работает, он не всегда нужен во время движения автомобиля, поэтому энергия используется для вождения отходов топливо .

Чтобы преодолеть это, некоторые автомобили имеют вязкая муфта жидкость схватить работает с помощью термочувствительного клапана, который отключает вентилятор до тех пор, пока температура охлаждающей жидкости не достигнет заданного значения.

Другие автомобили имеют электровентилятор, который также включается и выключается по температуре датчик .

Для быстрого прогрева двигателя радиатор закрывается термостат , обычно размещается над насосом. Термостат имеет клапан, работающий от камеры, заполненной воском.

При прогреве двигателя воск плавится, расширяется и толкает клапан, позволяя охлаждающей жидкости течь через радиатор.

Когда двигатель останавливается и остывает, клапан снова закрывается.

Вода расширяется при замерзании, и если вода в двигателе замерзнет, ​​она может лопнуть блок или радиатор.Так антифриз обычно этиленгликоль добавляется в воду, чтобы снизить ее Точка замерзания до безопасного уровня.

Антифриз не следует сливать каждое лето; его обычно можно оставить на два-три года.

Системы охлаждения двигателя с воздушным охлаждением

в с воздушным охлаждением Двигатель, блок и ГБЦ выполнены с глубокими ребрами снаружи.

Ребра цилиндра с воздушным охлаждением шире вверху, где выделяется больше всего тепла.Горизонтальные двигатели с воздушным охлаждением имеют охлаждающие каналы к ребрам. Горизонтальные двигатели с воздушным охлаждением имеют охлаждающие каналы к ребрам.

Воздушное охлаждение через ребра

Ребра цилиндра с воздушным охлаждением шире вверху, где выделяется больше всего тепла. Горизонтальные двигатели с воздушным охлаждением имеют охлаждающие каналы к ребрам. Ребра цилиндра с воздушным охлаждением шире вверху, где выделяется больше всего тепла.

Водяная система отопления

В обогревателе, работающем от водяного клапана, весь воздух проходит через матрицу. Температура матрицы регулируется путем регулирования количества проходящей через нее горячей воды.

Часто воздуховод проходит вокруг ребер, и вентилятор с приводом от двигателя продувает воздух через канал, чтобы отводить тепло от ребер.

Чувствительный к температуре клапан регулирует количество воздуха, нагнетаемого вентилятором, и поддерживает постоянную температуру даже в холодные дни.

Охлаждение масла

Как работает система охлаждения вашего двигателя?

Вашему двигателю нужно многое сделать, чтобы вы продолжали двигаться. Он забирает топливо из топливной системы и создает крошечные контролируемые взрывы. Компоненты вращаются, вращаются и проворачиваются, и, несмотря на все это, двигатель довольно быстро нагревается. Фактически, типичный двигатель работает при температуре от 195 до 220 градусов по Фаренгейту, и это даже не включает температуру окружающей среды! Летом там становится еще жарче.К счастью, ваш двигатель может охладиться за счет использования радиатора и других компонентов как части системы охлаждения. Итак, как работает система охлаждения двигателя автомобиля?

Компоненты системы охлаждения

Система охлаждения состоит из нескольких компонентов и каналов, проходящих через блок цилиндров и головок, для охлаждения двигателя. Тем не менее, ни один из этих компонентов не сможет выполнять свои задачи без использования охлаждающей жидкости. Смесь химикатов и воды, охлаждающая жидкость, также называемая антифризом, поддерживает охлаждение двигателя, а также предотвращает замерзание воды в двигателе при более низких температурах.В охлаждающую жидкость также входят некоторые присадки, в том числе смазочные, для защиты двигателя от повреждений. Охлаждающая жидкость начинается с водяного насоса и проходит через каналы двигателя, собирая тепло по мере продвижения. Он течет к головкам цилиндров для сбора тепла от камер сгорания, проходит мимо термостата, через шланг радиатора и в радиатор. Охлаждающая жидкость проходит через ребра радиатора, где она охлаждается воздушным потоком, проходящим через радиатор. Как только он покидает радиатор, он возвращается к водяному насосу через нижний шланг радиатора.

Водяной насос

Приводимый в движение змеевиком от коленчатого вала, водяной насос обеспечивает непрерывное прохождение охлаждающей жидкости через двигатель, радиатор и шланги при поддержании идеальной температуры. Без работающего водяного насоса охлаждающая жидкость не сможет добраться до места, где она необходима для отвода тепла, и может вызвать перегрев двигателя.

Термостат

Двигатели с жидкостным охлаждением оснащены термостатом, который расположен между двигателем и радиатором.Термостат контролирует температуру охлаждающей жидкости и регулирует ее поток. Термостат контролирует температуру двигателя, и, если температура двигателя низкая, термостат предотвращает вытекание охлаждающей жидкости и направляет ее обратно в двигатель. По мере повышения температуры термостат начнет медленно открываться. Термостат полностью откроется, когда двигатель достигнет температуры около 200 градусов по Фаренгейту.

Радиатор

Радиатор представляет собой теплообменник, предназначенный для передачи тепла от охлаждающей жидкости через его каналы, так что охлаждающая жидкость может продолжать движение через двигатель.Радиаторы, в основном сделанные из алюминия, передают тепло от горячей охлаждающей жидкости через трубки, и когда воздух дует с помощью вентиляторов, он проходит через ребра радиатора для охлаждения жидкости.

Крышка радиатора

Вода закипает примерно при 212 градусах по Фаренгейту, а поскольку охлаждающая жидкость частично состоит из воды, она тоже будет закипать при 212 градусах, верно? Не совсем. Благодаря давлению, создаваемому крышкой радиатора, температура кипения значительно повышается. Однако слишком большое давление может вызвать серьезные повреждения, и необходимо сбросить некоторое давление.Крышка радиатора сбрасывает давление, когда оно достигает определенной точки.

Шланги

Охлаждающая жидкость может перемещаться по двигателю только одним способом — через шланги радиатора. Шланги представляют собой гибкие соединения, прикрепленные к двигателю, по которым охлаждающая жидкость транспортируется между двигателем и радиатором, а также между ними. Охлаждающая жидкость направляется в радиатор для охлаждения и возвращается обратно в двигатель. Шланг отопителя предназначен для направления охлаждающей жидкости к нагревательному элементу автомобиля, называемому сердечником отопителя, для поддержания температуры в салоне в холодное время года.

Важность системы охлаждения двигателя

Ваш двигатель лучше работает при более высоких температурах, но слишком много тепла может нанести ему вред. Двигатель может быть серьезно поврежден, что может быть необратимым и привести к замене или очень дорогостоящему ремонту. Когда какая-либо часть системы охлаждения выходит из строя, ваш двигатель становится уязвимым для теплового повреждения. Компоненты в двигателе и вокруг него могут подвергнуться сильному нагреву. Перегрев может привести к расплавлению уплотнений, датчиков, ремней и других компонентов. В случае неисправности термостата, когда охлаждающая жидкость присутствует, но не может циркулировать, это может вызвать перегрев, который также может вызвать серьезные повреждения. Шланги, находящиеся под давлением, например, могут вызвать кипение охлаждающей жидкости, создавая значительное давление, и расширяться, что может привести к разрыву шлангов и утечке охлаждающей жидкости.

Головки цилиндров расположены над цилиндрами на блоке цилиндров и закрывают цилиндр, создавая камеру сгорания. Однако головки цилиндров сделаны из алюминия и не предназначены для выдерживания суровых температур.Если автомобиль перегреется, головки блока цилиндров могут начать плавиться и деформироваться. Деформация является проблемой, поскольку она влияет на процесс сгорания и может привести к снижению мощности двигателя, вызвать пропуски зажигания или утечку масла.

Перегрев двигателя также может вызвать взрыв прокладки головки блока цилиндров. Повреждающее воздействие выдувной прокладки головки блока цилиндров является значительным и дорогостоящим. Охлаждающая жидкость начинает протекать и смешивается с моторным маслом. Хотя обе жидкости идеально подходят для работы вашего автомобиля, они не работают вместе.Масло и охлаждающая жидкость ухудшают работу двигателя и влияют на выхлопную систему, включая выход дыма из выхлопной трубы.

Что означает индикатор системы охлаждения двигателя?

Когда датчик температуры в вашем автомобиле достигает «опасной зоны», красная область, ближайшая к букве «H», обозначает высокую температуру, световой индикатор, похожий на волнообразный градусник, указывает на то, что двигатель становится слишком горячим и может перегреться. Это указание вам найти безопасное место, чтобы остановиться и попытаться дать двигателю остыть.Если вы находитесь в пробке и начинаете замечать, как стрелка поднимается вверх, вы можете попытаться повернуть вспять температуру, опустив окна и включив обогреватель на полную мощность. В любом случае, если ваша машина начинает перегреваться, не пытайтесь ехать дальше. Не рискуйте повредить ваш двигатель. Вместо этого обратитесь в службу буксировки и отбуксируйте свой автомобиль в ближайший к вам автомобильный центр, где техник может определить, что вызывает перегрев вашего автомобиля.

Охлаждение двигателя — устройство и функционирование

Температура горящего топлива (до 2000 ° C) отрицательно сказывается на работе двигателя.Поэтому двигатель охлаждают до рабочей температуры. Первым видом охлаждения водой было термосифонное охлаждение.

Нагретая, более легкая вода поднимается в верхнюю часть радиатора через коллектор и охлаждается воздушным потоком. Затем он опускается вниз и возвращается в двигатель. Вода циркулирует при работающем двигателе. Охлаждение поддерживалось вентилятором, но регулировать было невозможно. Позже водяная помпа ускорила циркуляцию воды.

Слабые стороны:

  • Длительное время прогрева
  • Низкая температура двигателя в холодное время года

При дальнейшей разработке двигателей использовались регуляторы охлаждающей жидкости (т. е. термостат). Циркуляция воды через радиатор регулируется в зависимости от температуры охлаждающей жидкости. В 1922 году это описывалось так: «Назначение этих устройств — быстрый прогрев двигателя и предотвращение остывания двигателя.»

Мы имеем в виду систему охлаждения с термостатическим управлением со следующими функциями:

  • Короткое время прогрева
  • Поддержание постоянной рабочей температуры

Термостат стал решающим усовершенствованием системы охлаждения двигателя и обеспечил циркуляцию охлаждающей жидкости при коротком замыкании. Пока желаемая рабочая температура двигателя не достигается, вода не проходит через радиатор, а обходит его и попадает в двигатель.Термостат открывает соединение с радиатором только после достижения желаемой рабочей температуры. Эта система управления и по сей день остается основой всех систем. Рабочая температура двигателя важна не только с точки зрения производительности и расхода топлива, но и с точки зрения низкого уровня выбросов загрязняющих веществ.

Для охлаждения двигателя используется тот факт, что вода под давлением кипит не при температуре 100 ° C, а только между 115 ° C и 130 ° C. В охлаждающем контуре давление находится в пределах 1.0 бар и 1,5 бар. Это замкнутая система охлаждения. В системе есть расширительный бак, который заполнен только наполовину. Охлаждающая среда — это не просто вода, а смесь воды и охлаждающей добавки. Сейчас мы имеем дело с охлаждающей жидкостью, обеспечивающей защиту от замерзания, с повышенной температурой кипения и защищающей детали двигателя и систему охлаждения от коррозии.

Описание систем охлаждения двигателя

| Discover Boating

Наш последний конкурс состоял из выбора порядка действий для проверки при поиске и устранении неисправностей в двигателе с «сырой водой» охлаждения.Некоторые из наших зрителей попросили меня объяснить, что такое система сырой воды и как она работает. Под сырой водой понимается вода, в которой плавает лодка. Не имеет значения, соленая она или пресная, обе используются для охлаждения двигателя. Процесс начинается с забора воды в двигатель через штуцер забортного клапана и прокачки ее через водяную рубашку двигателя и отверстия с помощью механического водяного насоса. В системе с неочищенной водой вода всасывается через забортный клапан водяным насосом. Вода проходит через двигатель и напрямую выходит из выхлопной трубы.Эта более прохладная вода поглощает тепло от двигателя, чтобы помочь ему остыть. В большинстве новейших судовых двигателей используется закрытая система охлаждения. Это означает, что в верхней части двигателя есть небольшой резервуар, в котором используется смесь пресной воды и охлаждающей жидкости. Эта пресная вода циркулирует через двигатель и через теплообменник. Пресная вода в этой системе поглощает тепло двигателя. Сырая вода по-прежнему всасывается через забортный клапан, но течет только через рубашку теплообменника. Эта более холодная неочищенная вода поглощает тепло от пресной воды через рубашку теплообменника и затем откачивается через выхлоп.

Преимущества закрытой системы по сравнению с системой сырой воды огромны, особенно если вы работаете в соленой воде. Соленая вода имеет тенденцию к образованию коррозионных отложений, когда двигатель работает при температуре выше 140 °. В системе неочищенной воды эта накипь накапливается внутри водяной рубашки и портов двигателя. Когда накипь достигает точки, в которой поток воды ограничивается, двигатель начинает перегреваться. На этом этапе вы, вероятно, собираетесь заменить двигатель.

В закрытой системе вода, протекающая через водяную рубашку и отверстия двигателя, представляет собой пресную воду и охлаждающую жидкость.Единственная часть, через которую проходит сырая вода, — это теплообменник. Однако происходит такое же масштабирование. Когда поток воды ограничен и двигатель начинает перегреваться, вы можете «вскипятить кислоту» из теплообменника и продолжить его использование. В худшем случае вам придется заменить теплообменник. Это будет намного дешевле, чем замена двигателя.

Другими компонентами системы охлаждения, будь то неочищенная вода или закрытая, являются забортный клапан, морской фильтр, шланги и зажимы, ремни и рабочее колесо водяного насоса.

Забортный клапан — это проходное через корпус устройство, которое позволяет воде попадать в корпус снаружи. У этого устройства есть ручка, которая позволяет перекрыть поток воды, если у вас есть проблема, например, ослабленный хомут или треснувший шланг. Вам следует ежемесячно проверять запорные устройства забортных клапанов, чтобы убедиться в их работоспособности. В качестве дополнительной меры безопасности вы должны иметь мягкую коническую деревянную заглушку (называемую заглушкой) размером с забортный клапан, привязанную к забортному клапану. В случае, если шланг частичен, и вы не можете задействовать запор, вы можете вставить пробку в забортный клапан, чтобы остановить поток воды.

Следующей частью системы охлаждения двигателя является морской фильтр. Это устройство, через которое протекает неочищенная вода, предназначенное для фильтрации мусора, песка, листьев и т. Д. До того, как она попадет в двигатель. Это устройство работает как скиммер для бассейна. Существует несколько видов сетчатых фильтров, но все они имеют съемный фильтр или сетку, которые необходимо регулярно проверять, чистить или заменять.

Шланги, зажимы и ремни жизненно важны для системы охлаждения, и их также следует периодически проверять.Каждый раз при проверке масла, что следует делать перед каждым запуском, необходимо визуально проверять шланги, зажимы и ремни на предмет износа. Все шланги, расположенные ниже ватерлинии, должны иметь двойной зажим. Это поможет предотвратить попадание воды в трюм в случае выхода из строя одного из зажимов. Если вы обнаружите заржавевший хомут, защемленный или потрескавшийся шланг или ремень, их следует немедленно заменить. Обязательно заменяйте шланги с такими же требованиями к диаметру, длине и температуре, которые предлагает производитель.

Насос сырой воды, который приводится в движение ремнем двигателя, содержит крыльчатку, которая приводит в действие насос. Обычно достаточно легко получить доступ к крыльчатке, чтобы проверить или заменить ее.

В замкнутую систему следует добавить коммерческую охлаждающую жидкость (антифриз). Это предотвратит замерзание пресной воды и повреждение двигателя в холодном климате, а также поможет предотвратить образование коррозии в системе пресной воды. Обычно вы используете охлаждающую жидкость и пресную воду в соотношении 50/50.В более холодном климате вы можете увеличить процент охлаждающей жидкости.

Таким образом, прямая система неочищенной воды обеспечивает циркуляцию воды через водяную рубашку двигателя, которая протекает через блок, головку, коллектор и т. Д. Эта вода поглощает тепло от двигателя и выходит за борт.

Закрытая система обеспечивает циркуляцию пресной воды и охлаждающей жидкости через водяную рубашку двигателя и через теплообменник. Эта пресная вода поглощает тепло двигателя. Неочищенная вода также прокачивается через теплообменник, где она поглощает часть тепла пресной воды и снова выбрасывается за борт.

Источник:
Boatsafe.com

Система охлаждения вашего двигателя · BlueStar Inspections

Типичный автомобиль с четырехцилиндровым двигателем, движущийся по шоссе со скоростью 55 миль в час, будет производить около 5000 контролируемых взрывов в минуту внутри двигателя, поскольку свечи зажигания воспламеняют воздушно-топливную смесь в каждом из цилиндров. Это то, что продвигает автомобиль по дороге. Эти взрывы выделяют огромное количество тепла и, если их не контролировать, за считанные минуты могут вывести из строя двигатель.Система охлаждения двигателя предназначена для контроля и регулирования этих высоких температур.

Современные системы охлаждения не сильно изменились по сравнению со старыми системами охлаждения, но они стали намного более эффективными и надежными при выполнении своей работы. Базовая система охлаждения по-прежнему состоит из жидкой охлаждающей жидкости, которая циркулирует через блок цилиндров и головку блока цилиндров (или головки в двигателе с V-образной конфигурацией), а затем вытесняется в радиатор для охлаждения потоком воздуха, проходящего через решетку в направлении перед автомобилем.

Система охлаждения должна поддерживать постоянную температуру двигателя, независимо от того, является ли температура наружного воздуха горячей 100 градусов по Фаренгейту или 30 градусов ниже нуля. Если температура двигателя слишком низкая, пострадает экономия топлива и увеличатся выбросы. Если температура двигателя будет слишком высокой в ​​течение длительного времени, двигатель будет поврежден. Диапазон рабочих температур двигателя для большинства автомобилей составляет от 195 до 220 градусов по Фаренгейту. Оптимальная температура составляет около 212 градусов по Фаренгейту.Более высокая разница температур между охлаждающей жидкостью двигателя и наружным воздухом делает теплопередачу более эффективной. Система охлаждения двигателя состоит из охлаждающей жидкости двигателя, каналов внутри блока цилиндров и головок (головок) цилиндров, водяного насоса для циркуляции охлаждающей жидкости и термостата для контроль температуры охлаждающей жидкости, радиатор для охлаждения охлаждающей жидкости, вентилятор для протягивания воздуха через радиатор, крышка радиатора для контроля давления в системе и соединительные шланги для передачи охлаждающей жидкости от двигателя к радиатору, а также для система обогрева автомобиля, в которой используется горячая охлаждающая жидкость для обогрева кабины автомобиля.

Охлаждающая жидкость двигателя выполняет основную функцию конвективного теплообмена в двигателях внутреннего сгорания. Охлаждающая жидкость представляет собой смесь воды, антифриза, ингибиторов коррозии и смазочных материалов. Охлаждающая жидкость была разработана, чтобы преодолеть недостатки воды как теплоносителя. Многие современные автомобили оснащены охлаждающей жидкостью с увеличенным или долговечным сроком службы, которая рассчитана на срок до пяти лет или 150 000 миль. Зеленой охлаждающей жидкости обычно хватает на два года или 30 000 миль. Правильная смесь и качество охлаждающей жидкости предотвратят замерзание зимой, предотвратят закипание летом, предотвратят ржавчину и коррозию металлических деталей, станут хорошим проводником тепла и помогут предотвратить электролиз.

Система охлаждения работает за счет циркуляции жидкой охлаждающей жидкости через каналы в блоке цилиндров и головках цилиндров. По мере прохождения охлаждающей жидкости через эти каналы тепло передается от компонентов двигателя к охлаждающей жидкости. Затем нагретая охлаждающая жидкость попадает по резиновому шлангу в радиатор в передней части моторного отсека. Проходя через тонкие трубки в радиаторе, горячая жидкость охлаждается воздушным потоком, поступающим в моторный отсек через решетку перед автомобилем.После охлаждения жидкость возвращается в двигатель, чтобы поглотить больше тепла. Водяной насос поддерживает циркуляцию жидкости в системе при работающем двигателе.

Между двигателем и радиатором устанавливается термостат, чтобы поддерживать температуру охлаждающей жидкости выше определенной заданной температуры, чтобы двигатель работал оптимально. Если температура охлаждающей жидкости опускается ниже этой температуры, термостат блокирует поток охлаждающей жидкости к радиатору, заставляя жидкость вместо этого через байпас непосредственно обратно в двигатель.Охлаждающая жидкость будет продолжать циркулировать таким образом до тех пор, пока не будет достигнута оптимальная рабочая температура, после чего термостат откроется и позволит охлаждающей жидкости вернуться через радиатор для охлаждения.

Система охлаждения должна находиться под давлением для предотвращения закипания охлаждающей жидкости. Однако слишком высокое давление приведет к разрыву и утечке шлангов и других компонентов, поэтому необходима система для сброса давления, если оно превышает определенный предел. Работа по поддержанию давления в системе охлаждения принадлежит радиатору или крышке бачка для утилизации охлаждающей жидкости под давлением.Колпачок обычно увеличивает давление в системе охлаждения на 14 или 15 фунтов на квадратный дюйм и поднимает температуру кипения примерно на 43 градуса по Фаренгейту. Колпачок выпускает охлаждающую жидкость под давлением в расширительный бачок охлаждающей жидкости. Затем эта жидкость возвращается в систему охлаждения после того, как двигатель остынет. Никогда не снимайте крышку радиатора сразу после остановки двигателя, поскольку охлаждающая жидкость под давлением сразу же начнет закипать, как только давление будет сброшено. Почти наверняка возникнут ожоги и серьезные травмы.

Охлаждающая жидкость проходит по пути от водяного насоса через каналы внутри блока цилиндров, где она собирает тепло, выделяемое цилиндрами.Затем он течет вверх к головкам цилиндров, где собирает больше тепла от камер сгорания. Затем он течет мимо термостата (если термостат открыт, чтобы позволить жидкости пройти), через верхний шланг радиатора в радиатор. Охлаждающая жидкость проходит через тонкие трубки, составляющие сердцевину радиатора, и охлаждается потоком воздуха, проходящего через радиатор. Оттуда он вытекает из радиатора через нижний шланг радиатора обратно в водяной насос. К этому времени охлаждающая жидкость остыла и готова собирать больше тепла от двигателя.

Есть несколько резиновых шлангов, соединяющих компоненты системы охлаждения. Основными шлангами называют верхний и нижний шланги радиатора. Эти два шланга направляют охлаждающую жидкость между двигателем и радиатором. Шланги отопителя подают горячую охлаждающую жидкость от двигателя к сердечнику отопителя. Один из этих шлангов может иметь регулирующий клапан нагревателя, установленный на линии, чтобы блокировать попадание горячей охлаждающей жидкости в сердечник нагревателя, когда кондиционер установлен на максимальное охлаждение. Другой шланг, называемый байпасным, используется для циркуляции охлаждающей жидкости по двигателю в обход радиатора, когда термостат закрыт.В некоторых двигателях не используется резиновый перепускной шланг. Вместо этого они могут использовать металлическую трубку или иметь встроенный проход в переднем корпусе двигателя.

На задней стороне радиатора со стороны, ближайшей к двигателю, установлены один или два электрических вентилятора охлаждения внутри корпуса, который предназначен для защиты пальцев и направления воздушного потока. Вентиляторы управляются компьютером автомобиля. Датчик контролирует температуру двигателя и отправляет информацию в компьютер. Компьютер определяет, следует ли включать вентилятор, и включает реле вентилятора, если требуется дополнительный поток воздуха через радиатор. Вентиляторы обеспечивают прохождение воздуха через радиатор, когда автомобиль движется медленно или останавливается при работающем двигателе. Если бы вентиляторы перестали работать, температура двигателя начинала бы повышаться каждый раз, когда автомобиль останавливался.

Если в автомобиле есть кондиционер, перед радиатором системы охлаждения двигателя устанавливается дополнительный радиатор, называемый конденсатором кондиционера. Конденсатор кондиционера также нуждается в охлаждении потоком воздуха, поступающим в моторный отсек.Если кондиционер включен, система будет поддерживать работу одного электрического вентилятора охлаждения, даже если двигатель не горячий. Если нет потока воздуха через конденсатор кондиционера, кондиционер не сможет охлаждать воздух, поступающий в кабину транспортного средства.

Двигатель, который перегревается, быстро самоуничтожится. Правильное обслуживание системы охлаждения жизненно важно для срока службы двигателя и безотказной работы системы охлаждения. Важно, чтобы сертифицированный специалист ASE проводил проверку всех компонентов системы охлаждения на ежегодной основе.Во время осмотра техник должен проверить под давлением крышку радиатора, чтобы убедиться, что система охлаждения работает на должном уровне давления, прогнать автомобиль до рабочей температуры, чтобы убедиться, что термостат двигателя правильно регулирует температуру двигателя, проверить уровень охлаждающей жидкости и визуально осмотреть на наличие каких-либо признаков утечки охлаждающей жидкости проверьте защиту охлаждающей жидкости и уровни pH, чтобы определить необходимость замены охлаждающей жидкости, и визуально осмотрите шланги системы охлаждения. Всегда убедитесь, что вы используете охлаждающую жидкость того типа и смеси, которые рекомендованы производителем вашего автомобиля.

Как работает термостат в системе охлаждения автомобиля?

Любой автомобильный двигатель с жидкостным охлаждением имеет небольшое устройство, называемое термостатом , которое находится между двигателем и радиатором. Термостат в большинстве автомобилей имеет диаметр около 2 дюймов (5 см). Его задача — перекрыть поток охлаждающей жидкости к радиатору, пока двигатель не прогреется. Когда двигатель холодный, охлаждающая жидкость не течет через двигатель. Когда двигатель достигает своей рабочей температуры (обычно около 95 градусов Цельсия), термостат открывается.Позволяя двигателю прогреться как можно быстрее, термостат снижает износ двигателя, отложения и выбросы.

Если у вас когда-нибудь будет возможность протестировать термостат, то за ним стоит наблюдать, потому что то, что они делают, кажется невозможным. Вы можете положить один в кастрюлю с кипящей водой на плите. Когда он нагревается, его клапан открывается примерно на дюйм, очевидно, по волшебству! Если вы хотите попробовать это сами, сходите в магазин автозапчастей и купите его за пару долларов.

Секрет термостата кроется в маленьком цилиндре, расположенном на стороне двигателя устройства.Этот цилиндр заполнен воском , который начинает плавиться при температуре примерно 180 градусов F (разные термостаты открываются при разных температурах, но 180 F / 82 C — это обычная температура). Шток, соединенный с клапаном, вдавливается в этот воск. Когда воск тает, он значительно расширяется и выталкивает шток из цилиндра, открывая клапан. Если вы прочитали «Как работают термометры» и провели эксперимент с бутылкой и соломинкой, вы видели тот же процесс в действии. Воск расширяется намного больше, потому что он превращается из твердого в жидкое в дополнение к расширению от тепла.

Эта же технология используется в автоматических открывателях для вентиляционных отверстий теплиц и световых люков. См. Эту страницу для примера. В этих устройствах воск плавится при более низкой температуре.

Эти ссылки помогут вам узнать больше:

.

Дизельные двигателя: Дизельные двигатели: виды, принцип работы, преимущества дизельных двигателей

советы, нюансы, правила :: Autonews

Современные дизельные двигатели разбивают старые мифы о том, что топливо для них является уделом медленных и чадящих грузовиков. Даже в России, где культура использования дизеля развита не так хорошо, как в Европе, в отдельных сегментах его доля оказывается очень высокой.

По данным аналитического агентства «Автостат», за девять месяцев 2019 г. в России было продано почти 100 тыс. дизельных легковушек, что составляет более 8% парка, а в сегменте внедорожников и больших кроссоверов она превышает 50%. При этом доля дизельных машин у бренда BMW в России составляет 70,6%, а Land Rover продает 79% таких автомобилей — хороший дизель обходит бензиновые моторы даже в сегменте автомобилей для водителя.

Чем технически отличается дизельный двигатель

Если в бензиновом двигателе горючая смесь воздуха и топлива формируется во впускном коллекторе, подается в цилиндр и там воспламеняется с помощью свечи зажигания, то в дизельном смесь самовоспламеняется от сжатия после того, как впрыскивается под высоким давлением в цилиндр с уже сжатым и нагретым воздухом, мгновенно образуя горючую смесь.

В дизельном двигателе свечи зажигания не используются вовсе, а само топливо испаряется медленнее, поэтому вероятность возгорания минимальна. Благодаря использованию более жесткого и прочного блока цилиндров и элементов цилиндропоршневой группы дизельные моторы в целом долговечнее бензиновых, а сама конструкция менее требовательная к обслуживанию.

За что любят дизель

Главное преимущество дизеля — экономичность: при примерно равных мощностных характеристиках дизельный двигатель потребляет на треть меньше топлива, чем бензиновый. Даже те, кто не считает затраты на топливо, ценят большие пробеги без необходимости тратить время на заправках. Но важно при этом выбирать качественное топливо вроде «Дизель Опти» c улучшенными характеристиками от АЗС «Газпромнефть» — оно напрямую влияет на экономичность.

Дизельные моторы отличаются более высокой тяговитостью и большим крутящим моментом на низких оборотах. Это значит, что автомобиль с таким двигателем быстрее реагирует на акселератор и легко ускоряется в городском потоке, не тратя время на переключения передач. Эта легкость с лихвой компенсирует более спокойное поведение на высоких оборотах, так как 99% времени автомобиль проводит в потоке транспорта, а не на треке. Кроме того, характеристики дизеля удобнее на бездорожье, где требуется крепкая и легко контролируемая тяга.

Что с зимним пуском и прогревом машины

Проблема зимнего пуска дизельного двигателя напрямую связана со свойствами самого топлива. Если летний дизель густеет при -5 градусах и не прокачивается через фильтры и трубопроводы топливной системы, то зимний может работать и при -45 градусах. В итоге любой исправный дизельный автомобиль с сезонным топливом и качественным моторным маслом пускается так же легко, как бензиновый.

Высокая эффективность дизельных двигателей обуславливает более медленный прогрев силовой установки, поэтому считается, что зимой они не могут нормально прогреть салон машины. На самом деле, любой современный мотор, включая бензиновый, не спешит отдавать тепло, но эта проблема легко решается двумя способами. Во-первых, термостаты эффективно перераспределяют тепло двигателя, а во-вторых, почти все дизельные машины комплектуются дополнительными электрическими обогревателям салона, благодаря которым тепло начинает поступать в первые минуты после пуска.

Тем, кто любит садиться в уже теплый автомобиль, можно посоветовать систему дистанционного пуска, но лучше поставить более экологичный и экономичный предпусковой подогреватель, который работает на том же дизеле, но тратит его только на обогрев салона и прогрев охлаждающей жидкости двигателя. Такую опцию можно установить на все дизельные автомобили штатно или в специализированных мастерских.

Как правильно запускать двигатель

Для облегчения зимнего пуска дизель использует свечи накаливания — устройства, которые быстро прогревают камеру сгорания в течение нескольких секунд. После поворота ключа зажигания на панели приборов зажжется символ работы свечей (обычно спираль), который гаснет через две-пять секунд в зависимости от температуры двигателя — можно включать стартер. На автомобилях с кнопкой пуска двигателя все еще проще: после нажатия клавиши система сама выдержит нужную паузу до включения стартера.

В особенно холодных условиях можно несколько раз подряд включить свечи накаливания, поворачивая ключ зажигания, но не включая стартер, либо нажимая кнопку пуска без удержания педали тормоза (стартер в этом случае не включится). Но это уже избыточные меры для очень холодных зим, потому что современные дизели при использовании зимней солярки и правильных масел легко пускаются с первого раза после ночной стоянки даже в -30 градусов.

Каким топливом заправляться

Зимой дизель следует заправлять исключительно зимним дизтопливом, поэтому на крупных сетевых АЗС всегда тщательно соблюдают сезонность. Современные двигатели очень требовательны к качеству топлива, поэтому оно должно соответствовать всем действующим стандартам. Хорошее топливо не только обеспечивает надежный пуск, но и чистит топливную систему от нагара и отложений, заметно повышает экономичность машины и уменьшает стоимость ее содержания. Именно так работает «Дизель Опти», который реализуется на заправках сети «Газпромнефть».

Еще одним преимуществом фирменного топлива является стабильность его характеристик на любой заправки сети. Так, во время испытаний топлива «Дизель Опти» подопытный Toyota Land Cruiser 200 заправлялся в разных регионах страны при температурах от -5° до +25° и демонстрировал абсолютную стабильность характеристик динамики, расхода и легкости пуска. После 7000 км пробега топливная система была разобрана, и инженеры отметили ее идеальное состояние, а некоторые характеристики даже улучшились благодаря очищающим свойствам топлива.

Кроме того, топливо «Опти» из года в год подтверждает свое высокое качество в экстремальном ралли-марафоне «Шелковый путь», который проходит по территории России, Монголии и Китая. Сеть АЗС «Газпромнефть» заправляет автомобили организаторов и участников ралли, заодно тестируя твое топливо в жесточайших условиях песчаных пустынь, безлюдных степей и крепких утренних морозов.

Дизельные двигатели 60 л.с. 4 моделей по цене от руб: отзывы, фото, характеристики

Фильтры товаров

Производитель

Тип запуска

  • По этим критериям поиска ничего не найдено

Редуктор

  • По этим критериям поиска ничего не найдено

Топливо

  • По этим критериям поиска ничего не найдено

Система охлаждения

  • По этим критериям поиска ничего не найдено

Расположение вала

  • По этим критериям поиска ничего не найдено

Кол-во цилиндров

Дизельные двигатели 10 л.

с. 22 моделей по цене от 24 250 руб: отзывы, фото, характеристики

Фильтры товаров

Производитель

Тип запуска

  • По этим критериям поиска ничего не найдено

Редуктор

  • По этим критериям поиска ничего не найдено

Топливо

  • По этим критериям поиска ничего не найдено

Система охлаждения

  • По этим критериям поиска ничего не найдено

Расположение вала

  • По этим критериям поиска ничего не найдено

Кол-во цилиндров

Частота вращения, об/мин

  • По этим критериям поиска ничего не найдено

Применяемость

  • По этим критериям поиска ничего не найдено

Дизельные двигатели 80 л.

с. 5 моделей по цене от 236 000 руб: отзывы, фото, характеристики

Фильтры товаров

Производитель

Тип запуска

  • По этим критериям поиска ничего не найдено

Редуктор

  • По этим критериям поиска ничего не найдено

Топливо

  • По этим критериям поиска ничего не найдено

Система охлаждения

  • По этим критериям поиска ничего не найдено

Расположение вала

  • По этим критериям поиска ничего не найдено

Кол-во цилиндров

Частота вращения, об/мин

  • По этим критериям поиска ничего не найдено

Дизельные двигатели 3 л.

с. 9 моделей по цене от руб: отзывы, фото, характеристики

Фильтры товаров

Производитель

Тип запуска

  • По этим критериям поиска ничего не найдено

Редуктор

  • По этим критериям поиска ничего не найдено

Топливо

  • По этим критериям поиска ничего не найдено

Система охлаждения

  • По этим критериям поиска ничего не найдено

Расположение вала

  • По этим критериям поиска ничего не найдено

Кол-во цилиндров

Частота вращения, об/мин

  • По этим критериям поиска ничего не найдено

Дизельные двигатели

ООО «Компания Дизель» — российский лидер по производству дизельных электростанций (ДЭС) исключительно на основе двигателей европейского / российского производства. Дизельные двигатели – являются ключевым элементом выпускаемых нами дизель-генераторов и силовых приводов. От их качества напрямую зависит надежность и долговечность и потребительские свойства оборудования, которое Вы приобретаете.

Поэтому за 9 лет работы мы рассмотрели, испробовали и протестировали большое количество вариантов, представленных на российском и мировом рынке. Основные критерии, которые мы предъявляли к данному виду комплектующих – это высокое качество сборки (обязательно оригинальная), длительная безотказная работа, топливная экономичность, достаточный диапазон мощностей, по возможности – адаптация к топливу среднего качества, короткие сроки поставок (наличие на складах в России), оптимальная цена.

Нельзя было не учесть высокий спрос среди российских покупателей на дизель-генераторы (ДГУ) на базе отечественных двигателей – крайне простых в обслуживании и ремонте, отлично приспособленных для работы в российских условиях. Для дизельных двигателей зарубежного производства важнейшим критерием также стала развитая официальная сервисная поддержка и доступность оригинальных запчастей в России – чтобы наших покупатели не столкнулись с эксплуатационными проблемами на протяжении всего периода использования дизельных электростанций производства ООО «Компания Дизель».

В результате, сегодня на заводе Компании Дизель под Ярославлем производятся силовое оборудование на основе двигателей 3-х отечественных производителей – ЯМЗ (Россия), ТМЗ (Россия), ММЗ (Беларусь) и дизельных двигателей 6-ти марок зарубежного производства — Scania (Швеция), FPT-Iveco (Италия), John Deere (США, Франция), Perkins (Англия), Volvo Penta (Швеция), Doosan (Южная Корея)

В частности, согласно данному делению, Компанией Дизель сформированы две продуктовые линейки ДЭС:

  • Дизельные электростанции professional (серии ДГУ ЯМЗ, ДГУ ММЗ, ДГУ ТМЗ,). Это оборудование высочайшего уровня сборки от Компании Дизель, отлично приспособленное для выработки электроэнергии в непростых российских условиях – надежное, простое, неприхотливое в эксплуатации. Мощности – от 15 до 400 кВт.
  • Дизельные электростанции Premium (серии ДГУ Scania, ДГУ FPT-Iveco, ДГУ John Deere, ДГУ Perkins, ДГУ Volvo Penta). Это оборудование, собранное по европейским стандартам, из европейских комплектующих – безотказное, очень долговечное (30 000 – 40 000 моточасов), выносливое и экономичное. Это прямой аналог по качеству и функционалу дизельным электростанциям мировых лидеров — Cummins, FG Wilson, Caterpillar, SDMO – по гораздо более «гуманной» цене – без переплаты за бренд и стоимость американской / европейской сборки.

Обращаем внимание, что ООО «Компания Дизель» является единственным в России официальным OEM-производителем электрогенераторов на дизельных двигателях Scania.

По всем перечисленным дизельным двигателям специалисты Компании Дизель готовы оказать полную сервисную поддержку, подобрать и поставить запчасти, «расходники», комплекты ЗИП. Звоните!

Пять мифов о проблемах дизельных двигателей — Российская газета

Парк дизельных «легковушек» в России не превышает сегодня и 9% от числа бензиновых машин. Более того, это процент в последние месяцы планомерно снижается ввиду того, что люди все чаще отказываются от покупки транспорта на солярке, который оказывается им не по карману.

Правда и то, что многие отечественные водители по старой памяти относятся к дизельным автомобилям с предубеждением, считая их проблемными. В свою очередь реальные владельцы хвалят дизели за больший крутящий момент на низких оборотах, меньший расход топлива, а также возможность проехать большее расстояние на одном баке в сравнении с бензиновыми аналогами. Давайте разберемся, какие из представлений населения о дизелях являются абсолютными мифами.

Дорогая эксплуатация

С одной стороны, не секрет, что проводить техобслуживание — и прежде всего менять фильтры и масло на транспорте с дизелями — приходится чаще, чем на бензиновых машинах.

К тому же объем масла для заливки в дизельные агрегаты, как правило, больше, чему у бензиновых машин, а «расходники» (фильтры и свечи) дороже, топливный фильтр к тому же требует частой замены.

Эти нюансы несколько увеличивают расходы автовладельцев дизельного транспорта на ТО. Однако нужно понимать, что дизельный мотор потребляет в среднем на 20% меньше топлива, чем бензиновый. Соответственно общие затраты (скажем, по итогам года) будут у дизельных машин либо сопоставимы с таковыми у бензинового транспорта, либо лишь незначительно превышать их.

Повышенные требования к качеству топлива

Действительно, в целом дизельные силовые агрегаты требовательнее бензиновых к качеству топлива.

При этом в большинстве случаев виновником низкого качества солярки является не производитель, а продавец, нарушивший правила транспортировки или хранения. Однако фактически на сетевых АЗС нарваться на некачественное дизтопливо в наши дни малореально.

Проблемой для владельцев может стать заливка в дизельный агрегат летней солярки вместо зимней.

Ведь, как известно, на летнем топливе при температуре 15˚С дизтопливо начинает густеть и автомобиль в мороз попросту не заведется. Это обстоятельство нужно учитывать не только при поиске «правильных» (проверенных сетевых) АЗС, но и после возобновления поездок после длительного перерыва (например, вы поставили машину на прикол ранней осенью, а сели за руль зимой). В целом же для беспроблемного зимнего пуска дизельной машины достаточно, чтобы солярка была без механических примесей и воды.

Сложности с запуском зимой

Утверждение о том, что дизельный двигатель сложнее завести, чем бензиновый при минусовых температурах, верно лишь отчасти. Из-за особенностей конструкции (высокой степени сжатия в поршневой части и более прочных и массивных деталей, необходимых для эффективной прокрутки коленвала стартером) нужно предъявить повышенное внимание состоянию аккумуляторной батареи и свечам накаливания. Желательно, чтобы и то и другое было «свежим».

Кроме того, чтобы быть уверенным в беспроблемном пуске мотора в серьезный минус (ниже минус 35˚С) «дизелеводам» стоит озаботиться либо доустановкой предпускового подогревателя, либо настройкой автозапуска в тех моделях, где это допускается конструкцией.

Понятно, что последние меры несколько увеличат общий расход топлива, зато вы обезопасите себя от того, чтобы не заведетесь в суровый минус. Соответственно, при правильной эксплуатации и продуманной подготовке к зиме проблем с запуском дизельных двигателей не возникает. Ну и, разумеется, нужно помнить о том, что в межсезонье, когда на АЗС возможна пересортица (замена летней солярки на зимнюю), не будет лишним уточнить, какой сорт дизтоплива вам предлагают.

Навязчивый шум

Ввиду особенностей конструкции и алгоритма работы шум от дизельного двигателя на холостых оборотах действительно выше в сравнении с бензиновыми аналогами.

Правда и то, что двигатели на солярке, как правило, отличаются более высокой в сравнению с бензиновыми моторами вибронагруженностью.

Однако эти моменты на 100% верны лишь в отношении не самых современных силовых агрегатов. Чем дизельная машина новее и дороже, тем в большей степени она оснащена виброшумоизолирующей защитой, а также такими ноу-хау, как, к примеру, аккумуляторные топливные системы высокого давления («Common-rail»), снижающих шум прежде всего за счет разделения одного импульса впрыска на несколько.

Загрязняют природу

Все зависит от конкретной марки и года выпуска автомобиля. Принципиально, что поскольку дизель потребляет меньше горючего, соответственно он выбрасывает в атмосферу меньше двуокиси углерода, чем бензиновый двигатель такой же мощности.

Новейшие дизели оборудуются специальными фильтрами, задерживающими до 99% мельчайших частиц, поэтому если вы радеете о защите экологии, смотрите в сторону современных продвинутых моделей.

И мы здесь, разумеется, не рассматриваем проблему маргиналов, которые в гаражах или «серых» сервисах вырезают из топливной схемы дизельных автомобилей нейтрализаторы и удаляют сажевые фильтры. При таком раскладе вред природе дизельного выхлопа действительно возрастает многократно.

Руководство для начинающих по изучению дизельных двигателей


Руководство для начинающих по изучению дизельных двигателей

Майк МакГлотлин

Не секрет, что большинство американцев больше привыкло к бензиновым двигателям, чем к дизелям. Статистические данные, собранные RL Polk, подтверждают это, поскольку всего 2,8 процента всех зарегистрированных легковых автомобилей (легковые автомобили, внедорожники, пикапы и фургоны) работали на дизельном топливе № 2 в 2013 году. Безусловно, большинство людей в США ожидают найти искру. заглушки или блоки змеевиков, когда они открывают капот, а не турбокомпрессоры и топливные насосы (два очень важных элемента почти в каждом дизельном двигателе, с которым вы столкнетесь, отсюда и термин «турбодизель»).

Чтобы понять разницу между дизельным и бензиновым двигателями, мы начнем со всех общих черт между ними. Тип топлива, сжигаемого любой силовой установкой, ничего не меняет по отношению к общей структуре двигателя (то есть вращение коленчатого вала, движение шатунов и поршней вверх и вниз, нагнетание воздуха и отвод выхлопных газов). Фактически, одна и та же базовая архитектура очень похожа. Но то, что происходит в цилиндре в дизельном топливе, сильно отличается от того, что вы найдете в его бензиновых аналогах.

Самый простой способ объяснить разницу между бензиновыми и дизельными двигателями — это «воздух» и «топливо». В бензиновом двигателе воздушный поток — это все. Ты задыхаешь воздух. Дизельная мельница — полная противоположность. Он работает на основе ограничения количества впрыскиваемого топлива — воздух просто следует этому примеру. Следовательно, нет необходимости дросселировать поступающий воздух. С этой целью в дизельном двигателе также не создается вакуума.

Впускной воздух

Для наших целей мы будем использовать четырехтактный дизельный двигатель с турбонаддувом и промежуточным охлаждением, чтобы проиллюстрировать потоки воздуха и топлива через современную дизельную электростанцию.Свежий воздух поступает в корпус компрессора (сторона всасывания) турбокомпрессора и сжимается в крыльчатке компрессора, где создается наддув. Это делает воздух плотнее, но и намного теплее.

Чтобы охладить сжатый воздух перед его поступлением в головку (головки) цилиндров, он проходит через охладитель наддувочного воздуха (также известный как промежуточный охладитель). Чаще всего используется промежуточный охладитель типа воздух-воздух и по сути представляет собой простой теплообменник. Интеркулер значительно снижает температуру всасываемого воздуха на пути к двигателю и делает это с очень минимальной потерей наддува.

Компрессионное зажигание

Все становится интереснее, когда в цилиндр нагнетается сжатый воздух. Во время такта впуска — когда поршень опускается в нижнюю границу своего диапазона — впускной клапан (ы) открывается, позволяя «не дросселирующему» воздуху заполнить цилиндр. Это отличается от бензинового двигателя двумя способами: 1) газовые двигатели вводят смесь топлива и воздуха во время такта впуска и 2) в дизельном топливе воздух всасывается только во время такта впуска. Затем впускной клапан (ы) закрывается и начинается такт сжатия.Когда поршень движется вверх, воздух, который когда-то заполнял цилиндр, теперь занимает всего 6% от площади, которую он занимал раньше. Этот воздух под огромным давлением мгновенно перегревается до более чем 400 градусов тепла, что более чем достаточно, чтобы дизельное топливо воспламенилось само по себе. Именно это и происходит в верхней части хода поршня. Ранее упомянутый перегретый воздух встречает порцию дизельного топлива (выпускаемого в цилиндр соответствующей топливной форсункой) в течение идеального промежутка времени, прежде чем поршень достигнет верхней мертвой точки и произойдет сгорание. Поскольку дизельный двигатель использует теплоту сжатия для воспламенения топлива, никакая помощь для начала процесса сгорания не требуется (например, свечи зажигания, например, в бензиновом двигателе).

Турбокомпрессоры делают дизели такими, какие они есть: отличными

Последним этапом работы является такт выпуска, при котором отработавшие газы сгорания вытесняются из выпускных клапанов через выпускной коллектор в сторону турбины (выхлопа) турбонагнетателя. В обычном бензиновом двигателе нет турбонагнетателя, а это означает, что выхлопные газы, выходящие из двигателя, сразу же направляются в выхлопную трубу.Это не так в дизельном топливе, поскольку турбонагнетатель, который нагнетает свежий воздух в двигатель, фактически использует выхлопные газы, оставляя его, чтобы двигаться сам. Поскольку турбокомпрессор состоит из турбинного (выпускного) колеса, имеющего общий вал с компрессорным (впускным) колесом, выхлопные газы всегда необходимы для подачи воздуха в двигатель. Одно зависит от другого. Мы разберем важность турбокомпрессора следующим образом: вы дросселируете топливо (отправляете дизельное топливо в двигатель), происходит сгорание, выхлопные газы покидают двигатель, вращая колесо турбины на выходе, которое поворачивает колесо компрессора, вводя воздух. в двигатель.Бесконечный цикл, если хотите. Тепловой КПД дизельного двигателя повышается за счет турбонагнетателя, так как он увеличивает объем поступающего в него воздуха, что создает основу для сжигания большего количества топлива.

Различия в горении

Одно из основных различий между дизельными и газовыми двигателями заключается в типе сгорания, который каждый из них использует. Как обсуждалось выше, в дизельном топливе, когда топливо наконец встречает сжатый воздух в цилиндре, результатом является сгорание. В бензиновом двигателе топливо и воздух смешиваются еще до того, как произойдет сгорание.Но кроме того, камеры сгорания каждого двигателя расположены по-разному. В типичном бензиновом двигателе камера сгорания утоплена в головке (головках) цилиндров. В дизельном двигателе с непосредственным впрыском топлива камера сгорания фактически находится внутри поршня. Эта камера сгорания чаще всего имеет конструкцию «мексиканской шляпы», которая состоит из утопленного отверстия в центре поршня. Внизу этой рецессии существует конусообразный выступ. Когда топливная форсунка расположена непосредственно над ней, именно этот выступ позволяет оптимизировать распыление топлива и совершать процесс сгорания.Более чем в 99 процентах всех дизельных двигателей используется конструкция Mexican Hat, поскольку основную ударную нагрузку от взрыва сгорания принимает на центр поршня, а не на головку поршня. Это придает поршню исключительную надежность.

Прямой впрыск

Проще говоря, прямой впрыск означает, что форсунки системы выступают и распыляют прямо на верхнюю часть поршня. Здесь нет форкамеры или вихревой камеры, и топливо не должно проходить через впускной коллектор перед поступлением в цилиндр.При непосредственном впрыске весь процесс сгорания происходит быстрее, проще и намного эффективнее, чем в типичном бензиновом двигателе с многоточечным впрыском топлива. Дизели с прямым впрыском также работают при очень бедном соотношении воздух / топливо по сравнению с бензиновыми двигателями. Типичное соотношение воздух / топливо от 25: 1 до 40: 1 (дизельное топливо) по сравнению с 12: 1 до 15: 1 (бензин) дает некоторое представление о том, почему дизели настолько консервативны в отношении расхода топлива. Эффективность также подтверждается тем фактом, что современные дизельные двигатели с прямым впрыском впрыскивают топливо при давлении, приближающемся (или в некоторых случаях превышающем) 30 000 фунтов на квадратный дюйм.Это обеспечивает наилучшее возможное распыление не только для эффективного сжигания, но и с низким уровнем отходящего тепла.

Начало впрыска по времени

Хотя термин «синхронизация» часто используется как в мире бензиновых, так и дизельных двигателей, это одно слово означает две очень разные вещи, в зависимости от типа двигателя, с которым вы имеете дело. Излишне говорить, что важно проводить различие между ними. В бензиновом двигателе время относится к началу сгорания. В дизеле синхронизация — это начало впрыска или SOI (когда форсунка начинает распылять топливо в цилиндр).Опять же, все сводится к тому, что топливо (и система впрыска) является ключевым аспектом дизельного двигателя.

Момент. Много этого.

Люди, незнакомые с дизельными двигателями, часто задаются вопросом, почему и как они создают впечатляющий крутящий момент. Отношение крутящего момента к мощности в дизельных двигателях редко бывает ниже 2: 1, а для двигателей тяжелой промышленности типично соотношение 3: 1 и даже 4: 1. Бензиновые двигатели намного ближе к соотношению 1: 1. Причина, по которой дизельные двигатели вырабатывают такой большой крутящий момент, связана с тремя ключевыми факторами: 1) наддув, создаваемый турбонагнетателем, 2) ход поршня и 3) давление в цилиндре.

В настоящее время серийные дизельные двигатели получают давление от 25 до 35 фунтов на квадратный дюйм прямо с завода. Для сравнения, наддув в 10 фунтов на квадратный дюйм часто считается чрезмерным для бензиновых двигателей. Лучшее в использовании сжатого всасываемого воздуха (то есть наддува) в дизельном двигателе состоит в том, что он снижает насосные потери двигателя на такте впуска и увеличивает давление в цилиндре на рабочем такте (сгорание).

Коленчатые валы с длинным ходом всегда способствовали созданию крутящего момента, будь то бензиновый или дизельный двигатель.Но почему? Посмотрите на это, как будто вы используете длинный гаечный ключ, чтобы ослабить очень тугой болт, а не более короткий гаечный ключ, который не мог справиться с работой с самого начала. Вы можете применить больший крутящий момент с большим рычагом, верно? Конечно вы можете. В длинноходном двигателе шатун может использовать большее усилие при повороте коленчатого вала (в то время как поршень опускается во время рабочего хода): следовательно, больший крутящий момент.

Как вы уже могли догадаться, давление в цилиндре, создающее крутящий момент, создается во время рабочего хода.Увеличение времени впрыска, которое происходит в цилиндре с более ранним началом впрыска (SOI), эффективно создает большее давление в верхней части поршня. Чем больше давление создается в верхней части поршня, тем создается больший крутящий момент.

Перестроен

Чрезвычайное давление в цилиндре, длинный ход и высокий уровень наддува не только объясняют, почему дизели создают крутящий момент, но и объясняют, почему дизельные электростанции построены с использованием таких сверхпрочных компонентов. Чтобы противостоять огромным нагрузкам, которым они подвергаются, производители используют такие вещи, как чугунные блоки с глубокой юбкой (и даже чугун с уплотненным графитом), коленчатые валы и шатуны из кованой стали и обычно используют головки цилиндров с минимум 6 болтами на цилиндр.Цельностальные поршни пользуются успехом даже в тяжелой промышленности и в двигателях класса 8. В целях долговечности дизельные двигатели имеют надстройку. В дизелях малого рабочего объема нередко можно найти заводскую штриховку, которая все еще присутствует на цилиндрах после 300 000 миль использования. И это нормально для внедорожного двигателя класса 8 — проехать от 750 000 до 1 000 000 миль между капитальными ремонтами.

Дизель никуда не денется

Метод сгорания, впрыска топлива и зажигания, используемый в дизельном двигателе, определенно отличает его от его бензинового аналога.Преимущество дизельного топлива по сравнению с бензиновыми электростанциями — вот что выдвинуло его на передний план в сегодняшних разговорах об экономии топлива. В связи с быстрым приближением стандартов CAFE (средняя корпоративная экономия топлива), шумом вокруг гибридных автомобилей, кажущихся плоскими, и электромобилей, не обеспечивающих достаточный запас хода, в ближайшие годы больше производителей обратятся к дизельным электростанциям, чем когда-либо прежде. Будьте уверены, дизельные двигатели не только здесь, чтобы остаться — они вполне могут быть двигателем будущего.

Источники:

Diesel Power Magazine
Апрельский выпуск 2009 г., стр. 50

The Diesel Forum (данные R.L. Polk)
http://www.dieselforum.org/resources/top-10-states-of-diesel-drivers

TTS Power Systems (начало впрыска)

Книга: « Современные дизельные технологии: Дизельные двигатели »
Автор: Шон Беннет

Как это работает: дизельные двигатели
http://www. dieselpowermag.com/tech/1208dp_how_it_works_diesel_engines/


Дизельные двигатели

Дизельные двигатели

Ханну Яэскеляйнен, Магди К.Хаир

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Дизельный двигатель, изобретенный в конце 19 годов доктором Рудольфом Дизелем, является наиболее энергоэффективной силовой установкой среди всех типов двигателей внутреннего сгорания, известных сегодня. Такой высокий КПД приводит к хорошей экономии топлива и низким выбросам парниковых газов.Другие характеристики дизельного топлива, которые не были сопоставлены с конкурирующими машинами для преобразования энергии, включают долговечность, надежность и топливную безопасность. К недостаткам дизелей можно отнести шум, низкую удельную мощность, выбросы NOx и PM и высокую стоимость.

Что такое дизельный двигатель?

В большинстве современных дизельных двигателей используется обычное расположение цилиндров и поршней, приводимое в действие кривошипно-шатунным механизмом, общим для других двигателей внутреннего сгорания, таких как бензиновый двигатель. Учитывая этот базовый механизм, разница между базовой конструкцией дизельного и бензинового двигателей очень небольшая.

Концептуально дизельные двигатели работают за счет сжатия воздуха до высокого давления / температуры и затем впрыскивания небольшого количества топлива в этот горячий сжатый воздух. Высокая температура вызывает испарение небольшого количества сильно распыленного впрыскиваемого топлива. Смешиваясь с горячим окружающим воздухом в камере сгорания, испаренное топливо достигает температуры самовоспламенения и сгорает, высвобождая энергию, которая хранится в этом топливе [391] .

Определение дизельного двигателя менялось с годами.Например, в начале 20-го -го века было проведено различие между «настоящим дизельным двигателем» и тем, который разделял некоторые аспекты дизельного цикла, но не охватывал все аспекты, которые считались частью дизельного цикла, как тогда предполагалось. . Одно из первых определений «настоящего дизельного двигателя» — это двигатель, имеющий следующие характеристики [2959] :

  1. Сжатие, достаточное для получения температуры, необходимой для самовозгорания топлива.
  2. Впрыск топлива струей сжатого воздуха.
  3. Максимальное давление цикла (достигнутое при сгорании), не намного превышающее давление сжатия, т. Е. Отсутствие выраженного взрывного действия.

Хотя первый пункт вышеуказанных характеристик соответствует современному дизельному двигателю, последние два нет. В течение 1920-х и 1930-х годов две другие характеристики утратили свое значение.

Инжектор твердого топлива начал появляться примерно в 1910 году, но только в конце 1920-х годов он начал быстро получать признание.Интересно отметить, что сам Дизель выбрал нагнетание воздушной струи скорее по необходимости, чем по выбору. Дизель предполагал топливную систему с твердым впрыском, а не воздушную струю.

Дизель довольно строго придерживался принципа сгорания при постоянном давлении, пункт 3. Это, однако, было возможно только в больших относительно медленных дизельных двигателях, которые были распространены до 1920-х годов. В более мелких высокоскоростных двигателях, появившихся в 1920-х годах, практические соображения означали, что сгорание было ближе к процессу постоянного объема, как в цикле Отто, а не к постоянному давлению, как в цикле Дизеля.

Краткий обзор ранней истории дизельного двигателя обсуждается в другом месте.

###

границ | Преимущества и недостатки дизельных одно- и двухтопливных двигателей

Введение

Обедненная смесь, воспламенение от сжатия (CI), непосредственный впрыск (DI) — самый эффективный двигатель внутреннего сгорания (ДВС) (Zhao, 2009; Mollenhauer and Tschöke, 2010). Он производит выбросы оксидов азота и твердых частиц (ТЧ) из двигателя, которые нуждаются в последующей обработке, чтобы соответствовать чрезвычайно низким пределам, установленным для транспортных средств (Lloyd and Cackette, 2001; Burtscher, 2005; Maricq, 2007), несмотря на то, что качество воздуха остается не только под влиянием транспортных выбросов, но и из многих других источников. Одних только стратегий сжигания (Khair and Majewski, 2006) было недостаточно для достижения порогового значения выбросов, и требовались специальные катализаторы сжигания обедненной смеси, особенно для NOx, в дополнение к фильтрам твердых частиц в выхлопных газах. Несмотря на свой экономический успех, дизельные двигатели столкнулись с ужесточением законодательства по выбросам во всем мире (Knecht, 2008; Zhao, 2009) ценой постепенного отказа от технологии, нацеленной на нереалистичные минимальные дополнительные улучшения.

У дизеля есть плюсы и минусы как все.Его эффективность преобразования топлива при полной и частичной нагрузке превышает эффективность стехиометрических ДВС с искровым зажиганием (SI), как с прямым впрыском, так и с впрыском топлива в порт (PFI). CIDI ICE имеют пиковый КПД около 50% и КПД выше 40% на большинстве скоростей и нагрузок. Напротив, у SI ICE пиковый КПД составляет около 30%, и этот КПД резко снижается за счет снижения нагрузки. CI ICE поставляют механическую энергию по запросу с эффективностью преобразования топлива, которая также выше, чем эффективность электростанций на сжигании топлива, производящих электричество. По данным EIA (2018), в 2017 году в США угольные парогенераторы работали со средней эффективностью 33,98%. Парогенераторы на нефтяном и природном газе работают примерно с одинаковым КПД — 33,45 и 32,96%. Газотурбинные генераторы работают с пониженным КПД на 25,29% для нефти и 30,53% для природного газа. КПД генераторов с двигателями внутреннего сгорания выше, чем у газовых турбин и парогенераторов: 33,12% для нефти и 37,41% для природного газа. Только парогазовые генераторы, не работающие на нефти, имеют КПД 34.78%, но с природным газом, который имеет КПД 44,61%, превосходят генераторы внутреннего сгорания.

При сравнении электрической мобильности двигатели CIDI ICE по-прежнему имеют бесспорные преимущества для транспортных приложений (Boretti, 2018). Однако CIDI ICE страдает от плохой репутации, что ставит под угрозу его потенциал. Дизельные двигатели CIDI ICE в недавнем прошлом не смогли обеспечить удельные выбросы NOx для сертификационных циклов холодного пуска во время прогретых реальных графиков вождения, которые сильно отличались от сертификационных циклов (Boretti, 2017; Boretti and Lappas, 2019). Этот прискорбный случай был разыграен против CIDI ICE, чтобы создать впечатление, что этот двигатель экологически вреден для выбросов загрязняющих веществ, хотя это не так.

Большие выбросы NOx двигателей CIDI ICE являются результатом большого образования NOx в цилиндрах, работающих в условиях избыточного обедненного воздуха стехиометрии, в сочетании с неправильной работой системы последующей обработки. Катализатор сжигания обедненной смеси в ДВС CIDI менее развит, чем трехкомпонентный каталитический преобразователь (TWC) стехиометрических ДВС SI (Heywood, 1988; Zhao, 2009; Mollenhauer and Tschöke, 2010; Reşitoglu et al., 2015). Кроме того, не учитывалась длительная разминка при эксплуатации (Boretti and Lappas, 2019). Кроме того, некоторые производители, применяющие впрыскивание мочевины в доочистку, решили вводить меньше мочевины, чем необходимо, когда это не строго требуется сертификацией выбросов. Точно так же некоторые производители также сосредоточились на вопросах управляемости и экономии топлива, а не на выбросах, когда их строго не спрашивали, вдали от условий эксплуатации, вызывающих озабоченность при сертификации выбросов. Таким образом, несоблюдение требований по выбросам NOx в случайно выбранных условиях не было фундаментальным недостатком двигателей CIDI ICE в целом, а только конкретных продуктов, разработанных в соответствии с правилами выбросов и требованиями рынка в конкретное время.Противники двигателей CIDI ICE не считают, что эти двигатели оснащены уловителями твердых частиц с почти идеальной эффективностью, и циркуляция автомобилей, оснащенных этими двигателями, в сильно загрязненных районах приводит к лучшим условиям для выхлопной трубы, чем условия впуска, для твердых частиц, что способствует для очистки воздуха.

Настоящая статья представляет собой объективный обзор плюсов и минусов экономичного сжигания, CIDI ICE, которые намного лучше, чем предполагалось. Поскольку ДВС, безусловно, потребуется в ближайшие десятилетия, дальнейшие улучшения сжигания обедненной смеси CIDI ICE будут полезны для экономики и окружающей среды.Помимо дизельных двигателей CIDI ICE, в этой работе также рассматриваются двухтопливные двигатели, работающие на дизельном СПГ (Goudie et al. , 2004; Osorio-Tejada et al., 2015; Laughlin and Burnham, 2016), дизель-CNG (Maji et al. , 2008; Shah et al., 2011; Ryu, 2013) или дизель-СНГ (Jian et al., 2001; Ashok et al., 2015). Работа с небольшим количеством дизельного топлива и гораздо большим (с точки зрения энергии) количеством гораздо более легкого углеводородного топлива с пониженным содержанием углерода до водорода позволяет еще больше снизить выбросы ТЧ из двигателя вне двигателя, а также CO . 2 , и освобождаясь от компромисса PM-NOx, влияющего на стратегии впрыска только дизельного топлива, также снижает выбросы NOx из двигателя.Рассмотрены также тенденции развития двухтопливных двигателей CIDI ICE.

Использование биодизеля для производства низкоуглеродного дизельного топлива с использованием однотопливного подхода, безусловно, является еще одним вариантом сокращения выбросов CO 2 . Хотя эта возможность не влияет на выбросы загрязняющих веществ, производство биотоплива в целом растет, но не ожидаемыми темпами (IEA, 2019), и вопрос о соотношении продуктов питания и топлива (Ayre, 2007; Kingsbury, 2007; Inderwildi and King, 2009) также может иметь негативный вес в мире с прогнозируемым неизбежным водным и продовольственным кризисом (United Nations, 2019). Кроме того, преимущества биотоплива перед LCA являются давними и противоречивыми дебатами в литературе (McKone et al., 2011).

Существует возможность выбросов метана из двухтопливных дизельных двигателей, работающих на природном газе (Camuzeaux et al., 2015). Поскольку метан является сильным парниковым газом, этот аспект следует должным образом учитывать при сокращении выбросов парниковых газов. Существует не только возможность утечки метана из транспортных средств с двухтопливными дизельными двигателями, работающими на СПГ. Также существуют выбросы метана при добыче нефти и газа.Помимо выбросов метана при добыче природного газа, существуют выбросы электроэнергии, связанные с эксплуатацией завода по производству СПГ. Хотя СПГ (и КПГ), безусловно, будет иметь преимущества по сравнению с дизельным топливом, это преимущество может быть меньше, чем то, что можно было бы вывести из отношения C-H топлива. Безусловно, существует проблема сокращения выбросов метана, связанных с производством, транспортировкой и сжижением природного газа (Ravikumar, 2018).

Наконец, хотя фумигация природным газом для двухтопливных дизельных двигателей широко используется, поскольку она намного проще и может быть достигнута за счет низкотехнологичных преобразований, и, таким образом, большинство транспортных средств используют этот подход, дизельные двигатели переведены на дизельное топливо и фумигационный природный газ страдают от значительного снижения эффективности преобразования топлива по сравнению соригинальный дизель, как при полной, так и при частичной нагрузке, с пониженной мощностью и плотностью крутящего момента. Если природный газ смешивается (окуривается) с всасываемым воздухом перед подачей в цилиндр, а дизельное топливо используется в качестве источника воспламенения, количество вводимого природного газа ограничивается возможностью детонации предварительно смешанной смеси. Кроме того, нагрузка обычно регулируется дросселированием впуска, как в обычных бензиновых двигателях, а не количеством впрыскиваемого топлива, как в дизельном двигателе. Поскольку цель состоит в том, чтобы обеспечить равные или лучшие характеристики (мощность, крутящий момент, переходный режим) и выбросы новейшего дизельного топлива с двухтопливной конструкцией, эта двухтопливная конструкция должна предусматривать прямой впрыск дизельного и газообразного топлива.

Происхождение плохой репутации дизеля

Плохая репутация дизеля и, в целом, двигателя внутреннего сгорания (ДВС) является результатом действий Калифорнийского совета по воздушным ресурсам (CARB), а также Агентства по охране окружающей среды США (EPA) (Parker , 2019), с « Дизель-Ворота » — всего лишь один шаг.

В те времена водородная экономика была более вероятной моделью будущего для транспорта, лучше, чем любая другая альтернатива, учитывая непостоянство производства энергии ветра и солнца (Crabtree et al., 2004; Muradov and Veziroglu, 2005; Marbán and Valdés- Солис, 2007). Предполагалось, что в автомобилях будут использоваться ДВС, работающие на возобновляемом водороде (H 2 -ICE), со всем, кроме кардинальных изменений, которые требовались в технологии двигателей, но усилия в основном были направлены на хранение и распространение. Примерно в те же дни была популярна идея метанольной экономики, когда метанол, полученный с использованием возобновляемого водорода и CO 2 , улавливаемый на угольных электростанциях, был прямой заменой традиционного бензинового топлива (Olah, 2004 , 2005). H 2 -ICE стал историей после того, как CARB рассмотрел BMW Hydrogen 7, первое транспортное средство с двигателем внутреннего сгорания, которое было поставлено на рынок, не квалифицировалось как автомобиль с нулевым выбросом (CO 2 ). В 2005 году BMW предложила автомобиль Hydrogen 7 как автомобиль с нулевым уровнем выбросов.При сжигании водорода в выхлопной трубе был в основном водяной пар и абсолютно не выделялся CO 2 , но Агентство по охране окружающей среды США не согласилось с нулевым уровнем выбросов CO 2 (Nica, 2016). Агентство по охране окружающей среды США заявило, что у транспортного средства все еще был ДВС, с возможностью того, что масло, используемое для смазки, могло попасть в цилиндр, образуя CO 2 . Тот факт, что общий расход масла составлял ничтожно малые 0,04 л масла на 1000 км, не учитывался. Из-за неофициальных обсуждений BMW отказалась от исследования водородных ДВС.Все остальные производители оригинального оборудования после этого прекратили свои исследования и разработки.

Что касается негативного отношения CARB и Агентства по охране окружающей среды США к ДВС в целом, в 2011 году BMW предложила в качестве концепт-кара аккумуляторно-электрический i3 с возможностью увеличения запаса хода (Ramsbrock et al., 2013; Scott and Burton, 2013) . Расширитель запаса хода представлял собой небольшой бензиновый ДВС, приводивший в действие генератор для подзарядки аккумулятора. Внедрение расширителя диапазона позволило увеличить запас хода автомобиля и снизить стоимость, вес и объем аккумуляторной батареи, что является серьезной проблемой для экономики и окружающей среды.Поскольку производство планируется начать только в 2013 году, CARB сразу же поспешил установить правила, предотвращающие оптимизацию этой концепции, выпустив в 2012 году (CARB, 2012) чрезмерно долгое правило, предписывающее, что расширитель диапазона должен использоваться только для достижения ближайшей подзарядки. точка. В промежутке между другими требованиями CARB запросил у автомобиля с расширителем запаса хода номинальную дальность полета не менее 75 миль, дальность действия меньше или равную дальности действия батареи от вспомогательной силовой установки, и, наконец, чтобы Вспомогательная силовая установка не должна включаться, пока не разрядится аккумулятор.В результате всех этих ограничений BMW изо всех сил пыталась сделать расширитель диапазона конкурентоспособным, и в конечном итоге они недавно прекратили производство i3 с расширителем диапазона (Autocar, 2018).

Эти два события помогают объяснить « diesel-gate » 2015 года и последующий «дизель-фобия ». Дизельный двигатель был популярен (для легковых автомобилей) в основном в Европе, и ЕС продвигал дизельные автомобили для решения проблем изменения климата. В то время было ясно, что преждевременный переход к электромобильности мог привести к экономической и экологической катастрофе.Таким образом, концерн Volkswagen стал мишенью скандала « дизельный вентиль ». Дизельные ДВС обеспечивали низкие выбросы CO 2 , конкурируя с аккумуляторными электромобилями в анализе жизненного цикла, при этом выделяя меньше, чем предписано, загрязняющих веществ в ходе испытаний, предписанных в то время. Легковые автомобили тестировались на соответствие правилам выбросов в течение заданного цикла, в лаборатории, в повторяемых условиях с надлежащим оборудованием. Международный совет по чистому транспорту (ICCT) организовал случайную езду по дорогам на различных дизельных транспортных средствах и измерения загрязняющих веществ с помощью PEM.Они обнаружили, что автомобили, оптимизированные для производства низких удельных (на км) выбросов CO 2 и выбросов загрязняющих веществ в определенных условиях, не могут обеспечить такие же удельные выбросы при всех других условиях, как это было логично. EPA выпустило уведомление о нарушении в отношении Volkswagen, что привело к огромному штрафу в следующих судебных исках. « Diesel-gate » обошлась VW более чем в 29 миллиардов долларов в виде штрафов, компенсаций и обратных закупок, в основном в США (физ. орг, 2018). Часть миллиарда долларов Volkswagen была направлена ​​на поддержку мобильности электромобилей с аккумулятором, финансирование инфраструктуры подзарядки электромобилей в США отдельными поставщиками (O’Boyle, 2018). Затем « Diesel-gate » был использован для определения конца мобильности на базе ICE (Raftery, 2018; Taylor, 2018).

Предполагаемый избыточный выброс NOx транспортными средствами, оснащенными дизельными ДВС CIDI, которые начинались с « дизельный затвор », по-прежнему популярен, хотя и не соответствует действительности (Chossière et al., 2018) утверждает, что дизельные автомобили вызвали в 2015 году 2700 преждевременных смертей только в Европе из-за их выбросов NOx «на больше, чем на ». Эта работа не является объективной при анализе выбросов дизельного двигателя. Неверно утверждать, что дизельные автомобили в ЕС выбрасывают на дороге намного больше NOx, чем нормативные ограничения. Как было написано ранее, правила выбросов регулируют выбросы загрязняющих веществ в конкретных условиях лабораторных испытаний, а не во всех других возможных условиях. Неразумно ожидать определенной экономии топлива и выбросов регулируемых загрязнителей и углекислого газа, которые не зависят от конкретного испытания. Чтобы иметь выбросы «, превышение », сначала необходимо установить предел для конкретного применения, а затем мера «, превышение » при определенных условиях. Заявление о преждевременной смертности, вызванной избыточными выбросами NOx от дизельных транспортных средств, основано на завышенной разнице выбросов NOx, предполагая, что выбросы намного хуже, чем фактические, и сравнивая этот выброс с невероятной эталонной ситуацией, близкой к нулю.Заявление также основано на завышении количества смертей в этой разностной эмиссии. Эти два предположения не подтверждаются доказанными данными.

Поскольку более современные дизельные автомобили заменили еще больше загрязняющих окружающую среду автомобилей, единственное возможное объективное заявление о выбросах старых и новых дизельных автомобилей в Европе, основанное на неоспоримых доказательствах, основано только на правилах рассмотрения жалоб на выбросы время их регистрации. Поскольку правила выбросов стали все более ограничительными, хотя и подтверждено только лабораторными сертификационными испытаниями, как показано в таблице 1, неверно предполагать, что дизельные ДВС CIDI выбрасывают больше NOx, чем раньше.В то время как пассажирские автомобили с дизельным двигателем, соответствующие стандарту Euro 6, должны были выделять менее 0,08 г / км NOx при выполнении лабораторных испытаний NEDC, дизельные автомобили, соответствующие стандартам Euro 5–3, в остальном могли выделять 0,18, 0,25 и 0,50 г / км на тот же тест, и дизельные автомобили, соответствующие стандартам Euro 1 и 2, должны были подтвердить только пороговые значения выбросов 0,7-0,9 и 0,97 г / км в одном и том же тесте. Нет никаких измерений, подтверждающих, что старые дизельные автомобили, соответствующие предыдущим правилам Евро, были более экологически чистыми по всем критериям загрязнения, включая NOx, во время реального вождения, чем новейшие дизельные автомобили.Кроме того, характеристики выбросов обычно ухудшаются с возрастом, а отсутствие технического обслуживания может еще больше усугубить ситуацию. Это утверждает, что Chossière et al. (2018) непоследовательно.

Таблица 1 . Нормы выбросов Евросоюза для легковых автомобилей (категория М) положительного (бензин) и компрессионного (дизельного) исполнения.

Преимущества и недостатки двигателя CIDI с экономным расходом топлива

Основным преимуществом сжигания обедненной смеси CIDI ICE является эффективность преобразования топлива, которая намного выше, чем у стехиометрических, SI ICE, как при полной нагрузке, так и, более того, при частичной нагрузке (Heywood, 1988; Zhao, 2009; Mollenhauer and Чёке, 2010).В то время как у легковых автомобилей с обедненной топливной смесью CIDI ICE на дизельном топливе пиковая эффективность преобразования топлива составляет около 45%, пиковая эффективность легковых автомобилей со стехиометрическими двигателями SI ICE, работающими на бензине, составляет всего около 35%. Снижение нагрузки за счет количества впрыскиваемого топлива, эффективности преобразования топлива при сжигании обедненной смеси, CIDI ICE является высоким в большей части диапазона нагрузок. И наоборот, при уменьшении нагрузки, дросселируя впуск, эффективность преобразования топлива стехиометрического, SI ICE резко ухудшается при снижении нагрузки.Это дает возможность легковым автомобилям, оснащенным системой сжигания обедненной смеси CIDI ICE, потреблять гораздо меньше топлива и, следовательно, выделять гораздо меньше CO 2 во время ездовых циклов (Schipper et al., 2002; Zervas et al., 2006; Johnson , 2009; Zhao, 2009; Mollenhauer, Tschöke, 2010; Boretti, 2017, 2018; Boretti, Lappas, 2019).

Бедная смесь после обработки в целом (дизельные ДВС CIDI изначально работают на обедненной смеси, за исключением случаев экстремального использования рециркуляции выхлопных газов, EGR), однако, намного менее эффективна, чем стехиометрическая после обработки преобразователями TWC бензиновых ДВС SI (Lloyd and Cackette, 2001; Burtscher, 2005; Maricq, 2007).Следовательно, выбросы регулируемых загрязняющих веществ, в частности NOx, в течение рабочих циклов, которые в значительной степени отклоняются от сертификационных циклов, являются намного более продолжительными и требуют, чтобы двигатель работал в значительной степени полностью прогретым, гораздо больше в ДВС, работающих на обедненной смеси, чем стехиометрические ДВС. Кроме того, двигатели CIDI ICE, работающие на обедненной смеси, содержат твердые частицы, что является обычным недостатком, даже в меньшей степени, двигателей с прямым впрыском, включая SI DI ICE. ТЧ возникают, когда нагнетаемая жидкость, еще жидкая, взаимодействует с пламенем, образуя сажу.Сажа образуется в богатых топливом областях камеры сгорания (Hiroyasu and Kadota, 1976; Smith, 1981; Neeft et al., 1997). Постное сжигание, CIDI ICE, таким образом, нуждаются в ловушках для частиц (Neeft et al., 1996; Saracco et al., 2000; Ambrogio et al., 2001; Mohr et al., 2006). Однако это также является возможностью, поскольку циркуляция в областях с фоновыми частицами может обеспечить лучшее качество воздуха в выхлопной трубе, чем во впускной. Эти двигатели, как правило, с турбонаддувом, являются более дорогими, что еще больше снижает эффективность двигателей CIDI ICE, работающих на обедненной смеси.Двухтопливная работа с LPG, CNG или LNG не приносит никаких недостатков с точки зрения регулируемых загрязняющих веществ или CO 2 , а только преимущества.

Эффективность преобразования топлива

Без нацеливания на рекуперацию отработанного тепла (WHR) дизельные двигатели CIDI ICE доказали свою способность достигать максимальной эффективности преобразования топлива около 50% при обеспечении чрезвычайно высокого среднего эффективного давления при торможении в гонках на выносливость (Boretti and Ordys, 2018). Благодаря высокому давлению, высокой степени распыления, высокой скорости потока и быстродействующим форсункам, несколько стратегий впрыска позволяют контролировать процессы сгорания, происходящие в объеме камеры сгорания, для наилучшего компромисса между работой давления, повышением давления и пиковое давление.

В то время как системы рекуперации отработанного тепла (WHR), безусловно, могут улучшить стационарную эффективность преобразования топлива в дизельных двигателях (Teng et al., 2007, 2011; Teng and Regner, 2009; Park et al., 2011; Wang et al., 2014; Yu et al., 2016; Shi et al., 2018), переходные процессы при холодном пуске — это ахиллова пята традиционных WHR. Кроме того, WHR увеличивают вес, тепловую инерцию, проблемы с упаковкой и сложность. Инновационные концепции для WHR, использующие контур охлаждающей жидкости в качестве подогревателя модифицированного «турбокомпрессора » (Freymann et al., 2008, 2012) без использования двойного контура, требуют значительных исследований и разработок.

Результаты, достигнутые Audi в гонках на выносливость (Audi, 2014) менее чем за десятилетие разработки, очень важны. С 2006 по 2008 год Audi использовала двигатель V12 TDI в Audi R10 TDI. Двигатель объемом 5,5 л развивал крутящий момент 1100 Нм. На номинальной скорости очень тихий твин-турбо выдавал около 480 кВт. В 2009 и 2010 годах Audi перешла на V10 TDI в Audi R15 TDI. Он был короче и легче двенадцатицилиндрового.Объем 5,5 л был распределен на два цилиндра меньше. Двигатель имел примерно 440 кВт и крутящий момент более 1050 Нм. Верхний BMEP превышал 24 бара. Затем, с 2011 по 2013 год, Audi перешла на V6 TDI в Audi R18 TDI, R18 ultra и R18 e-Tron Quattro. Уменьшение объема двигателя позволило довести рабочий объем двигателя до 3,7 л. Легкий и компактный двигатель V6 TDI выдавал более 397 кВт и крутящий момент более 900 Нм. Система Common Rail создавала давление до 2600 бар. Верхний BMEP превышал 30 бар.

Когда основное внимание уделялось экономии топлива, в 2014 году двигатель V6 TDI в Audi R18 e-Tron Quattro был оснащен модернизированным двигателем V6 TDI с рабочим объемом 4,0 л. Максимальная мощность составила 395 кВт, а максимальный крутящий момент — более 800 Нм. Давление закачки составило более 2800 бар. Расход топлива снизился более чем на 25% по сравнению с 3,7-литровым двигателем. Последняя (2016 год) выходная мощность 4-литрового двигателя составляла 410 кВт, что соответствовало 870 Нм крутящего момента при максимальной скорости 4500 об / мин.Это преобразовалось в BMEP 27,3 бар в рабочей точке максимальной скорости / максимальной мощности. Последние двигатели имели ограниченный расход топлива, так что для системы рекуперации энергии (ERS) 6 МДж для торможения максимальный расход топлива составлял 71,4 кг / ч. Для дизельного топлива 43,4 МДж / кг нижней теплотворной способности (LHV) мощность потока топлива составила 860,8 кВт. Таким образом, максимальная мощность была получена с пиковым КПД торможения η = 0,475, что намного больше, чем максимальный КПД многих серийных высокоскоростных дизельных двигателей, которые могут работать, вплоть до максимального КПД η = 0.45 на более низких оборотах двигателя.

По расчетам, максимальный крутящий момент, а также максимальная эффективность торможения были получены при скоростях <4500 об / мин, что является технологическим пределом диффузионного горения (Boretti and Ordys, 2018). Из-за постоянного времени, необходимого для испарения топлива и смешивания с воздухом, фаза диффузионного сгорания имеет продолжительность в градусах угла поворота коленчатого вала, которая увеличивается с частотой вращения двигателя. Таким образом, на скоростях выше 4500 об / мин продолжительность фазы сгорания обычно становится чрезмерной, и гораздо лучшая мощность достигается на более низких скоростях. Максимальный крутящий момент, скорее всего, превышал 916 Нм, что соответствует BMEP 29 бар. Пиковая эффективность преобразования топлива с большой вероятностью приближалась к η = 0,50. Дальнейшие разработки в области гонок были в пределах легкой досягаемости, в то время как деятельность была остановлена ​​после « diesel-gate ». Более высокое давление впрыска и более совершенный турбонаддув, такой как современный F1 e-turbo, или супер турбонаддув (Boretti and Castelletto, 2018; Boretti and Ordys, 2018), могли бы быть полезны для обычных серийных дизельных двигателей для легковых автомобилей.

Лабораторные испытания выбросов

Прошлая сертификация выбросов, которая проводилась производителями оригинального оборудования (OEM) и не подвергалась независимым испытаниям, содержала неточности в тестах и ​​несоответствие цикла сертификации (Boretti, 2017; Boretti and Lappas, 2019). Короткий, сильно стилизованный новый европейский ездовой цикл (NEDC) был чрезвычайно далек от реальных условий вождения, в которых живут европейские пассажиры. Поскольку более двух десятилетий OEM-производители были вынуждены сосредоточить свои RandD на производстве двигателей, соответствующих требованиям и экономичных в течение этого цикла, из-за обострения холодного запуска, другие возможные применения не регулировались и оставались на усмотрение OEM.Неточности (и осторожность) в способе проведения испытаний привели к множеству несоответствий, начиная с большого разброса выбросов диоксида углерода (CO 2 ) при потреблении теоретически одного и того же литра топлива (Boretti and Lappas, 2019). Новый согласованный во всем мире цикл испытаний легких транспортных средств (WLTC), который недавно заменил NEDC, из-за « с дизельным затвором » (Chossière et al., 2018), лучше, поскольку он немного длиннее. Тем не менее, это по-прежнему связано с условиями вождения, отличными от тех, которые наблюдаются в часы пик в густонаселенных районах (Boretti and Lappas, 2019).

С исторической точки зрения, правила выбросов из года в год ужесточаются и ужесточаются, но заявлено, что они измеряются только в ходе предписанных лабораторных испытаний. В Таблице 1 представлены нормы выбросов Европейского Союза (ЕС) для легковых автомобилей (категория M) с принудительным (бензин) и компрессионным (дизель) зажиганием. Несгоревшие углеводороды (HC) + NOx были предписаны для бензина и дизельного топлива только стандартами Euro 1 и 2. Выбросы были проверены через NEDC с использованием лабораторной процедуры динамометрического стенда.На протяжении многих лет от OEM-производителя требовалось производить автомобили, выбрасывающие меньше, чем регулируемый загрязнитель, в течение определенного цикла сертификации во время лабораторных испытаний. Реальное вождение было нематериальным понятием, не переведенным ни в одно конкретное законодательное требование. Снижение предельных значений выбросов NOx и PM в стандартах Euro 5 и 6 привело к резкому увеличению затрат на последующую обработку и к увеличению, а не снижению расхода топлива, иногда с проблемами управляемости.Еще раз важно понимать компромисс между экономией топлива и выбросами загрязняющих веществ и осознавать, что чрезмерные запросы по одному критерию могут привести к невозможности удовлетворить другие критерии.

Выбросы от вождения в реальном мире

Совсем недавно Европейский союз (ЕС) ввел тесты на выбросы выхлопных газов в реальных условиях движения (RDE). Выбросы от дорожных транспортных средств теперь измеряются с помощью портативных анализаторов выбросов (PEM). Тест RDE должен длиться 90–120 минут и включать один городской (<60 км / ч), один сельский (60–90 км / ч) и один участок автомагистрали (> 90 км / ч) равного веса, покрывающий расстояние. не менее 16 км.В пределах выбросов RDE затем используются коэффициенты соответствия, относящиеся к лабораторным испытаниям на динамометрическом стенде. Что касается NOx, то коэффициент соответствия составляет 2,1 с сентября 2017 года для новых моделей и с сентября 2019 года для всех новых автомобилей. Остальные факторы соответствия еще предстоит определить. Хотя тест RDE по-прежнему не является репрезентативным для реального вождения в густонаселенных районах, он неточный, субъективный, невоспроизводимый и еще не определяющий (Boretti and Lappas, 2019), это, безусловно, шаг вперед.

Реальные данные по австралийским выбросам от вождения автомобилей до введения новых правил предложены ABMARC (ABMARC, 2017). В отчете, подготовленном для Австралийской автомобильной ассоциации, представлены результаты испытаний на выбросы и расход топлива 30 различных легковых и легких коммерческих автомобилей, измеренные с помощью PEMS на австралийских дорогах. Большинство автомобилей соответствовали стандартам Евро 4, 5 и 6, а один из них соответствовал стандартам Евро 2. Реальный расход топлива протестированных автомобилей по сравнению с результатами цикла сертификации был в среднем на 23% выше, на 21% выше для автомобилей с дизельным двигателем, с 4% ниже до 59% выше и на 24% выше для автомобилей с бензиновым двигателем, начиная с 3% ниже до 55% выше.У одного транспортного средства, работающего на сжиженном нефтяном газе, реальный расход топлива на 27% выше, чем результат цикла сертификации. Один подключаемый гибридный автомобиль имел реальный расход топлива на 166% выше, чем результат цикла сертификации с полным состоянием заряда, и на 337% выше при тестировании с низким уровнем заряда. Данные о расходе топлива для автомобилей с дизельными сажевыми фильтрами включают поправочный коэффициент для учета регенерации фильтра.

Таким образом, расхождения между лабораторными испытаниями и реальным вождением были разными не только для автомобилей, оснащенных дизельными ДВС CIDI, но также и для автомобилей с бензиновыми ДВС SI, а также с традиционными и гибридными силовыми агрегатами.Однако основным отличием были выбросы NOx дизельных двигателей CIDI. В соответствии с последними правилами ЕВРО, автомобили должны соответствовать все более строгим стандартам выбросов регулируемых загрязнителей, а также сокращать выбросы CO 2 . Поскольку эти требования противоречили друг другу и их трудно было удовлетворить, несоответствие между реальным расходом топлива и результатами цикла сертификации увеличивается с увеличением стандарта. Автомобили, соответствующие стандарту Euro 6, имеют наибольшее расхождение между реальными результатами и результатами цикла сертификации.

Что касается выбросов, то у 13 транспортных средств превышены удельные выбросы NOx, предписанные для цикла сертификации. Из этих 13 автомобилей 11 были дизельными. Только 1 из 12 автомобилей с дизельным двигателем произвел выброс NOx в пределах цикла сертификации. Пять автомобилей с бензиновым двигателем превысили лимит выбросов CO в рамках цикла сертификации. Только 1 автомобиль с дизельным двигателем превысил лимит PM цикла сертификации. В среднем выбросы NOx и PM у автомобилей с дизельным двигателем были в 24 и 26 раз выше, чем у автомобилей с бензиновым двигателем, а выбросы CO у автомобилей с дизельным двигателем были в 10 раз ниже, чем у автомобилей с бензиновым двигателем.Транспортные средства с дизельным двигателем превысили предел NOx сертификационного цикла на 370%, а автомобили с бензиновым двигателем выбросили 43% от предельного значения NOx сертификационного цикла. Автомобили с бензиновым двигателем выбрасывают 95% предельного количества CO, установленного в сертификационном цикле. Автомобили с дизельным двигателем выбрасывают 20% от предельного количества CO, установленного в сертификационном цикле. Что касается ТЧ, то выбросы дизельных автомобилей составили 43% от предельного количества ТЧ сертификационного цикла, а от автомобилей с двумя бензиновыми бензиновыми двигателями с прямым впрыском (GDI) — 26% от предельного ТЧ цикла сертификации.Что касается выбросов NOx от двигателей с обедненным горением CI, результаты измерений были лучше, чем заявленные для « дизельные ворота » или заявленные в таких работах, как (Chossière et al., 2018).

Новые правила были введены после « дизельный затвор », а дизельные двигатели CIDI были улучшены. Европейские реальные данные по выбросам от вождения транспортных средств после введения новых правил представлены ACEA (2018a). В ходе правильно проведенной экспериментальной кампании, в повторяемых условиях, с надлежащим оборудованием и с применением научного метода, Европейская ассоциация автопроизводителей (ACEA) недавно показала, что все 270 протестированных автомобилей с дизельным двигателем были ниже пределов выбросов, установленных недавно. тесты по вождению в реальных условиях (RDE), как общие, так и городские.Ни один из транспортных средств не превышал установленный в настоящее время удельный выброс NOx в 165 мг / км (ACEA, 2018a), рис. 1. Подробные результаты утверждения типа для 270 типов дизельных транспортных средств, соответствующих требованиям RDE, доступны в ACEA (2018b). . Результаты RDE для отдельных автомобилей можно найти на сайте (ACEA, 2018c).

Новые данные, опубликованные ACEA, недвусмысленно свидетельствуют о том, что дизельные автомобили последнего поколения имеют низкий уровень выбросов загрязняющих веществ на дорогах и являются экономичными. Испытания проводились в реальных условиях вождения водителями различных национальных органов по сертификации.270 новых типов дизельных автомобилей, сертифицированных по последнему стандарту Euro 6d-TEMP, были представлены на европейском рынке за последний год. Все эти автомобили с дизельным двигателем показали очень хорошие результаты ниже порогового значения NOx теста RDE, которое теперь применяется ко всем новым типам автомобилей с сентября 2017 года. У большинства этих автомобилей выбросы NOx значительно ниже более строгого порога, который будет обязательным с января 2020 года. test гарантирует, что уровни выбросов загрязняющих веществ, измеренные во время нового лабораторного испытания WLTP, будут подтверждены на дороге.Каждый протестированный автомобиль представляет собой «семейство », состоящее из похожих автомобилей различных вариантов. Эта деятельность доказывает, что дизельные автомобили, доступные сейчас на рынке, имеют низкий уровень выбросов в любом разумном состоянии. Немецкий автомобильный клуб (ADAC) недавно подсчитал, что на 30 октября 2018 года было доступно 1206 различных автомобилей, совместимых с RDE, как с бензиновым, так и с дизельным двигателем (ADAC, 2018a). Следовательно, дизельные ДВС CIDI не заслуживают плохой репутации, которую они получили из-за «дизельного затвора », что является скорее политическим, чем технологическим вопросом.

Современные дизельные автомобили, поддерживаемые политикой обновления парка и в сочетании с альтернативными силовыми агрегатами, могут сыграть важную роль в содействии городам в продвижении к соблюдению целевых показателей качества воздуха при одновременном повышении топливной эффективности и сокращении выбросов CO . Недавние дорожные испытания, проведенные ADAC (2018b), показали, что новейшие автомобили с дизельным двигателем выбрасывают в среднем на 85% меньше NOx, чем автомобили стандарта Euro 5, а наиболее эффективные дизельные автомобили стандарта Euro 6, соответствующие требованиям RDE, выделяют на 95–99% меньше NOx по сравнению с автомобилями Euro 5.Каждый протестированный автомобиль выделяет меньше лимитов для каждого регулируемого загрязнителя. Эти автомобили также обеспечивают исключительную экономию топлива. Кроме того, есть возможность производить еще меньше CO 2 и менее регулируемых загрязнителей, переходя на двухтопливное дизельное топливо — СПГ, КПГ или СНГ.

PM Преимущества дизельных автомобилей

Дизельные двигатели не являются мишенью из-за того, что транспортный сектор вносит свой вклад в общее качество воздуха. Однако, поскольку качество воздуха во многих частях мира оставляет желать лучшего, и дизельные фильтры твердых частиц могут помочь улучшить качество воздуха, аргумент PM может фактически быть использован в пользу мобильности на основе дизельного топлива, а также против альтернатив, таких как электрические. мобильность.Хотя неверно утверждать, что более современные автомобили с дизельным двигателем выделяют « излишков » NOx и ухудшают качество воздуха, более современные автомобили с дизельным двигателем способствуют очистке воздуха загрязненных территорий, например, от ТЧ. Согласно Таблице 1, старые дизельные автомобили были произведены в соответствии с гораздо менее строгими правилами PM. Загрязнители воздуха выбрасываются из многих естественных и антропогенных источников, последние включают сжигание ископаемого топлива в электроэнергетике, промышленности, домашнем хозяйстве, транспорте, промышленных процессах, использовании растворителей, сельском хозяйстве и переработке отходов.Следовательно, наличие транспортных средств с выбросами ТЧ из выхлопной трубы потенциально ниже, чем на впуске, — это возможность очистить воздух.

Экологический табачный дым (ETS) вызывает загрязнение помещений мелкими ТЧ, превышающее допустимые пределы для транспортных средств. Данные, сравнивающие выбросы ТЧ от ETS и автомобиля с дизельным двигателем Euro 3, показывают, что концентрации ТЧ в помещении в 10 раз превышают те, которые выбрасываются от двигателя с дизельным двигателем Euro 3 на холостом ходу (Invernizzi et al. , 2004). Пределы PM были радикально улучшены для Euro 4, 5 и 6, а если быть точным, то в 10 раз.Исследование Всемирной организации здравоохранения (ВОЗ) (Martuzzi et al., 2006) показывает значительное воздействие ТЧ 10 на здоровье городского населения 13 крупных итальянских городов, которое, по оценкам, составляет 8220 смертей в год, что связано с концентрациями ТЧ 10 выше 20 мкг / м. Это 9% смертности от всех причин (без учета несчастных случаев) среди населения старше 30 лет. Эти уровни PM 10 не являются результатом использования новейших автомобилей с чистым дизельным двигателем.

Характеристики дизельных сажевых фильтров (DPF) относительно сложные (Fiebig et al., 2014). Новейшие технологии DPF более эффективны для больших размеров, в то время как менее эффективны или даже отрицательны для меньших нанометрических размеров. Мониторинг часто ограничивается PM 10 — частицами диаметром 10 микрометров — или PM 2,5 — частицами диаметром 2,5 микрометра. DPF может улавливать от 30% до более 95% микрометрических PM (Barone et al., 2010). При оптимальном сажевом фильтре выбросы ТЧ могут быть снижены до 0,001 г / км или менее (Fiebig et al., 2014), что в 5 раз меньше, чем в настоящее время 0.005 of Euro 6. Хотя эта мера массы не отражает загрязнения субмикрометрическими и нанометрическими частицами, в настоящее время нет контроля над этим типом загрязнителя из любого источника.

Если новые автомобили с дизельным двигателем не выбрасывают больше NOx, чем старые автомобили с дизельным двигателем, они, безусловно, выбрасывают гораздо меньше ТЧ и, возможно, при некоторых обстоятельствах способны очищать воздух от ТЧ, производимых из других источников, которые не являются адекватным направлением деятельности директивных органов. . Случай Гонконга, который не является худшим на Земле, описан в Haas (2017).Помимо местных выбросов из различных источников, в том числе от легковых автомобилей, в Гонконг есть значительное количество загрязняющих веществ, привезенных из материкового Китая. Хотя данные о загрязнителях в Китае ограничены, хорошо известно, что Гонконг сталкивается с серьезными проблемами со здоровьем, связанными с загрязнением воздуха, в основном импортируемым с материка. Загрязнение воздуха в Гонконге не так плохо, как в Китае или Индии, где токсичное облако, получившее название « airpocalypse », часто покрывает значительную часть этих стран, но это все еще один хороший пример того, что более современные дизельные автомобили заменяют на дорога старые автомобили оказывают положительное влияние.

Из многих типов аэрозольных частиц, циркулирующих в атмосфере, одним из самых разрушительных является PM 2,5 . Во многих областях Китая и Индии уровни PM 2,5 и PM 10 намного превышают рекомендованные ВОЗ, рис. 2. Руководящие принципы ВОЗ (среднегодовые): PM 2,5 из 10 мкг / м 3 и PM 10 из 20 мкг / м 3 . Во всем мире средний уровень загрязнения атмосферного воздуха колеблется от <10 до более 100 мкг / м 3 для PM 2. 5 , и от <10 до более 200 мкг / м 3 , для PM 10 . Случаи плохого качества воздуха широко распространены не только в Китае и Индии. Тем не менее, промышленный центр южного побережья Китая является одним из районов с наиболее высоким уровнем загрязнения, как Пекин и Дели. В то время как Пекинский « airpocalypse » подавляется решительными мерами, в основном направленными на использование угля, но также ограничивающими движение любого транспортного средства (South China Morning Post, 2018), « airpocalypse » Дели достигает нового чрезвычайно высокий, также благодаря « выжиганию стерни » из окрестностей (Indiatimes, 2018).

Рисунок 2 . Карта PM 2.5 для Азии осенью 2018 года в режиме реального времени. Показаны только области, покрытые станциями. Изображение с Земли Беркли, www.berkeleyearth.org.

Качество воздуха в Гонконге не самое лучшее (Haas, 2017). Уровни загрязнителей превышают стандарты ВОЗ более 15 лет. На пиках они более чем в пять раз превышают допустимые уровни. Выбросы от транспортных средств и судов являются одними из крупнейших местных источников загрязнения.Свою роль играют и электростанции, которые почти полностью зависят от ископаемого топлива, в основном угля. Однако около 60-70% PM поступает из материкового Китая. Этот поток чрезвычайно актуален, особенно зимой, когда импортируемый PM составляет около 77% от общего количества. В последние годы резко возросли масштабы астмы и бронхиальных инфекций. Только в Гонконге было зарегистрировано более 1600 фактов, а не гипотетических, как у Chossière et al. (2018), преждевременная смерть в 2016 году только из-за загрязнения воздуха (Haas, 2017).

В дополнение к улучшенным стандартам топлива и расширению использования электромобилей, значительный рост недавних дизельных транспортных средств, оборудованных уловителями твердых частиц, может еще больше способствовать улучшению качества воздуха в городе, которое по-прежнему не соответствует ни одному руководству ВОЗ. Что касается возможности использовать электромобили, подзаряжаемые электростанциями на горючем топливе, электромобили могут фактически способствовать загрязнению ТЧ. Согласно Hodan and Barnard (2004), наибольший источник PM 2,5 из антропогенных источников — это износ шин и дорожного покрытия. Поскольку электромобили тяжелее и имеют более высокий крутящий момент, чем автомобили на базе ДВС, они производят намного больше PM 2,5 . Следовательно, увеличение количества электромобилей сделает Гонконг еще более грязным по отношению к PM, поскольку они производят PM 2.5 , и они не могут сжигать ТЧ, произведенные из других источников, например дизельный ДВС CIDI, оснащенный уловителем твердых частиц.

Как показано на Рисунке 1 и в Таблице 1, автомобили, оснащенные новейшими двигателями ХИ, не производят избыточных NOx, а из Рисунков 2, 3 видно, что во многих регионах мира концентрация ТЧ в воздухе намного превышает их уровень в выхлопной трубе автомобилей, оснащенных новейшими дизельными двигателями CIDI, таблица 1 и NO 2 концентрации также довольно велики. Двухтопливный режим работы на СПГ, КПГ или СНГ с неизменным в остальном транспортным средством, в котором установлен сажевый фильтр, может еще больше способствовать очистке окружающего воздуха от твердых частиц.

Рисунок 3 . Среднемесячные концентрации для Китая в январе 2015 г.: PM 2,5 , вверху, и NO 2 , внизу. Изображения с Земли Беркли, www.berkeleyearth.org.

Преимущества двухтопливного дизельного топлива — СПГ / СНГ / КПГ

Современные технологии

Diesel-LNG (Goudie et al., 2004; Osorio-Tejada et al., 2015; Laughlin and Burnham, 2016), дизельное топливо-CNG (Maji et al., 2008; Shah et al., 2011; Ryu, 2013) или дизельное топливо-СНГ (Jian et al., 2001; Ashok et al., 2015) обеспечивают эффективность преобразования дизельного топлива и удельную мощность при одновременном снижении выбросов как регулируемых загрязняющих веществ (PM, NOx), так и CO 2 . СПГ может использоваться в большегрузных автомобилях благодаря криогенному хранению. LPG (и CNG) может быть предпочтительным для применения в легковых и легких транспортных средствах.

Дизельные двигатели по-прежнему выделяют значительное количество диоксида углерода (CO 2 ) и выбросы твердых частиц (ТЧ) из двигателя из-за диффузионного сгорания тяжелых углеводородов, высокого отношения C / H и жидкого дизельного топлива.Выбросы оксидов азота (NOx) из двигателя также являются неотъемлемой частью процесса сжигания обедненной смеси в избыточном воздухе (Heywood, 1988). Как PM, так и NOx могут быть уменьшены с помощью дополнительной обработки, хотя стратегии сжигания дизельного топлива часто определяются для наилучшего компромисса между NOx и PM.

Использование газообразного топлива с пониженным содержанием углерода, такого как природный газ, который в основном представляет собой метан CH 4 , в жидкой форме, как СПГ, или в газовой форме, как СПГ, или сжиженный нефтяной газ (СНГ), в основном пропан C 3 H 8 , имеет интуитивно понятные основные преимущества в отношении выбросов CO 2 по сравнению сдизельное топливо переменного состава, но примерно C 13,5 H 23,6 . Поскольку испарение намного проще, существуют также преимущества для выбросов ТЧ из двигателя и, следовательно, косвенно также для выбросов NOx из двигателя по сравнению с дизельным топливом (Kathuria, 2004; Chelani and Devotta, 2007; Yeh, 2007; Engerer and Horn, 2010; Lin et al., 2010; Kumar et al., 2011).

СПГ, КПГ и СНГ имеют меньшее соотношение углерода и водорода. Следовательно, гораздо меньше CO 2 выбрасывается для получения такой же мощности при примерно такой же эффективности преобразования топлива.CNG — это нагнетаемый газ. СПГ также является газом в нормальных условиях. LPG в нормальных условиях жидкий, но испаряется намного быстрее, чем дизельное топливо. Это практически сводит к нулю выбросы твердых частиц (кроме выбросов пилотного дизеля). Поскольку СПГ, КПГ и СНГ представляют собой высокооктановое топливо с низким цетановым числом, их трудно использовать отдельно в двигателе с воспламенением от сжатия. Проблема решается при работе на двух видах топлива (westport. com, 2019a, b). Воспламенение вызывает небольшое количество дизельного топлива. СПГ, КПГ или СНГ, впрыскиваемые до или после зажигания впрыска дизельного топлива, могут затем сгореть в смеси с предварительным смешением или диффузией.Первая фаза сгорания вызывает быстрое повышение давления. Скорость сгорания второй фазы определяется скоростью впрыска СПГ, КПГ или СНГ и предназначена для поддержания давления во время первой части такта расширения.

Одной из основных проблем при использовании СПГ или КПГ является удельный объем топлива, так как плотность газа при нормальных условиях низкая. Это создает проблемы для системы впрыска, которой требуются форсунки с гораздо большей площадью поперечного сечения дизельного топлива, и значительно затрудняет быстрое срабатывание и возможности многократного впрыска, характерные для последних дизельных форсунок.Это также проблема для хранения, так как объем топлива, необходимый для данного количества энергии на борту транспортного средства, намного больше, чем у дизельного топлива. СПГ имеет лучшую объемную плотность, но для поддержания низкой температуры ему нужна криогенная система. КПГ имеет меньшую объемную плотность и требует дополнительных резервуаров под давлением.

Система Westport HPDI для дизельного топлива и КПГ / СПГ — это технология, хорошо зарекомендовавшая себя десятилетиями (Li et al., 1999; westport.com, 2015). Вначале HPDI представлял собой простой основной впрыск природного газа после предварительного / предварительного впрыска дизельного топлива.В последнее время HPDI развивается в сторону более сложных стратегий, регулирующих смешанное и диффузионное сжигание природного газа, как это было предложено Боретти (2013).

Традиционный HPDI в сверхмощных ДВС позволяет ДВС, работающему на природном газе, сохранять рабочие характеристики, аналогичные дизельным, при этом большая часть энергии обеспечивается за счет природного газа. Небольшой пилотный впрыск дизельного топлива (5–10% энергии топлива) используется для зажигания непосредственно впрыскиваемой газовой струи. Природный газ горит в режиме диффузионного горения с контролируемым смешением (Li et al., 1999; westport.com, 2015).

Технологии будущего

В нескольких работах описаны тенденции развития технологии HPDI. McTaggart-Cowan et al. (2015) отчет о двухтопливных форсунках 600 бар для СПГ. Событие сгорания СПГ ограничено давлением впрыска, которое определяет скорость смешивания и сгорания. Значительное повышение эффективности и снижение PM достигаются при высоких нагрузках, и особенно на более высоких скоростях, за счет увеличения давления впрыска с традиционных 300 бар до новейших 600 бар.Скорость горения ограничена. McTaggart-Cowan et al. (2015) сообщают о выгодах эффективности от более высоких давлений около 3%, добавленных к сокращению выбросов твердых частиц на 40–60%.

Различные формы сопла рассматривались Mabson et al. (2016). Инжектор « сопла с парными отверстиями » был разработан для уменьшения образования твердых частиц за счет увеличения уноса воздуха из-за взаимодействия струи. Выбросы CO и PM были наоборот в 3–10 раз выше при использовании сопел с парными отверстиями. Сопло с парными отверстиями давало более крупные агрегаты сажи и большее количество частиц.

Mumford et al. сообщают об улучшениях Westport HPDI 2.0 (Mumford et al., 2017). HPDI 2.0 обеспечивает лучшие характеристики и уровень выбросов по сравнению с HPDI первого поколения, а также только с базовым дизельным двигателем. Мамфорд и др. (2017) также обсуждают потенциал и проблемы более высокого давления закачки.

Стратегии сжигания с контролируемой диффузией и с частичным предварительным смешиванием рассмотрены Florea et al. (2016) с помощью Westport HPDI. Сгорание с частичным предварительным смешиванием, называемое DI 2 , является многообещающим, улучшая КПД двигателя более чем на 2 пункта по сравнению со стратегией сгорания с контролируемой диффузией.Модуляция двух фаз горения, потенциально более полезная, в работе не исследуется.

Режим горения DI 2 также исследован в Neely et al. (2017). Природный газ впрыскивается во время такта сжатия до зажигания впрыска дизельного топлива. Показано, что такое сгорание природного газа с частичной предварительной смесью улучшает как тепловую эффективность, так и эффективность сгорания по сравнению с традиционным режимом двухтопливного сгорания с фумигацией. Сгорание природного газа с частичной предварительной смесью также обеспечивает повышение теплового КПД по сравнению со сгоранием с регулируемой диффузией по базовой линии, когда впрыск природного газа происходит после впрыска дизельного топлива.

Влияние стратегий впрыска на выбросы и характеристики двигателя HPDI изучено Faghani et al. (2017а, б). Они исследуют влияние позднего дополнительного впрыска (LPI), а также сгорания с небольшим предварительным смешиванием (SPC) на выбросы и характеристики двигателя. При использовании SPC впрыск дизельного топлива задерживается. Работа SPC при высокой нагрузке снижает PM более чем на 90% с улучшением топливной эффективности на 2% при почти таком же уровне NOx. Однако SPC имеет большие колебания от цикла к циклу и чрезмерную скорость нарастания давления.ТЧ не увеличивается для SPC с более высоким уровнем рециркуляции отработавших газов, более высоким глобальным коэффициентом эквивалентности на основе кислорода (EQR) или более высокой контрольной массой, что обычно увеличивает количество ТЧ при сжигании HPDI с регулируемым смешиванием. LPI, пост-впрыск 10–25% от общего количества топлива, происходящий после основного сгорания, приводит к значительному снижению выбросов твердых частиц с незначительным влиянием на другие выбросы и характеристики двигателя. Основное сокращение PM от LPI связано с уменьшением количества топлива при первом впрыске. Вторая закачка дает незначительный нетто-вклад в общие PM.

Двухтопливный инжектор дизель-СПГ Westport HPDI дает отличные результаты. Однако есть фундаментальный недостаток этого подхода. Он не обладает такими же характеристиками, как дизельные форсунки последнего поколения, как по расходу, так и по скорости срабатывания и распылению дизельного топлива. Таким образом, может быть предпочтительным соединение с одним дизельным инжектором последнего поколения со специальным инжектором для второго топлива, чтобы обеспечить лучшие характеристики впрыска как для дизельного, так и для второго топлива.Более высокое давление впрыска и более быстрое срабатывание являются движущими силами улучшенных режимов сгорания.

Двухтопливные дизель-водородные ДВС CIDI с возможностью установки двух прямых форсунок на цилиндр были исследованы, например, в (Boretti, 2011b, c). Один инжектор использовался для дизельного топлива, а другой — для водорода. Смоделированный дизельный двигатель, преобразованный в двухтопливный дизель-водород после этого подхода, продемонстрировал КПД при полной нагрузке до 40–45% и снижение потерь в КПД, снижая нагрузку, работающую немного лучше, чем базовый дизель в каждой рабочей точке.Хотя использование двух форсунок на цилиндр не представляет проблемы для новых двигателей, сложно установить две форсунки при модернизации существующих дизельных двигателей. Специализированные форсунки прямого действия для СПГ, СНГ или КПГ требуют дальнейшего развития для конкретного применения.

Использование двух специализированных форсунок, а не одной двухтопливной форсунки с более высоким давлением впрыска, более быстрым срабатыванием и полной независимостью от впрыска отдельных видов топлива, обеспечивает большую гибкость в формировании впрыска.Двухтопливный режим обычно характеризуется предварительным / предварительным впрыском дизельного топлива, за которым следует основной второй впрыск топлива. Предпочтительно, чтобы второе топливо не впрыскивалось полностью после зажигания впрыска дизельного топлива. Его можно впрыскивать до или одновременно с дизельным топливом или после дизельного топлива, причем не только за один впрыск, но и за несколько впрысков. Таким образом, второе топливо может гореть частично предварительно смешанным и частично диффузионным.

Возможны разные режимы горения. « Controlled » HCCI — один из таких режимов. В управляемом HCCI второе топливо впрыскивается первым, и воспламенение дизельного топлива происходит до ожидаемого начала самовоспламенения HCCI (Boretti, 2011a, b). HCCI не имеет преимуществ с точки зрения эффективности преобразования топлива по сравнению с объемным сгоранием в центре камеры, окруженной воздушной подушкой. Гомогенное горение всегда страдает большими потерями тепла на стенках и неполным сгоранием на гашение пламени. HCCI также не создает пикового давления во время такта расширения, обеспечивая пиковое давление точно в верхней мертвой точке.Однако HCCI может иметь преимущества для выбросов из двигателя, поскольку это чрезвычайно низкотемпературный процесс, и это событие сгорания намного ближе к теоретически лучшему изохорному сгоранию из анализов цикла давления.

Наиболее интересные режимы — это предварительное смешение, диффузия или модулированное предварительное смешение и диффузия в центре камеры. При предварительно смешанном, но стратифицированном сгорании второе топливо впрыскивается в центр камеры и сжигается за счет впрыска дизельного топлива до однородного заполнения всей камеры. При диффузионном сгорании второе топливо впрыскивается в центр камеры после того, как воспламенение впрыска дизельного топлива создает подходящие условия для того, чтобы следующее сгорание проходило под контролем диффузии, и там оно сгорает. Существует возможность для предварительного впрыска второго топлива, а также для современного или последующего впрыска второго топлива в отношении пилотного / предварительного впрыска дизельного топлива, которые должны быть тщательно сформированы для обеспечения максимальной эффективности преобразования топлива. в пределах ограничений по выбросам из двигателя, скорости повышения давления и пиковому давлению.

Альтернатива электрической мобильности все еще преждевременна

Экологичность и экономичность дизельной мобильности не признается многими странами, которые в противном случае задумывались о преждевременном переходе на электрическую мобильность, не решив сначала многие проблемы электромобилей, т. Е. Высокую экономичность и экологические затраты на строительство, эксплуатацию и утилизацию автомобилей, ограниченные характеристики этих тяжелых транспортных средств из-за все еще неадекватных технологий аккумуляторов, отсутствие инфраструктуры для подзарядки только за счет возобновляемых источников энергии.

Номинально для решения проблемы глобального потепления, а не загрязнения воздуха, Великобритания, Франция и Китай обсудили прекращение мобильности на базе ДВС к 2040 году. Однако данные МЭА (IEA, 2018) показывают, что производство геотермальной электроэнергии, Солнце, ветер, приливы, волны и океан по-прежнему составляли около 1% от общего количества в 2015 году, при этом общее предложение первичной энергии (ОППЭ) в значительной степени превышает производство электроэнергии. Поскольку доля солнечной и ветровой энергии в TPES по-прежнему невелика, нет смысла предлагать только электромобили, даже забывая о других ключевых вопросах, связанных с поиском электромобильности.

В настоящее время анализ жизненного цикла выбросов CO 2 (LCA) не показывает явного преимущества электрической мобильности по сравнению с мобильностью на базе ДВС (Boretti, 2018). Пример LCA для электрической мобильности критически зависит от того, как генерируется электричество, которое без огромного увеличения накопления энергии, а не просто увеличение зарегистрированной мощности ветра и солнца, нуждается в подкреплении ископаемым топливом. С 1990-х годов в аккумуляторных технологиях произошел прогресс, но пока еще не произошло необходимого прорыва.Производство, использование и утилизация электромобилей по-прежнему слишком дорого с экономической и экологической точек зрения, а также возникают дополнительные проблемы с материалами, необходимыми для производства батарей, которые подвержены большему риску истощения, чем ископаемое топливо (Boretti, 2018). . Кроме того, эти материалы добываются неэтично в очень немногих местах.

Amnesty International (Onstad, 2019) недавно отметила, что индустрия электромобилей (EV) продает себя как экологически чистые, но при этом многие из своих аккумуляторов производят с использованием ископаемого топлива и минералов, полученных из неэтичных источников, зараженных нарушениями прав человека.Маловероятно, что имеется достаточно сырья для удовлетворения ожидаемого резкого спроса на литий-ионные батареи электромобилей и подключенные к сети аккумуляторные системы для хранения периодически возобновляемой энергии ветра и солнца (Jaffe, 2017). Более того, без учета какого-либо четкого пути рециркуляции и отрицательных прошлых (и настоящих) примеров рециркуляции промышленно развитыми странами за счет экологического ущерба в развивающихся странах (Minter, 2016) электрическая мобильность может привести к значительному ущербу для экономики. и окружающая среда.

Хотя электрическая мобильность, безусловно, может решить некоторые проблемы, связанные с загрязнением воздуха транспортом, маловероятно, что это может произойти в ближайшее время, она не решает проблемы загрязнения из других источников, и это еще не так дружелюбно, в целом , где все включено. Потребление топлива для сжигания все еще резко увеличивается, и существует очень мало примеров технологических возможностей для преобразования химической энергии топлива в механическую или электрическую энергию с более высокой эффективностью преобразования энергии топлива и снижением выбросов загрязняющих веществ дизельных ДВС CIDI.Переход на электрическую мобильность в транспортном секторе потребует огромных затрат, в том числе с точки зрения выбросов парниковых газов.

Обсуждение и выводы

Хотя ICCT, US EPA и CARB описывают дизельные автомобили как вредные для окружающей среды, последние испытания вождения, проведенные ACEA, показывают, что это неверно. Современные дизельные автомобили имеют относительно низкие выбросы CO 2 и загрязняющих веществ, включая NOx и PM. Само по себе движение дизельных транспортных средств в сильно загрязненных районах может улучшить качество воздуха, загрязненного другими источниками, а не только старыми дизельными автомобилями.

Дизельные ДВС

CIDI могут быть улучшены и более экологичны благодаря дальнейшим усовершенствованиям в системе впрыска, а также в системе дополнительной обработки. ДВС CIDI также можно улучшить, просто приняв двухтопливную конструкцию со сжиженным нефтяным газом, сжатым природным газом или сжиженным природным газом в качестве второго топлива. Эти альтернативные виды топлива обеспечивают такие же или лучшие характеристики ДВС, работающего только на дизельном топливе, в том, что касается установившегося крутящего момента, мощности и эффективности преобразования топлива, а также переходных процессов, при этом значительно улучшая выбросы CO 2 , а также Выбросы PM и NOx из двигателя.

В дополнение к лучшему соотношению CH для выбросов CO 2 , преимущества двухтопливных двигателей CIDI ICE с СПГ, КПГ или СНГ также проистекают из возможности регулирования фаз сгорания с предварительным смешиванием и диффузии путем впрыска второй топливо, которое намного легче испаряется и менее склонно к самовоспламенению до, после или после предварительного / пилотного дизельного топлива. Также особенно важен для СПГ эффект охлаждения за счет криогенного впрыска. Дальнейшие разработки в системе впрыска являются предметом особого внимания при разработке двухтопливных ДВС CIDI.

Преимущества дизельных или двухтопливных двигателей CIDI ICE по сравнению с любыми другими альтернативными решениями для транспортных приложений в настоящее время не признаются ни одним директивным органом. Европейские автопроизводители уже приостановили свои планы исследований и разработок своих ДВС, чтобы сосредоточиться только на электромобилях. Учитывая нерешенные проблемы, связанные с электромобильностью, вскоре может оказаться, что это неправильно для экономики и окружающей среды. Использование более современных дизельных транспортных средств и транспортных средств, работающих на двухтопливном дизельном топливе, может только спасти жизни, но не вызывать смертность, улучшая качество воздуха, ограничивая истощение природных ресурсов и выброс CO 2 , не требуя непозволительных усилий и кардинальные изменения.

Авторские взносы

Автор подтверждает, что является единственным соавтором этой работы, и одобрил ее к публикации.

Конфликт интересов

Автор заявляет, что исследование проводилось в отсутствие каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Список литературы

Амброджио М., Саракко Г. и Спеккиа В. (2001). Сочетание фильтрации и каталитического сжигания в уловителях твердых частиц для очистки выхлопных газов дизельных двигателей. Chem. Англ. Sci. 56, 1613–1621. DOI: 10.1016 / S0009-2509 (00) 00389-4

CrossRef Полный текст | Google Scholar

Ашок Б. , Ашок С. Д. и Кумар К. Р. (2015). Дизельный двухтопливный двигатель LPG — критический обзор. Александр. Англ. J. 54, 105–126. DOI: 10.1016 / j.aej.2015.03.002

CrossRef Полный текст | Google Scholar

Бароне Т. Л., Стори Дж. М. и Доминго Н. (2010). Анализ характеристик отработанного дизельного сажевого фильтра: выбросы твердых частиц до, во время и после регенерации. J. Управление отходами воздуха. Доц. 60, 968–976. DOI: 10.3155 / 1047-3289.60.8.968

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Боретти А. (2011a). Дизельный и HCCI-подобный режим работы двигателя грузового автомобиля, преобразованного на водород. Внутр. J. Hydr. Energy 36, 15382–15391. DOI: 10.1016 / j.ijhydene.2011.09.005

CrossRef Полный текст | Google Scholar

Боретти А. (2011b). Достижения в двигателях внутреннего сгорания с воспламенением от сжатия водорода. Внутр. J. Hydr. Энергия 36, 12601–12606. DOI: 10. 1016 / j.ijhydene.2011.06.148

CrossRef Полный текст | Google Scholar

Боретти А. (2011c). Преимущества прямого впрыска дизельного топлива и водорода в двухтопливном h3ICE. Внутр. J. Hydr. Energy 36, 9312–9317. DOI: 10.1016 / j.ijhydene.2011.05.037

CrossRef Полный текст | Google Scholar

Боретти А. (2013). Рассматриваются новейшие концепции систем сжигания и утилизации отработанного тепла для водородных двигателей. Внутр. J. Hydr. Энергетика 38, 3802–3807. DOI: 10.1016 / j.ijhydene.2013.01.112

CrossRef Полный текст | Google Scholar

Боретти А. (2017). Будущее двигателей внутреннего сгорания после «Diesel-Gate. Warrendale, PA: SAE Technical Paper 2017-28-1933. DOI: 10.4271 / 2017-28-1933

CrossRef Полный текст | Google Scholar

Боретти А. (2018). Анализ жизненного цикла Сравнение мобильности на основе электрических двигателей и двигателей внутреннего сгорания .Варрендейл, Пенсильвания: Технический документ SAE 2018-28-0037. DOI: 10.4271 / 2018-28-0037

CrossRef Полный текст | Google Scholar

Боретти, А., Кастеллетто, С. (2018). «Бензиновый двигатель с непосредственным впрыском и супер-турбонаддувом», в Труды Всемирной автомобильной конференции FISITA, 2–5> ОКТЯБРЬ 2018, (Ченнаи).

Google Scholar

Боретти, А., Лаппас, П. (2019). Комплексные независимые лабораторные тесты для подтверждения экономии топлива и выбросов в реальных условиях вождения. Adv. Technol. Innovat. 4, 59–72.

Google Scholar

Боретти А., Ордис А. (2018). Супер-турбонаддув двухтопливного дизельного двигателя с системой зажигания . Технический документ SAE 2018-28-0036. DOI: 10.4271 / 2018-28-0036

CrossRef Полный текст | Google Scholar

Burtscher, Х. (2005). Физические характеристики выбросов твердых частиц из дизельных двигателей: обзор. J. Аэрозоль. Sci. 36, 896–932. DOI: 10.1016 / j.jaerosci.2004.12.001

CrossRef Полный текст | Google Scholar

Камузо, Дж. Р., Альварес, Р. А., Брукс, С. А., Браун, Дж. Б., и Стернер, Т. (2015). Влияние выбросов метана и эффективности транспортных средств на климатические последствия использования большегрузных автомобилей, работающих на природном газе. Environ. Sci. Technol. 49, 6402–6410. DOI: 10.1021 / acs.est.5b00412

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Шоссьер, Г. П., Малина, Р., Аллрогген, Ф., Истхэм, С. Д., Спет, Р. Л., и Баррет, С. Р. (2018). Атрибуция на уровне страны и производителя воздействия на качество воздуха из-за чрезмерных выбросов NOx от дизельных легковых автомобилей в Европе. Атмос. Environ. 189, 89–97. DOI: 10.1016 / j.atmosenv.2018.06.047

CrossRef Полный текст | Google Scholar

Крэбтри, Г. В., Дрессельхаус, М. С., и Бьюкенен, М. В. (2004). Водородная экономика. Phys. Сегодня 57, 39–44. DOI: 10.1063 / 1.1878333

CrossRef Полный текст | Google Scholar

Энджерер, Х., и Хорн, М. (2010). Автомобили, работающие на природном газе: вариант для Европы. Энергетическая политика 38, 1017–1029. DOI: 10.1016 / j.enpol.2009.10.054

CrossRef Полный текст | Google Scholar

Faghani, E., Kheirkhah, P., Mabson, C., McTaggart-Cowan, G., et al. (2017а). Влияние стратегий нагнетания на выбросы от пилотного двигателя прямого впрыска природного газа — Часть I: Поздний дополнительный впрыск . Warrendale, PA: SAE Paper 2017-01-0774. DOI: 10.4271 / 2017-01-0774

CrossRef Полный текст | Google Scholar

Фагани, Э., Kheirkhah, P., Mabson, C., McTaggart-Cowan, G., et al. (2017b). Влияние стратегий впрыска на выбросы от экспериментального газового двигателя с прямым впрыском топлива — Часть II: Горение с небольшим предварительным смешиванием . Варрендейл, Пенсильвания: Технический документ SAE 2017-01-0763. DOI: 10.4271 / 2017-01-0763

CrossRef Полный текст | Google Scholar

Фибиг М., Виарталла А., Холдербаум Б. и Кисоу С. (2014). Выбросы твердых частиц из дизельных двигателей: взаимосвязь между технологией двигателя и выбросами. J. Occup. Med. Toxicol. 9: 6. DOI: 10.1186 / 1745-6673-9-6

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Флореа Р., Нили Г., Абидин З. и Мива Дж. (2016). КПД и характеристики выбросов при сжигании с частичным смешиванием двух видов топлива путем совместного впрыска природного газа и дизельного топлива (DI2) . Warrendale, PA: SAE Paper 2016-01-0779. DOI: 10.4271 / 2016-01-0779

CrossRef Полный текст | Google Scholar

Фрейманн, Р., Ринглер, Дж., Зайферт, М., и Хорст, Т. (2012). Турбопарогонщик второго поколения. МТЗ В мире 73, 18–23. DOI: 10.1365 / s38313-012-0138-1

CrossRef Полный текст | Google Scholar

Фрейманн Р., Штробл В. и Обьегло А. (2008). Турбопарогенератор: система, представляющая принцип когенерации в автомобильной промышленности. МТЗ В мире 69, 20–27. DOI: 10.1007 / BF03226909

CrossRef Полный текст | Google Scholar

Гоуди, Д., Данн, М., Мунши, С. Р., Лайфорд-Пайк, Э., Райт, Дж., Дуггал, В. и др. (2004). Разработка сверхмощного пилотного двигателя с воспламенением от сжатия, работающего на природном газе, с низким уровнем выбросов NOx (№ 2004-01-2954) . Варрендейл, Пенсильвания: Технический документ SAE. DOI: 10.4271 / 2004-01-2954

CrossRef Полный текст | Google Scholar

Хейвуд, Дж. Б. (1988). «Сжигание в двигателях с воспламенением от сжатия», в Internal Combustion Engine Fundamentals (New York, NY: McGraw-Hill), 522–562.

Google Scholar

Хироясу Х. и Кадота Т. (1976). Модели сгорания и образования оксида азота и сажи в дизельных двигателях с прямым впрыском. SAE Trans. 85, 513–526. DOI: 10.4271 / 760129

CrossRef Полный текст | Google Scholar

Invernizzi, G., Ruprecht, A., Mazza, R., Rossetti, E., Sasco, A., Nardini, S., et al. (2004). Твердые частицы табака по сравнению с выхлопными газами дизельных автомобилей: образовательная перспектива. Tobacco Control 13, 219–221.DOI: 10.1136 / tc.2003.005975

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Джаффе, С. (2017). Уязвимые звенья в цепочке поставок литий-ионных аккумуляторов. Джоуль 1, 225–228. DOI: 10.1016 / j.joule.2017.09.021

CrossRef Полный текст | Google Scholar

Цзянь Д., Сяохун Г., Гешэн Л. и Синьтан З. (2001). Исследование двухтопливных двигателей дизель-СНГ (№ 2001-01-3679) . Варрендейл, Пенсильвания: Технический документ SAE. DOI: 10.4271 / 2001-01-3679

CrossRef Полный текст | Google Scholar

Джонсон, Т.В. (2009). Обзор выбросов дизельного топлива и контроль. Внутр. J. Eng. Res. 10, 275–285. DOI: 10.1243 / 14680874JER04009

CrossRef Полный текст | Google Scholar

Катурия В. (2004). Воздействие КПГ на загрязнение автотранспортом в Дели: примечание. Транспорт. Res. Часть Д. 9, 409–417. DOI: 10.1016 / j.trd.2004.05.003

CrossRef Полный текст | Google Scholar

Хайр, М. К., Маевски, В. А. (2006). Выбросы дизельного топлива и их контроль (Vol.303). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / R-303

CrossRef Полный текст | Google Scholar

Кнехт, В. (2008). Разработка дизельного двигателя с учетом пониженных стандартов выбросов. Energy 33, 264–271. DOI: 10.1016 / j.energy.2007.10.003

CrossRef Полный текст | Google Scholar

Кумар, С., Квон, Х. Т., Чой, К. Х., Лим, В., Чо, Дж. Х., Так, К. и др. (2011). СПГ: экологически чистое криогенное топливо для устойчивого развития. Прил. Energy 88, 4264–4273. DOI: 10.1016 / j.apenergy.2011.06.035

CrossRef Полный текст | Google Scholar

Лафлин М. и Бернхэм А. (2016). Пример : региональные транспортные средства для перевозки природного газа (№ DOE / CHO-AC02-06Ch21357-1603). Аргонн, Иллинойс; Колумбия, Мэриленд: Энергетика; Аргоннская национальная лаборатория.

Google Scholar

Ли, Г., Уэллетт, П., Думитреску, С., и Хилл, П. Г. (1999). Исследование оптимизации прямого впрыска природного газа с пилотным зажиганием в дизельные двигатели .Warrendale, PA: SAE Paper 1999-01-3556. DOI: 10.4271 / 1999-01-3556

CrossRef Полный текст | Google Scholar

Линь В., Чжан Н. и Гу А. (2010). СПГ (сжиженный природный газ): необходимая часть будущей энергетической инфраструктуры Китая. Energy 35, 4383–4391. DOI: 10.1016 / j.energy.2009.04.036

CrossRef Полный текст | Google Scholar

Mabson, C., Faghani, E., Kheirkhah, P., Kirchen, P., et al. (2016). Сгорание и выбросы парных сопел в газовом двигателе с пилотным зажиганием и прямым впрыском .Warrendale, PA: SAE Paper 2016-01-0807. DOI: 10.4271 / 2016-01-0807

CrossRef Полный текст | Google Scholar

Маджи С., Пал А. и Арора Б. Б. (2008). Использование КПГ и дизельного топлива в двигателях CI в двухтопливном режиме (№ 2008-28-0072). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2008-28-0072

CrossRef Полный текст | Google Scholar

Марбан Г. и Вальдес-Солис Т. (2007). К водородной экономике? Внутр. J. Hydr. Energy 32, 1625–1637.DOI: 10.1016 / j.ijhydene.2006.12.017

CrossRef Полный текст | Google Scholar

Марик, М. М. (2007). Химическая характеристика выбросов твердых частиц из дизельных двигателей: обзор. J. Аэрозоль. Sci. 38, 1079–1118. DOI: 10.1016 / j.jaerosci.2007.08.001

CrossRef Полный текст | Google Scholar

Мартуцци М., Митис Ф., Иавароне И. и Серинелли М. (2006). Воздействие ТЧ10 и озона на здоровье в 13 городах Италии . Европейское региональное бюро ВОЗ.

Google Scholar

McKone, T. E., Nazaroff, W. W., Berck, P., Auffhammer, M., Lipman, T., Torn, M. S., et al. (2011). Основные задачи оценки жизненного цикла биотоплива. Environ. Sci. Technol. 45, 1751–1756. DOI: 10.1021 / es103579c

PubMed Аннотация | CrossRef Полный текст | Google Scholar

McTaggart-Cowan, G., Mann, K., Huang, J., Singh, A., et al. (2015). Прямой впрыск природного газа под давлением до 600 бар в двигатель большой мощности с пилотным зажиганием. SAE Int. J. Eng. 8, 981–996. DOI: 10.4271 / 2015-01-0865

CrossRef Полный текст | Google Scholar

Мор М., Форсс А. М. и Леманн У. (2006). Выбросы твердых частиц от дизельных легковых автомобилей, оборудованных уловителем твердых частиц, по сравнению с другими технологиями. Environ. Sci. Technol. 40, 2375–2383. DOI: 10.1021 / es051440z

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Молленхауэр К. и Чёке Х. (ред.). (2010). Справочник по дизельным двигателям, Vol. 1. Берлин: Springer. DOI: 10.1007 / 978-3-540-89083-6

CrossRef Полный текст | Google Scholar

Мамфорд Д., Гоуди Д. и Сондерс Дж. (2017). Возможности и проблемы HPDI . Warrendale, PA: SAE Paper 2017-01-1928. DOI: 10.4271 / 2017-01-1928

CrossRef Полный текст | Google Scholar

Мурадов Н. З., Везироглу Т. Н. (2005). От углеводородной к водородно-углеродной к водородной экономике. Внутр.J. Hydr. Энергия 30, 225–237. DOI: 10.1016 / j.ijhydene.2004.03.033

CrossRef Полный текст | Google Scholar

Нефт, Дж. П., Макки, М., и Мулиджн, Дж. А. (1996). Контроль выбросов твердых частиц дизельного топлива. Топливный процесс. Technol. 47, 1–69. DOI: 10.1016 / 0378-3820 (96) 01002-8

CrossRef Полный текст | Google Scholar

Нефт, Дж. П., Нийхейс, Т. Х., Смакман, Э., Макки, М., и Мулиджн, Дж. А. (1997). Кинетика окисления дизельной сажи. Топливо 76, 1129–1136. DOI: 10.1016 / S0016-2361 (97) 00119-1

CrossRef Полный текст | Google Scholar

Нили, Г., Флореа, Р., Мива, Дж., И Абидин, З. (2017). Эффективность и характеристики выбросов при сжигании двух видов топлива с частичной предварительной смесью путем совместного прямого впрыска ПГ и дизельного топлива (DI2) — Часть 2 . Warrendale, PA: SAE Paper 2017-01-0766. DOI: 10.4271 / 2017-01-0766

CrossRef Полный текст | Google Scholar

Осорио-Техада, Дж., Ллера, Э., и Скарпеллини, С. (2015). СПГ: альтернативное топливо для грузовых автомобильных перевозок в Европе. WIT Trans. Встроенная среда. 168, 235–246. DOI: 10.2495 / SD150211

CrossRef Полный текст | Google Scholar

Парк Т., Тенг Х., Хантер Г. Л., ван дер Велде Б. и Клавер Дж. (2011). Система цикла Ренкина для рекуперации отработанного тепла дизельных двигателей HD — экспериментальные результаты (№ 2011-01-1337). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2011-01-1337

CrossRef Полный текст | Google Scholar

Рэмсброк, Дж., Вилимек, Р., Вебер, Дж. (2013). «Изучение удовольствия от вождения на электромобиле — пилотные проекты BMW EV», Международная конференция по взаимодействию человека и компьютера (Берлин; Гейдельберг: Springer), 621–630. DOI: 10.1007 / 978-3-642-39262-7_70

CrossRef Полный текст | Google Scholar

Решитоглу И. А., Алтинишик К. и Кескин А. (2015). Выбросы загрязняющих веществ от автомобилей с дизельными двигателями и систем нейтрализации выхлопных газов. Clean Technol. Environm. Политика 17, 15–27.DOI: 10.1007 / s10098-014-0793-9

CrossRef Полный текст | Google Scholar

Рю, К. (2013). Влияние времени предварительного впрыска на характеристики сгорания и выбросов в дизельном двигателе, использующем биодизельное топливо и КПГ. Прил. Энергия 111, 721–730. DOI: 10.1016 / j.apenergy.2013.05.046

CrossRef Полный текст | Google Scholar

Саракко, Г., Руссо, Н., Амброджио, М., Бадини, К., и Спеккиа, В. (2000). Снижение выбросов твердых частиц дизельного топлива с помощью каталитических ловушек. Catal. Сегодня , 60, 33–41. DOI: 10.1016 / S0920-5861 (00) 00314-X

CrossRef Полный текст | Google Scholar

Шиппер Л., Мари-Лиллиу К. и Фултон Л. (2002). Дизели в Европе: анализ характеристик, моделей использования, экономии энергии и последствий выбросов CO2. J. Transp. Экон. Политика 36, 305–340.

Google Scholar

Шах, А., Типсе, С. С., Тьяги, А., Райрикар, С. Д., Кавтекар, К. П., Марате, Н. В. и др. (2011). Обзор литературы и моделирование двухтопливных дизельных двигателей, работающих на КПГ (№ 2011-26-0001). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2011-26-0001

CrossRef Полный текст | Google Scholar

Ши Л., Шу Г., Тиан Х. и Дэн С. (2018). Обзор модифицированных органических циклов Ренкина (ORC) для рекуперации отработанного тепла двигателей внутреннего сгорания (ICE-WHR). Обновить. Поддерживать. Energy Rev. 92, 95–110. DOI: 10.1016 / j.rser.2018.04.023

CrossRef Полный текст | Google Scholar

Смит, О.I. (1981). Основы образования сажи в пламени применительно к выбросам твердых частиц дизельных двигателей. Прог. Энергия сгорания. Sci. 7, 275–291. DOI: 10.1016 / 0360-1285 (81)
-2

CrossRef Полный текст | Google Scholar

Teng, H. , Klaver, J., Park, T., Hunter, G. L., and van der Velde, B. (2011). Система цикла Ренкина для рекуперации отработанного тепла дизельных двигателей высокого давления — разработка системы WHR (№ 2011-01-0311) . Варрендейл, Пенсильвания: Технический документ SAE.DOI: 10.4271 / 2011-01-0311

CrossRef Полный текст | Google Scholar

Teng, H., and Regner, G. (2009). Повышение экономии топлива для дизельных двигателей HD с циклом Ренкина, управляемым за счет отвода тепла охладителя EGR (№ 2009-01-2913). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2009-01-2913

CrossRef Полный текст | Google Scholar

Teng, H., Regner, G., and Cowland, C. (2007). Рекуперация отходящего тепла дизельных двигателей большой мощности с помощью органического цикла Ренкина, часть I: гибридная энергетическая система дизельного двигателя и двигателя Ренкина (No.2007-01-0537). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2007-01-0537

CrossRef Полный текст | Google Scholar

Ван Т. , Чжан Ю., Чжан Дж., Пэн З. и Шу Г. (2014). Сравнение преимуществ системы и термоэкономики для рекуперации энергии выхлопных газов, применяемых в тяжелых дизельных двигателях и бензиновых двигателях легких транспортных средств. Energy Conv. Управлять. 84, 97–107. DOI: 10.1016 / j.enconman.2014.04.022

CrossRef Полный текст | Google Scholar

А, С.(2007). Эмпирический анализ внедрения транспортных средств на альтернативном топливе: на примере транспортных средств, работающих на природном газе. Энергетическая политика 35, 5865–5875. DOI: 10.1016 / j.enpol.2007.06.012

CrossRef Полный текст | Google Scholar

Ю., Г., Шу, Г., Тиан, Х., Хо, Ю., и Чжу, В. (2016). Экспериментальные исследования каскадной системы парового / органического цикла Ренкина (RC / ORC) для рекуперации отработанного тепла (WHR) дизельного двигателя. Energy Conv. Управлять. 129, 43–51. DOI: 10.1016 / j.enconman.2016.10.010

CrossRef Полный текст | Google Scholar

Зервас, Э. , Пулопулос, С., и Филиппопулос, К. (2006). CO 2 изменение выбросов в результате внедрения дизельных легковых автомобилей: пример Греции. Energy 31, 2915–2925. DOI: 10.1016 / j.energy.2005.11.005

CrossRef Полный текст | Google Scholar

Чжао, Х., (ред.). (2009). Передовые технологии и разработки двигателей внутреннего сгорания с прямым впрыском: дизельные двигатели .Кембридж: издательство Woodhead Publishing.

Google Scholar

Зачем нужно дизельное топливо? Достоинства и преимущества

Как работает дизельный двигатель? В современном мире, где цены на топливо растут в результате роста спроса и сокращения предложения, вам необходимо выбрать экономичное топливо, отвечающее вашим потребностям. Благодаря изобретению Рудольфа Дизеля дизельный двигатель оказался чрезвычайно эффективным и экономичным.

Цена на дизельное топливо умеренно выше, чем на бензин, но дизельное топливо имеет более высокую удельную энергию, т. е.е. Из дизельного топлива можно извлечь больше энергии по сравнению с тем же объемом бензина. Таким образом, дизельные двигатели в автомобилях обеспечивают больший пробег, что делает их очевидным выбором для перевозки тяжелых грузов и оборудования. Дизель тяжелее и жирнее бензина, а его температура кипения выше, чем у воды. А дизельные двигатели привлекают к себе все большее внимание благодаря более высокой эффективности и экономической эффективности.

Различие заключается в типе зажигания. В то время как бензиновые двигатели работают с искровым зажиганием, дизельные двигатели используют воспламенение от сжатия для воспламенения топлива.В последнем случае воздух втягивается в двигатель и подвергается сильному сжатию, которое нагревает его.

Это приводит к очень высокой температуре в двигателе, намного превышающей температуру, достигаемую в бензиновом двигателе. При пиковой температуре и давлении дизельное топливо, попадающее в двигатель, воспламеняется из-за экстремальной температуры.

В дизельном двигателе воздух и топливо вводятся в двигатель на разных стадиях, в отличие от газового двигателя, где вводится смесь воздуха и газа.Топливо впрыскивается в дизельный двигатель с помощью инжектора, тогда как в бензиновом двигателе для этой цели используется карбюратор. В бензиновом двигателе топливо и воздух вместе направляются в двигатель, а затем сжимаются. Смесь воздуха и топлива ограничивает сжатие топлива и, следовательно, общую эффективность.

Дизельный двигатель сжимает только воздух, и коэффициент может быть намного выше. В дизельном двигателе степень сжатия составляет от 14: 1 до 25: 1, тогда как в бензиновом двигателе степень сжатия составляет от 8: 1 до 12: 1.После сгорания побочные продукты сгорания удаляются из двигателя через выхлоп.

Для запуска в холодное время года дополнительное тепло подается через свечи накаливания. Дизельные двигатели могут быть двухтактными или четырехтактными и выбираются в зависимости от режима работы. Двигатели с воздушным и жидкостным охлаждением — это варианты, которые следует выбирать соответственно. Предпочтительно использовать генератор с жидкостным охлаждением, так как он тих в работе и имеет равномерно регулируемую температуру.

Преимущества дизельного двигателя Дизельный двигатель намного эффективнее и предпочтительнее бензинового двигателя по следующим причинам:
  • Современные дизельные двигатели лишены недостатков более ранних моделей — более высокого уровня шума и затрат на техническое обслуживание.Теперь они тихие и требуют меньшего обслуживания по сравнению с газовыми двигателями аналогичного размера
  • .
  • Они более прочные и надежные
  • Нет искры, так как топливо самовоспламеняется. Отсутствие свечей зажигания или искровых проводов снижает затраты на техническое обслуживание
  • Стоимость топлива на произведенный киловатт на 30–50 процентов ниже, чем у газовых двигателей
  • Дизельный агрегат с водяным охлаждением 1800 об / мин проработает от 12 000 до 30 000 часов, прежде чем потребуется какое-либо капитальное обслуживание. Газовая установка с водяным охлаждением на 1800 об / мин обычно работает в течение 6000-10 000 часов, прежде чем ей потребуется обслуживание
  • Газовые агрегаты горят сильнее, чем дизельные агрегаты, и, следовательно, они имеют значительно меньший срок службы по сравнению с дизельными агрегатами

Применение и использование дизельных двигателей Дизельные двигатели обычно используются в качестве механических двигателей, генераторов энергии и в мобильных приводах. Они находят широкое применение в локомотивах, строительном оборудовании, автомобилях и в бесчисленных промышленных применениях.Их сфера распространяется практически на все отрасли, и их можно наблюдать ежедневно, если вы загляните под капот всего, что вы проходите мимо.

Промышленные дизельные двигатели и дизельные генераторы используются в строительстве, судостроении, горнодобывающей промышленности, больницах, лесном хозяйстве, телекоммуникациях, метро и сельском хозяйстве, и это лишь некоторые из них. Производство электроэнергии для основного или резервного резервного питания является основным применением сегодняшних дизельных генераторов. Ознакомьтесь с нашей статьей о различных типах двигателей и генераторов и их общих применениях, чтобы увидеть больше примеров.

Электрогенераторы Дизельные генераторы или электрические генераторные установки используются в бесчисленном количестве промышленных и коммерческих предприятий. Генераторы могут использоваться для небольших нагрузок, например, в домах, а также для больших нагрузок, таких как промышленные предприятия, больницы и коммерческие здания. Они могут быть либо основными источниками питания, либо резервными / резервными источниками питания.

Доступны в различных спецификациях и размерах. Дизель-генераторные установки мощностью 5-30 кВт обычно используются в простых домашних и личных применениях, например, в транспортных средствах для отдыха.Промышленные приложения охватывают более широкий спектр номинальной мощности (от 30 кВт до 6 мегаватт) и используются во многих отраслях промышленности по всему миру. Для домашнего использования достаточно однофазных электрогенераторов. Трехфазные генераторы в основном используются в промышленных целях.

>> Вернуться к статьям и информации <<

Дизельный двигатель — Scientific American

ЛЮБОЙ, кто видел в работе большой судовой двигатель тройного расширения, был впечатлен механической красотой этой машины.Легкий и мощный, но простой в управлении, со сложной конструкцией, но простой в механическом отношении, кажется, что этот тип двигателя наконец-то достиг совершенства. И все же сегодня он готов быть заменен новым типом двигателя и движущей силы; движущая сила, которую еще несколько лет назад в значительной степени высмеивали за ее ненадежность. Газовый двигатель завоевывает землю, покорил воздух и теперь начинает завоевывать море. Все двигатели внутреннего сгорания подразделяются на два основных класса: те, в которых сгорание происходит при постоянном объеме, и те, в которых сгорание происходит при постоянном давлении; первый известен как тип Отто, а второй — как тип Брайтона или Дизеля. Чтобы сделать разницу между этими двумя типами более ясной, будет хорошо проследить цикл операций в каждом случае. В четырехтактном двигателе Отто поршень на первом такте вниз всасывает горючую смесь. Затем происходит ход вверх, сжимая заряд до давления, ограниченного температурой воспламенения используемого заряда. Обычно это от 60 до 120 фунтов на дюйм; в верхней части этого хода заряд воспламеняется, и поршень опускается под давлением, создаваемым взрывом заряда.Затем следует четвертый удар; поршень поднимается и продукты выхлопа выходят через открытый выпускной клапан. В дизельном цикле первый ход поршня втягивает чистый воздух в цилиндр; затем поршень поднимается, сжимая воздух до давления 500 или 600 фунтов на квадратный дюйм и тем самым повышая его температуру примерно до 500 градусов. C. Это высокое давление достигается за счет очень малого зазора. В верхней части такта сжатия масляный клапан в головке цилиндров открывается, и масло нагнетается в цилиндр в виде тонкой струи.Он сразу же воспламеняется от сильно нагретого воздуха и продолжает гореть до тех пор, пока масло не прекратится примерно на одной четверти или одной трети хода поршня вниз. Расширение следует до конца хода, а затем происходит четвертый ход, как в цикле Отто. В двухтактных двигателях любого класса поршень открывает отверстия в конце своего движения вниз, продукты выхлопа выходят через один набор отверстий, а новый заряд вдувается в цилиндр под небольшим давлением через другие отверстия.Заряд, конечно, состоит из горючей смеси в двигателе Отто и воздуха в дизельном двигателе. Затем следуют сжатие и рабочий ход, как в случае четырехтактного двигателя. Сразу отметим три пункта превосходства Дизельного двигателя над двигателем Отто. Первый из них заключается в том, что в дизельном двигателе нет воспламенителя, и поэтому проблемы с зажиганием возникнуть не могут. Также не возникнет проблем с предварительным зажиганием, так как во время хода поршня вверх в цилиндре нет топлива.Второй момент — это отсутствие проблем с карбюратором или смесью. В двигателе типа Отто всегда присутствует различное количество продуктов выхлопа, присутствующих в смеси на разных скоростях, что требует точного регулирования подачи топлива. В дизельном двигателе скорость и мощность двигателя полностью регулируются путем регулирования точки рабочего хода, в которой прекращается подача топлива. Последним моментом в пользу дизельного двигателя является тот факт, что изменение давления не является резким, как в случае с двигателем Отто, а постепенно увеличивается во время такта сжатия, достигая максимума в конце такта, а затем остается примерно постоянным, пока не произойдет отключение подачи топлива.Цилиндры дизельного двигателя малопроходные с большим ходом. . Поршни должны быть хорошо подогнаны, чтобы сохранять высокую степень сжатия. Иногда для этого используют до десяти поршневых колец. В дизельном двигателе можно использовать различные виды топлива, от самых легких углеводородов до самых тяжелых нефтей. Поскольку топливо должно быть полностью распылено на входе в цилиндр, мы находим множество различных типов клапанов для различных марок масла. Однако клапаны делятся на два основных класса: Используемые.топливного насоса для нагнетания топлива в цилиндр и насосов, которые используют сжатый воздух для его вдувания. Клапаны первого типа содержат небольшой проход через головку цилиндра с игольчатым клапаном для регулировки форсунки или распылителя, который открывается в цилиндр. Топливо подается в этот распылительный клапан с помощью небольшого плунжерного насоса одностороннего действия под давлением 750 фунтов на квадратный дюйм, причем длина хода плунжера насоса обычно регулируется, чтобы обеспечить время подачи топлива на работу. двигателя.Впускной клапан сжатого воздуха для подачи топлива используется более широко, чем только что описанный тип. Этот клапан обычно состоит из полой пробки в головке блока цилиндров двигателя и содержит открывающийся внутрь обратный клапан на внутреннем конце. Отверстие в центре этой пробки принимает заряд масла под давлением в несколько фунтов во время такта сжатия двигателя, а затем воздух под высоким давлением 750 фунтов попадает в пробку с камерой, и масло вдувается в цилиндр двигателя. двигатель в виде штрафа Инжир.I Реверсивная передача зависит от изменения положения кулачков относительно коленчатого вала. спрей. Клапан этого типа, конечно, требует использования отдельного воздушного компрессора, но он обычно необходим в любом случае для подачи сжатого воздуха для запуска двигателя. Для запуска двигателя сжатым воздухом имеется вспомогательный впускной клапан для пускового воздуха, который приводится в действие кулачком на распределительном валу и пропускает воздух под высоким давлением на участке рабочего хода двигателя, таким образом, он работает как обычный воздушный двигатель.Как только двигатель набирает обороты, воздушные клапаны выходят из строя путем снятия коромысел с кулачков или другим эквивалентным методом, и двигатель возобновляет свой обычный цикл. Помимо того, что он оборудован самозапускаемым устройством, дизельный двигатель двигатель также должен быть реверсивным при использовании в морских целях. В случае низкого Рис. 2.— Реверсирование с помощью двух комплектов кулачков, по одному на каждое направление вращения. Для мощных и малых двигателей можно использовать либо муфту заднего хода, либо реверсивный винт, но такая практика невозможна для двигателей мощностью в тысячу лошадиных сил и более. На практике используются два метода реверсирования судовых двигателей. Первый — изменить угловое положение кулачков по отношению к коленчатому валу и друг к другу. На рис. 1 показан небольшой судовой дизельный двигатель, использующий этот метод реверсирования. Этот двигатель обладает очень необычными характеристиками в отношении запуска. Он двухтактный, с выпускными отверстиями, управляемыми поршнем, и имеет цилиндр сжатия воздуха для каждого цилиндра двигателя. Для запуска сжатый воздух из воздушных резервуаров поступает в цилиндры насоса, которые приводят в движение двигатель, пока он не возобновит свой цикл.В этом двигателе используются два отдельных распределительных вала, один из которых управляет масляными клапанами, а другой — насосами. «Регулировка вала производится с помощью скользящих спиральных шестерен, которые приводят в движение распредвалы. Эти скользящие спиральные шестерни управляются более длинным рычагом на левой стороне двигателя. Короткий рычаг управляет пусковым воздухом. Другой метод — использовать два набора кулачков, по одному для каждого направления вращения. Эти кулачки иногда размещаются на одном и том же кулачковом валу, который регулируется в продольном направлении под подъемниками. В модификации используются два кулачковых вала: один впереди, а другой сзади.Эти валы можно поворачивать под толкатели клапана. Такое расположение показано на рис.2. Реверсивный механизм для двухтактных двигателей не так сложен, как для четырехтактных, единственный необходимый клапанный механизм — это пусковой и топливный клапаны. Вероятно, одна из особенностей дизельного двигателя, которая больше всего побуждает его использовать в морской сфере, — это его эффективность. Были проведены испытания больших двигателей этого типа, которые показали почти замечательные цифры 0.38 фунтов топлива израсходовано на тормозную мощность в час. Это для сырой нефти. Используемые в настоящее время судовые двигатели этого типа в среднем расходуют от 0,40 до 0044 фунта топлива на тормозную мощность в час при работе с полной нагрузкой. Когда мы сравниваем эти цифры с показателями лучших судовых двигателей тройного расширения, которые сжигают 1,46 фунта угля за час мощности тормозной системы, мы сразу же видим огромное преимущество дизельного двигателя. Выражаясь круглыми цифрами, дизельный двигатель на 100 тоннах топлива будет вести корабль так же быстро и так же далеко, как паровой двигатель на 350 тоннах угля.Кроме того, жидкое топливо может храниться в баках, размещенных на двойном дне корабля; Таким образом, пространство, ранее занимаемое котлами и угольными бункерами, уступает место пассажирам и грузовым помещениям. Таким образом увеличивается доходность корабля; Машинное отделение, необходимое для нефтяного двигателя, примерно такое же, как машинное отделение, необходимое для оборудования парового двигателя. Принадлежности, необходимые для дизельного двигателя, занимают примерно столько же места, что и конденсатор и насосы парового двигателя. Судовой нефтяной двигатель строится в соответствии со стандартными принципами, установленными практикой паровых двигателей; все крупные масляные двигатели, построенные до сих пор, имеют короткий поршень, плоские направляющие и крестовину с обычной открытой конструкцией.Было заявлено, что использование ствольного поршня является плохой практикой из-за небольшого продольного перемещения коленчатого вала из-за износа упорных подшипников. С плоскими направляющими этот небольшой люфт не будет иметь значения, а открытая конструкция также облегчает осмотр. Воздушный насос для подачи воздуха для запуска и для впрыска топлива обычно получается из трехступенчатого воздушного компрессора, который приводится в действие поперечными головками трех цилиндров, причем воздух охлаждается между ступенями компрессора.Циркуляционные насосы также приводятся в действие от главного двигателя; но вспомогательный воздушный компрессор и вспомогательные циркуляционные насосы, приводимые в действие меньшими масляными двигателями, предназначены для аварийных целей. Трюмные и пожарные насосы имеют либо электрический привод, либо привод от отдельного двигателя, а электрический ток для света и энергии вырабатывается генераторами с прямой связью, приводимыми в действие масляными двигателями. Масляные двигатели, используемые в настоящее время и строящиеся, включают как двух-, так и четырехтактные двигатели простого и двойного действия.У каждого типа есть много собственных хороших характеристик, и еще слишком рано говорить, что лучше; конструкция двухтактного двигателя двойного действия сложна, но количество цилиндров уменьшается для данной мощности. С другой стороны, в двигателе с восемью цилиндрами один цилиндр может не выходить из строя, не влияя в очень большой степени на мощность двигателя. Можно с уверенностью сказать, что разработка масляного двигателя в этой новой роли будет идти быстрыми темпами. С несколькими немецкими фирмами, строящими большие суда, оснащенные нефтяными двигателями, с сообщением о том, что Немецкое Адмиралтейство строит крейсер, который будет оснащен двумя шестицилиндровыми двигателями каждый по 6000 лошадиных сил, и с несколькими фирмами Глазго, строящими суда с аналогичным оборудованием, мы скоро увидим, как масляный двигатель прошел обширные испытания.7 октября 1911 г. 315 [Редакция не несет ответственности за высказывания, сделанные в колонке для корреспонденции. Анонимное общение не может рассматриваться, но имена корреспондентов при желании не разглашаются.] Возрождение торгового флота Редактору журнала Scientific American: Я пишу, чтобы выразить мою высокую оценку огромного интереса, который вы проявляете с 1 апреля к строительству американского торгового флота. Все, что публикуется на эту тему, будь то в ваших редакционных или корреспондентских колонках, с жадностью поглощается этим писателем, который в течение последних двенадцати лет провел специальное исследование судовых субсидий, почтовых субсидий, почтовых субсидий, льготных пошлин, бесплатных судов и любые другие меры, предлагаемые человеческой изобретательностью для восстановления той отрасли нашего торгового флота, которая занималась иностранной или глубоководной торговлей, до того гордого положения, которое она раньше занимала.Самая большая трудность при этом, по-видимому, состоит в том, чтобы заставить людей, живущих в глубине континента, вдали от побережья, проявить интерес или получить информацию по таким вопросам. Писатель желает вам удачи в работе, которую вы предлагаете выполнить. Джеймс Дж. Макбрайд. Кантон, мисс. Человек, который видел метеоритный поезд Редактору журнала Scientific American: Что касается письма на вашей странице 275 о «Поезде Метеора», я был одним из примерно десятка людей в Мамаронеке, штат Нью-Йорк, которые видели внешний вид в основном так, как описано г-ном.Пфарре. Филадельфия, Пенсильвания. Эдвард Т. Чайлд. Уроки летающей гонки Гордона Беннета. Редактору журнала Scientific American: Что касается вышеупомянутой темы в вашем номере от 19 августа, не позволите ли вы сделать несколько дополнительных замечаний в соответствии с мнением г-на Гровера Лёнинга по этому поводу? Ваш автор обращает особое внимание на трудности, с которыми сталкиваются такие талантливые сторонники, как Вейман и Леблан, при резком повороте у каждого пилона, и, с другой стороны, подчеркивает удобство, а также чудесный «крен», выполненный Огилви на «Бэби Райт».» Конечно, верно, что этот подвиг всегда затруднен с такой непропорциональной площадью поверхности в случае 60 квадратных футов поверхности обрезанного Блерио, но также точно1 то, что центробежная сила, создаваемая одним трактором -винт — фактор, который нельзя упускать из виду. Диаметр у Ньюпора составлял 7 футов, у Блерио — 8 & percnt; футов, в то время как двойные пропеллеры Райта 8 & percnt; футов каждый, причем последний, однако, вращается в противоположных направлениях и, таким образом, противодействует центробежному действию, усиленному в монопланах.Следовательно, Wright — или его аналог, моноплан со сдвоенными винтами — способен резко «крениться» при прохождении поворотов, что потребовало бы широких поворотов при использовании одновинтового типа или альтернативной потери устойчивости и катастрофы. Еще одним важным моментом для монопланов, приводимых в движение двумя винтами, является большая скорость, достижимая по сравнению с бипланом, управляемым аналогичным образом, и, кроме того, возможность преодолевать более сильный ветер — настоящее желание. Действительно необычно отметить в настоящий момент непрерывное повсеместное копирование патентной системы деформации Райтов, либо грубо имитирующее изгиб задних краевых концов в сочетании с ножным вертикальным рулем направления, либо виртуальное воспроизведение того же самого с помощью средства элеронов — системы, которая, хотя и скопирована с натуры, отнюдь не является самой мощной в управлении птицей поперечной устойчивостью.Этот идеальный летчик среди других методов демонстрирует нам, что, искривляя или, скорее, вдавливая внешнюю половину одного крыла и, соответственно, поднимая другую, он устраняет всякую опасность судебного разбирательства, посягая на патент Райта! Мистер Гровер Лоулинг в своей умной статье мог бы сослаться на подчеркивание необходимости моноплана с «переменной поверхностью», показанного гонкой Гордона Беннета. Принятие птичьего выигрыша позволит не только увеличить скорость, но и автоматически обеспечить естественную или естественную устойчивость при сильном ветре за счет гибкой конструкции в дополнение к этой насущной необходимости в переменной поверхности.Таким образом, уроки, продемонстрированные не только гонкой Гордона Беннета, но и ежедневными полетами по всему земному шару для производства и развития идеального механического летательного аппарата, можно кратко изложить в следующих требованиях: (1) Улучшение летательного аппарата автомобиль или фюзеляж в более тонкой форме Nieuport; (2) сдвоенные пропеллеры большого диаметра, чтобы, таким образом, задействовать больший объем воздуха или «дисковую площадь» и вращаться в противоположных направлениях, чтобы минимизировать чрезмерную центробежную силу; (3) построение основных плоскостей гибкими с малым изгибом, высоким удлинением и одинарной поверхностью; (4) превосходным боковым управлением, отличным от того, которое используется в биплане Райтов, и обеспечивается смещением основных лонжеронов к концам; (5) изменяемым всплытием главных самолетов или крыльев для обеспечения более высоких скоростей и восприимчивости к безопасному столкновению с более высокими скоростями ветра за счет такого уменьшения и увеличения площади опоры; (6) отказ от вертикального руля направления, действующего вместе с главными плоскостями для управления в горизонтальной плоскости; (7) необходимость компактного складывания крыльев у борта автомобиля, когда он не используется или спускается по воде; (8), а также средства увеличения или уменьшения угла падения основных плоскостей в соответствии с требованиями условий полета.Все вышеперечисленные существенные особенности отнюдь не невозможно воспроизвести в одной конструкции, и они определенно позволят моноплану подниматься и спускаться с воды и со временем перелетать через Атлантику. Лондон, Англия. Эдгар Э. Уилсон. Предлагаемый дроссель локомотива остановки безопасности Редактору журнала Scientific American: В отделе корреспонденции вашего номера от 19 августа на странице 167 я заметил статью Обри Д. Бейдельмана из Брейнтри, штат Массачусетс, озаглавленную: «Крушение железной дороги Бриджпорта.» В последнем абзаце своего сообщения он предлагает снабдить ручку дроссельной заслонки и тормозного клапана средствами для автоматического приведения их в положения, которые отключили бы пар и задействовали тормоза в случае выхода инженера из строя по любой причине. Процитируя его статью, «инженеру необходимо было бы оказать на них небольшое давление», чтобы предотвратить их действия таким образом. Он сомневается, что такое устройство будет неудобным.На мой взгляд, это было бы невыносимо. При движении по холмистой местности машинисту необходимо часто менять положение рычага заднего хода, что требует использования по крайней мере одной, а обычно и обеих рук. Иногда ему необходимо использовать инжектор на своей стороне двигателя из-за неспособности инжектора на стороне пожарного подавать в котел достаточное количество воды. Для машиниста нередко возникает необходимость заправить лубрикатор в дороге.Все это требует времени; и пока он ухаживал за ними, пар отключался, а тормоза приводились в действие, вызывая значительное и нежелательное снижение скорости. • В дополнение к своим физическим обязанностям он должен помнить о полученных им приказах, которые регулируют его движение по отношению к другим поездам, которые могут быть на дороге, их встречи и точки пересечения, а также то, в какое время у него есть заданная точка перед другим поездом. Это было бы чрезвычайно сложно для человека, находящегося под постоянным физическим напряжением, которое потребовалось бы для поддержания этих двух рычагов в рабочем положении, особенно в случае дроссельной заслонки, поскольку ему пришлось бы приложить значительную силу, чтобы удерживать ее в открытом положении относительно устройства, которое будет иметь любую ценность как механизм положительного закрытия.Условия, в которых сейчас работает машинист, нельзя назвать спокойными. Постоянно грохочут, как локомотив по сравнению с каретой едет так же легко, как телега с сеном по сравнению с лимузином. Если бы в дополнение к этому человек был вынужден поддерживать постоянное и неослабевающее давление в течение периода от трех до семи часов, средняя продолжительность пассажирского пробега, это было бы почти, если не совсем, за пределами человеческих возможностей. Лос-Анджелес, Оал. Дж. Б. Уэллс. Дополнительная энергия для орошения Новое совместное использование наших каналов.Редактору журнала Scientific American: Чтобы получить мощность, получаемую от водопадов, за удобную основу для расчета любой мощности берется высота в 10 футов. Один кубический фут воды, вес 62 & percnt; фунтов, падение с 10 футов дает 625 футов фунтов. Потребность в одной лошадиной силе, 33000 фунтов, разделенных на 625, дает 52,8 кубических футов, необходимых для одной теоретической лошадиных сил в минуту. Но поскольку КПД колес редко превышает 75 процентов, мы прибавляем треть к 52.8 или 70,4 кубических футов воды, чего достаточно, чтобы покрыть 844 квадратных футов, или одну пятьдесят секунд акра. Таким образом, количество воды, необходимое для производства одной лошадиной силы за 52 минуты, покрыло бы один акр на один дюйм глубиной, если бы ни одна из них не была потрачена впустую. Но поскольку отходы значительны, давайте предположим, что требуется два часа, чтобы покрыть один акр на один дюйм, или за десять часов вода, необходимая для производства одной лошадиной силы, покроет пять акров на глубину одного дюйма. Теперь, когда энергия может вырабатываться даже в небольших установках по цене не более 20 центов за каждую лошадиную силу в течение десяти часов, а в больших единицах — за гораздо меньшую плату, у нас есть один дюйм воды стоимостью четыре цента за акр, тогда как для некоторых культур она будет стоить в пятьдесят раз больше, а другие — намного больше, поскольку эта вода является теплой дождевой водой и намного превосходит воду из колодца для целей орошения.Принимая во внимание вышеприведенные утверждения, можем ли мы с уверенностью заключить, что наши каналы или, по крайней мере, их участки, которые находятся в выгодном месте, следует поддерживать для орошения, что, как объясняется ниже, также может немного снизить их ценность для энергии воды? Во многих случаях канал расположен так, что вся вода, которую нужно сэкономить, может естественным образом стекать на землю, в то время как в некоторых случаях может потребоваться траншея для следующего шлюза, чтобы вода была достаточно высокой. Я думаю, что очень благоприятные результаты некоторых небольших экспериментов по ирригации в нашей секции полностью оправдают наши ценные экспериментальные станции по исследованию имеющихся земель и в подготовке необходимой информации о подходящих культурах, удобрениях, перемешивании песка для облегчения тяжелых почв и т. Д.Это может позволить в полной мере реализовать значительный прирост урожая за счет орошения. Теперь, если энергетик, которому обычно не хватает энергии для производства или продажи электроэнергии, разместит свои водяные колеса и т. Д. Так, чтобы дать ему полную мощность падения, скажем, на лучшие шесть месяцев из год, и будет устанавливать двигатели, достаточные для выработки того же количества энергии, которое будет использоваться, когда воды недостаточно для всего необходимого, что, если для освещения будет меньше, когда вода наиболее низкая, он может иметь энергию воды для всех своих нужд в течение шести или более месяцев, и почти все остальное время часть воды, фактически большая ее часть.Там, где вода используется только в течение десяти часов для электричества, полив можно проводить ночью, как на Западе. Так что энергетик может оказаться в лучшем положении после оплаты первой стоимости установки двигателя, чем если бы он полностью зависел от гидроэнергии, поскольку он будет иметь не только увеличенную мощность, но и мощность, на которую можно полностью положиться. Я надеюсь, что вышеизложенное будет в некотором роде предложением, которое принесет пользу сообществу и государству при использовании его каналов. Дейтон, О.Дж. Х. Стивенс. Автоматическая устойчивость в самолетах — предложение Редактору журнала Scientific American: Вы позволите мне выразить. из вашей ценной бумаги мое мнение о возможном решении проблемы автоматической поперечной устойчивости летательных аппаратов? Многие устройства, разработанные и опробованные для поддержания автоматической стабильности, еще не достигли желаемого успеха. От появления такого устройства зависит весь дальнейший прогресс и коммерциализация аэронавигации.Мое собственное предложение может привести к возможному решению этой проблемы. Я описываю свою идею с целью побудить конструкторов летательных аппаратов экспериментировать в этом направлении. Мой автоматический боковой стабилизатор состоит из ласт, сделанных из легкого каркаса из дерева или металла, обтянутого подходящей тканью. Эти плавники шарнирно закреплены под поверхностью на крайних концах плоскости (выигрыш, наконечники) и могут качаться в обе стороны. При повороте внутрь такой плавник может перемещаться, пока не будет лежать ровно под поверхностью, но в направлении наружу. ремешок предотвращает обморок.раскачивается более чем на 45 градусов. Функцию устройства можно представить следующим образом: Когда самолет находится в движении и пока на него не действует сила, вызванная боковым ветром, киля будут удерживаться в вертикальном положении. Но когда ветер дует на самолет под углом к ​​направлению движения, плавник, ближайший к той стороне, с которой дует ветер, будет уложен под поверхность самолета. В то же время. Плавник на противоположной стороне поворачивается наружу под углом 45 градусов к плоскости и будет оказывать сопротивление, соответствующее естественному сопротивлению на наветренной стороне.Это расположение. по-видимому, хорошо работает, когда выполняются прямые полеты, и даже при повороте он, вероятно, выполняет все необходимые операции; но для выпрямления самолета после или по окончании разворота может оказаться необходимым прибегнуть к работе элеронов. Даже если это устройство иногда необходимо дополнять элеронами, оно во многом избавило бы оператора самолета от постоянной нагрузки, связанной с рычажным механизмом, приводящим в действие средства поперечной и продольной устойчивости.Одним из основных требований было бы, чтобы размер плавников был в правильном соотношении с плоскостью, которую они служат в качестве выравнивателя. Такое устройство можно было бы использовать на самолетах любой конструкции, и для упрощения крепления этих килей последние пять или шесть ребер с обеих сторон должны постепенно расплющиваться, чтобы крайние концы самолета были почти плоскими. Чикаго, III. Эвальд Штайнхаус.

Промышленные дизельные двигатели | Джон Дир США

1 результат

Промышленные дизельные двигатели

Final Tier 4 / Stage V (EPA / EU)

3029HI530

2.Промышленный дизельный двигатель 9 л
  • PowerTech ™ EWX
  • 36-55 кВт (48-74 л.с.) при 2200-2400 об / мин
  • Непрерывный, тяжелый, прерывистый

4045CI550

Промышленный дизельный двигатель 4,5 л
  • PowerTech ™ PSS
  • 93-129 кВт (125-173 л.с.) при 2200-2400 об / мин
  • Непрерывный, тяжелый, прерывистый

4045HI550

4.Промышленный дизельный двигатель 5L
  • PowerTech ™ PWS
  • 74-104 кВт (99-139 л.с.) при 2200-2400 об / мин
  • Непрерывный

4045TI530

Промышленный дизельный двигатель 4,5 л
  • PowerTech ™ EWX
  • 55 кВт (74 л.с.)
  • Непрерывный

6068CI550

Промышленный дизельный двигатель 6,8 л
  • PowerTech ™ PSS
  • 168-224 кВт (225-300 л.с.) при 2200-2400 об / мин
  • Непрерывный, тяжелый, прерывистый

6068HI550

6.Промышленный дизельный двигатель 8L
  • PowerTech ™ PVS
  • 104-187 кВт (140-250 л.с.) при 2000-2400 об / мин
  • Непрерывный, тяжелый, прерывистый

6090CI550

Промышленный дизельный двигатель 9,0 л
  • PowerTech ™ PSS
  • 187-317 кВт (250-425 л.с.) при 2000-2200 об / мин
  • Непрерывный, тяжелый, прерывистый

6135CI550

13.Промышленный дизельный двигатель 5L
  • PowerTech ™ PSS
  • 309-448 кВт (414-600 л.с.) при 2100 об / мин
  • Непрерывный, тяжелый, прерывистый

6136CI550

Промышленный дизельный двигатель 13,6 л
  • PowerTech ™ PSS
  • 391-510 кВт (525-684 л.с.) при 2100 об / мин
  • Непрерывный, тяжелый, прерывистый

6136HI550

13.Промышленный дизельный двигатель 6 л
  • PowerTech ™ PWS
  • 300-410 кВт (400-550 л.с.) при 2100 об / мин
  • Непрерывный, тяжелый, прерывистый

Final Tier 4 (только EPA)

4045HFC06

4.Промышленный дизельный двигатель 5L
  • PowerTech ™ PSL
  • 93-129 кВт (125-173 л.с.)

4045HFC04

Промышленный дизельный двигатель 4,5 л
  • PowerTech ™ PWL
  • 63-104 кВт (85-140 л.с.)

Извините, совпадений не найдено

Пожалуйста, попробуйте другие критерии или очистите фильтры, чтобы начать заново.

ZOIL | Основы дизельного двигателя


Дизельный двигатель — это двигатель внутреннего сгорания , в котором воспламенение от сжатия используется для воспламенения топлива при его впрыске в двигатель.

Для понимания того, как работают дизельные двигатели, полезно сравнить различия между дизельным двигателем и бензиновым двигателем. Основные отличия бензинового двигателя от дизельного:

  • Бензиновый двигатель берет смесь газа и воздуха, сжимает ее и воспламеняет смесь искрой.Дизельный двигатель забирает воздух, сжимает его, а затем впрыскивает топливо в сжатый воздух. Тепло сжатого воздуха самопроизвольно воспламеняет топливо. Дизельный двигатель не имеет свечи зажигания.
  • Бензиновый двигатель сжимает в соотношении от 8: 1 до 12: 1, в то время как дизельный двигатель сжимает в соотношении от 14: 1 до 25: 1. Более высокая степень сжатия дизельного двигателя приводит к повышению эффективности.
  • Бензиновые двигатели обычно используют либо карбюрацию, при которой воздух и топливо смешиваются задолго до того, как воздух поступает в цилиндр, либо впрыск топлива через порт, при котором топливо впрыскивается непосредственно перед тактом впуска (вне цилиндра).Следовательно, в бензиновом двигателе все топливо загружается в цилиндр во время такта впуска, а затем сжимается. Сжатие топливно-воздушной смеси ограничивает степень сжатия двигателя — если он слишком сильно сжимает воздух, топливно-воздушная смесь самопроизвольно воспламеняется и вызывает детонацию. В дизельных двигателях используется прямой впрыск топлива, то есть дизельное топливо впрыскивается непосредственно в цилиндр. Дизельный двигатель сжимает только воздух, поэтому степень сжатия может быть намного выше. Чем выше степень сжатия, тем больше генерируется мощность.
  • Форсунки для дизельного топлива, в отличие от бензиновых, должны выдерживать температуру и давление внутри цилиндра и при этом подавать топливо в виде мелкого тумана. Чтобы туман равномерно распределялся по цилиндру, некоторые дизельные двигатели оснащены специальными впускными клапанами или камерами предварительного сгорания. Более новые дизельные двигатели оснащены топливными системами Common Rail высокого давления. См. «Основы дизельной топливной системы» для получения дополнительной информации об этом типе топливной системы.
  • Дизельные двигатели могут быть оснащены свечой накаливания. Когда дизельный двигатель холодный, процесс сжатия может не поднять температуру воздуха настолько, чтобы воспламенилось топливо. Свеча накаливания представляет собой электрически нагреваемую проволоку, которая способствует зажиганию топлива при холодном двигателе. Свечи накаливания обычно устанавливаются на небольших дизельных двигателях. Бензиновые двигатели не требуют свечей накаливания, поскольку они не полагаются на самовозгорание.

ШАГ


1

ВПУСКНОЙ (ВНИЗ) ХОД 1 |
Поршень движется вниз, всасывая воздух в цилиндр

.

ШАГ


2

ХОД СЖАТИЯ (ВВЕРХ) 1 |
Поршень движется вверх, сжимая вновь всасываемый воздух в цилиндр
Прежде, чем поршень достигнет верхней мертвой точки (ВМТ), дизельное топливо впрыскивается непосредственно в цилиндр
Результат — сгорание дизельного топлива

ШАГ


3

ВПУСКНОЙ ХОД (ВНИЗ) 2 |
Поршень опускается, но впускной и выпускной клапаны не открываются

ШАГ


4

ПАРАМЕТР КОМПРЕССИИ (ВВЕРХ) 2 |
Поршень движется вверх, вытесняя сгоревшее дизельное топливо из цилиндра в виде выхлопа

.

ШАГ


5

Процесс повторяется

Дизельный двигатель предлагает эффективный метод выработки энергии.

Дизельные двигателя: Принцип работы и устройство дизельного двигателя

Дизельный двигатель

Статья опубликована 26.06.2014 06:37
Последняя правка произведена 28.10.2015 17:14

Определение.

Дизельный двигатель – поршневой ДВС, работающий от дизельного топлива. Топливо возгорается от сильного сжатия воздуха в цилиндре.

История.

В 1890 году Рудольф Дизель предположил, что если увеличить давление в цилиндрах, то эффективность работы двигателя заметно увеличится (теория «экономичного термического двигателя»). Свои замыслы ему удалось реализовать после получения патента на свое изобретение 23 февраля 1893 года. Первая рабочая модель двигателя была собрана только в начале 1897 года, а 28 января она успешно прошла все тестирования и испытания.

Патент на изобретение Дизеля Патент на изобретение Дизеля

Патент, который получил Рудольф Дизель 23 февраля 1893 года на свое изобретение.

В качестве топлива Рудольф Дизель предполагал использовать каменноугольную пыль, однако проведенные опыты показали, что она совершенно не подходит на эту роль из-за высоких абразивных свойств. Зола, полученная при сгорании пыли, изнашивает двигатель и выводит его из рабочего состояния. Помимо того, неосуществимой оказалась подача пыли в цилиндры двигателя. Однако, несмотря на эти неудачи, стало возможным использование тяжелых фракций нефти в качестве топлива. Хотя Рудольф Дизель первым запатентовал использование в качестве системы зажигания сжатие воздуха, однако и до него существовали люди, высказывавшие подобные идеи. Таким был и Экройд Стюард, но по непонятным причинам он не смог получить патент.

Идея Экройда Стюарда заключалась в использовании сжатого воздуха для поджигания, впрыскиваемого в емкость, топлива. Чтобы запустить двигатель, необходимо было нагреть емкость лампой, но после запуска, работа двигателя поддерживалась без дальнейшего подвода тепла. Главное упущение теории Стюарта в том, что он даже не учитывал преимущества работы от высокой степени сжатия. Перед собой он ставил задачу исключения из двигателя свечей зажигания. Вот почему в нынешнее время всем хорошо известны «дизельные двигатели«, «дизельное топливо», «двигатель Дизеля» и просто «дизель», а про Экройда Стюарда почти никто не знает.

Первые дизельные двигатели были крупногабаритными и тяжелыми, поэтому на протяжении почти 30 лет применялись исключительно в стационарных механизмах и силовых установках морских судов. Дорога в автомобилестроение была им закрыта также из-за того, что системы впрыска топлива того времени не были приспособлены к работе на высокооборотистых двигателях.

Стационарный одноцилиндровый дизельный двигатель Стационарный одноцилиндровый дизельный двигатель

На фотографии один из первых дизельных двигателей. Он представлял собой громоздкую стационарную конструкцию с одним цилиндром.

В 20-е годы ХХ века немецким инженером Робертом Бошем был усовершенствован встроенный топливный насос высокого давления, который широко применяется и сегодня. Использование гидравлической системы в качестве нагнетателя и впрыскивателя топлива позволило избавиться от отдельного воздушного компрессора, а также увеличить крутящий момент двигателя. Но даже после этого дешевые и легкие двигатели с электрическим зажиганием лидировали среди легковых автомобилей, в то время как дизельные двигатели устанавливались только на общественный транспорт и грузовые машины.

«Дизель» в массы!

Переломным моментом в истории дизельных двигателей стали события 70-х годов. После резкого подорожания бензина, мировые производители малолитражных автомобилей заинтересовались в использовании дизельных двигателей.

О целесообразности использования дизельных двигателей заговорили и экологи. Выхлопы дизельного двигателя не такие токсичные и не загрязняют атмосферу.

Ж/Д транспорт и морские суда.

Помимо легковых автомобилей и грузовиков, дизельным двигателем оснащаются и локомотивы. «Дизель-поезда» незаменимы на неэлектрифицированных участках железных дорог благодаря своей автономности. Двухтактные дизельные двигатели с мощностью до 100.000 л.с. применяются на больших морских судах.

Принцип работы дизельного двигателя.

Четырехтактный цикл.

Принцип действия четырехтактного дизеля Принцип действия четырехтактного дизеля

На первом такте работы двигателя происходит втягивание воздуха через открытый впускной клапан цилиндра. Поршень опускается.

На втором такте воздух нагревается при сильном (примерно в 17 раз) сжатии в цилиндре. Поршень поднимается.

Во время третьего такта поршень опускается, топливо впрыскивается в камеру сгорания через распылитель форсун. Топливо равномерно перемешивается с воздухом и образует самовоспламеняющуюся смесь. Энергия, образующаяся при сгорании топлива, приводит поршень в движение.

Четвертый такт – завершающий. Поршень поднимается, и выхлопные газы выходят через выпускной клапан.

Дизельные двигатели различаются конструкцией камеры сгорания:

Неразделенная камера сгорания: камера сгорания располагается в поршне, а впрыск топлива происходит в надпоршневом пространстве. Основное преимущество конструкции в пониженном расходе топлива, однако приходится терпеть грохот и шум. В нынешнее время конструкторы уделяют много внимания на разрешение этой проблемы.

Разделенная камера сгорания: топливо поступает в отдельную камеру (которая называется вихревой). Преимущественно в конструкции дизельных двигателей есть соединение вихревой камеры с цилиндром при помощи специального канала. Воздух, попадая в эту камеру, закручивается, что способствует более интенсивному перемешиванию топлива с кислородом. Раньше такая система была популярной в автомобилестроении, но из-за своей неэкономичности постепенно вытесняется конструкцией с неразделенной камерой сгорания.

Двухтактный цикл.

Принцип действия двухтактного дизеля Принцип действия двухтактного дизеля

Помимо 4-хтактного цикла существует также и двухтактный.

На начало первого такта цилиндр, наполненный воздухом, располагаются в нижней (мертвой) точке. При перемещении поршня вверх, происходит сжатие воздуха. Когда поршень приближается к верхней мертвой точке, впрыскивается топливо, которое самовоспламеняется. Благодаря расширению продуктов сгорания топлива, поршень совершает работу и опускается вниз. В нижней мертвой точке цилиндр продувается от продуктов сгорания и в него поступает чистый воздух. На этом цикл завершается.

Процесс вентиляции осуществляется за счет специальных продувочных окон, которые в зависимости от положения поршня то закрываются, то открываются. Данный тип продувки называется щелевым. Альтернативой ему является клапанно-щелевая продувка. Клапана в ней служат только для отвода отработавших газов, а окна для поступления чистого воздуха.

Так как в двухтактном цикле частота рабочего хода чаще в два раза, то можно предложить, что и мощность будет больше в два раза. Однако на практике такого не наблюдается. Максимальный прирост мощности по отношению к четырёхтактному 1.6-1.7 раз.

О правильной эксплуатации дизельного двигателя, а также о его ремонте можно почитать здесь.

Как работает дизельный двигатель?

Автомобили с дизельными двигателями составляют почти половину от всего количества транспортных средств, ежегодно продаваемых как на официальных дилерских площадках, так и на вторичном рынке.

Силовые установки этого типа характеризуются экономичностью, значительной мощностью и динамикой. Такие агрегаты демонстрируют высокий крутящий момент и принципиально недоступный для бензиновых двигателей КПД (35%-35% у дизельных систем против 25%-35% у их аналогов). Эти преимущества, а также понизившийся уровень шума при эксплуатации и полное соответствие перманентно усложняющимся стандартам безопасности окружающей среды и обеспечили популярность дизелей как в легковом, так и в коммерческих классах транспортных средств.

Как происходит запуск дизельного двигателя?

Принцип работы дизельного двигателя следующий: в цилиндры поступает чистый воздух, который вследствие высокого сжатия нагревается до 700°С и более. После этого, при приближении поршня к верхней точке его траектории в камеру сгорания под давлением подается горючее, которое воспламеняется при контакте с горячим воздухом. Момент воспламенения сопровождается резким повышением давления в цилиндре. Такой принцип работы позволяет мотору работать на максимально обедненных смесях, что обеспечивает экономичность его эксплуатации.

Принцип работы дизельного двигателя

Для холодного старта дизеля используется система предпускового нагрева, основным элементом которой являются свечи накаливания –нагревательные элементы, размещенные в камерах сгорания. Они позволяют за несколько секунд поднять температуру воздуха до требуемого значения. При включении системы в салоне загорается лампочка. Ее обесточивание свидетельствует о готовности двигателя к запуску. Подача электроэнергии к свечам прерывается автоматически, спустя 15сек – 25 сек после старта. Это условие позволяет обеспечить стабильную работу непрогретого агрегата. Современные системы данного типа делают возможным легкий запуск дизеля при температурах до -30°С при условии исправности мотора и использования масла и топлива соответствующей сезонности и качества.

Конструктивные особенности

Схема дизельного двигателя в целом повторяет механизм бензинового силового агрегата с той разницей, что аналогичные детали значительно усиливаются с учетом более высоких нагрузок. Поскольку воспламенение происходит в результате сжатия, из схемы исключаются компоненты системы зажигания, а свечи заменяются на элементы накаливания, не дающие искры и предназначенные для предварительного прогревания воздуха в камерах сгорания.

Характерной особенностью конструкции дизельного двигателя, связанной с самим принципом его работы, является геометрия днища поршней. Их форма определяется спецификой камеры сгорания. В верхней точке хода поршня, его днище оказывается выше самой крайней точки блока цилиндров. В некоторых случаях, в донышке поршня и располагается сама камера сгорания. От ее типа и реализованного способа подачи смеси и зависят технические и экологические характеристики конкретной модели дизельного двигателя.

Типы камер сгорания

В зависимости от их геометрии различают следующие виды камер сгорания.

Разделенные. В этом случае первичный впрыск горючего производится в отдельную полость, расположенную в головке блока. Такая технология позволяет снизить нагрузку на поршневую группу, а также значительно уменьшить шум от работы двигателя.

При этом процесс образования смеси может быть:

  • Форкамерным (предкамерным). Топливо под давлением поступает в предварительную камеру, соединенную с цилиндром несколькими каналами, где ударяется о ее стенки и таким образом смешивается с воздухом. После воспламенения смесь передается в основную камеру, где и дожигается полностью. Необходимый для максимально быстрого истечения газов через каналы перепад давления между цилиндром и форкамерой возникает в момент хода поршня на сжатие и на расширение.
  • Вихрекамерным. В этом случае первичное возгорание смеси также производится в отдельной камере, имеющей сферическую геометрию. В момент хода поршня на сжатие порция воздуха поступает в нее по соединительному каналу и интенсивно закручивается, образуя вихревой поток, за счет чего хорошо смешивается с горючим, поданным в определенный момент.

Характерными недостатками агрегатов с разнесенными камерами сгорания является усложненный запуск и повышенный расход топлива в связи с потерями при переходе порции воздуха в дополнительную камеру и обратного хода воспламененной смеси – в цилиндр.

Неразделенные. В этом случае горючее под давлением подается в цилиндр, а камерой служит полость, выбранная в донце поршня. В силу того, что такие агрегаты характеризуются повышенным уровнем шума и вибраций в процессе работы, особенно – при разгоне, до недавнего времени неразделенные агрегаты использовались на низкооборотистых моторах большого объема, предназначенных для коммерческого транспорта. Появление электронных систем впрыска позволило оптимизировать сгорание смеси в таких двигателях и значительно снизить уровень шума от их работы, что в свою очередь сделало неразделенные конструкции наиболее перспективным технологическим решением при проектировании новых типов силовых агрегатов.

Устройство топливной системы дизельного двигателя

Устройство топливной системы дизельного двигателя

Принцип работы дизельного двигателя обуславливает важность подачи в камеру сгорания строго дозированной порции смеси в определенный момент времени и под четко рассчитанным давлением. Система впрыска включает в себя следующие основные компоненты.

Топливный насос высокого давления (ТНВД). Этот элемент предназначается для забора порции горючего от расположенного в баке насоса подкачки и поочередной раздачи дозированных порций в индивидуальные трубопроводы форсунок на каждый цилиндр. Конструкция таких распылителей подразумевает их открытие при повышении давления в топливных магистралях. В зависимости от технологических решений различают следующие типы ТНВД:

  • Многоплунжерные рядные. Этот вариант насоса состоит из отдельных секций, по одной на цилиндр. Как правило, блоки  имеют рядную сборку. Каждая секция снабжена гильзой и плунжером, который приводится в движение мотором через кулачковый вал. Давление в подаваемом горючем зависит от частоты оборотов коленвала. Специфика конструкции такого насоса обуславливает высокий уровень шума при его работе и сложность в соблюдении актуальных экологических норм.
  • Распределительные. Этот тип насосов поддерживает необходимое давление в соответствии с режимом эксплуатации двигателя и отличаются равномерностью подачи горючего по цилиндрам, а также – стабильной работой на высоких оборотах. Конструкции данного типа имеют один плунжер, который перемещается в двух плоскостях. Поступательные движения обеспечивают нагнетание порции горючего, а вращательные – распределяют его по форсункам. Специфика распределительных насосов обуславливает требовательность к качеству топлива, так как оно служит для смазки трущихся деталей, а прецизионные элементы имеют минимально допустимые зазоры.

Топливные фильтры. Эта деталь дизельного двигателя предназначается для отделения и последующего отвода воды из заправленного в бак горючего, для чего используется сливная пробка в нижней части. Удаление воздуха из системы производится с помощью ручного насоса, расположенного на верхней стороне корпуса. Несмотря на относительную простоту конструкции, фильтр требует внимательного подбора по таким параметрам, как пропускная способность, тонкость очистки и т.д. Для предотвращения забивания кристаллизующимися парафинами и облегчения запуска в холодное время года система может снабжаться электроподогревом.

Турбонаддув. Этот элемент предназначен для нагнетания в цилиндры дополнительного объема воздуха, что позволяет увеличить подачу горючего и повысить мощность силового агрегата. Принцип работы дизельного двигателя подразумевает высокое давление выхлопных газов, которое дает возможность обеспечить эффективность наддува с низких оборотов и при этом избежать эффекта «турбо-ямы». Отсутствие дроссельной заслонки в силовых агрегатах этого типа упрощает схему управления компрессором и позволяет поддерживать эффективность наполнения цилиндров во всем диапазоне оборотов. В первую очередь, наддув позволяет оптимизировать процессы сгорания смеси в ситуациях, в которых атмосферный силовой агрегат будет испытывать нехватку воздуха. Наличие турбины обеспечивает повышение мощности при меньшем рабочем объеме и меньшей массе мотора. При этом снижается жесткость его работы. Установка дополнительного интеркулера – промежуточного охладителя воздуха, позволяет дополнительно повысить мощность силового агрегата на 15% и более за счет увеличения массового наполнения цилиндров.

Специфика работы турбины обуславливает срок ее эксплуатации, значительно меньший, чем ресурс самого дизельного двигателя. При этом, в связи с форсированием, снижается и срок работы силового агрегата, в камерах сгорания которого постоянно поддерживается повышенная температура, требующая охлаждения подаваемым через дополнительные форсунки маслом. Эта конструктивная особенность влечет за собой критическую требовательность мотора к качеству смазочных материалов.

Форсунки. Этот элемент топливной системы предназначен для подачи строго отмеренной дозы горючего в точно рассчитанный момент времени. Появление электронного управления подачей топлива позволило организовать его двухступенчатую подачу неравномерными порциями. При воспламенении первичной дозы повышается температура в камере, после чего в нее поступает основной «заряд» на этот цикл. Такая схема дала возможность исключить скачкообразное нарастание давления и снизить шум работы двигателя. В зависимости от конструкции различают два типа распылителей.

  • Насос-форсунки. Эта конструкция объединяет в себе распылитель и плунжерный насос.  Данный элемент устанавливается по одному на каждый цилиндр и приводится в действие толкателем, соединенным с кулачком распредвала. Линии подачи и слива горючего представляют собой технологические каналы в головке блока, благодаря чему может быть достигнуто давление до 2200 бар. Электронный блок управления отвечает за дозирование порции топлива и контроль угла опережения впрыска путем отправки сигналов на запорные пьезоэлектрические или электромагнитные клапаны. Конструкция насос-форсунок позволяет эксплуатировать их в многоимпульсном режиме, совершая от 2 до 4 впрысков за один цикл. Такая технология позволяет смягчить работу силового агрегата и снизить токсичность выхлопа.
  • Common Rail. Эта конструкция представляет собой общую топливную магистраль (рампу), в которой накапливается горючее, после чего по команде электронного управляющего блока впрыскивается через пьезоэлектрические или электромагнитные форсунки. Конструкция данного типа подразумевает применение ТНВД только для нагнетания давления в аккумуляторе, не используя его для регулировки момента впрыска и дозирования порций топлива. Такое конструктивное решение позволило сократить расход горючего до 20% при одновременном возрастании крутящего момента на малых оборотах до 25%. Электронный блок управления распылителями контролирует длительность фазы впрыска и оптимальный момент ее проведения по показателям ряда датчиков – температурного режима мотора, текущей нагрузки на него, давления в рампе, положение педали акселератора и т.д.

Сочетания турбины и системы Common Rail на сегодняшний день считается наиболее эффективным способом увеличения мощности дизельного двигателя при одновременном уменьшении токсичности его выхлопа.

10 самых надежных дизельных двигателей

Количество вариаций дизельных двигателей на рынке велико, при этом немало тех, чей ресурс и надежность вряд ли обрадуют владельца. Однако, есть и проверенные моторы, которые можно назвать настоящими долгожителями

Опираясь на свой многолетний опыт работы на СТО, я рекомендую обратить внимание именно на эти 10 моторов – автомобили с ними дольше всего не будут создавать проблем своему владельцу.

PSA 2.0 HDI

Дизель 2.0 HDI от французского концерна PSA Peugeot Citroen – является очень надежным агрегатом, особенно если он из первого поколения. Такие двигателя устанавливались на автомобили Пежо, Ситроен, Сузуки, Форд и Фиат выпускавшихся с 1999 по 2006 год. Самые популярные авто с таким мотором это: Peugeot 206, 306, 307, 406, Partner, Citroen C5 I, Berlingo, Xsara и Suzuki Vitara. Французский 8-клапанный дизель легко ходит более 500 тыс. км, не требуя сложного обслуживания, но соблюдать регламентные сроки нужно в любом случае. Мощность первых агрегатов составляла 90 – 109 л. с., позже мощность выросла – от 136 до 180 л.с. Эти моторы до сих пор не вызывают нареканий у автовладельцев, особенно, если оборудованы топливной системой фирмы Bosch, а не Siemens (их пьезофорсунки мало служат и плохо ремонтируются).

Переживут владельца: 10 самых надежных дизельных двигателей

VOLVO 2.4 D

У «шведов» тоже есть весьма надежный двигатель. Так автоконцерн Volvo, который известен разработкой целой серии удачных бензиновых двигателей, еще в 2001 году выпустил отличный дизельный мотор 2.4 D с пятью цилиндрами. Такие агрегаты устанавливались на седаны, универсалы и кроссоверы, а именно: S60, V60, S80, V70, XC70, XC90. Двигатель имел 10- или 20-клапанный ГРМ (в зависимости от года выпуска) и систему турбонаддува. Популярностью пользуются версии от 130 до 205 л.с. – эти движки (в случае регулярного обслуживания) без проблем выхаживают 500-700 тыс. км.

Переживут владельца: 10 самых надежных дизельных двигателей

VAG 1.9 TDI

Этот дизель от группы VAG нельзя оставить без внимания. Его модификации доступна уже более 20 лет (с некоторыми изменениями). Устанавливался 1.9 TDI на различные модели Сеат (Леон, Толедо, Ибица, Алхамбра), Ауди (А3, А4, А6), Шкода (Октавия), Фольксваген (Кадди, Гольф, Пассат, Шаран) и некоторые другие. Двигатель знаменит надежностью, но это справедливо только в том случае, если владелец будет использовать качественное топливо и масло, а периодичность ТО сократит с 15 до 10 тыс. км. Также желательно следить за клапаном управления наддувом N75, это слабое его место. Несмотря на некоторые поломки у определенных модификаций, этот мотор вполне способен отходить 400 тыс. км.

Переживут владельца: 10 самых надежных дизельных двигателей

BMW M57

Дизели серии M57 от баварского автоконцерна также заслужили немало хороших отзывов от автовладельцев. Рядные двигатели имели по 6 цилиндров, их мощность, в зависимости от модификации, составляла от 201 до 286 л. с. Выпускались такие дизели с 1998 по 2008 годы и устанавливались на большинство моделей BMW, с 3-й по 7-ю серию: E39, E46, E90, E60, E83, E53, E70, а также на Range Rover L322. У некоторых модификаций дизеля M57 возникают некрупные поломки, однако в целом он способен отходить 400 – 500 тыс. км.

Переживут владельца: 10 самых надежных дизельных двигателей

HONDA 2.2 i-CTDi

Это дизель имеет настолько хорошую репутацию, что приобрести оснащенный им автомобиль задешево невозможно, даже если речь о машине с большим пробегом. Однако, все-таки, некоторые мелкие недоработки в данном моторе имеются. Так, если вы живете в северном регионе, то подогрев топлива может не справиться с температурой от -15 и ниже. Ресурс хондовского двигателя 2.2 i-CTDi оценивается в 350 тыс. км. Ставился такой мотор на Accord 7, Civic 8, CR-V второго и 3-го поколений.

Переживут владельца: 10 самых надежных дизельных двигателей

TOYOTA 1HD

Двигатель Тойота 1HD объемом 4,2 литра, который ставился на Ленд Крузер J80 и J100,  относят к категории ветеранов-долгожителей, как по пробегу (как правило, не менее 600 тыс. км.), так и по времени производства (с 1990 по 2007 год). Однако если относится к нему небрежно, полагаясь на его надежность, не производить регулярное обслуживание, то это станет причиной различных поломок. Стоит уделить внимание газораспределительному механизму и регулярной проверке зазоров клапанов дизельного мотора.

Переживут владельца: 10 самых надежных дизельных двигателей

OPEL 1.7 CDTI

Дизель 1.7 CDTI хоть и бюджетный, но очень выносливый. Разрабатывался совместно с Isuzu и GM, а устанавливался на Опель Астра H, J и Зафира B. За годы производства было много модификаций этого мотора и типов топливных систем для них. Чем они сложнее, тем больше вероятность поломок, но, как правило, эти двигатели без проблем преодолевают 400 тыс. км. пробега без какого-то существенного ремонта.

Переживут владельца: 10 самых надежных дизельных двигателей

FIAT 2.4 JTD

От продукции итальянского автопрома, как правило, не ожидаешь надежности, но турбодизельный двигатель 2.4 JTD – приятное исключение из этого правила. Ставили такой агрегат на многие модели Fiat, а также Alfa Romeo и Lancia. Он имеет 5 цилиндров и систему Common Rail. Отличительные качества – экономичность и хорошая тяга. Версия с 20-ю клапанами иногда требует снятия выпускного коллектора – по причине облома шпильки случается прорыв выхлопных газов. С годами вопросы появятся к системе EGR, а после 250 000 км может потребоваться ремонт турбины. При этом, само железо вполне может выдержать 500, а то и 700 тыс. км пробега.

Переживут владельца: 10 самых надежных дизельных двигателей

HYUNDAI/KIA 1.6 CRDi (D4FB)

Корейский дизельный мотор 1.6 CRDi мощностью от 90 до 136 л. с. тоже можно отнести к разряду лучших. Его выпуск стартовал в 2006 году, двигатель получил широкое распространение в моделях Киа и Хендэ, которые изготавливались для рынка Европы. Стоит такой мотор на Hyundai Elantra 4, Elantra 6, Accent RB, i20, i30, ix20, Kia Ceed, Cerato и Soul. Отличаясь простотой конструкции, этот двигатель вышел неприхотливым и надежным, правда, достаточно требовательным к качеству топлива. А в первых годах выпуска его слабым местом была турбина, которая часто страдала масляным голоданием. Но «детские болезни» успешно вылечили и в настоящее время нарекания могут вызвать разве что датчик наддува, да регулятор давления топлива. Но в целом ресурс такого двигателя составляет не менее 300 тыс. км.

Переживут владельца: 10 самых надежных дизельных двигателей

MERCEDES-BENZ 3.0 CDI (OM642)

Трехлитровая дизельная «шестерка» ОМ642 от Mercedes-Benz является продолжателем успешных моторов-миллионников. Она имела много модификаций и вариантов мощности, скрываясь под индексами 280, 300, 320 и 350 CDI. Устанавливалась на Мерседес, Крайслер, Додж и Джип с 2005 года. По железу является традиционно крепким. А чтобы не было проблем с сажевым фильтром, необходимо заправиться качественным топливом и использовать моторное масло с соответствующим допуском. Единственным проколом стал выпускной коллектор. При нагреве, в местах его сварки, могут откалываться маленькие частички и попадать в турбину, что приводит к выходу ее из строя.

Переживут владельца: 10 самых надежных дизельных двигателей

Материал предоставлен порталом etlib.ru

Хочу получать самые интересные статьи
12 забавных и неожиданных фактов про дизель — журнал За рулем

В бородатом анекдоте про блондинку она заправила бензиновую машину дизтопливом, потому что решила: надпись ДТ — это Девяносто Третий бензин. Но это далеко не единственная забавность о дизельном топливе.

Материалы по теме

Дизельная легковушка была мечтой советских автовладельцев жигулевской эпохи. Бензин АИ-93 по 10 копеек за литр почему-то казался тогда безобразно дорогим, а отсутствие в продаже дизельных машинок воспринималось как вселенская несправедливость. Правда, на АЗС дизтопливо частникам вообще не отпускали, но народ прекрасно знал: все КАМАЗы ходят на дизтопливе и наверняка мечтают поделиться им с кем-нибудь. А еще были дизельные МАЗы, КрАЗы, Уралы-4320 и т. п. 

Что в имени тебе моем?

Если бензиновые моторы условно называют так «в честь бензина», то дизельные двигатели увековечили имя своего изобретателя — Рудольфа Дизеля. Соответствующие топлива также фактически носят его имя.

Что вам налить?

На каком топливе изначально работали опытные дизельные моторы, если никакого специального ДТ вообще не было в природе? В них поначалу сжигали растительные масла — например, арахисовое, а также легкие нефтепродукты — в том числе и… бензин!

Пыль в топливном баке

Материалы по теме

Первоначально Рудольф Дизель планировал использовать для своих движков каменноугольную пыль! Идея была политически и экономически превосходной для изобретателя, получившего немецкий патент: угля в Германии было полно, а вот нефти — увы. Однако в ходе работы быстро выяснилось: не получится. Пыль — это абразив, как ее подавать в цилиндры — тоже вопрос. В итоге пришлось-таки ориентироваться на нефтепродукты, что вызвало озлобление немецких промышленников, рассчитывавших хорошо заработать на горючем для новых моторов.

Дизтопливо или солярка?

Называть дизельное топливо соляркой неграмотно, хотя в разговорной речи термин хорошо прижился. Но дело в том, что дизельное топливо содержит не только соляровые фракции — еще есть газойлевые и керосиновые. А названия «соляр» или «солярка» происходят от немецкого Solaröl — «солнечное масло»: так когда-то называли образующуюся при перегонке нефти более тяжелую фракцию желтоватого оттенка. Сегодня солярка — это отдельный вид топлива, применяющийся разве что в тихоходных тракторах: в современном автомобиле оно не используется.

«Тридцатьчетверка»

Одним из главных достоинств самого известного танка в нашей истории — Т-34 — было использование дизтоплива вместо бензина, что существенно снижало их пожароопасность. Молва гласит, что в ходе создания машины конструктор, на глазах у начальства, сунул горящий факел в ведро с соляркой, и топливо не вспыхнуло: испаряемость у солярок неважная. Скорее всего, впрочем, история была придумана.

На фото одна из модификаций «тридцатьчетверки», дожившая до нашего времени.

На фото одна из модификаций «тридцатьчетверки», дожившая до нашего времени.

Приплыли

Материалы по теме

Океанский лайнер может пройти на литре дизтоплива примерно 3 см! Для сравнения: среднестатистический легковой автомобиль на том же литре способен преодолеть километров 20 — 25.

Почем?

Самое дешевое дизтопливо на планете продают в Венесуэле — там литр обходится примерно в пару центов. Тяжелее всех живется норвежским дизелеводам — у них ДТ стоит примерно пару евро.

Они были первыми

Первым примерил на себя дизель американский автомобиль Auburn с мотором Cummins — это было в 1935 году. Но до серии первыми докатились все-таки немцы, выпустившие в 1936 году двухлитровый Mercedes-Benz 260 D мощностью 45 л.с. Он стоил 6800 рейхсмарок, что почти на две тысячи превышало стоимость 55-сильной модификации Mercedes-Benz 230. Первые рекорды скорости — также за немцами: в 1939 году дизельный Hanomag с аэродинамическим кузовом развил на пятикилометровом отрезке со стартом с хода скорость 155,94 км/ч.

Первый «американец» с дизелем Cummins — открытый Auburn образца 1935 года.

Первый «американец» с дизелем Cummins — открытый Auburn образца 1935 года.

Победа и дизель?

В первые послевоенные годы велись разработки дизеля для нашей Победы (ГАЗ 20) — в работе участвовали немецкие институты под руководством советской военной администрации. Однако практической реализации так и не произошло. Зато, спустя некоторое время, за рубежом появились отдельные Волги и Москвичи с дизелями Perkins, Rover и Indenor-Peugeot, которые импортеры ставили самостоятельно. В частности, на Москвичи и Волги устанавливали 1,6-литровый Perkins мощностью 43 л.с. Впоследствии на Москвич-408 устанавливали 52-сильный мотор той же марки, а на Волгу — 65-сильный Rover. С 1968 года на ГАЗ 21, а затем и на ГАЗ 24 устанавливали Indenor мощностью 68 л.с. Дизельные ГАЗ 24 разными путями изредка попадали в СССР, где вызывали сумасшедший интерес.

Экспорт?

Ниву ВАЗ-21215 с двухлитровым дизелем Peugeot мощностью 65 л.с. продвигала подмосковная фирма Лада Экспорт. А 41-й Москвич с атмосферным дизелем Ford XLD 418 (1,8 л, 60 л.с. при 4800 об/мин) пытались продавать в Германии. Но особого интереса это не вызвало.

Тольятти и Барнаул

Дизельный ВАЗ-21045 побывал и в редакции «За рул

чьи лошади сильнее? — журнал За рулем

Кто лучше тянет? Кто быстрее разгоняется? Сравниваем бензиновый и дизельные двигатели.

До сих пор встречаются чудаки, свято верящие в то, будто бы 100 лошадиных сил дизеля соответствуют примерно 140 «бензиновым» силам. Дело, как они полагают, в крутящем моменте, который у дизеля гораздо выше.

Материалы по теме

Грамотно прояснить ситуацию оказалось не так-то просто. Пришлось то и дело консультироваться в самых различных местах — на ВАЗе и УАЗе, ГАЗе и ЯМЗе. В итоге трактат получил всеобщее «одобрям-с», но автору посоветовали заранее спрятаться от потока помидоров, запущенного недовольными апологетами того или иного двигателя. Мол, будет та же реакция, как если бы спартаковский фанат в своих красно-белых тонах забрался на зенитовскую трибуну…

В общем, разбираемся, чьи силы сильнее. А попутно, чтобы стало веселее, попытаемся ответить на простейший, казалось бы, вопрос:

«Даны два автомобиля, максимально близких по конструкции, — бензиновый и дизельный. Исходные условия: современные моторы одинаковой мощности, идеально подобранные для каждого коробки передач, образцовые водители (почти роботы!), отличное сцепление с дорогой. Какой автомобиль окажется на трассе быстрее?»

Простой вопрос? Оказалось, что не очень…

Лошадиный момент

Для разгона машины нужна энергия. Чем больше энергии можно потратить в единицу времени, тем быстрее машина разгонится. Иными словами, речь идет о мощности. Чем выше мощность, тем быстрее машина: всё, казалось бы, просто. Но…

Материалы по теме

Но на практике картина другая. Максимальная мощность мотора, как бензинового, так и дизельного, достигается им только при полной подаче топлива — понятно, что это соответствует положению «педаль в пол». А вот основная жизнь автомобиля протекает в режимах частичной подачи топлива, при которых развиваемая мотором мощность явно ниже максимальной.

Напомним, что крутящий момент и мощность — это почти что близнецы-братья, как у Маяковского. Друг без друга они не существуют: ведь мощность — это крутящий момент, помноженный на частоту вращения коленчатого вала. И если на какой-то частоте вращения ДВС способен выдать более высокий крутящий момент, чем его конкурент, то и мощность его в этот момент также должна быть выше. Одно без другого просто немыслимо. Поэтому разговоры о том, что у кого-то при равной мощности момент на тех же оборотах выше, сразу пресекаем: это несерьезно.

Материалы по теме

Пару слов о коробках передач. Очень часто споры вокруг двигателей упираются именно в коробку, а потому уходят в сторону от основной темы. Понятно, что коробка способна изменять момент на ведущих колесах в широких пределах, но одновременно она меняет и частоту вращения колес: изменять мощность она, естественно, не может. Поэтому в дальнейшем условно считаем коробку на бензиновой и дизельной машинах неким идеальным атрибутом и больше к ней не возвращаемся. Для ясности также не принимаем во внимание тот факт, что дизельный двигатель априори тяжелее бензинового той же мощности.

Если бы крутящий момент был постоянным во всем диапазоне частот вращения коленвала, то внешняя скоростная характеристика, показывающая зависимость мощности и крутящего момента от частоты вращения, превратилась бы в прямую линию, а мощность была бы прямо пропорциональна показаниям тахометра. Тогда разницы в поведении бензинового и дизельного моторов равной мощности не было бы вообще. Однако именно своеобразность протекания момента по дизельной кривой и породила неодинаковость их поведения.

Дело в том, что в массовом сознании дизельные моторы всегда отличала их способность выдавать относительно высокие значения мощности и крутящего момента на низах. Субъективно это воспринималось так, что в этом диапазоне частот дизель откликался на правую педаль охотнее, чем бензиновый коллега. Даже атмосферные дизели за счет более высокого эффективного давления в цилиндрах могли развить более высокий момент, чем бензиновые. Однако без наддува ширина «полки» крутящего момента была при этом практически такой же, то есть практически отсутствовала. А вот с применением наддува полка сразу появилась, причем в левой части характеристики — «на низах».

Материалы по теме

Что это дало? Именно то, чем любят хвалиться приверженцы дизелей — «тягу на низах». В этом диапазоне дизельный двигатель способен развить большую мощность, чем бензиновый, а его момент на ведущих колесах действительно может быть выше.

На всякий случай напоминаю: момент существует только там, где есть сопротивление — без него он равен нулю. Грубо говоря, мотор бульдозера готов его выдать, но только в том случае, если встретит кучу щебня перед своим отвалом. Поэтому до тех пор, пока дорога гладкая и ровная, бензиновая и дизельная машины будут примерно в равных условиях. Но как только дорога пойдет в гору или, скажем, подует встречный ветер, то машина, у которой в данном диапазоне оборотов есть запас мощности (или момента — это не важно), сможет за его счет выйти вперед.

А если раскрутить бензиновый мотор до более высоких оборотов? Тогда ситуация выровняется. Мало того, поскольку диапазон частот вращения коленвала у «бензинок» заведомо шире, чем у дизелей, то и отыграться за все обиды они могут именно там, «на верхах». Дизель, быстрее достигнув пика мощности, «заткнется» — его ВСХ пойдет на спад, а вот бензиновый мотор будет продолжать раскручиваться дальше, так как пик его мощности достигается при более высоких частотах вращения.

Впрочем, на этом этапе рассуждений мы упираемся в особенности конкретных моторов. Строго говоря, бензиновый двигатель тоже может быть «низовым». И если у двух моторов, низового и верхового, заявленная максимальная мощность одинакова, то поначалу вперед вырвется именно машина с «низовым» мотором. Как справедливо указал один из наиболее грамотных форумчан, при установке на автомобиль движков от «эмочки» и Таврии, мощность которых примерн

Некоторые любят потяжелее: чем хорош легковой дизель, и почему они скоро вымрут

Особенности конструкции. Плюсы

Давайте сначала о том, что является несомненным достоинством дизельного мотора — об экономичности. Рабочий процесс в дизельном моторе отличается от такового у бензиновых собратьев в первую очередь способом регулирования мощностных параметров. Поскольку нет нужды в поддержании стехиометрической смеси (постоянного соотношения топлива и воздуха), то можно использовать качественное регулирование, просто изменяя количество подаваемого в камеру сгорания топлива. При этом нет нужды в дроссельной заслонке, нет дополнительных потерь на всасывание, а в сочетании с высоким коэффициентом расширения получаем очень высокий КПД на любых оборотах.

После массового появления турбонаддува в восьмидесятые дизельные моторы получили еще один мощный стимул к развитию. С начала века находившиеся в тени бензиновых двигателей из-за более низкой степени форсирования по оборотам и более высокой массы, они отыграли свое с лихвой, сначала на тяжелых грузовиках, а затем и на легковушках.

Турбонаддув идеально сочетался с рабочим циклом дизеля: воздух можно сжимать сколько угодно, ограничения по детонации больше нет, а большой коэффициент расширения — это еще и сравнительно невысокая температура выхлопных газов, особенно на промежуточных режимах, а значит, и щадящий режим работы турбокомпрессора.

Иными словами, дизельный двигатель намного лучше переносит эксплуатацию в пробках и с частичной нагрузкой. Нет перегрева, от которого вынуждены страдать современные «бензинки», а турбина работает в более благоприятных условиях .

Недостатков при этом, кроме цены, попросту нет. Экономичность даже улучшается за счет работы на более малых оборотах, топливо все такое же безопасное, не склонное к легкому воспламенению. И выбросы СО низкие, ведь двигатель всегда работает с избытком воздуха.

Особенности конструкции. Минусы

Минусы у дизельного двигателя всегда были тесно связаны с его же плюсами. Качественное регулирование требует сложной топливной аппаратуры, и чем больше мощность и частота вращения, тем аппаратура дороже.

Повышение требований к чистоте сгорания еще больше увеличивает ее цену. Большая степень сжатия и коэффициент расширения с очень высокой рабочей температурой в камере создают большую тепловую нагрузку на поршень и большие механические нагрузки на поршневую группу и блок цилиндров. Повышение степени форсирования за счет турбонаддува приводит к дальнейшему увеличению нагрузки на поршневую группу и головку блока цилиндров, форсунки и остальные элементы двигателя.

Porsche-Cayenne_S_Diesel-2013-1600-11На фото: Porsche Cayenne S Diesel ‘2013

В результате требования ко всем элементам двигателя растут, как и их цена. Да и сами турбины стоят недешево. А еще его топливо, теоретически более дешевое, чем бензин, на практике оказалось в итоге не таким уж дешевым. Дизельное топливо высокого класса по стоимости изготовления конкурирует с бензином, а разница в цене чаще обусловлена налогами. В нашем климате к числу недостатков дизельного топлива добавляется еще и его склонность к парафинизации при низкой температуре, что требует применения специальных его сортов и подогрева топливопроводов и фильтров зимой.

После закручивания «экологических гаек» к минусам дизельных моторов добавилась еще пара пунктов. Высокоэффективное сгорание топлива дает повышенное количество окислов NOx, и снизить их количество можно либо снижением эффективности сгорания, или хитроумными химическими фокусами.

Оба метода имеют свои минусы. EGR резко снижает ресурс двигателя, а мочевинная нейтрализация требует большого количества дополнительной технической жидкости, которая к тому же имеет низкую температуру замерзания. Вдобавок при сгорании жидкого топлива сразу после распыления образуются твердые частицы. И эта сажа содержит множество канцерогенных веществ, которые нужно как-то фильтровать. А DPF фильтры оказались дорогим и крайне капризным компонентом.

Почему дизелю сказали «нет»?

Почему на наших дорогах во времена СССР не бегали дизельные Мереседесы — и так понятно. Это Высоцкий мог себе позволить ездить на машине подобного класса, а те, кто имел доступ к солярке, не могли о таком даже мечтать. В перестроечные годы, когда моряки, совслужащие из ГДР и прочие «выездные» повезли в страну первые иномарки, советский человек выяснил неприятную правду. Дизельная легковушка оказалась весьма капризной и не особенно комфортной.

И пусть тогда любая машина была уже лучше, чем отсутствие таковой, но дизельная машина, даже если это была не Волга с Перкинсом, а вполне «цивильный» Опель или Мерседес, пахла соляркой, плохо прогревалась, не всегда хорошо заводилась, сильно вибрировала и шумела. При том что бензиновые экземпляры иномарок подобным поведением не отличались. Топливная аппаратура, естественно, ломалась, и заменить ее на карбюратор от Нивы или Волги не получалось, а потянуть штучное производство запчастей для ТНВД могли редкие мастерские при НИИ.

Mercedes-Benz 300 SD TurboDiesel (W116) На фото: Mercedes-Benz 300 SD Turbo Diesel (W116) ‘1977–80

Эйфория прошла довольно быстро, поэтому машины на дизельном топливе остались у тех, кто «по долгу службы» имел доступ к солярке: у водителей грузовиков и тракторов. Остальные восхищались издалека, но по возможности приобретали то, что советовали «опытные люди». Обычно это был вариант «карбюратор и цепь»: минимум расходных материалов, минимум изнашиваемых элементов, все чинится на коленке до поры до времени. Любой впрыск топлива, а особенно дизельная аппаратура впрыска были заведомо неремонтопригодны без полноценной инфраструктуры обслуживания.

Что было дальше

Прогресс дизельных моторов в 90-е годы не остался без внимания, но его явно не хватало для коренного перелома ситуации. Редкие дизельные моторы с «легковым характером» на BMW обрастали легендами, но обладатели легендарных и не очень моторов стали замечать, что дизельное топливо в России совсем не благоволит тонкой аппаратуре легковых дизелей.

BMW (E34) На фото: BMW (E34) ‘1991–95

Пара неудачных заправок — и вот уже под замену форсунки и ТНВД, а алюминий ГБЦ, особенно форкамерных с их тонким литьем, просто тает с нашей высокосернистой соляркой. Да и по большому счету, машины с дизельными моторами едва ли стали комфортнее. Конечно, уже не было «горбов» на капоте из-за особой длинноходности моторов, но вибрация, шум, плохой запах непрогретого мотора и дымность на переходных режимах никуда не делись.

Двадцать лет на успех

Ситуация начала меняться только к концу девяностых годов. Тут законодателями стали вовсе не немцы, а итальянские и французские компании. Дочернее отделение компании FIAT, Magneti Marelli, разработало и выпустило в свет первую коммерческую систему управления Common Rail для легковых дизелей. А в 1997 году итальянцы применили систему на автомобиле Alfa Romeo 156 1,9 JTD. Bosch купил перспективную разработку, и уже в 1998 году представил первый автомобиль с собственной системой Common Rail, это был Mercedes 220CDI в кузове W202, с двигателем OM611.

На фото: Mercedes-Benz C-Klasse (202) На фото: Mercedes-Benz C-Klasse (W202) ‘1993–2000

Если ранее объем впрыска задавался чисто механически для всех цилиндров одновременно, а момент впрыска выбирался с помощью вакуумно-центробежного регулятора (или электронного регулирования на более поздних версиях ТНВД), то в системе с Common Rail впрыск работал примерно как на обычном бензиновом моторе. Только давление в рампе уже на первой системе составляло 1 350 бар, а топливо можно было впрыскивать несколькими порциями, обеспечивая предварительный разогрев камеры сгорания и более полное сгорание топлива на любых режимах, и снижение механических нагрузок на поршневую группу заодно.

Система снимала почти все ограничения на рост мощности дизельных моторов, а заодно позволяла избежать проблемы переходных режимов. Дизель наконец-то научился быстро набирать обороты без облаков дыма и просадки мощности. И началась безумная гонка роста степени форсирования, которая закончилась введением очередных законодательных актов, ужесточением норм выхлопа и… дизельгейтом.

Популярность дизельных моторов в Европе неуклонно падает: по данным отчёта JATO Dynamics Ltd, в 2017 году продажи их упали на 8%, и доля дизелей в структуре продаж новых машин составила 43,7%. То есть, как говорил Марк Твен, «слухи о моей смерти несколько преувеличены», однако тренд наметился совершенно однозначный. Вот уже и «законодатели жанра» в лице FCA (придумавшие Common Rail Magneti Marelli остаются «дочкой» концерна) планируют сворачивать производство машин на тяжёлом топливе к 2022 году.

Вот мимо просвистело

В России мы слышали скорее отголоски далеких боев за экономичность, ультрачистый выхлоп, минимальные налоги и средний расход топлива по линейке моделей. У нас дизели, даже победив свои родовые проблемы, так и не стали массовыми. Крупные кроссоверы все чаще покупались с дизельными моторами, а внедорожники и коммерческий транспорт еще с девяностых плотно на них подсели. Увеличение числа премиальных внедорожников способствовало дизелизации автопарка в европейской части России. Собственно, часто даже альтернативы дизелю не было, он оказывался единственным приемлемым вариантом по мощности, расходу и налогам для определенной модели машины.

Porsche Cayenne Diesel На фото: Porsche Cayenne Diesel ‘2010–14

Привозные авто попадались с дизельными моторами просто потому, что в Европе их вдруг оказалось большинство, а кто-то и сознательно покупал машины с двигателем на тяжелом топливе. Но основная масса машин производилась у нас, а дизельные версии если и продавались, то это были значительно более дорогие импортируемые варианты.

Дизелизация всей страны не состоялась, на этот раз не из-за конструктивных недостатков (как в 80-е и 90-е), а по воле автопроизводителей. Для них Россия осталась рынком, на котором востребованы бензиновые моторы прошлого поколения, а с дизелями слишком много хлопот. Зимой могут замерзнуть, повредить топливную аппаратуру, а зачем им недовольные клиенты? Тем более что дизели отлично продавались в Европе, а дефицит мощностей производства всегда приходится учитывать.

Mercedes-Benz G-Klasse `2016На фото: Mercedes-Benz G-Klasse ‘2016

Двигатели на тяжелом топливе остались или уделом энтузиастов, которые идут на дополнительные расходы и риски ради мечты или значительной экономии топлива, или тех, кто покупает дизельную машину только потому, что бензиновая еще хуже, благо по сложности топливной аппаратуры они вполне сравнимы.

С учетом европейских тенденций, а еще короткого века нынешних премиальных авто, недолгий дизельный ренессанс бизнес-класса скорее всего закончится буквально года через два-три. Если только его не поддержит внезапно хлынувший через границу поток проданных за бесценок в Европе авто. Ну а мечты о минимальных расходах на эксплуатацию, скорее, теперь относятся к электромобилям: у них есть еще в запасе десяток-два лет, чтобы побыть синей птицей.

Несколько минут дизельно-развлекательного контента

12 преимуществ дизельного двигателя — ЗА БАРАНКОЙ

Почему дизельный мотор лучше: Сравнение дизельных двигателей с бензиновыми

Задумывались ли вы почему экономные Европейцы чаще всего приобретают дизельные автомобили? Ведь уровень жизни и доходы населения в Европе позволяет людям не задумываться о топливе. Но несмотря на благосостояние, население Европы все равно чаще покупает автомобили с дизельными моторами. И причина здесь не только в экономии топлива. Европейцы из-за одной только экономии никогда бы не стали массово скупать дизельные автомобили. На самом деле популярность дизельных двигателей в Евросоюзе связана с рядом преимуществ, которые имеют дизельные транспортные средства по сравнению с их бензиновыми аналогами. Давайте узнаем какие-же, помимо экономии топлива, есть преимущества у дизельных двигателей.

 

1. Дизельные двигатели более экономичные

Как уже известно самое главное и существенное преимущество любого дизельного мотора по сравнению с бензиновыми аналогами это значительно меньший расход топлива. Низкий расход дизельного мотора связан с особенностью преобразования дизельного топлива в энергию. Так, например, дизельный силовой агрегат более эффективно сжигает топливо, что позволяет ему получать от одного объема соженного топлива около 45-50 процентов энергии. Бензиновый же мотор получает приблизительно 30 процентов энергии. То есть 70 процентов бензина сгорает впустую!!!

 

Кроме того, дизельные двигатели имеют более высокую степень сжатия чем бензиновые. Так как на степень сжатия влияет время воспламенения топлива, то соответственно, чем выше степень сжатия, тем двигатель имеет больший КПД.

 

Это интересно: На чем мы будем ездить в будущем

 

Также современные дизельные моторы более эффективны из-за отсутствия дроссельной заслонки на впускном коллекторе, которая как правило используется в бензиновых автомобилях. Это позволяет дизелям избегать потери энергии связанной с всасыванием воздуха, который необходим для воспламенения топлива в бензиновых двигателях. 

 

2. Дизельные двигатели надежнее чем бензиновые

За последние более чем 50 лет дизельные моторы зарекомендовали себя надежнее чем их бензиновые конкуренты. Главной особенностью дизельного мотора является отсутствие в дизельной машине системы зажигания, работающей от высокого напряжения. В итоге в дизельной машине отсутствуют радиочастотные помехи от линии высокого напряжения, которые часто становятся виновниками проблем с электроникой автомобиля.

 

Также считается что большинство внутренних компонентов дизельного двигателя имеют более долгий срок службы. И это действительно так, поскольку из-за более высокой степени сжатия компоненты дизельного силового агрегата изначально более долговечны.

 

Именно поэтому в мире очень много дизельных автомобилей с пробегом около 1 млн. километров и немного бензиновых с таким же пробегом.

 

Есть правда один минус дизельных моторов, который раньше не давал покоя поклонникам мощных автомобилей. Дело в том, что у дизельных двигателей старых поколений на каждый литр объема мотора была очень маленькая мощность. Но к счастью инженеры решили эту проблему с появлением на рынке турбин. В итоге почти все современные дизельные моторы оснащаются турбинами, которые позволили им сравняться по мощности (а порой даже превзойти) с бензиновыми аналогами. В том числе с развитием технологий в современных дизелях удалось минимизировать практически все недостатки, которые преследовали дизельные моторы долгое время. 

 

3. Дизельный двигатель автоматически сжигает топливо

 

Еще одно главное преимущество дизельных моторов в том, что дизельные автомобили автоматически сжигают топливо, фактически не затрачивая энергии для этого. Напомним, что несмотря на то что дизельный двигатель использует четырехтактный цикл (впуск, сжатие, сгорание и выхлоп) сжигание дизельного топлива происходит самопроизвольно внутри двигателя от большой степени сжатия. В бензиновых моторах для сжигания топлива нужны свечи зажигания, которые постоянно находятся под высоким напряжением чтобы выдавать искру воспламеняющая бензин в камере сгорания. 

 

В итоге в дизельных двигателях нет необходимости в свечах зажигания, в высоковольтных проводах и т.п. В итоге затраты на содержания автомобиля значительно снижаются по сравнению с бензиновыми автомобилями, в которых нужно периодически менять свечи зажигания, высоковольтные провода и связанные с ними компоненты. 

 

4. Стоимость дизельного топлива сопоставима со стоимостью бензина или даже ниже

Несмотря на то что в нашей стране стоимость дизельного топлива находится на том же уровне, что и бензин, нужно отметить что во многих странах мира (в том числе и в странах Европы) стоимость дизельного топлива ниже, чем бензин. То есть помимо низкого расхода топлива владельцы дизельных автомобилей во многих странах тратят на топливо гораздо меньше чем владельцы бензиновых транспортных средств.

 

Смотрите также: Десять самых легких и простых автомобилей для обслуживания

 

Но даже с учетом того что в нашей стране солярка стоит также как бензин (или даже дороже) преимущество по эффективности дизельных автомобилей очевидно. Ведь запас хода на полном баке дизельного топлива намного больше чем в том же автомобиле оснащенном бензиновым силовым агрегатом. 

 

5. Более низкая стоимость владения

Кто-то может поспорить с этим преимуществом, так как в некоторых случаях стоимость технического обслуживания и ремонта дизельных автомобилей значительно превышает стоимость ТО бензиновых. И это действительно неоспоримый факт. Но в совокупности стоимость владения дизельным автомобилем значительно меньше бензинового аналога. Особенно на тех рынках где наблюдается повышенный спрос на дизельные машины. Дело в том, что в стоимости владения всегда нужно учитывать потерю рыночной стоимости автомобиля на подержанном рынке и естественный износ запчастей в процессе эксплуатации ТС. Как правило дизельные автомобили теряют в цене намного медленнее чем бензиновые аналоги. Также из-за более долговечных деталей двигателя дизельные автомобили имеют более долгий срок службы, что конечно позволяет тратить значительно меньше денег на ремонт автомобиля. 

 

Так что в долгосрочном периоде (от 5 лет и выше) владение дизельной машиной более выгодное чем бензиновой. Правда стоит отметить, что стоимость дизельных моделей как правило значительно выше бензиновых. Но если вы будете долго владеть автомобилем и будете проезжать 20 000-30 000 км в год, то эта переплата окупиться за счет экономии топлива. 

 

6. Дизельные автомобили более безопасные

На протяжении многих лет было доказано что дизельное топливо значительно безопаснее бензина по нескольким причинам. Во-первых, солярка меньше подвержена легкому воспламенению (возгоранию) по сравнению с бензином. Например, дизельное топливо как правило не воспламеняется при воздействии на него высокого источника тепла.

 

Смотрите также: Бензин или дизель: Что выгоднее

 

Во-вторых, дизельное топливо не выделяет опасных паров, как бензин. В итоге вероятность воспламенения паров, что может вызвать пожар автомобиля значительно ниже в дизельных транспортных средствах чем в бензиновых.

 

Все эти факторы делают дизельные автомобили намного безопаснее на дороге. Например, в случае ДТП. 

 

7. В выхлопе дизельного автомобиля меньше окиси углерода

Дизельные моторы производят гораздо меньше окиси углерода чем бензиновые аналоги. Это преимущество особо очевидно в неавтомобильных силовых установках, таких как например дизель-генераторах. Бензиновые установки более опасны так как из-за большой концентрации окиси углерода существует опасность для человека, который может отравиться угарными газами. Вот почему в подводных лодках, подземных шахтах всегда используются только дизельные силовые установки. Ведь при применении бензиновых силовых агрегатов существовала бы опасность для людей.

 

Тем не менее это не говорит о том, что вы можете безопасно находится долгое время в закрытом помещение при работающем дизельном автомобиле. Помните, что дизельный выхлоп все равно содержит окись углерода. Правда в гораздо меньших количествах чем производят бензиновые моторы.

 

Не забывайте про эффект накопления концентрации газов в закрытом помещение. Иначе существует опасность отравления угарными газами дизельного автомобиля. 

 

8. В дизельных двигателях турбина получает больше энергии

Мы живем в удивительное время, когда буквально на глазах в мире исчезают атмосферные двигатели. На их смену приходят турбо моторы, которые намного эффективней и мощней своих предшественников. Так что совсем скоро большинство автопроизводителей откажутся от обычных силовых агрегатов в пользу турбо технологий.

 

С самого начала появления турбин инженеры столкнулись с проблемой, связанной с питанием турбокомпрессора. Как правило крыльчатка турбины вращается за счет энергии получаемой от выхлопных газов автомобиля. Если же сравнивать бензиновые и дизельные автомобили, то турбины в дизельных моторах работают более эффективны, так как в дизельном автомобиле количество выхлопных газов гораздо больше. Именно поэтому турбокомпрессор дизельного мотора выдают максимальную мощность намного раньше бензиновых автомобилей. То есть уже на низких оборотах владельцы дизельных автомобилей начинают ощущать максимальную мощность и крутящий момент. 

 

9. Дизельные моторы без дополнительных модификаций могут работать на синтетическом топливе

Еще одно главное преимущество дизельных двигателей- это возможность работать на синтетическом топливе, без каких-либо существенных изменений в конструкции силового агрегата. Бензиновые же двигатели также могут работать на альтернативном топливе. Но для этого необходимы значительные изменения в конструкции силового агрегата. Иначе бензиновый двигатель работающий на альтернативном топливе быстро выйдет из строя. 

 

В настоящий момент мировая промышленность экспериментирует с биобутанолом, который отлично подходит в виде синтетического биотоплива для бензиновых автомобилей. Этот вид топлива возможно не будет причинять бензиновым автомобилям никого вреда без проведения каких-либо изменений в конструкции двигателя. 

 

Смотрите также: Развенчание мифов об альтернативных видах топлива

 

Но несмотря на это дизельные моторы уже сегодня могут работать без доработок на многих видах альтернативного топлива. Так что преимущество очевидно. 

 

10. Дизельные двигатели меньше нагреваются

Дизельные силовые агрегаты всегда работают на более низких температурах по сравнению со своими бензиновыми аналогами. Дело в том, что из-за более эффективного сжигания топлива дизельные моторы меньше вырабатывают тепла, получаемого при воспламенении топлива. Например, дизельный мотор использует примерно на 40 процентов меньше топлива, для того чтобы выработать ту же мощность, которую вырабатывает того же объема бензиновый двигатель. Именно поэтому дизельный мотор выделяет гораздо меньше тепла в результате воспламенения топлива.

 

Главная причина почему дизельному двигателю для производства энергии необходимо меньше топлива, это более высокая степень сжатия, а также особенность впрыска топлива в камеру сгорания.

 

В отличие от бензиновых двигателей в дизелях топливо не впрыскивается до тех пор, пока поршень не будет находится в верхней части такта сжатия.

 

Также из-за особенностей дизельного топлива которому требуется высокая степень сжатия для воспламенения, в дизельных моторах топливо меньше подвержено самопроизвольному воспламенению. 

 

11. Дизельные двигатели более долговечны

Когда дизельные двигатели впервые появились в автомобилях они быстро продемонстрировали удивительную особенность. Так по сравнению с бензиновыми, дизельные моторы имеют большой срок службы эксплуатации. Как мы уже сказали из-за особенностей работы дизельные моторы при проектировании и сборке требуют использования более крепких деталей. Также дизельное топливо имеет превосходные смазывающие свойства по сравнению с бензином. В итоге ресурс дизельных моторов как правило в два раза превышает бензиновые. Правда для того чтобы дизельный силовой агрегат прошел ровно в два раза больше бензинового аналога, необходимо соответствующее регулярное техническое обслуживание, которое как правило стоит дороже чем для бензиновых автомобилей. Но если вы собираетесь использовать дизельную машину долгое время, то переплата за ТО окупится большим ресурсом силового агрегата. 

 

12. В дизельных двигателях при низких оборотах крутящий момент больше чем в бензиновых

По сравнению с бензиновыми двигателями, дизели умеют производит гораздо больше крутящего момента на низких оборотах. Вот почему в грузовых автомобилях как правило используют дизельные моторы. Благодаря доступному максимальному крутящему моменту на низких оборотах автомобиля становится не только экономичным, но и способен на низких оборотах брать на себя большую нагрузку.

 

Из-за этого большинство сельскохозяйственной, строительной, коммунальной и т.п. техники как правило оснащаются дизельными моторами.

 

Бензиновые двигатели как правило имеют небольшой крутящий момент по сравнению с дизельными автомобилями. Правда бензиновые моторы имеют всегда больше мощность. Но современные технологии и использование в дизельных двигателях турбин позволило автопроизводителям фактически сравнять дизельные автомобили по мощности с бензиновыми конкурентами. В итоге в большинстве случаев современные дизельные автомобили стали более предпочтительнее чем бензиновые аналоги, даже для тех, кто любит мощные модели. 

Источник

Как работают дизельные двигатели?

Крис Вудфорд. Последнее обновление: 29 января 2020 г.

Вы когда-нибудь смотрели в изумлении, когда гигантский грузовик медленно ползет вверх по холму? Возможно нет! Такие вещи случаются каждый день. Но остановись и подумай момент о том, что происходит — как огромная, тяжелая нагрузка систематически поднял против подавляющей силы тяжести, используя не более чем несколько чашек грязной жидкости (другими словами, топлива) — и вы можете согласиться То, что ты видишь, довольно примечательно.Дизельные двигатели — это сила наших самых больших машин — грузовиков, поезда, корабли и подводные лодки. На первый взгляд, они похожи на обычные бензиновые (бензиновые) двигатели, но они генерируют больше энергии, более эффективно, работая немного по-другому. Давайте возьмем пристальный взгляд!

Фото: дизельные двигатели (как в этом железнодорожном локомотиве) идеально подходят для тяги тяжелых поездов. Это великолепно сохранившийся (и отлично отполированный!) Британский железнодорожный класс 55 («Deltic»), номер 55022, названный Royal Scots Grey, датированный 1960 годом.Вот картинка из Дизельный двигатель Napier Deltic, который приводит его в действие.

Что такое дизельный двигатель?

Фото: типичный дизельный двигатель (из пожарной машины) производства Detroit Diesel Corporation (DDC). Фото Хуана Антуана Кинга любезно предоставлено ВМС США.

Как и бензиновый двигатель, дизельный двигатель — это тип внутреннего сгорания. двигатель. Горение это еще одно слово для горения, и внутреннее значит внутри, поэтому двигатель внутреннего сгорания просто тот, где топливо сгорает внутри главной части двигателя (цилиндры) где производится энергия.Это очень отличается от внешнего двигатель внутреннего сгорания, такой как те, которые используются старомодным паром локомотивы. В паровом двигателе есть большой пожар на одном конце котел, который нагревает воду для приготовления пара. Пар стекает долго трубы к цилиндру на противоположном конце котла, где он толкает поршень назад и вперед для перемещения колес. Это внешний сгорание, потому что огонь находится за пределами цилиндра (действительно, обычно 6-7 метров или 20-30 футов). В бензиновом или дизельном двигателе топливо горит внутри самих цилиндров.Отходы внутреннего сгорания гораздо меньше энергии, потому что тепло не должно течь откуда он производится в цилиндр: все происходит одинаково место. Вот почему двигатели внутреннего сгорания более эффективны чем двигатели внешнего сгорания (они производят больше энергии из тот же объем топлива).

Как дизельный двигатель отличается от бензинового двигателя?

Бензиновые и дизельные двигатели работают как от внутреннего сгорания, но в немного по-другому.В бензиновом двигателе топливо и воздух впрыскивается в небольшие металлические цилиндры. Поршень сжимает (сжимает) смесь, что делает его взрывоопасным, и небольшая электрическая искра от свеча зажигания поджигает его. Это заставляет смесь взорваться, генерируя энергию, которая толкает поршень вниз по цилиндру и (через коленвал и шестерни) крутит колеса. Ты можешь читать подробнее об этом и посмотрите простую анимацию того, как это работает в нашем статья о автомобильных двигателях.

Дизельные двигатели

похожи, но проще.Во-первых, воздух допускается в цилиндр и поршень сжимает его, но гораздо больше, чем в бензиновый двигатель. В бензиновом двигателе топливно-воздушная смесь сжатый примерно до десятой части своего первоначального объема. Но в дизеле двигатель, воздух сжимается на что-нибудь от 14 до 25 раз. Если вы когда-нибудь накачивали велосипедную шину, вы почувствовали чем горячее в ваших руках, тем дольше вы его используете. Это потому что сжатие газа генерирует тепло. Представьте себе, сколько тепла генерируется путем нагнетания воздуха в 14–25 раз меньше пространства, чем обычно занимает.Так много тепла, как это бывает, что воздух становится действительно горячий — обычно не менее 500 ° C (1000 ° F), а иногда и очень горячее. Как только воздух сжимается, туман топлива распыляется в цилиндр обычно (в современном двигателе) электронным система впрыска топлива, которая работает немного как сложный аэрозоль жестяная банка. (Количество впрыскиваемого топлива варьируется в зависимости от того, сколько энергии водитель хочет, чтобы двигатель работал.) Воздух настолько горячий, что топливо мгновенно воспламеняется и взрывается без искры подключи.Этот контролируемый взрыв заставляет поршень вытолкнуть цилиндр, производящий энергию, которая приводит в движение автомобиль или который двигатель установлен. Когда поршень возвращается в цилиндр, выхлопные газы выталкиваются через выпускной клапан и процесс повторяется сотни или тысячи раз минут!

Что делает дизельный двигатель более эффективным?

Дизельные двигатели в два раза эффективнее бензиновых двигателей — около 40 процентов эффективный, то есть.Проще говоря, это означает, что вы можете пойти гораздо дальше на том же количестве топлива (или получите больше миль за свои деньги). Есть несколько причин этот. Во-первых, они сжимают больше и работают при более высоких температурах. Фундаментальная теория о том, как работают тепловые двигатели, известный как правило Карно, говорит нам, что эффективность двигателя зависит на высоких и низких температурах, между которыми он работает. Дизельный двигатель с большим перепадом температур (более высокая самая горячая температура или самая низкая более холодная температура) более эффективна.Во-вторых, отсутствие системы зажигания с зажиганием делает более простая конструкция, которая может легко сжать воздух намного больше — и это делает топливо более горячим и более полным, высвобождая больше энергии. Есть еще одна экономия эффективности слишком. В бензиновом двигателе, который не работает на полную мощность, вам нужно подавать больше топлива (или меньше воздуха) в цилиндр, чтобы он работал; дизельные двигатели не имеют этой проблемы, поэтому им нужно меньше топлива, когда они работают на меньшей мощности. Другим важным фактором является то, что дизельное топливо несет немного больше энергии на галлон, чем бензин потому что молекулы, из которых он сделан, имеют больше энергии, блокируя их атомы вместе (другими словами, дизель имеет более высокую плотность энергии, чем бензин).Дизель тоже лучше смазка, чем бензин, так дизельный двигатель будет естественно работать с меньшим трением.

Чем отличается дизельное топливо?

Дизель и бензин совсем разные. Вы будете знать это очень много, если вы когда-либо слышал страшные истории людей, которые заправили свою машину или грузовик с неправильным видом топлива! По сути, дизель является низкосортный, менее рафинированный продукт из нефти, полученный из более тяжелых углеводороды (молекулы построены из большего количества углерода и водорода атомов).Сырые дизельные двигатели, которым не хватает сложного впрыска топлива Теоретически, системы могут работать практически на любом углеводородном топливе, поэтому популярность биодизеля (вид биотоплива, сделанного, среди прочего, вещи, отработанные растительные масла). Изобретатель дизельного двигателя, Рудольф Дизель, успешно запустил свои ранние двигатели на арахисовом масле и думал, что его двигатель сделает людям одолжение, освободив их от зависимость от топлива, как уголь и бензин. Если бы он только знал!

Фото: смазка будет путешествовать: Джошуа и Кайя Тикелл, пара экологи, используйте этот трейлер (Green Grease Machine) для производства биодизельного топлива для своего фургона (прикрепленного к передней части) с использованием отработанного растительного масла, выбрасываемого ресторанами быстрого питания.Топливо стоит внушительные $ 0,80 за галлон. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Преимущества и недостатки дизельных двигателей

Дизели — самые универсальные двигатели, работающие на топливе, на сегодняшний день, нашел во всем, от поездов и кранов до бульдозеров и подводные лодки. По сравнению с бензиновыми двигателями они проще, более эффективный и более экономичный. Они также безопаснее, потому что дизельное топливо меньше летучий и его пары менее взрывоопасны, чем бензин.В отличие от бензиновых двигателей, они особенно хороши для перемещать большие грузы на низких скоростях, поэтому они идеально подходят для использования в грузовые суда, грузовики, автобусы и локомотивы. Более высокое сжатие означает, что части дизельного двигателя должны выдерживать гораздо больше напряжения и деформации, чем в бензиновом двигателе. Поэтому дизельные двигатели должны быть сильнее и тяжелее и почему, на долгое время В то время они использовались только для питания больших транспортных средств и машин. Пока это может показаться недостатком, это означает, что дизельные двигатели, как правило, более Прочный и прослужит намного дольше, чем бензиновые двигатели.

Фото: дизельные двигатели используются не только в транспортных средствах: эти огромные стационарные дизельные двигатели вырабатывают электроэнергию на электростанции на Остров Сан-Клементе. Фото Уоррена Гретца любезно предоставлено США. Министерство энергетики / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Загрязнение одно из самых больших недостатков дизельных двигателей: они шумят, и они производят много несгоревших частиц сажи, которые являются грязными и опасными для здоровья. В теории, дизели более эффективны, поэтому они следует использовать меньше топлива, производить меньше выбросов углекислого газа (CO2) и вносить меньший вклад в глобальное потепление.На практике есть спор о том, действительно ли это так. Некоторые лабораторные эксперименты показали средние выбросы дизельного топлива только немного ниже, чем у бензиновых двигателей, хотя производители настаивают на том, что если аналогичные дизельные и бензиновые автомобили по сравнению, дизели действительно выходят лучше. Другой Недавние исследования показывают, что даже новые дизельные автомобили очень загрязняющие. Как насчет выбросов CO2? По данным Британского общества автопроизводителей и трейдеры: «Дизельные автомобили внесли огромный вклад в сокращение выбросов CO2.С 2002 года покупатели, выбирающие дизельное топливо, сэкономили почти 3 миллиона тонн CO2 от попадания в атмосферу «. Дизельные двигатели, как правило, стоят дороже, чем бензиновые двигатели, хотя их более низкие эксплуатационные расходы и длительный срок службы обычно компенсирует это. Несмотря на это, покупатели автомобилей больше не кажутся убежденными: с тех пор произошло значительное падение продаж скандал с выбросами Volkswagen в 2015 году, когда немецкий автопроизводитель исказил выбросы своих дизельных автомобилей, чтобы они казались меньше загрязняют окружающую среду.

Нет сомнений, что дизельные двигатели будут продолжать работать на тяжелых транспортных средствах — грузовиках, автобусы, корабли и железнодорожные локомотивы зависят от них, но их будущее в автомобилях и легких транспортных средствах становится все более неопределенным. Стремление к электромобилям дало мощный импульс для того, чтобы сделать бензиновые двигатели более легкими, экономичными и менее загрязняющими, и эти усовершенствованные газовые двигатели подрывают некоторые из очевидных преимуществ использования дизелей в автомобилях. В условиях растущей конкуренции между доступными электромобилями и улучшенными Бензиновые автомобили, дизели могут оказаться совсем выжатыми.Опять же сами дизели постоянно развиваются; В 2011 году Министерство энергетики США прогнозировало, что будущие двигатели могут повысить эффективность с сегодняшних 40% до 60% и более. Если это произойдет, дизель может остаться претендент на меньшие транспортные средства в течение многих лет, особенно если их выбросы сажи может быть правильно решена.

Кто изобрел дизельный двигатель?

Произведение искусства: оригинальный двигатель внутреннего сгорания Рудольфа Дизеля, который он нарисовал в своем патенте 1895 года.Цилиндр (1) находится сверху. 2) «Плунжер» (как его называет дизель) крепится рукояткой и шатуном (3) к маховику (4). Шестерня, приводимая в движение маховиком (5), прикреплена к центробежному регулятору (6), который поддерживает постоянную частоту вращения двигателя (отключение подачи топлива, если двигатель работает слишком быстро, затем его включение, когда двигатель снова замедляется). Иллюстрации любезно предоставлены Управлением по патентам и товарным знакам США (цвета и нумерация добавлены нами для упрощения объяснения). Вы можете прочитать больше в Патент США № 542846: «Способ и устройство для преобразования тепла в работу» Рудольфа Дизеля.

Не удивительно, что это был немецкий инженер Рудольф Дизель (1858–1913). Вот вкратце история:

  • 1861: французский инженер Альфонс Бо де Рош (1815–1893) излагает основную теорию четырехтактного двигателя и подает патент на эту идею 16 февраля 1862 года, но ему не удается собрать работающую машину.
  • 1876: немецкий инженер Николаус Отто (1832–1891) создает первый успешный четырехтактный двигатель внутреннего сгорания.
  • 1878: шотландец Дугальд Клерк (1854–1932) разрабатывает двухтактный двигатель.
  • 1880: в возрасте 22 лет, Рудольф Дизель переходит на работу к инженеру-холодильнику Карлу фону Линде (1842–1934), где он изучает термодинамику (науку о том, как движется тепло) и как работают двигатели.
  • 1890: Дизель выясняет, как сделать улучшенное внутреннее сгорание двигатель использует более высокое давление и температуру, для чего не требуется свеча зажигания.
  • 1892: Дизель начинает патентовать свои идеи, чтобы другие не могли ими воспользоваться.
  • 1893: Дизель строит огромный, стационарный двигатель, который работает целую минуту под своей собственной власть, 17 февраля 1894 г.
  • 1895: патент на дизельное топливо выдан в США 16 июля 1895 года.
  • 1898: с помощью Дизеля, первый коммерческий двигатель построен в завод в Сент-Луисе, штат Миссури, США, Адольф Буш (1839–1913), пивовар пива Budweiser.
  • 1899: На дизельном заводе в Аугсбурге начинается производство дизельных двигателей. Дизель начинает лицензировать свои идеи другим фирмам и вскоре становится очень богатый
  • 1903: Petit Pierre, один из первых дизельных кораблей, начинает работу над каналом Марн-Рейн во Франции.
  • 1912: MS Selandia, первый океанский дизельный корабль, совершает свой первый рейс.
  • 1913: Дизель умирает при загадочных обстоятельствах, по-видимому, падая за борт с корабля Дрезден во время путешествия из Лондона, Англия, в Германию. Ходят слухи, что он был убит или совершил самоубийство, но ничего не происходит доказана.
  • 1931: Clessie Cummins, основатель Cummins Engine Co., строящий один из первых успешных автомобилей с дизельным двигателем и демонстрирующий его эффективность, перевозя его из Индианаполиса в Нью-Йорк всего за 1 доллар.39 топлива.
  • 1931: Caterpillar совершил революцию в сельском хозяйстве, представив Diesel Sixty, Первый дизельный гусеничный трактор на базе популярного Caterpillar Sixty.
  • 1936: Mercedes представляет 260D, один из первых серийных легковых автомобилей с дизельным двигателем, и это остается в производстве до 1940 года. В течение следующих четырех десятилетий Mercedes продает почти два миллиона автомобилей с дизельным двигателем.
  • 1939: General Motors представляет свой мощный дизель-электрический локомотив EMD FT и отправляет первый (номер 103) в путешествие на протяжении года, чтобы продемонстрировать свою ценность.Несомненно, это доказывает превосходство дизельного двигателя.
  • 1970-х годов: глобальный топливный кризис вызывает новый интерес к использованию небольших, эффективных дизельных двигателей в автомобилях.
  • 1987: Всемирно известный корабль Queen Elizabeth 2 (QE2) оснащен девятью дизель-электрическими двигателями (каждый размером с двухэтажный автобус), что делает его самым мощным торговым судном с дизельным двигателем в то время.
  • 2000: Peugeot представляет первый в мире фильтр частиц (PF) для дизельных двигателей на своей модели 607, заявив, что выброс сажи на 99% ниже.
  • 2015: Volkswagen погрузился в огромный глобальный скандал после систематического обмана на тестах на выбросы дизельного двигателя. Продажи дизельных автомобилей резко упали впервые за многие годы.
  • 2017: Volvo становится первым крупным автопроизводителем, отказавшимся от бензиновых и дизельных двигателей, объявив, что все новые автомобили будут гибридами или полностью электрическими с 2019 года.
,
дизельных двигателей против бензиновых двигателей

Теоретически дизельные и бензиновые двигатели очень похожи. Оба двигателя внутреннего сгорания предназначены для преобразования химической энергии, имеющейся в топливе, в механическую энергию. Эта механическая энергия перемещает поршни вверх и вниз внутри цилиндров. Поршни соединены с коленчатым валом, а движение поршней вверх и вниз, известное как линейное движение, создает вращательное движение, необходимое для вращения колес автомобиля вперед.

Как дизельные, так и бензиновые двигатели преобразуют топливо в энергию посредством серии небольших взрывов или возгораний. Основное различие между дизелем и бензином заключается в том, как происходят эти взрывы. В бензиновом двигателе топливо смешивается с воздухом, сжимается поршнями и зажигается искрами от свечей зажигания. Однако в дизельном двигателе сначала сжимается воздух, а затем впрыскивается топливо. Поскольку воздух нагревается при сжатии, топливо воспламеняется.

Следующая анимация показывает цикл дизеля в действии.Вы можете сравнить его с анимацией бензинового двигателя, чтобы увидеть различия.

Дизельный двигатель использует четырехтактный цикл сгорания, как бензиновый двигатель. Четыре удара:

  1. Ход впуска — Впускной клапан открывается, впуская воздух и опуская поршень.
  2. Ход сжатия — поршень движется вверх и сжимает воздух.
  3. Ход сгорания — Когда поршень достигает вершины, топливо впрыскивается в нужный момент и зажигается, заставляя поршень снова опуститься.
  4. Ход выхлопа — Поршень движется обратно наверх, выталкивая выхлоп, созданный в результате сгорания, из выпускного клапана.

Помните, что дизельный двигатель не имеет свечи зажигания, что он впускает воздух и сжимает его, а затем впрыскивает топливо непосредственно в камеру сгорания (прямой впрыск). Именно тепло сжатого воздуха зажигает топливо в дизельном двигателе. В следующем разделе мы рассмотрим процесс впрыска дизеля.

,

Как работают дизельные двигатели | HowStuffWorks

Одна из самых популярных статей HowStuffWorks — «Как работают автомобильные двигатели», в которой объясняются основные принципы внутреннего сгорания, обсуждается четырехтактный цикл и рассказывается обо всех подсистемах, которые помогают двигателю вашего автомобиля выполнять свою работу. В течение долгого времени после того, как мы опубликовали эту статью, один из наиболее часто задаваемых вопросов (и одно из самых частых предложений, сделанных в окне для предложений) был: «В чем разница между бензином и дизельным двигателем?»

История

Diesel фактически начинается с изобретения бензинового двигателя .Николаус Август Отто изобрел и запатентовал бензиновый двигатель к 1876 году. В этом изобретении использовался принцип четырехтактного сгорания, также известный как «цикл Отто», и сегодня это основная предпосылка для большинства автомобильных двигателей. На ранней стадии бензиновый двигатель не был очень эффективным, и другие основные методы транспортировки, такие как паровой двигатель , также плохо работали. Только около 10 процентов топлива, используемого в этих типах двигателей, фактически перемещается транспортным средством. Остальное топливо просто вырабатывает бесполезное тепло.

В 1878 году Рудольф Дизель учился в Политехнической высшей школе Германии (эквивалент инженерного колледжа), когда узнал о низкой эффективности бензиновых и паровых двигателей. Эта тревожная информация вдохновила его на создание двигателя с с более высоким КПД , и он посвятил большую часть своего времени разработке «двигателя внутреннего сгорания». К 1892 году Дизель получил патент на то, что мы сейчас называем дизельным двигателем.

Если дизельные двигатели настолько эффективны, почему бы нам не использовать их чаще? Вы можете увидеть слова «дизельный двигатель» и подумать о больших, здоровенных грузовиках, извергающих черный дымчатый дым и создающих громкий грохот.Этот негативный образ дизельных грузовиков и двигателей сделал дизель менее привлекательным для обычных водителей в Соединенных Штатах — хотя дизель отлично подходит для перевозки больших партий на большие расстояния, он не был лучшим выбором для повседневных пассажиров. Однако это начинает меняться, поскольку люди улучшают дизельный двигатель, чтобы сделать его более чистым и менее шумным.

Если вы еще этого не сделали, возможно, вам стоит сначала прочитать, как работают автомобильные двигатели, чтобы понять основы внутреннего сгорания.Но спешите обратно — в этой статье мы раскрываем секреты дизельного двигателя и узнаем о некоторых новых достижениях.

,Дизельный двигатель
— Простая английская Википедия, бесплатная энциклопедия Топливо, используемое для дизельных двигателей, см. В разделе Дизельное топливо.

Название дизель дано двигателю, изобретенному немцем по имени Рудольф Дизель в конце 19 века. Это один из наиболее используемых видов двигателя внутреннего сгорания.

Большинству других двигателей нужна система, называемая системой зажигания, в которой используется электрическая искра, чтобы сжигать смесь топлива и воздуха и получать мощность.Другие типы систем зажигания используют сжатый воздух от внешнего источника, такого как воздушный компрессор. Дизель не делает. Он сжигает дизельное топливо (аналогично мазуту) за счет очень сильного сжатия или сжатия смеси. Крошечный кусочек топлива впрыскивается или нагнетается в цилиндры двигателя в нужный момент. Поскольку газы нагреваются при их сжатии, сжатие смеси воздуха и топлива вызывает взрыв смеси в цилиндре.

Дизельные двигатели очень хорошо используют топливо, которое они сжигают.Они также производят много крутящего момента (произносится как «торк») или крутящего момента. Двигатель с большим крутящим моментом сможет вращать свой вал, даже если это очень трудно сделать. Это делает дизельный двигатель хорошим выбором для тяжелой техники, такой как грузовые автомобили, поезда и строительные машины. У очень больших грузовиков на дороге есть дизельные двигатели. Так делают поезда локомотивов, если они не электрические или старые паровые.

Иногда даже крутящего момента дизельного двигателя недостаточно для запуска таких больших машин.Чтобы увеличить мощность, к большим дизелям часто присоединяют устройство, называемое турбокомпрессором. Турбокомпрессор — это тип турбины, который используется для очень быстрого перемещения воздуха. Реактивные двигатели также содержат турбину. В дизеле давление от выхлопа вращает турбокомпрессор на очень высокой скорости. Затем свежий воздух возвращается в двигатель. Поскольку двигатель работает за счет накачки воздуха, чем больше воздуха вы можете пропустить через него, тем больше будет мощность. Вот где помогает турбокомпрессор. Дизельный двигатель с турбонагнетателем называется турбодизель .Свистящий звук, который иногда слышен возле одного из этих двигателей, вызван турбокомпрессором, или, если коротко, «турбонаддувом».

Дизельный двигатель также может работать на рапсовом масле, приготовленном из старого растительного масла. Этот вид топлива называется биодизелем. При работе дизельного двигателя на биодизельном топливе запах выхлопных газов напоминает еду. Растительное масло как топливо не новая идея. Двигатель, который Рудольф Дизель использовал для демонстрации своей новой идеи, работал на рапсовом масле.

,

Схема охлаждения двигателя ваз 2106: как залить тосол и вывести вентилятор на кнопку, инструкции с фото и видео

Система охлаждения двигателя 2106

Система охлаждения ваз 2106

Сегодня мы рассмотрим все элементы, из которых состоит схема охлаждения ВАЗ 2106, а самое главное – узнаем, как провести замену охлаждающей жидкости, термостата, водяной помпы. На самом первом фото вы можете увидеть все элементы системы, именно по ней сейчас и будет строиться все повествование. Также будет рассмотрено, как провести замену охлаждающей жидкости в системе, а также как избавиться от воздушных пробок.

Схема

Сколько тосола

Что касается количества, то здесь все просто – по инструкции необходимо 9.85 литра, значит, покупаем 10 литров охлаждающей жидкости. Когда ездил всегда брал с собой запас, что бы можно было в пути добавить. Кстати, если система охлаждения загрязнена, то ее следует промыть водой или специальными средствами. Порядок промывки такой же, как и при замене жидкости – сливаем, заливаем и разводушиваем, заводим двигатель на несколько минут и сливаем. И так несколько раз, пока не увидите, что с радиатора и блока двигателя вытекает чистая вода.

Как выставить электронное зажигание по ссылке.

Воздушная пробка

Переходим непосредственно к основной сути статьи. Существует три способа как удалить воздушную пробку. Я их считаю основными и наиболее доступными. Они основаны на том, что воздух легче воды и поэтому собирается в самой верхней точке. Оттуда мы и будем его удалять. Предварительно оговорюсь, что при выполнении работ кран отопителя должен быть открыт полностью (на самый горячий воздух). Итак, описание первого способа. Он подходит для автомобилей, у которых имеется возможность отсоединить шлаг подогрева дроссельного узла или карбюратора (на большинстве автомобилей ВАЗ). Так как дроссельный узел (карбюратор) является самой верхней точкой в системе охлаждения двигателя, то это место является наиболее подходящим для того, чтобы удалить воздух из системы. Порядок действий следующий. Для начала снимаем все защитные кожухи и остальные элементы, препятствующие доступу. Затем откручиваем хомут шланга подогрева, снимаем со штуцера шланг. Откручиваем пробку на расширительном бачке и дуем в него ртом, пока антифриз не польется из дроссельного узла или патрубка. Как только из штуцера или шланга пойдет жидкость, быстро надеваем шланг на место и закручиваем все обратно. Данные действия позволяют удалить воздушную пробку практически на 100%. Переходим ко второму методу.

Второй способ похож на предыдущий, только не требует того, чтобы дуть в бачок. Как и в предыдущем варианте снимаем все защиты, прогреваем двигатель до рабочей температуры, глушим. Не откручивая пробку расширительного бачка, снимаем шланг со штуцера подогрева дроссельного узла. Как только потечет охлаждающая жидкость, ставим на место шланг и собираем все обратно.

Если с первого раза не получилось – ставим шланг на место, откручиваем пробку бачка, закручиваем и повторяем операцию. Как правило, удалить воздушную пробку данным способом получается с первого раза. Не забывайте о мерах безопасности. Охлаждающая жидкость имеет температуру, близкую к 90 градусам и находится под давлением, поэтому будьте осторожны и каким-либо способом защитите руки от ожога (я надеваю двое перчаток: сначала ХБ, а сверху резиновые). Переходим к третьему методу.

Теперь расскажу вам как удалить воздушную пробку не разбирая системы. Сразу оговорюсь, что данный метод менее эффективен, чем два предыдущих, зато является более простым. Суть его заключается в следующем. Необходимо загнать автомобиль на крутую горку, чтобы верхняя крышка радиатора стала самой высокой точкой в системе охлаждения. Снимаем пробку расширительного бачка (если есть, то и радиатора), заводим двигатель и прогреваем его до рабочей температуры. Антифриз из бачка должен начать уходить в систему, его необходимо подливать до требуемого уровня. Чтобы усилился поток жидкости, нужно увеличить обороты двигателя. При этом антифриз может резко уйти и нужно сразу его долить. Операцию продолжаем до тех пор, пока не перестанут идти пузырьки из обратки.

Неисправности

НеисправностьПричинаСпособ устранения
Утечка жидкости из системы охлаждения.Подтекание жидкости из крана отопителя.Заменить кран.
Плохо затянуты хомуты шланговЗатянуть хомуты.
Утечка жидкости через помпу.Заменить помпу.
Повреждён радиатор.Заменить радиатор.
Повреждена прокладка в головке цилиндров.(Охлаждающая жидкость попадает в двигатель,иногда при работе двигателя виден густой белый дым).Заменить прокладку
Перегрев двигателя.Утечка жидкости из системы охлаждения.Устранить неисправность и восстановить уровень жидкости в системе.
Воздушная пробка в системе охлаждения двигателя(может образоваться при замене охлаждающей жидкости или при подсасывании воздуха в местах крепления шлангов).Если есть подсасывание воздуха, то устранить его, затем при открыткой крышке расширительного бачка завести двигатель и ждать пока не перестанут выходить пузырьки воздуха из расширительного бачка, при необходимости доливать охлаждающую жидкость.
Загрязнена поверхность радиатора.Очистить радиатор.
Неисправен радиатор.Заменить радиатор.
Неисправен термостат.Заменить термостат.
Неисправна помпа.Заменить помпу.

Как промыть

Вода.
Вода с уксусом и кислотой.
Специальная жидкость для промывки системы охлаждения.

Промывка системы охлаждения водой

Хоть водой и можно промывать систему, я бы настоятельно не рекомендовал этого делать. Как я уже говорил, в ней содержится большое количество примесей и солей, которые образуют накипь. Если нет другого варианта, то используйте хотя бы дистиллированную воду. Промывка системы охлаждения при помощи дистиллированной воды производится следующим образом:

Залейте воду в СОД.

Запустите мотор и дайте ему поработать примерно полчаса.

Затем глушите двигатель и слейте воду из системы. Повторяйте процедуру до тех пор пока ваша промывочная жидкость не станет такой же как до промывки. К недостаткам этого способа можно отнести: образование накипи, низкая эффективность (кипяток не способен растворить и отмыть накипь и другие отложения).

Промывка системы охлаждения водой с кислотой и уксусом

Вода с уксусом и кислотой, это чуть лучше чем просто вода, поскольку благодаря кислотам можно отмыть накипь и произвести частичную очистку системы охлаждения. Для того чтобы промыть систему этим способом подготовьте: каустическую соду, молочную кислоту и уксус. Кислота добавляется аккуратно и по чуть-чуть, если переборщить можно попрощаться с пластиковыми и резиновыми деталями системы охлаждения. Чтобы полностью удалить накипь и грязь нужно 5-10 часов, на протяжении которых необходимо периодически прогревать мотор до рабочей температуры. По окончанию вся жидкость сливается и заливается дистиллят, которым производится финишная промывка системы охлаждения.

Промывка СОД при помощи специальной химии

Спец. средства – наиболее эффективный и дорогостоящий вариант. Однако эффективность проведения такой процедуры стоит того чтобы переплачивать. В составе чистящих средств есть специальные чистящие вещества активно удаляющие накипь, жир, органику, и т. д.

Промывочные спец. средства делятся на четыре типа: кислотные, щелочные, двухкомпонентные, нейтрального типа.

Наименее популярными считаются кислотные и щелочные, к тому же неразбавленными их практически невозможно найти. Это объясняется их агрессивное воздействие на всю систему охлаждения, в сущности пластиковые и резиновые изделия.

Двухкомпонентные средства – очень популярны и очень востребованы. Их 2-компонентыный раствор состоящий из щелочи и кислоты хорошо справляется с поставленной задачей. Каждый из компонентов поочередно вливается в радиатор.

В составе нейтральных средств очистки системы охлаждения нет агрессивных веществ, например кислот или щелочей, а применяются они исключительно в профилактических целях.

Как развоздушить

Давайте же рассмотрим основные и наиболее эффективные способы решения проблемы.

Способ №1. Действуйте в следующей последовательности:

Снимайте пластиковый кожух, который установлен на двигателе. Для этого необходимо будет открутить крышку на отверстие для доливки масла. После этого снимайте накладку (как только кожух удалось снять, крышку можно вернуть на место во избежание попадания грязи и пыли внутрь силового узла).

Найдите патрубки, которые отвечают за прогрев дроссельного узла. (см. Чистка дроссельной заслонки).Выберите любой и стяните его. Скручивайте крышку с отверстия расширительного бачка, в котором находится антифриз, и накрывайте отверстие чистой тряпкой.

Дуйте внутрь бачка. Таким способом создается давление, которое выдавливает воздух. Как только из патрубка пошла охлаждающая жидкость, вы успешно избавились от воздух.

Возвращайте трубку на место (чем быстрее вы это сделаете, тем лучше). В противном случае можно снова поймать порцию воздуха.

Способ №2. Данный вариант намного проще и дуть никуда не нужно. Выгоняйте воздух следующим образом:

Прогревайте двигатель минут 10-15 и после этого заглушите его;

крышка на расширительном бачке остается закрученной;

также (как и в прошлом методе) снимайте один из патрубков на дроссельном узле;

дождитесь, пока из него не пойдет охлаждающая жидкость.

Как только это произошло, сразу же возвращайте трубку на место и плотно ее зафиксируйте с помощью хомута.

При выполнении данной операции будьте очень осторожны, ведь температура тосола (антифриза) может достигать 80-90 градусов Цельсия.

Способ №3. Нельзя упомянуть еще один простой, но весьма эффективный метод избавления от завоздушенности в системе охлаждения.

Найдите крутую горку и станьте на ней таким образом, чтобы передок машины был наивысшей точкой;

поставьте машину на ручной тормоз и подложите подставки под колеса, чтобы исключить случайное скатывание;

скручивайте пробки с радиатора и расширительного бачка;

заведите автомобиль и дайте ему прогреться 10-15 минут;

периодически нажимайте на педаль акселератора и доливайте охлаждающую жидкость в бачок по мере необходимости.

Выполняйте доливку до тех пор, пока пузырьков не будет появляется вообще. Только в этом случае работу можно считать выполненной.

Замена патрубков

Если в результате проверки, проведённой в соответствии с рекомендациями, приведёнными в Главе Текущий уход и обслуживание, Вы обнаружили повреждения на каком-либо шланге, его необходимо заменить.

Слейте жидкость из системы охлаждения (обратитесь к Главе Текущий уход и обслуживание). Если Вы не собираетесь заливать новую жидкость в систему, сохраните слитую для последующего использования.

Плоскогубцами сожмите усики штатных хомутов (или отвёрткой ослабьте винты хомутов винтового типа — если установлены). Отведите хомуты в сторону. Аккуратно снимите шланг с патрубков. Новые шланги снимать значительно проще старых.

Если шланг не снимается с патрубка, попробуйте повращать его. Не повредите патрубки, пытаясь снять шланг. Поломка может привести к дорогостоящему ремонту. Имейте в виду, что патрубки радиатора довольно хрупкие, поэтому при снятии с них шлангов не прикладывайте больших усилий. Если шланг все равно не снимается, обрежьте его, затем разрежьте оставшийся на патрубке кусок вдоль и снимите. Стоимость нового шланга несопоставима со стоимостью нового радиатора. Прежде чем резать шланг, убедитесь в том, что сможете купить новый.

При установке нового шланга сначала наденьте на него хомуты, после чего установите шланг на патрубки. Если изначально устанавливались хомуты стяжного типа, замените их на винтовые. Для облегчения установки жёстких шлангов смочите внутренние поверхности их концов мыльной водой или нагрейте в горячей воде (не опускайте шланг в кипящую воду — он может расслоиться).

После установки шланга на патрубки проверьте правильность его прокладки в двигательном отсеке. Установите хомуты на концы шланга, заведя их за развальцовку патрубков, и затяните их.

Заправьте систему охлаждения (обратитесь к Главе Текущий уход и обслуживание).

Заведите двигатель и удостоверьтесь в отсутствии утечек охлаждающей жидкости из обслуженного узла.

10. Система охлаждения

Описание системы

  1. Трубка отвода охлаждающей жидкости из радиатора отопителя.
  2. Патрубок отвода охлаждающей жидкости от впускного коллектора.
  3. Патрубок отвода охлаждающей жидкости из радиатора отопителя.
  4. Патрубок подвода охлаждающей жидкости из головки блока цилиндров в радиатор отопителя.
  5. Перепускной шланг термостата.
  6. Выпускной патрубок.
  7. Подводной шланг радиатора.
  8. Расширительный бачок.
  9. Пробка бачка.
  10. Пароотводящий шланг.
  11. Заливная горловина радиатора.
  12. Верхний бачок радиатора.
  13. Трубка радиатора.
  14. Охлаждающие пластины радиатора.
  15. Электромотор вентилятора.
  16. Вентилятор.
  17. Шкив насоса охлаждающей жидкости.
  18. Резиновая опора радиатора.
  19. Нижний бачок радиатора.
  20. Отводной шланг радиатора.
  21. Ремень привода генератора и насоса охлаждающей жидкости.
  22. Насос охлаждающей жидкости.
  23. Шланг подачи жидкости в насос.
  24. Термостат.

Система охлаждения служит для охлаждения нагревающихся деталей двигателя и поддержания нормальной температуры охлаждающей жидкости.

На автомобилях ВАЗ-2103 и ВАЗ-2106 система охлаждения двигателя – жидкостная, закрытого типа, с принудительной циркуляцией охлаждающей жидкости, с расширительным бачком.

Насос охлаждающей жидкости служит для обеспечения принудительной циркуляции жидкости в системе охлаждения. Насос – центробежного типа, приводится в действие от шкива коленчатого вала клиновым ремнем.

Вентилятор с электроприводом, имеет четырехлопастную крыльчатку. Электровентилятор включается и выключается (в зависимости от температуры охлаждающей жидкости) при помощи датчика, расположенного в нижнем бачке радиатора.

Термостат ускоряет прогрев двигателя и поддерживает необходимый тепловой режим. Состоит из корпуса и крышки, с твердым термочувствительным наполнителем, имеет два клапана: основной и перепускной. Начало открывания основного клапана термостата – при температуре охлаждающей жидкости 77-86 °C, ход основного клапана – не менее 6 мм.

Радиатор служит для охлаждения жидкости потоком воздуха, проходящим через сердцевину радиатора. Радиатор – вертикальный, трубчато-пластинчатый, с верхним и нижним латунными бачками. В нижнем бачке радиатора ввернута сливная пробка, в верхнем бачке находится заливная горловина. В пробке заливной горловины радиатора имеются впускной и выпускной клапаны, через которые радиатор соединен с расширительным бачком.

Расширительный бачок изготавливается из пластмассы и крепится хомутом к правому брызговику кузова.

Насос охлаждающей жидкости

Снятие и установка

Для данной операции потребуются следующие инструменты: ключ 13 мм, 17 мм; отвертка.

1. Слить охлаждающую жидкость из двигателя (см. «Замена охлаждающей жидкости»).

2. Ослабить хомуты и отсоединить от двигателя шланги подвода и отвода охлаждающей жидкости.

Состоит система охлаждения ВАЗ-2106 из нескольких элементов. Причем каждый выполняет свои функции, о них более подробно будет рассказано ниже. Система на «шестерках» отличается от той, которая применена на автомобилях поздних моделей (начиная с 2108). Способ заправки охлаждения несколько отличается: жидкость заливается сначала в радиатор, затем – в бачок для поддержания необходимого уровня. Да и еще есть несколько мелких деталей, которые отличают систему от более новых. Но это не говорит о том, что система охлаждения «шестерок» несовершенна и плохо работает.

Малый круг циркуляции жидкости

Допустим, вы запускаете холодный двигатель. Процесс циркуляции жидкости в нем начинается моментально, с первых оборотов коленчатого вала. Жидкость начинает свое движение сначала по малому кругу. В него входят все элементы, за исключением радиатора. Система охлаждения двигателя ВАЗ-2106 функционирует таким образом, что при циркуляции жидкости по малому кругу происходит прогрев радиатора печки. Кроме того, из-за быстрого движения жидкости, которая не успевает остыть, времени на прогрев двигателя затрачивается меньше.

Большой круг

Когда температура антифриза достигает значения 85 градусов, происходит подключение радиатора охлаждения. С его помощью намного эффективнее снижается температура, за счет этого происходит поддержка ее значения на оптимальном уровне. Система охлаждения включает в себя механический или электрический вентилятор. О них будет рассказано ниже, а также рассмотрены все преимущества и недостатки каждого типа вентиляторов.

Расширительный бачок

Казалось бы, что можно рассказать о таком простом и незамысловатом элементе, как расширительный бачок. С одной стороны, в качестве него можно использовать любую емкость, которая удовлетворяет некоторым условиям. Но без этого узла не сможет работать нормально система охлаждения ВАЗ-2106. Объем жидкости всегда меняется, он непостоянен. А вот места для нее больше не становится в патрубках, рубашке двигателя и радиаторе. А причина того, что объем жидкости изменяется, – это постоянное колебание ее температуры.

Когда происходит повышение температуры (нагрев), то расстояние между молекулами вещества увеличивается. Это все знают из курса физики. А теперь представьте, если произошло повышение температуры антифриза с нуля до 80 градусов. Конечно же, его объем тоже станет больше. И куда-то должны деваться излишки жидкости. Они уходят через патрубок в расширительный бачок. Когда же происходит падение температуры, то объем неуклонно уменьшается. И все излишки, которые ушли в бак, возвращаются в радиатор и патрубки.

Патрубки системы

Это именно те элементы, которые необходимы для того, чтобы система охлаждения двигателя ВАЗ-2106 нормально функционировала. С их помощью произведено соединение всех узлов и агрегатов, участвующих в работе системы. Циркуляция жидкости происходит только лишь при помощи этих элементов. Патрубки изготовлены из толстой резины, внутри нее имеется корд, который дополнительно усиливает конструкцию. Следовательно, патрубкам не страшны изгибы, мелкие удары и серьезные деформации.

Для каждой модели автомобилей патрубки имеют различную форму. Все напрямую зависит от того, какое расстояние между соединяемыми узлами. Также играет немалую роль и то, в какой точке происходит подключение патрубков к системе. За счет того что внутренняя часть патрубка идеально гладкая, она максимально плотно прилегает к металлическим трубкам, с которыми производится соединение. Для максимальной эффективности можно использовать при монтаже герметики на основе силикона. С внешней стороны каждый патрубок обжимается металлическим хомутом. Чем последний шире, тем качественнее будет соединение.

Жидкостный насос

Данный элемент системы позволяет улучшить циркуляцию жидкости по патрубкам и радиаторам. Конечно, за счет того что горячий антифриз движется, вытесняя холодный, система кое-как, но будет работать. Однако крайне важно придать дополнительное ускорение, чтобы обеспечить два условия. Во-первых, жидкость не должна нагреваться до критических температур. Во-вторых, она должна как можно быстрее охлаждаться. Кратковременный нагрев и охлаждение позволяют удержать температуру на заданном уровне.

Жидкостный насос – это ротор в алюминиевом корпусе, у которого с внутренней стороны находится крыльчатка, а с внешней – шкив привода. Именно с помощью крыльчатки нормально работает система охлаждения ВАЗ-2106 (схема движения потоков жидкости приведена на рисунке выше). Крыльчатка изготавливается из пластика. Но встречаются и алюминиевые образцы, только использовать их неразумно по той причине, что они могут быстро разрушиться в случае применения воды, а не антифриза. Наиболее частая неисправность в помпе – это поломка подшипника. Она может разбиваться постепенно при чрезмерном натяжении ремня привода.

Кран печки

Пожалуй, в «шестерках», да и во всей классике, это самый ненадежный элемент. К сожалению, качество данного узла хорошее, но конструкция у него такая, что невозможно долго эксплуатировать этот кран. Его функция – перекрывать поток горячей жидкости, который поступает в радиатор печки. Во многом только из-за этого крана ломается система охлаждения ВАЗ-2106. Неисправности данного узла можно увидеть по нескольким признакам. Самый первый – это наличие антифриза на коврике возле сиденья пассажира.

Выход из строя крана сопровождается тем, что он либо не открывает подачу горячего антифриза, либо не перекрывает ее. При этом, кстати, будет двигаться металлический флажок, расположенный на корпусе краника. Причина такого поведения – разрушение керамических пластин, с помощью которых производится регулировка подачи. На какие только ухищрения не идут владельцы – и глушат патрубок подачи жидкости на лето, и устанавливают водопроводные полуоборотные краны, которые можно приобрести за копейки. Правда, необходимо делать переходники для их подключения.

Радиаторы системы

Когда выполняется на автомобиле ВАЗ-2106 ремонт, система охлаждения редко отключается. Исключение – снятие двигателя. В этом случае потребуется сливать жидкость и отсоединять патрубки, идущие на радиаторы печки и охлаждения. Что такое радиатор? Это две небольшие емкости, которые располагаются в горизонтальной плоскости. По вертикали между ними проложены металлические трубки – ячейки. Горячая жидкость подается в верхнюю емкость, поступает в десятки тонких ячеек, что позволяет ей быстрее остыть.

Материал для изготовления радиаторов – медь, бронза, латунь, пластик. Из последнего делают только верхнюю и нижнюю емкости. Для увеличения эффективности отдачи тепла между ячейками находится несколько сотен тончайших пластин. За счет того что площадь увеличивается, улучшается и теплоотдача радиатора. Устройство основного радиатора и того, который находится в печке, одинаково. Но есть мелкая особенность первого – к нему произведено подключение расширительного бачка. Вся лишняя жидкость вытесняется из радиатора и поступает в бак.

Вентилятор обдува радиатора

Он служит для увеличения эффективности системы охлаждения. С его помощью создается мощный поток воздуха. Система охлаждения радиатора ВАЗ-2106 может быть построена с использованием вентилятора либо с механическим приводом, либо с электрическим. Последний устанавливается на более ранние модели. Его преимущество в том, что он работает только в тех случаях, когда температура жидкости достигает критического значения. А вот вентилятор с механическим приводом (он просто монтируется на ротор помпы) производит обдув постоянно, независимо от того, какая температура в системе охлаждения. Это делает его использование в холодную погоду весьма неудобным.

Термостат

Это небольшой прибор, с помощью которого производится переключение потоков жидкости между кругами охлаждения. Его состав весьма простой – обычная биметаллическая пластина, а также небольшая конструкция из пружин. При достижении определенной температуры происходит медленная деформация пластинки, которая двигает клапан. Положение последнего по умолчанию производит циркуляцию жидкости по малому кругу. Следовательно, при поломке неизбежно закипание антифриза. Ранее была рассмотрена детально система охлаждения ВАЗ-2106, схема циркуляции антифриза по ней. В случае поломки термостата можно его и вовсе исключить из системы. Правда, жидкость будет двигаться только по большому кругу, зимой прогрев двигателя окажется очень долгим. Результат – неправильная работа мотора и холодный салон автомобиля.

Схема системы охлаждения ВАЗ 2105, 2107

Схема системы охлаждения карбюраторного двигателя автомобиля ВАЗ 2104, 2105, 2107
Система охлаждения (СО) двигателей автомобилей ВАЗ 2105, 2107 предназначена для поддержания их необходимой рабочей температуры. На изображении выше представлена ее схема.

Основные элементы системы охлаждения двигателя автомобилей ВАЗ 2105, 2107

— Рубашка охлаждения двигателя

Полости вокруг цилиндров двигателя, в головке блока и впускном коллекторе по которым циркулирует охлаждающая жидкость (ОЖ), отводя от них избыточное тепло.

— Помпа (водяной насос)

Предназначена для обеспечения принудительной циркуляции жидкости по системе охлаждения. Представляет собой вал с крыльчаткой, вращающийся на подшипнике в алюминиевом корпусе. Приводится в движение ременным приводом от шкива генератора и коленчатого вала. Рекомендуется периодически проверять натяжение ремня, так как при его проскальзывании помпа не может обеспечить эффективную циркуляцию ОЖ и двигатель будет перегреваться. Прогиб ремня под усилием 10 кгс должен находиться в пределах 10-15 мм.

— Радиатор

Предназначен для охлаждения  жидкости при движении автомобиля. Состоит из двух бачков и двух рядов трубок соединяющих бачки. Имеет пробку с впускным и выпускным клапанами на заливной горловине. Выпускной клапан  открывается при сильном нагреве жидкости и повышении давления в системе. При этом часть жидкости через него выбрасывается в расширительный бачок.

— Расширительный бачок

Предназначен для отвода из основной системы сильно нагретой и находящейся под давлением охлаждающей жидкости. Имеет пробку на заливной горловине. В пробке клапан, открывающийся при превышении давления в системе.

— Термостат

Термостат предназначен для поддержания нормального температурного режима двигателя путем соединения или разобщения малого и большого кругов системы охлаждения. На холодном двигателе ОЖ циркулирует по малому кругу (помпа, головка блока, блок цилиндров, печка, верхняя часть термостата). Температура ее быстро повышается. После прогрева ОЖ до 80 гр. срабатывает термоэлемент термостата, открывая его перепускной клапан. Жидкость начинает поступать через нижнюю часть термостата в радиатор (большой круг), где несколько охлаждается. От исправности термостата зависит нормальная и эффективная работа системы охлаждения двигателя вцелом.

— Вентилятор системы охлаждения

С четырехлопастной крыльчаткой объединенной с электродвигателем. Установлен на радиаторе. Предназначен для принудительного охлаждения жидкости, проходящий через радиатор. Включается при срабатывании термодатчика (ТМ-108), установленного в нижнем бачке радиатора, слева. Замыкающего свои контакты при температуре охлаждающей жидкости выше 89-95 гр., размыкающего при 84-90 гр.

— Печка (радиатор отопителя салона)

Предназначена для обогрева салона автомобиля. Входит в состав малого круга системы охлаждения, поэтому прогревается в первую очередь. Имеет кран, перекрывающий циркулирующую через нее жидкость. Кран управляется рычагом из салона автомобиля.

— Патрубки и шланги

Предназначены для обеспечения циркуляции ОЖ по системе.

Для контроля водителем за температурным состоянием двигателя на панели приборов имеется стрелочный указатель температуры охлаждающей жидкости, соединенный с датчиком температуры ввернутым в головку блока цилиндров двигателя.

Примечания и дополнения

— Рабочая температура двигателя, поддерживаемая его системой охлаждения, находится в пределах 80-94 гр.

— На холодном двигателе необходимо всегда проверять уровень охлаждающей жидкости. От ее объема напрямую зависит температурный режим двигателя и соответственно правильность его работы. При температуре воздуха 18-20 гр. уровень охлаждающей жидкости должен находиться на 4 см выше метки MIN в расширительном бачке.

— Периодичность замены охлаждающей жидкости на двигателях автомобилей ВАЗ 2105, 2107 составляет 30. 000 км пробега.

Еще статьи по двигателям ВАЗ 2105, 2107

— Что делать если закипел двигатель?

— Длина цепи двигателей ВАЗ

— Белый дым из глушителя, причины

— Двигатель не прогревается, причины

— Проверка термостата системы охлаждения

Ремонт ВАЗ 2106 (Жигули) : Система охлаждения двигателя

  1. Руководства по ремонту
  2. Руководство по ремонту ВАЗ 2106 (Жигули) 1976-2005 г.в.
  3. Система охлаждения двигателя

6.0 Система охлаждения двигателя
1 – шланг подвода охлаждающей жидкости в радиатор отопителя; 2 – шланг отвода охлаждающей жидкости из радиатора отопителя; 3 – кран отопителя; 4 – радиатор отопителя; 5 – трубка отвода жидкости; 6 – шланг отвода охлаждающей жидкости от впускной трубы; 7 – расширительный бачок; 8 – подводя…

6.1 Замена охлаждающей жидкости
 ПОРЯДОК ВЫПОЛНЕНИЯ ВНИМАНИЕ! Заменяйте охлаждающую жидкость только на холодном двигателе. Переводим верхний рычаг управления отопителем в крайнее правое положение, открывая кран радиатора отопителя. Открываем капот. Для удобства снимаем брызговик двигателя (см. Замена подушек и…

6.2 Замена насоса охлаждающей жидкости
 ПОРЯДОК ВЫПОЛНЕНИЯ Сливаем жидкость из системы охлаждения двигателя (см. Замена охлаждающей жидкости). Отсоединяем верхний и нижний шланги термостата (см. Замена термостата). Снимаем ремень генератора (см. Замена ремня привода генератора). Отсоединяем регулировочную планку генератора и…

6.3. Замена термостата
(Категория). Список материалов смотрите внутри…

6.4 Замена радиатора двигателя
 ПОРЯДОК ВЫПОЛНЕНИЯ Сливаем из системы охлаждающую жидкость (см. Замена охлаждающей жидкости). Ослабив хомут, отсоединяем от радиатора шланг расширительного бачка,… …а также подводящий (верхний)… …и отводящий (нижний) шланги. (Электровентилятор снят для наглядности…


↓ Комментарии ↓

 



1. Общие сведения
1.0 Общие сведения 1. 1 Техника безопасности

2. Диагностика неисправностей
2.0 Диагностика неисправностей 2.1 агностика неисправностей двигателя и его систем 2.2 Диагностика неисправностей сцепления 2.3 агностика неисправностей коробки передач 2.4 Диагностика неисправностей карданной передачи, заднего моста, ходовой части, рулевого управления и тормозной системы 2.5 Диагностика неисправностей кузова 2.6. Диагностика неисправностей электрооборудования

3. Двигатель
3.0 Двигатель 3.1 Головка цилиндров и механизм газораспределения 3.2 Система смазки 3.3 Замена масла 3.4 Замена успокоителя цепи привода распределительного вала 3.5 Замена распределительного вала и рычагов клапанов 3.6 Замена маслоотражательных колпачков механизма газораспределения 3.7 Замена прокладок впускного и выпускного коллекторов 3.8 Замена прокладки головки блока цилиндров 3.9 Разборка головки блока цилиндров, притирка клапанов

4. Система питания двигателя
4.0 Система питания двигателя 4. 1 Замена фильтрующего элемента воздушного фильтра 4.2 Замена топливного насоса 4.3 Ремонт топливного насоса 4.4 Замена топливного бака и крышки его лючка

5. Карбюратор
5.0 Общие сведения про карбюратор 5.1 Очистка топливного фильтра 5.2 Замена электромагнитного клапана системы холостого хода 5.3. Регулировка карбюратора 5.4 Замена карбюратора 5.5. Ремонт карбюратора

6. Система охлаждения двигателя
6.0 Система охлаждения двигателя 6.1 Замена охлаждающей жидкости 6.2 Замена насоса охлаждающей жидкости 6.3. Замена термостата 6.4 Замена радиатора двигателя

7. Система выпуска отработавших газов
7.0 Система выпуска отработавших газов 7.1 Замена деталей системы выпуска

8. Сцепление
8.0 Сцепление 8.1 Замена жидкости и прокачка гидропривода сцепления 8.2 Регулировка привода 8.3 Замена главного цилиндра сцепления 8.4 Ремонт главного цилиндра сцепления 8.5 Замена рабочего цилиндра сцепления 8.6 Замена нажимного диска в сборе и подшипника выключения сцепления

9. Коробка передач
9.0 Коробка передач 9.1 Проверка уровня и замена масла в коробке передач 9.2 Замена выключателя света заднего хода 9.3 Замена манжеты вторичного вала 9.4 Замена коробки передач 9.5 Ремонт коробки передач 9.6 Замена привода спидометра 9.7 Особенности ремонта пятиступенчатой коробки передач

10. Карданная передача
10.0 Карданная передача 10.1. Техническое обслуживание 10.2. Замена карданной передачи

11. Задний мост
11.0 Задний мост 11.1 Проверка исправности заднего моста 11.2 Замена масла 11.3 Замена полуоси и ее манжеты 11.4 Снятие и установка заднего моста 11.5 Замена манжеты ведущей шестерни 11.6 Замена редуктора 11.7 Ремонт редуктора

12. Передняя подвеска
12.0 Передняя подвеска 12.1. Техническое обслуживание 12.2 Замена подшипников и манжеты ступицы 12.3 Замена подушек и штанги стабилизатора 12.4 Замена шаровых опор 12.5 Замена амортизаторов 12.6 Замена пружин 12.7 Замена верхних рычагов и их резинометаллических шарниров 12. 8 Замена резинометаллических шарниров нижних рычагов на автомобиле 12.9 Замена нижних рычагов 12.12. Регулировка углов установки колес

13. Задняя подвеска
13.0 Задняя подвеска 13.1 Проверка технического состояния 13.2. Замена деталей задней подвески

14. Рулевое управление
14.0 Рулевое управление 14.1 Доливка масла 14.2 Проверка состояния рулевого управления 14.3 Регулировка зацепления редуктора 14.4 Замена рулевых тяг 14.5 Замена и ремонт маятникового рычага 14.6 Снятие и установка рулевого колеса 14.7 Снятие и установка рулевого вала 14.8 Снятие и установка рулевого механизма 14.9 Снятие сошки

15. Тормозная система
15.0 Тормозная система 15.1 Проверка состояния гидропривода 15.2 Проверка вакуумного усилителя тормозов 15.3 Проверка работоспособности регулятора давления 15.4 Замена тормозной жидкости и прокачка тормозной системы 15.5 Замена тормозных колодок передних колес 15.6 Замена тормозных колодок задних колес 15.7 Замена суппорта тормоза переднего колеса 15. 8 Замена тормозных цилиндров передних колес 15.9 Ремонт тормозных цилиндров передних колес

16. Общие сведения
16.0 Общие сведения 16.1. Проверка электрических цепей 16.2 Блоки предохранителей 16.3 Замена предохранителей 16.4 Замена основного и дополнительного блоков предохранителей 16.5. Замена реле 16.6 Замена выключателя зажигания 16.7 Замена контактной части выключателя зажигания 16.8 Аккумуляторная батарея 16.9. Генератор 16.10. Стартер 16.11. Система зажигания 16.12. Освещение, световая и звуковая сигнализации 16.13. Очиститель и омыватель ветрового стекла 16.14. Ремонт электродвигателя отопителя 16.15. Контрольные приборы

17. Кузов
17.0 Кузов 17.1 Замена переднего бампера 17.2 Замена решетки радиатора 17.3 Замена замка капота 17.4 Замена капота 17.5 Замена ветрового стекла 17.6 Замена внутреннего зеркала заднего вида 17.7 Замена солнцезащитного козырька 17.8 Замена накладки потолка 17.9 Замена потолочного поручня

18. Система отопления и вентиляции
18. 0 Система отопления и вентиляции 18.1 Замена электровентилятора отопителя 18.2 Замена радиатора отопителя 18.3 Замена кожуха радиатора 18.4 Замена крана отопителя

19. Уход за кузовом автомобиля
19.0 Уход за кузовом автомобиля 19.1 Мойка автомобиля 19.2 Сохранение и защита лакокрасочного покрытия

20. Приложения
20.0 Приложения 20.1 Инструмент, применяемый помимо штатного набора 20.2 Схема электрооборудования автомобилей ВАЗ–2106, ВАЗ-21061, ВАЗ-21063 выпуска 1976–1987 гг. 20.4 Моменты затяжки резьбовых соединений 20.5 Основные данные для регулировок и контроля 20.6 Характеристики свечей зажигания 20.7 Применяемые топливо, смазочные материалы и эксплуатационные жидкости 20.8 Лампы, применяемые на автомобиле 20.9 Манжетные уплотнения (сальники)

Система охлаждения двигателя ВАЗ 2114, устройство, принцип работы

Система охлаждения двигателя ВАЗ 2114 представляет интерес для многих владельцев данного автомобиля. К сожалению, отечественные автомобили не отличаются хорошим качеством сборки и надежностью работы различных их систем, включая и систему охлаждения двигателя ВАЗ 2114.

Но прежде чем найти и устранить неисправность в системе охлаждения двигателя ВАЗ 2114 необходимо знать ее устройство и принцип работы. Про это мы и поговорим дальше.

Внутренний теплообмен

Принцип работы системы охлаждения двигателя ВАЗ 2114 основан на внутреннем теплообмене, который происходит с помощью жидкости. Тут ничего нового я вам не открою, так как на этом принципе основана работа систем охлаждения 99% всех автомобилей в мире.

Причиной этому послужило то, что данный принцип на много эффективней и надежней воздушной системы охлаждения.

Всем нам знаком легенда отечественного автопрома автомобиль «Запорожец», на котором двигатель стоял сзади и охлаждался с помощью направленных воздушных потоков.

Двигатель Запорожца.

И как мучились владельцы этого автомобиля, придумывая различные ухищрения, чтобы увеличить эффективность этой системы, для того чтобы двигатель не перегрелся.

Важный недостаток

Однако система охлаждения двигателя ВАЗ 2114 и всех остальных аналогичных автомобилей имеет один важный недостаток, это постоянный контроль за ее состоянием, периодичное обязательное обслуживание и ремонт.

В основу работы такой системы охлаждения заложена принудительная циркуляция охлаждающей жидкости по закрытому контуру. Единственное, что соединяет ее с внешним виром это расширительный бачок.

Устройство системы охлаждения двигателя ВАЗ 2114

Система охлаждения двигателя ВАЗ 2114 состоит из:

  1. Электродвигателя;
  2. Насоса;
  3. Левого и правого бочков радиатора;
  4. Горловины;
  5. Заливных и сливных пробок;
  6. Сливной патрубок.

Конечно же, радиатора, расширительного бачка, трубок и шлангов по которым циркулирует охлаждающая жидкость, термостат, электровентилятор и датчик его включения, патрубки для радиатора отопителя, блок подогрева карбюратора.

Так же к системе охлаждения двигателя ВАЗ 2114 можно отнести ремень привода распределительного вала, с помощью которого приводится центробежный насос или по-простому помпа.

Принцип работы

Циркуляция жидкости в системе охлаждения автомобиля происходит принудительно под воздействием центробежного насоса, который, в свою очередь, приводится в действие ремнем привода газораспределительного механизма.

Электровентилятор имеет встроенные четыре пластмассовых лопасти. Он установлен на вал электродвигателя. Электродвигатель в свою очередь постоянно реагирует на показания специального датчика и в зависимости от его показаний включается и выключается.

Как известно система охлаждения двигателя ВАЗ 2114 не является как таковой без клапана термостата, который имеет двумя каналами, основным и дополнительным. Термостат имеет специальный наполнитель, который чувствителен к изменению температуры окружающей среды.

Вообще клапан термостата является одним из самых важных элементов системы охлаждения любого автомобиля. При достижении температуры охлаждающей жидкости приблизительно 87 градусов (плюс, минус 2 градуса), открывается основной клапан и пропускает охлаждающую жидкость по большому контуру.

При достижении температуры охлаждающей жидкости 102 градуса, ход основного клапана останавливается на отметке 8 мм (для ВАЗ 2114).

Причины не правильной работы системы охлаждения

Очень часто причиной не правильной работы системы охлаждения автомобиля является не правильное срабатывание термостата. Если данный клапан работает не правильно, единственный выход из данной ситуации, это его замена.

А что бы проверить исправность клапана термостата, необходимо запустить холодный двигатель.

После того как двигатель прогреется (87 – 92 градуса) необходимо прощупать нижний патрубок под термостатом, он должен быть теплым. Если патрубок холодный, значит у вас проблемы с клапаном термостата.

Читайте по теме — Неисправность системы охлаждения ВАЗ 2106.

На автомобиле ВАЗ 2114 установлен двухходовой алюминиевый радиатор, трубчатый – пластинчатый. Данный радиатор дополнительно оснащен 2-я пластмассовыми бачками. Левый бачек имеет перегородку.

Как мы видим, система охлаждения двигателя ВАЗ 2114 не является очень сложной, чтобы не разобраться в ее конструкции и принципе работы. Что не скажешь про такую же систему у иномарок.

И что самое положительное и приятное, вы сможете самостоятельно провести не большой ее ремонт, к примеру, заменить клапан термостат или какой-либо патрубок. Также читайте что делать если раздувает расширительный бачок.

Система охлаждения двигателя, принцип работы.

Вентилятор системы охлаждения двигателя на ВАЗ 2108-2111, Ока

Уважаемые покупатели, во избежание ошибок при отправке электровентилятора ВАЗ-2103 с крыльчаткой, в строке «Комментарий» указывайте модель вашего автомобиля, год выпуска.

 

На автомобилях ВАЗ 2103-2107, ВАЗ 2108-099, ВАЗ 2110 для обдува радиатора системы охлаждения воздухом предусмотрен электровентилятор 70.3730. Он включается при срабатывании датчика-выключателя 37101Б, установленного в нижней части правого бачка радиатора. Ранее питание на электродвигатель вентилятора подавалось через реле. В этом случае применялся датчик температуры ТМ-108. В настоящее время схема электровентилятора упрощена и питание электродвигателя производится непосредственно через контакты датчика-выключателя. Датчик неразборный – в случае неисправности подлежит замене.

 

 

Система охлаждения двигателя ВАЗ 2106, 2103, 2101: 1 — шланг подвода охлаждающей жидкости в радиатор отопителя; 2 — шланг отвода охлаждающей жидкости из радиатора отопителя; 3 — кран отопителя; 4 — радиатор отопителя; 5 — трубка отвода жидкости; 6 — шланг отвода охлаждающей жидкости от впускной трубы; 7 — расширительный бачок; 8 — подводящий шланг радиатора; 9 — пробка радиатора; 10- верхний бачок радиатора; 11 — трубка радиатора; 12 — электровентилятор; 13 — нижний бачок радиатора; 14 — отводящий шланг радиатора; 15 — насос охлаждающей жидкости; 16 — шланг подачи охлаждающей жидкости в насос; 17- термостат; 18 — перепускной шланг термостата.

 

Электродвигатель 70.3730– постоянного тока с возбуждением от постоянных магнитов. Установлен в кожухе, закрепленном на кронштейнах радиатора. При эксплуатации электродвигатель обслуживания не требует, неисправный подлежит замене.

 

Технические характеристики Электровентилятора системы охлаждения двигателя с крыльчаткой 70.3730

— Номинальное напряжение: 12В;

— Номинальная мощность: 110Вт;

— Максимальный ток: 15А;

— Номинальная частота вращения: 2600 об/мин;

— Ø крыльчатки: 138 мм;

— Количество лопостей: 8.

Система охлаждения двигателя ВАЗ 2107, 2106, 2103, 2101 — жидкостная, закрытого типа с принудительной циркуляцией. На холодном двигателе жидкость циркулирует по «малому кругу». В него входят рубашки охлаждения блока и головки цилиндров двигателя, насос охлаждающей жидкости, термостат, а также радиатор отопителя, когда его кран открыт. При достижении температуры жидкости 80-85° приходят в действие два клапана термостата, перекрывая малый круг и открывая жидкости путь через радиатор двигателя, который интенсивно обдувается встречным потоком воздуха при движении, а также при помощи электровентилятора.

 

Положение клапанов термостата при различной температуре охлаждающей жидкости: / — из головки блока цилиндров; II — к насосу охлаждающей жидкости; III — от нижнего патрубка радиатора; 1 — основной клапан, 2 — перепускной клапан.

Радиатор состоит из двух горизонтальных бачков, соединенных между собой трубками. Для лучшего теплоотвода на них напрессованы пластины. Жидкость подается в радиатор через верхний патрубок, а отводится через нижний.

Проходя через радиатор, жидкость охлаждается, после чего снова поступает в двигатель. Изменение объема охлаждающей жидкости при ее нагреве или охлаждении компенсирует расширительный бачок. Для визуального контроля уровня охлаждающей жидкости бачок изготовлен из полупрозрачного полиэтилена.

Герметичность системы обеспечивается впускным и выпускным клапанами пробки заливной горловины радиатора. На горячем двигателе выпускной клапан поддерживает повышенное давление в системе. За счет этого повышается температура кипения жидкости. При ее остывании открывается впускной клапан, пропуская часть жидкости из расширительного бачка в радиатор и тем самым компенсируя уменьшение объема жидкости.

В пробке расширительного бачка имеется отверстие, поэтому в его внутренней полости давление всегда атмосферное.

Насос охлаждающей жидкости центробежного типа. Корпус насоса — алюминиевый, разборный, состоит из двух частей. Валик насоса вращается в двухрядном подшипнике закрытого типа, не требующем обслуживания. На передний конец вала напрессован фланец шкива привода насоса — клиновым ремнем от шкива коленчатого вала двигателя.

В последнее время автомобили комплектуются радиаторами с пластмассовыми бачками и алюминиевой сердцевиной.

Не рекомендуется заливать в систему охлаждения двигателя воду. Это приводит к образованию накипи на стенках системы, коррозии деталей, ухудшению теплообмена и сокращению ресурса уплотнения насоса.

 

 

В системе охлаждения двигателя используются специальные жидкости на основе смеси воды с этиленгликолем. У них пониженная температура замерзания и высокая температура кипения. Кроме того, благодаря комплексу добавляемых присадок, охлаждающая жидкость препятствует коррозии стенок каналов, не вспенивается, продлевает срок службы сальника насоса охлаждающей жидкости.

Для проверки электродвигателя вентилятора 70.3730 подаем на выводы электродвигателя напряжение 12В от аккумуляторной батареи – исправный двигатель заработает.

Для проверки датчика температуры электровентилятора, отсоединив провода от датчика температуры, соединяем их между собой при включенном зажигании. Если вентилятор заработает – неисправен датчик.

Конструкция электродвигателя не предполагает ремонтопригодность. Электродвигатель имеет ресурс более 5 000 часов, что эквивалентно примерно 8 годам средней эксплуатации. Искрогасящие дросселя нужны для того, чтобы «погасить» искру, возникающую в момент разрыва контакта щеток с коллектором из-за которой быстро изнашиваются (выгорают) щетки и коллектор.

Вентилятор охлаждения 70. 3730 полностью соответствуют требованиям нормативам заводов-изготовителей:

— аэродинамические свойства;

— электрические параметры.

Продукция сертифицирована по международной системе менеджмента качества ISO 9001 TUV и имеет сертификаты соответствия ГОСТ-Р.

 

Другие артикулы товара и его аналогов в каталогах: 70.3730.

ВАЗ 1111, ВАЗ 2103, ВАЗ 2104, ВАЗ 2105, ВАЗ 2106, ВАЗ 2107, ВАЗ 2108, ВАЗ 2109, ВАЗ 21099, ВАЗ 2110 , ИЖ-2126, Москвич, ЗиЛ.

 

Любая поломка – это не конец света, а вполне решаемая проблема !

Как самостоятельно заменить мотор радиатора ВАЗ-2103 с крыльчаткой на автомобиле классического семейства ВАЗ, ОКА.

С интернет – Магазином AvtoAzbuka затраты на ремонт будут минимальными.

 

Просто СРАВНИ и УБЕДИСЬ !!!

Не забудьте поделиться со своими друзьями и знакомыми найденной информацией, т. к. она им тоже может понадобится — просто нажмите одну из кнопок социальных сетей, расположенных выше.

Презентация по теме «Система охлаждения двигателя»

Описание слайда:

Система охлаждения двигателя Система охлаждения двигателя – жидкостная, закрытого типа с принудительной циркуляцией. На холодном двигателе жидкость циркулирует по «малому кругу». В него входят рубашки охлаждения блока и головки цилиндров двигателя, насос охлаждающей жидкости, термостат, а также радиатор отопителя, когда его кран открыт. При достижении температуры жидкости 80–85° приходят в действие два клапана термостата, перекрывая малый круг и открывая жидкости путь через радиатор двигателя, который интенсивно обдувается встречным потоком воздуха при движении, а также при помощи электровентилятора.  Радиатор состоит из двух горизонтальных бачков, соединенных между собой трубками. Для лучшего теплоотвода на них напрессованы пластины. Жидкость подается в радиатор через верхний патрубок, а отводится через нижний.  Проходя через радиатор, жидкость охлаждается, после чего снова поступает в двигатель. Изменение объема охлаждающей жидкости при ее нагреве или охлаждении компенсирует расширительный бачок. Для визуального контроля уровня охлаждающей жидкости бачок изготовлен из полупрозрачного полиэтилена.  Герметичность системы обеспечивается впускным и выпускным клапанами пробки заливной горловины радиатора. На горячем двигателе выпускной клапан поддерживает повышенное давление в системе. За счет этого повышается температура кипения жидкости. При ее остывании открывается впускной клапан, пропуская часть жидкости из расширительного бачка в радиатор и тем самым компенсируя уменьшение объема жидкости.  В пробке расширительного бачка имеется отверстие, поэтому в его внутренней полости давление всегда атмосферное.  Насос охлаждающей жидкости центробежного типа. Корпус насоса – алюминиевый, разборный, состоит из двух частей. Валик насоса вращается в двухрядном подшипнике закрытого типа, не требующем обслуживания. На передний конец вала напрессован фланец шкива привода насоса – клиновым ремнем от шкива коленчатого вала двигателя.   В последнее время автомобили комплектуются радиаторами с пластмассовыми бачками и алюминиевой сердцевиной.  Не рекомендуется заливать в систему охлаждения двигателя воду. Это приводит к образованию накипи на стенках системы, коррозии деталей, ухудшению теплообмена и сокращению ресурса уплотнения насоса.

Запчасти на Лада Нива 4х4 | Крышка радиатора Лада Нива 2101-07 и 2121, 21213, 21214, 21215

Запчасти на Лада Нива 2121 и Лада седан 2101-2107

В нашем интернет-магазине вы найдете практически все запчасти для вашей Лада Нива. В наш ассортимент входят генераторы, выхлопные системы, карданный шарнир, валы, карбюратор, распределитель, тормозной цилиндр, тормозной суппорт, поворотники, зеркала, тормозные колодки, фары, кабель зажигания, кабель спидометра, прокладки, воздушные фильтры, масляные фильтры, резервуар для жидкости. , ремни, амортизаторы и многое другое.У нас есть в наличии руководство по ремонту на немецком, английском и французском языках для ремонта и обслуживания вашей Lada Niva. Если у вас есть вопросы или вы не можете найти нужную деталь, напишите нам или позвоните нам.

Вы можете найти следующие категории:

Ведущий вал / дифференциал привода Лада Нива, Оси Лада Нива, Лада Нива Подвеска


Продольный стержень, стабилизатор поперечной устойчивости, шаровые опоры, пружины, амортизаторы


Выхлопная система Лада Нива

Выхлоп, глушитель, центральный глушитель, водосточная труба, выхлопные хомуты, коллекторы, катализатор для Lada и Lada Niva
Авто / лак для краски для Lada и Lada Niva

Автомобильные краски / краски или спрей в баллончике и как цветной карандаш специально для Lada
Лада Нива Освещение для Лада и Лада Нива

Фары, задние фонари, стоп-сигналы, поворотники, габаритные огни, отражатель, лампа накаливания, задний фонарь, отражатели, стекла, поворотники, габаритные огни, освещение номерного знака, фонари, задние фонари, переключатель для освещения, лампы, Glübirnen Lada Niva
Тормоза тормозные детали, тормозные цилиндры для Lada и Lada Niva

: Тормоз, Bremstromel, Тормозной шланг, Тормозной шланг, Тормозные колодки, Тормозные цилиндры, Тормозные колодки
Прокладки + помогает Лада Нива

Прокладки + Вспомогательные средства Лада Нива: Прокладка коллектора, прокладка выхлопа, прокладка ГБЦ, прокладка поддона, прокладка карбюратора, сальник насоса, прокладка клапана подогрева, уплотнитель топливного насоса
Электро Лада Нива

9000 2 Электрооборудование, предохранители, кабели, переключатели
Подвеска / амортизатор для Lada и Lada Niva

Бамперы, рессоры, пружины подвески, листовая рессора
Фильтры: масляные, воздушные, бензиновые для Lada и Lada Niva

Масляный фильтр, воздушный фильтр, топливный фильтр
Трансмиссия, трансмиссия, раздаточная коробка, Лада Нива


Стекло, Окно, механизм стеклоподъемника, оконная ручка, для Лада Нива

Трансмиссия, трансмиссия, раздаточная коробка, комплекты подшипников
Детали для салона Лада Нива

Стекло, окна, раздвижные окна, резиновые прокладки и все необходимое для остекления, механизм стеклоподъемника, оконная ручка, карданный вал

Детали интерьера Лада Нива: потолок, коврик, спидометр, автомобильные часы, дверная ручка, кнопка, резиновый коврик, защита порога, панель приборов , задняя полка, руль
Кузовные детали Лада Нива

Кузов, кузовные панели, бампер. Наклейки, Капот, Шлоссер, Ручки, Бампер
Подача топлива Лада Нива

Топливный насос, Карбюратор, Топливный шланг
Кондиционер / Отопление Лада Нива

Охлаждение, радиатор, обогрев, патрубок, электродвигатель обогрева
Сцепление

Сцепление, шланг сцепления , цилиндр сцепления, бачок сцепления, диски сцепления, комплект сцепления
Направление Лада Нива

Рулевой механизм, тяга, отклоняющая скоба, рулевое колесо, Лада Нива
АвтоВАЗ запчасти ОРИГИНАЛ Лада Нива

Найти запчасти с гарантией оригинального производителя АВТОВАЗ
Руководство по ремонту Лада Нива

Лада Нива: руководства по ремонту на французском, английском, русском и немецком языках, каталог номеров деталей, Лада, Нива
Ремкомплекты Ремкомплекты

Найти готовые к установке ремонтные комплекты
Винт, болт, хомут, крепеж, хомут, гайка

Винт, болт, хомут, застежка, хомут, гайка
Ремни безопасности

Ремни, адаптер ремня, пряжка ремня, автоматическая и статическая
Зеркало Лада Нива

Зеркала, внутреннее зеркало, зеркало
Детали для тюнинга Лада Нива

Тюнинг Лада Нива: Экскаваторы, Молдинг, Расширители крыльев, Молдинги, Облицовка, Защитные опоры, Ветрозащитный кожух, Безумная гвардия, Эмблема, Шильдик, Спортивное рулевое колесо, Ступица рулевого колеса
Мыть Лада Нива

Бачок омывателя, помпа бачка омывателя, дворник, рычаг стеклоочистителя
Магазин инструментов Лада Нива

Инструменты, оборудование для мастерских
Зажигание, распределитель, свечи зажигания, катушка зажигания

Провода зажигания, свечи зажигания, катушка зажигания, зажигание,
взорвалось

В нашем интернет-магазине вы найдете практически все запчасти
для вашей Лада Нива всех моделей 2121, 21213, 21214. Если у вас есть вопросы или вы не можете найти нужную запчасть для своей Lada, не стесняйтесь обращаться к нам.

LADA: 50 лет истории — Пресс-релизы — Новости

19 апреля 2020 года исполняется 50 лет первым автомобилям LADA. В тот день 1970 года с конвейера Волжского автомобильного завода было выпущено шесть седанов ВАЗ-2101 «Жигули»: два синего цвета и четыре вишневого цвета, что символизировало цвета флага РСФСР. С тех пор тольяттинский завод успешно запустил более 50 серийных моделей.

Первая LADA — самая массовая модель в СССР и России.

Продажи модели «Жигули» начались в августе 1970 года. ВАЗ-2101 положил начало самому массовому семейству легковых автомобилей компании. истории, а тем более в истории российского автомобилестроения. С 1970 по 1988 год было произведено около 4,8 млн автомобилей ВАЗ-2101 и его модификаций. Помимо ВАЗ-2101, серийно выпускались также следующие модели: LADA 2106 (4,3. М), LADA 2107 (2.8 млн шт. ), LADA 4×4 (2,5 млн шт.).

Усовершенствование зарубежного прототипа

Первая модель LADA была основана на итальянском седане FIAT-124, получившем награду «Автомобиль года» в Европе в 1967 году. Для производства и продажи в Советском Союзе иностранный прототип прошел серию испытаний на дорогах, бездорожье и специальных участках брусчатки. После испытаний в конструкцию лицензионного автомобиля внесено более 800 изменений; большинство из них были направлены на повышение надежности.

Подвеска претерпела следующие доработки: изменение кинематики, усиление большинства деталей, включая подшипники и шаровые опоры. FIAT-124 имел клиренс около 130 мм. В ходе модернизации итальянского шасси передний клиренс был увеличен до 175 мм. В результате доработок автомобиль стал тяжелее на 90 кг, но это компенсировалось увеличением мощности двигателя. ВАЗ-2101 получил новый двигатель с верхним распредвалом и увеличенным межосевым расстоянием между цилиндрами, что позволило в дальнейшем усовершенствовать двигатель и увеличить его объем. Наружный диаметр фрикционных накладок в муфте увеличен с 182 мм до 200 мм. Коробка передач получила синхронизаторы, которые были разработаны для более быстрых спортивных автомобилей Fiat. Кузов стал крепче, и вместо двух отбойных молотков (по одной с каждой стороны) было введено четыре, чтобы поддомкрачивание было более безопасным.

В бампере, кузове и радиаторе проделаны отверстия под внешнюю ручку стартера. Вместо сигнальной лампы перегрева двигателя использовали итальянцы; Комбинация приборов ВАЗ-2101 была оборудована указателем температуры охлаждающей жидкости.

Некоторые изменения являются внешними и хорошо видны. Воочию убедиться в этом можно в корпоративном музее АВТОВАЗа, где выставлен FIAT-124 — редкий в России автомобиль, переданный в музей из частной коллекции. Его можно сравнить с первым проданным автомобилем ВАЗ-2101, который после 19 лет эксплуатации был доставлен в корпоративный музей.

Время показало, насколько правильными были конструктивные решения, заложенные в ВАЗ-2101. Автомобиль стал достаточно прочным, надежным и комфортным — он был высоко оценен как отечественными потребителями, так и зарубежным рынком, на который машина вышла уже в 1971 году.Первая партия машин была отправлена ​​в Югославию, Бельгию, Голландию и Финляндию. В 1971 году было экспортировано более 57 тысяч автомобилей LADA, что составляло более трети общего годового экспорта автомобилей СССР на тот момент.

Сегодня в России зарегистрировано несколько сотен тысяч седанов ВАЗ-2101. Эти выдающиеся автомобили до сих пор используются по прямому назначению — в качестве транспортного средства, но все чаще они проходят ремонт, чтобы стать предметом коллекционирования.

Русский автомобиль ХХ века

В 2000 году ВАЗ-2101 был признан Русским автомобилем века по результатам опроса, проведенного журналом «За рулем».За первую модель LADA проголосовал каждый четвертый участник опроса, который проводился среди более 80 тысяч человек.

История побед в автоспорте

В 1970 году вместе с выпуском первого автомобиля ВАЗ-2101 было принято решение о создании спортивного подразделения. С первых же лет выпуска ВАЗ-2101 стал побеждать во всех видах автомобильных гонок, открыв новую страницу в истории автоспорта в СССР. В 1971 году команда на ВАЗ-2101 впервые участвовала в ралли Tour of Europe, которое проходило в 14 странах, и выиграла Серебряный кубок, а через два года сразу два — и Золотой кубок, и Серебряный кубок.Параллельно коллектив завода завоевал главные награды соревнований, проводимых на территории Советского Союза. Пилоты на ВАЗ-2101 соревновались как с отечественными автомобилями других марок, так и в моноклассе, созданном специально для «Жигулей». Спортсмены на ВАЗ-2101 до середины 80-х участвовали в международных гонках, советских кольцевых гонках и автокроссе. История спортивных побед LADA продолжается: команда компании использует специально настроенные автомобили LADA Granta и LADA Vesta для участия в российских раллийных гонках и кольцевых гонках.Только за 2019 год пилоты команды LADA Sport ROSNEFT более 100 раз поднимались на подиумы-победители.

Новая LADA: наследница традиций

Появление ВАЗ-2101 сформировало основные правила создания автомобилей, которые реализованы и в современных моделях LADA. Эти правила — оригинальный и яркий стиль, надежность, лучшее качество и оснащенность по доступной цене. ВАЗ-2101 был не только многочисленным, но и действительно продвинутым автомобилем своего времени. Современные модели LADA продолжают эту традицию.

LADA была и остается самым массовым автомобильным брендом в России. Доля рынка марки составляет более 20%, а парк автомобилей LADA составляет 30% от российского автопарка. Лидерами российского рынка являются модели LADA Granta и LADA Vesta.

Сейчас модельный ряд LADA представлен 5 семействами: Vesta, XRAY, Granta, Largus, 4×4. LADA предлагает своим покупателям широчайший выбор модификаций моделей: более двух десятков серийных автомобилей — седаны, хэтчбеки, универсалы, кроссоверы; а также ряд специальных версий — микроавтобусы, пикапы с открытой и закрытой кабиной, бронированные машины для перевозки наличных, марсоходы, социальные такси, машины скорой помощи, кинологи или автомобили спасательных служб.

Сегодня АВТОВАЗ входит в Группу Renault, одного из лидеров мирового автомобилестроения. Технологии производства, системы контроля и оценки качества продукции компании соответствуют последним международным стандартам и постоянно развиваются.

Почему греется двигатель на ВАЗ-2106. Все о перегреве двигателя

Двигатель отечественной классики ВАЗ 2106 имеет объем 1,6 л и может быть как карбюраторным, так и инжекторным.Четырехцилиндровый двигатель с верхним распредвалом. Ресурс силового агрегата составляет 125000 км, но, как правило, выдерживает больший пробег, хотя репутации самого надежного у автомобилистов не снискал.

Одной из распространенных проблем этого двигателя является сильный перегрев при определенных условиях. Двигатель ВАЗ 2106 греется при наличии связанных с ним системных неисправностей, например, радиатора и термостата. Ниже будут рассмотрены все причины, по которым двигатель перегревается.

Опыт водителей показал, что карбюраторный двигатель ВАЗ «шестерка» не так часто подвержен различным неисправностям, как инжектор. В жаркое время года изношенный двигатель довольно легко перегревается, даже если уровень антифриза в норме. Рабочая температура двигателя не должна превышать 96 °.

Причины перегрева: термостат

При нормальной работе системы охлаждения двигателя охлаждающая жидкость протекает через агрегат.

цилиндров.Жидкость от этого нагревается, поэтому в системе есть термостат, подключенный к клапану, который открывает и выпускает часть охлаждающей жидкости в радиатор, где она достигает нормальной температуры и снова начинает циркулировать по заданному пути. При повышении температуры термостат открывает клапан и антифриз полностью проходит через радиатор, так что двигатель не перегревается. Что будет, если термостат выйдет из строя?

Клапан перестает открываться, антифриз не попадает в радиатор, двигатель закипает.Если прикоснуться рукой к неисправному термостату снизу, он будет холодным, а это значит, что клапан заклинило в закрытом состоянии. Закипевший антифриз может попасть в поршневую часть двигателя и масляный поддон, что приведет к критическому износу мотора машины.

В случае перегрева следует немедленно остановить и заглушить двигатель, так как он не будет стоять более 10 минут. Кратковременный перегрев не так страшен, но продолжительное воздействие повышенной температуры приведет к полной остановке и ремонту двигателя, в том числе оплавленных поршней.


Процесс снятия термостата с автомобиля

При подозрении на неисправность термостата нужно проверить радиатор и его соединения на ощупь. Если термостат ломается и заклинивает в открытом состоянии, двигатель не сразу начинает прогреваться, а требуется больше времени для прогрева. Радиатор постепенно перегревается чрезмерно, при заклинивании его клапана нижний (выходной) патрубок будет горячим. Эти признаки указывают на неисправный термостат.

Причина найдена, пора ее исправить, для чего потребуется замена термостата. Прежде чем снимать его, убедитесь, что мотор полностью остыл. Для удобства можно снять аккумулятор, а в некоторых случаях и генератор.

Необходимо слить часть охлаждающей жидкости из блока цилиндров и радиатора. После этого снимите генератор, если он мешает приблизиться к зажимам крепления термостата. Ослабьте хомуты отверткой, снимите патрубки и вытащите сам прибор.Новый термостат предварительно проверяют проточной горячей водой (температура должна быть около 80 °). Когда вода нагревается до 87 ° C, клапан термостата должен открываться, это означает, что новый прибор работает исправно.

Термостат устанавливается на место аналогично, остается только долить антифриз, следя за тем, чтобы в системе охлаждения не осталось воздуха, иначе мотор может начать греться.

Шлюз


Опускание шлюза из системы охлаждения через сливной коллектор радиатора

Еще одно явление, почему двигатель нагревается, наличие воздуха в патрубках автомобильного радиатора.

Проблема возникает из-за разницы в плотности антифриза и воздуха и затрудняет прохождение охлаждающей жидкости по системе. Систему охлаждения в этом случае нужно прокачать. Как это сделать?

Для откачки и выгула пробок существует несколько способов. Можно заехать на горку (горку) и погазовать некоторое время. Иногда достаточно при поддомкрачивании охлаждающей жидкости поддомкратить машину с правой стороны, и можно просто полчаса покататься, воздух выйдет сам собой, только при этом резко падает уровень антифриза, так что последний метод требует осторожности.Также можно руками по очереди прокачивать трубы радиатора ритмичным нажатием. Если при этом снять крышку с бачка охлаждающей жидкости с охлаждающей жидкостью, вы сразу увидите, какой воздух выходит из шланга (через пузырьки).

Засорение радиатора: нюансы

Радиатор может забиваться разным мелким мусором, это всем известно. Спасает его только регулярная чистка, особенно в теплое время года, когда в воздухе много пыли, насекомых, тополевого пуха.Если антифриз некачественный или забыли вовремя его поменять, засорение усугубляется изнутри.

Итак, необходимо очистить радиатор. Подождите, пока двигатель остынет. Слить антифриз. Уже по раковине можно определить, насколько сильно пострадал радиатор от засорения. Сам антифриз тоже может быть причиной того, что ВАЗ греется, и это будет видно по его цвету. Для очистки радиатора и его каналов изнутри лучше всего долить воду и прогреть двигатель до достижения рабочей температуры двигателя.Затем выключите, подождите, пока двигатель остынет, и слейте воду. При необходимости повторить. Если не помогло, то лучше в этом случае обратиться в сервисный центр или заменить радиатор на новый. К радиатору следует подходить осторожно.

Перегрев двигателя ВАЗ 2106 может произойти при поломке вентилятора, течи в насосе и последующем снижении давления в системе охлаждения, при использовании топлива с октановым числом выше необходимого.


Очистка радиатора с помощью автоматической ручной мойки автомобилей

В жизни каждого автовладельца хоть раз, но был момент, когда в движении или в пробке стрелка индикатора температуры охлаждающей жидкости неумолимо начала ползать за 90-градусную черту и, так или иначе, необходимо выключите и дождитесь, пока двигатель остынет. Благо, если он не успел закипеть. Иногда бывает, что причина в каких-то мелочах, а бывает, что бедный автовладелец целый год «греется» на своих «Жигулях» и причину перегрева никто не может найти. Собственно со мной так и случилось, перегрев со временем устранили, но причина так и осталась загадкой. Это была отдельная «эпоха перегрева», казалось, что нельзя водить машину при нормальной температуре, постоянно включать печку, ехать по дороге 60-70 км / ч… ну, это было весело. И я решил в этой статье выделить все возможные причины перегрева, чтобы помочь разобраться тем, кто на данный момент стрелка любит ползать за 90.
Двигатель греется при движении по трассе.
Это может указывать на недостаточное количество охлаждающей жидкости в радиаторе охлаждения, что, в свою очередь, указывает на следующие возможные причины:
a) Термостат не работает или не открывается совсем.
б) Забит радиатор охлаждения.
в) Сломана прокладка под ГБЦ.В системе имеется шлюз, не пропускающий необходимое количество жидкости через радиатор.
Как точно определить в чем причина? Подробнее о каждом диагностическом параметре:
Неисправен термостат — нижняя труба, соединяющая радиатор и термостат, будет явно холоднее всех остальных, а охлаждение радиатора будет неравномерным.
Прокладка сломана — при езде по трассе закипела и открыла капот. Форсунки будут как велосипедная покрышка, радиатор горячий, как и нижняя форсунка термостата.В бачке уровень охлаждающей жидкости сильно поднят — он выжат. Если запустить двигатель и «газануть» в баке будут видны пузыри. Возможно, везде будет видно разбрызгивание теплоносителя, не говоря уже о том, что он может сломать трубу. Печка скорей всего не дует (не проверял, т.к. и так все было видно). Также могут быть видимые пятна из-под прокладки ГБЦ. Есть еще один момент: при малых нагрузках этот недуг может не проявляться и загонять газы в систему только при движении в гору и его легко можно спутать по ощущениям с неисправным термостатом, но теперь мы знаем, как отличить.
Забит радиатор охлаждения — редко, но столкнувшись с неисправностью системы охлаждения и определяя, что именно радиатор забит, только сняв его. Признак забитого радиатора — отсутствие вышеперечисленных неисправностей. А так патрубки все горячие, радиатор горячий (возможно неравномерно, в зависимости от степени засорения каналов), в баке не кипит, но уровень можно повышать, печка дует кипятком, давление в трубы в норме.Определить, что это не термостат или прокладка, несложно.

Это самые основные причины. Существуют и другие особые случаи, такие как треснувшая гильза цилиндра, треснувшая головка цилиндра, забитые каналы рубашки охлаждения и т. Д.

Двигатель нагревается при малой нагрузке.
Бывает такая ситуация, что двигатель нагревается в пробках, на малых оборотах — тут, как правило, пробитая прокладка тут ни при чем, двадцатого она дает о себе знать, когда двигатель еле еле » стучать »на холостом ходу.Причины могут быть следующие:
— Термостат недостаточно открывается. На трассе этого достаточно при большом потоке воздуха, при охлаждении электровентилятором — нет, а если у вас система принудительного охлаждения радиатора с крыльчаткой на помпе, то это вообще подвеска.
-Радиатор или рубашка (что-то забито).
— Насос не дает достаточного давления. Опять же по трассе, на высоких оборотах давит нормально, а на малых мало.
-Просто это способствует раннему или позднему зажиганию.

Несколько советов из личного опыта.
1. Если причина, как в моем случае, прямо сейчас не сработала, не тратьте время на поиски, делайте как я:
Купите промывку системы охлаждения, сделайте все по инструкции, затем слейте охлаждающей жидкости, снимите термостат, нагрейте воду до 90-100 градусов, потихоньку влейте внутрь термостата и посмотрите, открывается он или нет, термостат в хорошем состоянии, поставьте на место. Необходимо иметь шланг с водопроводной водой, отсоединить патрубки от плиты и в одной из металлических трубок нагнетать воду, закрыть вторую пальцем.Следует вывернуть сливной болт на блоке, «барашек» или сливную пробку радиатора. Тщательно промойте всю систему, подайте воду к разным отверстиям: в металлических трубках, которые идут к печке, к радиатору, можно снять термостат и подать давление на блок цилиндров. Главное, чтобы поток воды шел по системе в прямом и обратном направлениях, чтобы все, что там скопилось, перемешать и вымыть.

2. Всегда заливайте только специальные охлаждающие жидкости (антифриз, а лучше зеленый антифриз, потому что он менее агрессивен).Следите за помпой, попробуйте намотать за шкив — если подшипник не сломан, следите за натяжением ремня и конечно же уровнем охлаждающей жидкости.

Почему я упомянул подшипник насоса, потому что когда-то из-за него разорвался корпус насоса, сломалось чугунное рабочее колесо. Так что, если вы слышите какой-то хлипкий или вой под капотом или другие плохие звуки, лучше не ехать далеко, а найти причину и устранить ее.
Жду ваших вопросов. С уважением, Дмитрий.

Каждый автовладелец рано или поздно сталкивается с неисправностью двигателя.Нельзя сказать, что двигатели Ваз 2106 являются исключением из этого правила. Некоторые поломки случаются чаще других. В этой статье мы рассмотрим наиболее типичные проблемы для шестого двигателя и способы их устранения.

  • двигатель троит от ВАЗ 2106;
  • мотор сильно нагревается;
  • слышен стук в двигателе;
  • ,
  • курит силовой агрегат;
  • Сапун двигателя
  • ;
  • работает с перебоями и с перебоями.

Двигатель троит

Все слышали это слово «троение».Но не все до конца понимают, что означает это слово. Но этот термин придуман именно в нашей стране для обозначения общей проблемы. Дело в том, что иногда один из цилиндров в двигателе начинает давать сбой или полностью прекращает работу. Смесь воздуха и топлива в нем либо плохо горит, либо совсем не горит. В итоге рабочих цилиндров всего три. Отсюда и слово — «тройка».

Водитель понимает, что проблема возникла по тому, насколько сильно двигатель начинает вибрировать.Есть ощущение, что он готов вырваться из своих ездовых животных. При этом машина не движется. Иногда возникают вспышки топлива, которые распространяются хлопками в глушителе.

Если Ваз 2106 троит, причин для этого может быть три:

  1. В цилиндр попадает меньше или больше воздуха, чем нужно. Это может быть связано с потерей герметичности воздушной системы. Проверить, не пропускает ли система воздух никуда. Для этого с помощью компрессора нагнетаем в систему воздух для повышения давления и слушаем, где он шипит.Если шипения нет, значит, система все еще герметична. Также проверьте, не забит ли воздушный фильтр. Также могут быть неисправны заслонки подачи воздуха. Особое внимание стоит уделить дроссельной заслонке.
  2. В цилиндр поступает больше или меньше топлива, чем необходимо. Это подтверждается измерением давления в топливной системе. При низком давлении нужно искать проблему в топливном насосе и в клапане давления. Если давление в норме, инжектор необходимо диагностировать на предмет загрязнения или неисправности.
  3. Низкое сжатие. Если причина в этом, то нужно настроиться на длительный дорогостоящий ремонт. Компрессия уменьшается или обнуляется в случае сгорания поршня, износа поршневого колеса или отказа клапана. Чтобы выяснить истинную причину, придется полностью разобрать двигатель и произвести его устранение. Часто приходится делать капитальный ремонт.

Двигатель сильно нагревается

Стоит отметить, что карбюраторный двигатель сталкивается с этой проблемой гораздо реже, чем впрыск.Даже в жаркие летние дни он хорошо держит температуру и не превышает 96 градусов. Почему двигатель теплый?

  1. Термостат неисправен. Как говорится, клапан «зацепился за клин». Проверяется это очень просто: нужно дотронуться рукой до нижней части термостата. Если холодно, значит проблема в вентиле термостата.
    Еще один признак неработающего термостата: выход радиатора перегревается.
    В результате этот клапан остается закрытым, жидкость не попадает в радиатор и закипает.Если в таком состоянии он проникает в поршневую часть, а также в масляный поддон, это может привести к критической поломке двигателя.
    Поэтому при неисправности необходимо заглушить двигатель и заменить термостат на исправный.
  1. Появление люка в патрубках радиатора. Для устранения этой неприятности придется прокачать всю систему.
  2. Радиатор забит. Чтобы избежать этой проблемы, нужно регулярно чистить радиатор, особенно в жаркое летнее время.Также нужно использовать только качественную охлаждающую жидкость, чтобы не забивать радиатор изнутри.
  3. Еще можно обратить внимание, не сломан ли вентилятор.
  4. Еще одна частая причина того, что двигатель на ВАЗ 2106 может перегреться — поломка водяного насоса. Часто в помпе бывает протекание. Работу этой детали проверяют следующим образом: при рабочей температуре мотора резко пережимают патрубок на радиаторе. Работающий насос в этом случае издает заметную пульсацию.Также не мешает проверить сальник помпы, который время от времени начинает течь.

Стук в двигателе

Если в какой-то момент вы начали слышать посторонние стуки и шум при работающем двигателе, вам нужно обратить на это особое внимание. Лучше сразу остановиться и попытаться выяснить причины. Ведь в некоторых случаях продолжение работы двигателя может быть очень опасным. Рассмотрим самые частые проблемы, связанные со стуком.

  • Выбейте коренные подшипники. Это очень опасно, поэтому необходимо немедленно остановить двигатель. К месту ремонта придется тащить машины на буксире. Вы легко узнаете проблему: звук имеет низкий тон. Он раздается снизу картера и увеличивается при нажатии на педаль газа. Реле давления масла активировано.
  • Подшипники шатуна детонационные. Необходимо немедленно остановить двигатель. Дальнейшая его работа очень опасна. К месту ремонта придется буксировать.Звук громкий, имеет металлический оттенок, средний тон и определенный ритм. Увеличивается с увеличением нагрузки.
  • Стук поршня. Необходимо очень осторожно продолжить работу двигателя. Лучше сразу ехать на место ремонта. Звук имеет высокий металлический тон с резкими оттенками, ритмичный. Если выключить свечу зажигания, сразу пропадает.
  • Стук в цилиндрах или поршнях из-за износа. Вы можете продолжать движение, но не сильно нагружаете двигатель. Лучше сразу ехать на место ремонта. Звук очень похож на стук глиняной посуды. Более четко распределяется, пока двигатель не прогреется до рабочей температуры. Во время прогрева мотор постепенно утихает.
  • Детонационный клапан. Можно продолжить осторожное движение, но лучше сразу отправиться на место ремонта. Слышен глухой шум с металлическими стуками. Особенно хорошо слышны стуки на малых и средних оборотах. Распространяется с места расположения клапанов.
  • Детонационный двигатель. Сразу нужно аккуратно выехать на место ремонта. Во время разгона раздаются звуки. Устраняет проблему установкой более позднего зажигания. Проблема может возникнуть из-за плохой регулировки зажигания, из-за использования топлива с низким октановым числом, из-за перегрузки двигателя в результате раннего включения высокой передачи. Также нужно проверить, нет ли нагара в камерах сгорания.

Двигатель дымит

Обычно из выхлопной трубы выходит небольшое количество дыма. Однако иногда бывают случаи, когда от вашей шестерки может буквально идти густой дым. Чтобы понять, в чем проблема, нужно обратить внимание на ее цвет.

Здесь мы перечислили только наиболее частые причины избыточного дыма. Если эта информация не помогла, необходимо обратиться в сервисный центр.

Сапун двигателя

Сапун предназначен для сброса избыточного давления из картера, вентиляции и удаления газов, образующихся во время его работы. В случае неисправности из всех отверстий двигателя начинает падать дым.Резко увеличился расход масла.

У этой проблемы может быть три причины:

  1. Загрязнение системы вентиляции . Из-за закупорки вентиляции давление вовремя не сбрасывается. Постепенно газы накапливаются и когда давление достигает критического значения, происходит резкий выброс скопившихся газов. Вылетает трубка, соединяющая сапун с коллектором. В результате водитель слышит громкий хлопок. Иногда газы могут сломать клапанную крышку, сломать детали двигателя и даже вырвать поддон. Чтобы исправить ситуацию, нужно с помощью специальной добавки промыть вентиляционную систему. Также можно самостоятельно разобрать сапун и очистить фильтр бензином.
  2. Установка поршневых колец. Газы начинают проникать в картер, где из-за повышенного давления находят выход в разные щели. Масло начинает продавливаться через зонд или перетекает в камеру сгорания. На панели приборов загорается «чек». В этом случае нужно проверить компрессию, диагностировать состояние двигателя.Если хоть один «котел» показывает меньше 11 баллов, необходимо разобрать двигатель и поискать повреждения.
  3. Повреждение гильз цилиндров. Если две предыдущие возможные причины не подтвердились, ищите причину в группе цилиндр-поршень. При повреждении гильз цилиндры необходимо заточить и поставить новые поршни.

Двигатель работает хаотично с перебоями

Проблема достаточно обширная и требует детального рассмотрения.Поэтому мы посвятили ей отдельную статью —

.

Характеристики двигателя ВАЗ 2106

Двигатель ВАЗ 1,6л.
Годы выпуска — (1976 — наше время)
Материал блока цилиндров — чугун
Система питания — карбюратор / инжектор
Тип — линейка
Количество цилиндров — 4
Клапанов на цилиндр — 2
Ход поршня — 80 мм
Цилиндр диаметр цилиндра — 79 мм
Степень сжатия — 8,5
Объем двигателя 2106 — 1569 см.
Мощность двигателя 2106 — 75 л.с. / 5400 об / мин
Крутящий момент — 116 Нм / 3000 об / мин
Топливо — АИ92
Расход топлива — город 10,3л. | трасса 7,4 л. | смешанный 10л / 100км
Расход масла — 700 грамм на 1000 км
Габаритные размеры двигателя 2106 (ДхШхВ), мм — 565х541х665
Масса двигателя 2106 — 121 кг
Масло в двигателе 2106:
5W-30
5W-40
10W-40
15W-40
Сколько масла в двигателе 2106: 3,75 л.
При замене залейте около 3.5 литров.

Ресурс двигателя ВАЗ 2106:
1. По данным завода — 125 тыс. Км
2. Практически — до 200 тыс. Км

TUNING
Потенциал — 200 л.с.
Без потери ресурса — 80 л.с.

Проблемы, неисправности и ремонт двигателя 2106

Двигатель ВАЗ 2106 1.6 л. продолжение и по очереди. Основные отличия двигателя ВАЗ 2106 от поршневого 2103 увеличены диаметром до 79 мм, блок двигателя 2106 остался прежним. Кстати, слева, слева от бензонасоса, есть место, где проштампован номер двигателя 2106, многие не могут его найти, эта информация решит ваш вопрос раз и навсегда.Есть еще двигатель 21067 инжекторный, это штатный шестиступенчатый мотор прикрыт ГБЦ от инжекторного поля мотора 21214, собственно все отличия. Как показало время и практика, карбюраторный двигатель шестерки более устойчив, чем инжекторный.
Сам по себе двигатель 2106 инжекторный или карбюраторный рядный 4-х цилиндровый с верхним распредвалом, ГРМ 2106 имеет цепной привод. Мотор относится к так называемой «классической» серии с высоким агрегатом. Ресурс мотора, при бережной эксплуатации, своевременном обслуживании превышает установленные заводом 125 тыс. Км и достигает 180-200 тыс. Км.Несмотря на это, в народе этот мотор считается менее надежным, чем двигатель от 2103. Чтобы двигатель жил долго и счастливо, его необходимо прогреть перед движением. Зимой прогрев двигателя ВАЗ 2106 длится около 5 минут при 1500-2000 об / мин, как только он начинает холостой ход, значит можно ехать.
Ниже мы увидим основные недостатки и проблемы этого движка, которые встречаются чаще всего. Начнем с масла, несвоевременная замена моторного масла в 2106 или экономия и использование некачественного масла приводит к тому, что после пробега 60000 км диаметры цилиндров увеличиваются на 0.15 мм, забудьте про дешевое маслосох. Кроме того, часто бывает так, что двигатель ВАЗ-2106 кушает масло, больше литра на 1000 км. В этом случае мы измеряем компрессию, на основании этого определяем прибыл клапан или кольца или что-то еще.
На двигателях 06 проблема повышенного износа распредвала, болезнь всех жигулей. Как и все предыдущие моторы Жигулей, этот двигатель ВАЗ-2106 требует регулировки клапанов примерно 7-10 тысяч км, громкий стук при работе двигателя на холостом ходу слышен с водительского места при закрытом капоте. Говорить о звуках и стуках в моторах шестерок можно вечно, кроме упомянутых выше клапанов, к основным причинам шума в двигателе ВАЗ 2106 можно отнести детонацию, почему детонирует двигатель — расход топлива малый, нагар в камеры сгорания и неправильной настройки зажигания, отрегулируйте зажигание, залейте нормальный бензин и проблема исчезнет. Стучит двигатель ВАЗ-2106, издавая металлический звук? Это поршневые пальцы или шатунные подшипники, нужно сразу же в сервис.Звук появляется при прогреве мотора и похож на звук посуды из глины? Проблема в поршнях, неспеша можно попасть в сервис. Стук в двигателе ВАЗ 2106, выходящий снизу мотора одновременно с падением давления масла, свидетельствует о проблеме с коренными подшипниками, выключите автомобиль и поезжайте в сервис на буксире. Если шум больше похож на скрип в двигателе ВАЗ 2106, посмотрите демпфер и натяжитель цепи ГРМ, если скрежет с глухим стуком — подшипник помпы.
Нестабильная работа двигателя ВАЗ 2106 — обычное дело на карбюраторных машинах, прочистите жиклеры карбюратора. Если двигатель ваз 2106 глохнет на холостом ходу, при этом холостые обороты регулируются нормально, отрегулируйте воздушную заслонку. Если глохнет на ходу, то причина в системе питания или зажигании.
Дальше у вас двигатель 2106 греется или кипит? Проверка термостата (копил и покупал утиль?), Радиатора (забит он или нет), возможно, воздух в системе охлаждения, это основные моменты, вызывающие перегрев.Владельцы, особенно те, кто купил машину впервые, часто кричат, почему двигатель ВАЗ 2106 троит? Назову основные причины: неправильно отрегулирован клапан, прогоревший клапан, вышла из строя прокладка ГБЦ, на что указывает скачущая температура охлаждающей жидкости, усиленный дым из выхлопной системы (белый дым). Низкооктановый бензин, неправильно отрегулированный карбюратор также являются причинами конструкции мотора; тот же карбюратор может быть причиной того, почему дергается двигатель ВАЗ-2106, но если двигатель работает на холостом ходу, посмотрите на систему зажигания.Хочу добавить про дымку, сильно дымит двигатель ВАЗ-2106? Это сальники или сальники, отнесите машину в сервис и настройтесь на капремонт.
Ладно, разобрались, теперь обратите внимание на подушки двигателя 2106, они могут вызвать вибрацию мотора, если подушки изношены, сходите на СТО заменить их. Кроме того, причиной вибрации двигателя может быть дисбаланс коленчатого и карданного валов, различные поршни и другие, менее распространенные причины.Все это диагностируется и устраняется в сервисном режиме.
Иногда задают интересный вопрос: что делать при заклинивании двигателя ВАЗ-2106? Однозначного ответа нет, вскрытие покажет. Отнесите машину в сервис, мастер на месте определит причину и будет готов расстаться с хорошей суммой денег.
Все вышеперечисленные проблемы актуальны для всего классического семейства двигателей, включая Нивовские и

.

2106 тюнинг двигателя своими руками

Увеличение двигателя ВАЗ 2106

Всем владельцам рано или поздно стандартных 75 сил уже не хватит, машина начинает казаться вялой, бесстрастной, и возникает вопрос, как увеличить мощность двигателя 2106.Самый экономичный и простой тюнинг — расточка двигателя ВАЗ-2106 на 3 мм под поршень 82 мм. Заточить уже не получится, стенки блока становятся очень тонкими, остается только лайнер блока. Для большего крутящего момента мотор и дальнейшего увеличения объема до 1,8 л. Необходимо увеличить ход поршня до 84 мм. В остальном модернизация, доработка и форсирование двигателя 2106 1: 1 повторяет доработку 2103, про установку валов читайте.

Двигатель от Приоры на ВАЗ 2106

Хочешь на свалку отправить, есть идея получше. Установка 16-клапанного двигателя на ВАЗ 2106 — один из лучших способов получить надежные 100 л.с., но при этом процедура достаточно сложная, надо шлифовать моторный щит болгаркой, переварить поддон, установить подшипник коленвала 2101 на восьмерку, коробка родная остаётся, муфта меняет на приору. Кроме того, доработка потребует маховика, выхлопной системы, охлаждения и акселератора.Не бойся? Тогда стоит попробовать. Материалы с поэтапным фотоотчетом широко доступны, найти не составит труда. С двигателем 2112 на ВАЗ 2106 ситуация аналогичная, в любом случае подобная свап лучше, чем выжать соки из старого классического двигателя. Все это возможно с Niwa и

.

Турбомотор ВАЗ 2106

Самый дорогой способ увеличения мощности двигателя ВАЗ 2106 — турбина, и ее используют только любители для развлечения, развлечения и т. Д.Если деньги для вас не имеют значения, прочтите раздел «», в противном случае смотрите другие варианты доработки двигателя ВАЗ 2106.

ВАЗ 2106 обычно греется в летнюю жару, но бывает и весной, и осенью, и даже морозной зимой! Более того, в этой ситуации существует угроза выхода из строя важных узлов автомобиля. Возможной причиной может быть износ сальников или колец на поршне. Они, как правило, ложатся и перестают выполнять свои прямые обязанности.

От жары приходят в негодность, и начинается повышенное горение масла.Также при перегреве двигателя деформируется блок цилиндров. Это уже серьезная проблема, так как на срочный ремонт понадобится срочная сумма денег, что непременно скажется на семейном бюджете. Определить перегрев двигателя автомобиля несложно. Для этого на панели приборов есть датчик. Стрелка покажет температуру более 100 градусов.

Из-под капота автомобиля слышен звук кипящей жидкости. Иногда бывает даже пар. В этом случае необходимо срочно остановить автомобиль и выключить двигатель.Медленно открываем капот, а за ним бочка с антифризом, чтобы вышел горячий пар. Лучше сразу включить вентилятор, чтобы охладить перегретый радиатор.

Разберем наиболее вероятные причины перегрева мотора.


1. Причины могут быть разные. Наиболее частым является отсутствие охлаждающей жидкости. Причиной перегрева двигателя ВАЗ 2106 может быть слишком мало антифриза в системе охлаждения автомобиля. Охлаждающая жидкость может теряться из-за незаметных трещин и мелких дырок в разных местах.

Тем, кто что-то разбирается в устройстве авто, выявить эту проблему несложно. Если автомобиль какое-то время не используется, то на асфальте можно заметить пролитый антифриз. Вам нужно будет проверить радиатор или патрубок автомобиля. Единственный выход — замена поврежденных деталей.

Если утечки охлаждающей жидкости не обнаружено, причина может быть в двигателе. Если внутрь двигателя потечет антифриз, значит, нужен очень сложный ремонт и без профессионалов не обойтись.Это может вызвать гидроудар. Поэтому необходимо немедленно обращаться на СТО.

2. Причина может быть в вентиляторе радиатора ВАЗ 2106. Проверить уровень натяжения ремня. Если вентилятор с датчиком температуры, то, возможно, он вышел из строя. Необходимо следить за состоянием радиатора, так как это тоже влияет на перегрев двигателя. Если после аккуратного обслуживания двигатель продолжает закипать, стоит купить новый радиатор.

3. Неисправность термостата может быть одной из причин перегрева двигателя.Его внутренние части могут со временем потерять свои характеристики. А езда по загруженным улицам, стояние в пробках и на светофорах — приводит к тому, что двигатель сильно греется из-за плохого обдува. Только на высоких оборотах система охлаждения работает нормально.

4. На старых автомобилях ВАЗ 2106 может неправильно поставлено зажигание, что приводит к перегреву. Но это редко, ведь все современные машины оснащены электроникой и все управляет компьютером.

5.Последняя причина перегрева может быть в лопнувшем выпускном клапане двигателя. Горячие газы попадают в мотор, и он нагревается до высокой температуры, на что указывает стрелка на датчике.

Детали подвески и рулевого управления для легковых и грузовых автомобилей Лада 2106 Красный игрушечный автомобиль 1:24 19см nh.fifthtribe.com

Для СМИ:

, электронная почта [email protected]
или позвонив по телефону 571-384-7623.

Партнерство с сообществами:

Пожалуйста, свяжитесь с нашим директором по партнерству с сообществами по адресу partners @ neighbourhealthva.org или 571-384-7623.

Отдел кадров:

Пожалуйста, напишите по адресу hr@neighborhoodhealthva. org или позвоните в наш отдел кадров по телефону 703-778-7160

Счета к оплате:

Напишите нам по адресу [email protected] или позвоните в наш финансовый отдел по телефону 703-778-0639

Разработка:

Пожалуйста, напишите на [email protected] или позвоните нашему директору по развитию по телефону 571-457-9146

Другое:

Пожалуйста, отправьте электронное письмо по адресу info @ areahealthva.org

Лада 2106 Красный Машинка 1:24 19см

В нашем широком ассортименте имеется элегантная бесплатная доставка и бесплатный возврат. Супер мягкие футболки с профессиональным принтом — это незаменимый зимний аксессуар для активного отдыха. Женские шорты VALDI с круглой подкладкой, 9% покупателей удовлетворены стилем и качеством нашей продукции. ОБЛЕГЧЕННЫЙ ФЛИС: независимо от того, ведете ли вы активный или сидячий образ жизни. s спроектированы так, чтобы соответствовать или превосходить спецификации OEM по подгонке и производительности, вам не придется беспокоиться о загрязнении вашей кухни или других мест, Декоративные устойчивые к выцветанию цвета и архивная бумага для долговечной печати, Мы постоянно расширяем наш выбор цветов и размеры. Карманы сохранят ваши мелкие предметы отдельно, и их будет легко найти. Упаковка: Независимая упаковка, Полностью герметичные швы для защиты от дождя. Высокоточная лазерная гравировка с технологией лазерной гравировки. ★ Простота установки — Оснащен монтажным оборудованием, производственными мощностями без потогонной фабрики. Наш широкий выбор предлагает бесплатную доставку и бесплатный возврат. При необходимости вы можете выбрать на 1-2 размера больше. ☸ОБРАЩАЙТЕ ВНИМАНИЕ НА РАЗМЕР — все мужские майки Magiftbox имеют стандартный размер США, плавки-шорты для малышей Disney Moana (Мауи) с сетчатой ​​подкладкой обеспечивают воздухопроницаемость и легкий комфорт, пожалуйста, свяжитесь с нами, прежде чем оставить отзыв, мы обеспечивают лучший сервис и лучшее решение. Изготовлены из 100-процентного тканого полипропиленового волокна для превосходной устойчивости к пятнам и выцветанию.Купить WVE by NTK 1R1990 Реле электродвигателя нагнетателя HVAC: Воздуходувка — ✓ БЕСПЛАТНАЯ ДОСТАВКА возможна при соответствующих критериях покупки, длина 12 футов (упаковка из 1 шт. ): Промышленная и научная, она может быть завершена в течение 10 минут одним человеком, заботящимся о детях / беременных / домашние животные с этим расплавом. превосходная игровая ценность и качества развития ребенка для потребителей. Это также приводит к более легким рулонам и более постоянному натяжению повязки во всем. Идеальные спортивные штаны — идеальный подарок для всех ваших друзей.

Лада

1600

Lada 1600 / ВАЗ-2106
Отзыв от Unique Cars and Parts
Наша оценка: 1


Введение

Измученная родословной эксцентричных соотечественников, русской Ладе пришлось преодолеть множество предрассудков, чтобы добиться хоть какой-то степени успеха в продажах на Западе.По иронии судьбы, именно приверженность 1600-х годов сделало его несколько индивидуальным в эпоху, когда правил хэтчбек, наряду с передним приводом и стилем.

Не то чтобы Lada могла претендовать на единоличное владение своим собственным дизайном, который впервые увидел свет как Fiat 124, а затем был принят для Lada в вариантах 1200 и 1500. Под кожей «Лада» была верна переднему двигателю, заднему приводу, живой формуле заднего моста своих предшественников.

Lada приступила к внесению изменений в конструкцию 124, чтобы обеспечить некоторую степень долговечности в суровых климатических условиях Восточной Европы.Они включали использование алюминиевых тормозных барабанов, которые были добавлены к задней части, и оригинальный двигатель Fiat был заменен новым двигателем, также приобретенным у Fiat. Этот новый двигатель имел современную конструкцию верхнего распредвала, но никогда не использовался в автомобилях Fiat.

Подвеска была поднята для работы на неровных российских дорогах, а кузов был сделан из более толстой и тяжелой стали. Первые модели Lada были оснащены пусковой рукояткой на случай разрядки аккумулятора в сибирских условиях, но позже от нее отказались.Еще одна особенность, специально предназначенная для помощи в холодных условиях, — это ручной вспомогательный топливный насос.

В сентябре 1978 года модельный ряд Lada был дополнен 1600 версиями, в том числе 1600ES «на рынке», в которых использовался не двигатель Fiat с двумя распредвалами, а двигатель объемом 1570 куб. Этот двигатель развивал 78 л.с. при 5400 об / мин и был связан в основном с ходовой частью Fiat, включая переднюю подвеску с поперечным рычагом и винтовой пружиной, а также передние дисковые тормоза.

Хотя, как уже упоминалось, в «Ладе» использовался более толстый металл, чем в «Фиате», она была разумным исполнителем.Максимальная скорость составляла почти 100 миль в час, а увеличение крутящего момента на низкой скорости на четырнадцать процентов по сравнению с моделями 1500 помогло разогнаться до 100 миль в час примерно за тринадцать секунд. Высокий дорожный просвет не слишком сильно повлиял на управляемость автомобиля, во многом благодаря очень удачному расположению задней оси, но общий пакет был сильно запятнан рулевым управлением, которое в лучшем случае было тяжелым, а в худшем — например, при парковке — было близко недвижимое.

Какими бы ни были недостатки, Lada 1600 предлагала замечательное соотношение цены и качества.За гораздо меньшую цену, чем аналогичный японский небольшой автомобиль, русский был оснащен тканевой обивкой, откидывающимися сиденьями, ворсовыми коврами, ламинированным ветровым стеклом, задним стеклом с подогревом, двухконтурными сервоусилителями тормозов, легкосплавными дисками с радиальными дисками Goodyear и стереосистемой. К сожалению, серый костюм и подходящие кремовые туфли (как показано на изображении ниже) не были включены. Если бы они были такими, мы осмеливаемся сказать, что 1600 сегодня стали бы культовыми.

Лада 1600 Краткие технические характеристики

Двигатель: Передний прямой ход с водяным охлаждением.Диаметр цилиндра 79 мм (3,11 дюйма) x ход поршня 80 мм (3,15 дюйма), 1570 куб. См (95,8 дюйма). Максимальная мощность 78 л.с. (DIN) при 5400 об / мин, максимальный крутящий момент 88 фунт-фут (DIN) при 3000 об / мин. Чугунный блок цилиндров и головка из легкого сплава. Степень сжатия 8,5: 1. 5 коренных подшипников. 2 клапана на цилиндр, управляемые напрямую от одного верхнего распредвала. Карбюратор Weber 32DCR с пониженной тягой с двумя дросселями.
Коробка передач: Однодисковое однодисковое сцепление и четырехступенчатая механическая коробка передач. Передаточные числа 1-й 3,242, 2-й 1,989, 3-й 1,289, 4-й 1,0, обратный 3,340: 1.Главная передача с коническим гипоидом, передаточное число 4,1: 1.
Подвеска: Передняя независимая на поперечных рычагах, винтовых пружинах, телескопических амортизаторах и стабилизаторе поперечной устойчивости; Задняя — не независимая, с ведущим мостом, верхними и нижними продольными рычагами, тягой Панара, винтовыми пружинами и телескопическими амортизаторами.
Рулевое управление: Червячно-роликовый. Переход от упора к замку 3.0.
Тормоза: Сервоусилитель, двухконтурный гидравлический, диски передние барабаны сзади.
Колеса: Легкосплавные, 5J x 13 дюймов. Шины 165SR x 13.
Размеры и вес: Колесная база 95. Колея 5 дюймов — передняя и задняя 53 дюйма, длина 160, ширина 63 дюйма, высота 54 дюйма, дорожный просвет 6,88 дюйма, снаряженная масса 2271 фунта, диаметр поворота между стенками 36,1: емкость топливного бака 8,6 галлона.
Кузов / шасси: Четырехдверный четырехместный седан. Интеграл.
Производительность: Максимальная скорость 97 миль / ч. Разгон 0-60мч 13 секунд. Расход топлива ок. 26 миль на галлон.

Машины Советского Блока были странными: Лада

Что это?

По своей сути Lada-Porsche 2103 — это стандартная модель 2103 — автомобиль, основанный на Fiat 124, как и серия Lada Classic.Создан только один прототип, который сейчас живет в гараже бывшего сотрудника Porsche.

Где и когда это было сделано?

Если честно, сложно сказать, где именно и когда был произведен автомобиль. Скорее всего, прототип был передан инженерам и дизайнерам, работавшим в центрах Porsche в Штутгарте.

Технические данные:

2103 означает, что у него передний двигатель, который передает мощность на задние колеса через механическую коробку передач.Porsche перенастроил двигатель на работу с плохим газом и добавил некоторые алюминиевые детали для снижения веса.

Что в этом особенного?

Это было в 1975 году, когда председатель правления Porsche Эрнст Фурманн встретился с советским министром автомобильной промышленности Виктором Поляковым. Они договорились о трехлетнем соглашении на сумму полмиллиона немецких марок, которое дает немецкой компании задачу помочь русским в разработке их автомобилей.

Первым и, как позже выяснилось, неудачным результатом их сотрудничества стала Lada-Porsche 2103 — модернизированная версия 2103, сохранившая основные элементы модели.Общая форма кузова осталась неизменной, но Porsche поставил пластиковые бамперы и решетку радиатора в цвет кузова, устранив все хромированные детали экстерьера, кроме колпаков колес и дверных ручек.

Другие улучшения, внесенные немцами, включали пересмотренную подвеску и полностью переработанный интерьер, в котором появилась новая приборная панель с другой комбинацией приборов, новое рулевое колесо в стиле Porsche 928, новые элементы управления обогревом и кожаные сиденья.

Но, как гласит история, ВАЗ отказался от проекта, в основном потому, что уже работал над собственным рестайлингом 2103, дебютировавшего пару месяцев спустя под названием 2106.

Фото: AutoWP

Отказ карбюратора ВАЗ 2106 при трогании с места. Неисправности двигателя (карбюратор)

ВАЗ (Лада) 2101/2103/2106 1970-2006

Карбюратор 21073, двигатель 1300, классика. Отрыв от отказа. Тж 1 = 107 в.ж 2 = 150, т.ж 2 = 115, в.ж 2 = 135. Гандерс пробовал двойной, одинарный, эффект тот же. Кулачок 4. Помогла замена топливных жиклеров местами, в первом 115 на второй 107. Но можно увеличить расход.Подскажите, как убрать поломку и минимизировать расход?

Вы всасываете воздух, смесь истощается, это сбой. Установив первую топливную форсунку увеличенного размера, вы сделали смесь нормальной, но расход топлива обязательно увеличится. Чаще всего коробит карбюратор при установке — слишком рьяны при затяжке. С помощью какого-нибудь спрея (Unisma, Carburetor cleaner) опрыскайте при работающем двигателе стыки карбюратора. Там, где будет разрыв, ваш двигатель изменит скорость.Прорезь также может быть на стыке впускного коллектора с головкой блока цилиндров. Если подошва карбюратора погнулась, ее необходимо поправить и отполировать, и обязательно каждый раз вставлять новые прокладки.

На жиклерах: 107 топлива в первой камере нормально для вашего объема, при желании можно поставить 109. Но не более того. А для экономичности, во второй камере уменьшите топливо, поставьте 112 или даже 109, но до 200-сотки км / ч не разгонитесь, а КПД будет.

Физику не обманешь.

Поскольку вы моментально жалуетесь при старте, мы не трогаем вторую камеру (она в основном для трассы, есть гонка и максимальная скорость). При старте срабатывает первая камера, вы уже это испытали — поставили увеличенный жиклер и машина заработала как надо. Все. Остальное я вам уже рассказал. Скорее всего, вы просто еще не нашли этот отсос (есть еще несколько мест, которые, например, видны сбоку, снизу, ось дроссельной заслонки производит отверстие, еще есть шланг на ВУТ, который подключен к впускному коллектору, может быть даже коллектор с трещиной).

Один друг тоже долго сопротивлялся (у него газель карбюраторная), кричит — все переделал, все переделал, но все равно пришел пожаловаться на карбюратор. Двигатель заведен, он работает с перебоями, карбюратор храбрый человек — как он начал заливать бензин из баллона на двигатель, и … двигатель заработал ровно — и были трещины. Работа мастера боится, а друг перестал выставлять напоказ свое я, я и всегда советуется, если в чем-то сомневается.

Эта статья будет посвящена отказам двигателя, вызванным карбюратором. Проблемы с зажиганием здесь не рассматриваются.
Для определения терминологии позвольте мне пояснить, что под отказом понимается слишком приземленная реакция двигателя на нажатие педали акселератора, иногда сопровождающаяся эффектом торможения, т.е. когда вы нажимаете на педаль, и двигатель вместо мгновенного раскрутки, сон как бы пытается остановиться, а затем, дергаясь, оживает.
Логичным объяснением этого неприятного эффекта является резкое обеднение (или недостаточное обогащение) смеси, приготовленной карбюратором в дроссельных режимах.
Более половины всех проблем с провисанием связаны с системой ускорительного насоса (UP) карбюратора. Его задача — создать принудительное обогащение смеси, механически связанное с нажатием педали газа. Те. при неработающем двигателе нажатие на педаль газа будет сопровождаться впрыском части бензина в камеры карбамида (именно так неопытные водители при запуске заливают свечи). Все остальные системы Karba работают по принципу нагнетания, то есть в зависимости от силы всасывания во впускном коллекторе.Включение и выключение определенных карбюраторных систем напрямую связано с положением (углом поворота) дроссельных заслонок … Как и все в этом мире, зависит от фактора времени, карбюратор не может мгновенно подготовить требуемый состав смеси, когда дросселирование. Например, вы резко, с нуля вдавливаете газ в пол, обе заслонки открываются, позволяя воздуху попасть во впускной коллектор, а бензин еще не успел протечь по каналам карбюратора, так что у вас резко обедненный смесь — двигатель пытается заглохнуть.Чтобы обогатить смесь в такие моменты, люди придумали ООН. А еще поумневшие изобрели инжектор :-))
Проверить работу ООН можно, сняв корпус воздушного фильтра и, заглянув в камеры, прижать рукой тросик дроссельной заслонки. Струи должны распыляться из обоих дозаторов (тюбиков, горшков :-)) ровно, не касаясь стенок камер и без перебоев.
1. Если открыть сразу две заслонки (нажать газ до упора), то продолжительность работы штатная (35 и 40) UN d.б. около 2 секунд. Если емкость явно меньше, то проверьте, не протер ли кулачок привода ООН ножку толкателя. Эту бороздку можно удалить, например, обернув ножку тонким листом олова. Но обычно эта проблема появляется после длительного пробега 🙂 Также проверьте длину и правильность установки пружины под диафрагмой.
2. Необходимо проверить целостность диафрагмы. При малейшем намеке на трещины меняйте. Не забудьте надежно затянуть крышку. Шток диафрагмы должен свободно перемещаться в своем гнезде.
3. Если диафрагма цела, но не работает ООН (если в поплавковых камерах бензин, ЕС-а :-)) или не распыляет топливо правильно, то лучше корпус ООН поменять на форсунки — внутри наверняка заклинило шарик и при отпускании педали газа под диафрагму вместо газа попадает воздух. На корпусе обязательно воспользуйтесь им. резиновое уплотнительное кольцо — если оно отсутствует или помято, при нажатии на газ бензин будет стекать по стенкам 1-й камеры, а при выпуске воздух попадет под диафрагму…
Будьте осторожны при покупке и установке корпуса ООН! Во-первых, трубки не должны вращаться в корпусе. Они должны сидеть плотно, иначе в один прекрасный день один из них может выскочить, например маленький, и попасть во впускной коллектор, а может и дальше … Печально! Здание ООН д.б. не дырявая, а то были такие случаи :-). Во-вторых, перед установкой ООН в карбюратор лучше слегка развести трубки в разные стороны, чтобы, цепляясь за стенки прорези, хорошо удерживали корпус UN от проворачивания в сиденье (настройки жиклеров смутиться).В-третьих, нельзя вставлять корпус ООН в карбюратор на сухом основании — можно повредить резиновое кольцо. Поэтому перед установкой рекомендую окропить корпус и отверстие под него в карбюре WD-40 например.
4. Теперь самое интересное 🙂 Многие считают, что можно точно направить струйки ООН, не снимая карбюратора — ошибаются! Каждая струйка должна попадать точно в коллектор при минимально возможном угле поворота каждой заслонки, минуя стенки камер (не только над заслонками, но и ПОД заслонками), сами заслонки и теплоизоляционную прокладку под карбюратором. ! Поэтому необходимо направить струйки на снятый карб, глядя на него снизу и проворачивая оси заслонок.Если глаз еще не натренирован или вы не «наизусть» толщину прокладки, то приложите ее к низу карбюратора и держите так, чтобы отверстия под шпильки совпали (или просто вставьте туда эти шпильки ). Не забывайте заливать бензин в поплавковые камеры 🙂
Однако полностью устранить провалы с помощью только c с помощью UN невозможно, поэтому люди также изобрели переходные системы (SS). Их два — в первой и второй камерах. Они также запускаются вакуумом при открытии заслонок.Если у вас произошел сбой при старте с места или на ходу с очень легким нажатием на педаль газа, то помимо ООН нужно проверить работу ПС 1-й камеры. Он питается от того же канала, что и слот XX. Вы можете попробовать продуть под давлением, сняв верхнюю часть карбюратора и прикрепив шланг насоса к латунной трубке с резиновым кольцом, выступающим снизу. Вы все еще можете насыпать туда очиститель углеводов. Однако помогает это редко и карб надо снимать и промывать 🙁
Если наблюдается небольшая поломка при небольшом и плавном открытии второй камеры, то, вероятно, в этом виноват соответствующий ПС.Не разбирая карбюратор, эту проблему можно попытаться устранить аналогично ПС 1-й камеры, подав давление воздуха на жиклер ПД 2-й камеры, который находится рядом с распылителем эконостата (залипание латунной трубки во 2-й камере). Сверху вы увидите крошечное отверстие 🙂
Однако на провалы в обоих случаях может влиять зазор во 2-й камере. Заслонка должна быть приоткрыта ровно настолько, чтобы исключить образование луж при работе ООН и не более того! Многие закрывают его полностью и складывают длинный спрей ООН из 2-й камеры в 1-ю…
Если вы испытываете провалы, а точнее рывки в районе 2000 об / мин и лишь слегка приоткрываете заслонку 1-й камеры, то проверьте, не замкнута ли зеленая проводка EPHH постоянно на землю? Если это так, клапан отключит подачу топлива через систему ХХ и PS 1-й камеры, как только частота вращения двигателя превысит определенный порог (обычно 1900-2200 об / мин), даже если педаль газа не будет отпущена. Здесь при перемещении в этих пределах оборотов на угол заслонки, обеспечивающий выход разряда только в пазы системы ХХ и ПД 1-й камеры, наблюдается постоянное включение / выключение клапана.Особенно это чувствуется при медленной езде на 4-й передаче.
Никогда не будет лишним проверить работу экономайзера режимов мощности (ЭМИ), а именно диафрагму, отсутствие заклинивания шариков, а также чистоту канала отбора вакуума и жиклера. ЭМИ обогащает смесь по мере увеличения вакуума в отверстии, расположенном под заслонкой первой камеры.
Самые глубокие провалы связаны с засорением топливных жиклеров основных систем учета. Иногда этот эффект неожиданно возникает и так же неожиданно проходит — это связано с наличием пятнышка, которое может прилипнуть к дну жиклера, или с водой в поплавковых камерах.Такая же ситуация может возникнуть, когда игольчатый клапан застревает в закрытом положении. Если провалы происходят на высоких оборотах, то проверьте уровень в поплавковой камере и работоспособность бензонасоса.
Засоренная вентиляционная трубка бензобака и эконостат в карбюраторе скорее всего приведут к потере мощности, чем к поломке.

Частыми проблемами при нажатии педали акселератора карбюраторного двигателя являются так называемые «провал», «рывок», «подергивание» и «раскачивание».

Отказ — это когда при добавлении газа при трогании с места или при разгоне автомобиля наблюдается вялая работа двигателя, медленное увеличение скорости вплоть до замедления продолжительностью от полсекунды до нескольких секунд.

Черта — такой же провал, но короче, до полсекунды.

Подергивание — серия из нескольких рывков.

качалка — несколько отказов, следующих одна за другой.

Стоит отметить, что перед тем, как устранять данные неисправности путем изменения настроек самого карбюратора или его разборки, нужно убедиться, что причина кроется именно в нем.
Большое значение имеет техническое состояние двигателя.Неправильная установка газораспределительного механизма, износ распредвала, неправильное зажигание, нарушение компрессии в цилиндрах: слишком низкая или недопустимо разная в разных цилиндрах. Все это нарушает нормальную работу двигателя, увеличивает расход топлива, приводит к засорению карбюратора отложениями и смолами.

Также необходимо проверить систему подачи топлива перед карбюратором на предмет засоров в фильтре тонкой очистки, сетчатом фильтре топливного насоса, в приемнике топлива, герметичность топливного насоса, а также систему зажигания.В режиме холостого хода или при малых нагрузках двигатель может работать нормально, но с увеличением нагрузки могут появиться нарушения в подаче топлива.

Предположим, что системы зажигания, газораспределения, цилиндра и подачи топлива полностью исправны и причина кроется в карбюраторе. Рассмотрим возможные причины появления провалов и рывков карбюратора Солекс 21083 и способы их устранения:

Уклонение от пола

Выход адаптера забит.

Размер отверстия может уменьшаться со временем из-за отложений, уменьшающих расход топлива и бедной смеси. Для очистки отверстий переходных систем вам придется снять карбюратор, перевернуть его и очистить острой палкой или медной проволокой (вы не можете чистить отверстия чем-либо более твердым, чем материал карбюратора, чтобы не повредить отверстия), промыть ацетоном и дуть.

Низкий уровень топлива в поплавковой камере. В этой ситуации топливная смесь обеднена. Чтобы узнать уровень топлива в камере, дайте двигателю поработать некоторое время, затем снимите верхнюю половину карбюратора и измерьте уровень топлива, например штангенциркулем, для Солекс-21083 уровень должен быть 29 ± 1 мм.Бензин имеет свойство быстро испаряться, поэтому вам нужно снять крышку и быстро произвести замер.
Игольчатый клапан может заклинивать, тем самым нарушая подачу топлива в поплавковую камеру, можно вернуть иглу на место легким постукиванием, но, безусловно, будет лучше заменить. Если уровень топлива вышел из строя, отрегулируйте поплавковый механизм.

Негерметичная трубка подачи разрежения на вакуумный корректор зажигания … Проверить трубку на наличие трещин, разрывов, трубка должна плотно прилегать к соответствующим штуцерам, при необходимости заменить трубку.

Провалы и рывки при движении

Неисправен ускорительный насос , эконостат или экономайзер.

Ускорительный насос является причиной большинства неисправностей. Как следует из названия, функция ускорительного насоса заключается в обогащении топливовоздушной смеси во всех режимах работы, кроме холостого хода.

Необходимо проверить работу ускорительного насоса. Для этого снимаем воздушный фильтр и наблюдаем за потоками топлива из форсунок в каждой из камер.При нажатии на рычаг помпы из обоих водостоков будут сыпаться ровные струи, и они не должны попадать на стенки камер. Опытные мастера вынимают сопло ускорительного насоса «слона» и сгибают его трубки так, чтобы струи точно попадали в зазор между стенкой камеры и заслонкой, причем постараться сделать это с наименьшим открытием заслонки. Также необходимо учитывать толщину теплоизоляции под карбюратором, жиклеры не должны касаться его внутренних поверхностей.

Также можно порекомендовать переделать распылитель таким образом, чтобы оба носика входили в первую камеру, учитывая направление потоков, они также не должны пересекаться друг с другом. Эту регулировку можно проводить только на снятом карбюраторе. Если топливных жиклеров не наблюдается, визуально осмотрите подкачивающий насос. На карбюраторах с большим пробегом возможна отработка в месте примыкания флажка к толкателю ускорительного насоса, в этом случае потребуется замена деталей.

Проверить диафрагму ускорительного насоса, если только есть сомнения в ее целостности, заменить. При сборке насоса надежно закрутите крышку.

Однако бывают отказы, виноват не только ускорительный насос

Econostat предназначен для обогащения топливной смеси при работе с максимальной нагрузкой. Поскольку эконостат представляет собой трубку, встроенную в корпус карбюратора, его ремонт сводится к промывке и продувке, удобнее будет это сделать, сняв верхнюю половину карбюратора.



— выявить неисправность мотора, связанную с экономайзером режимов мощности, достаточно сложно. Но все же проверьте диафрагму, шар на предмет заедания, жиклеров и проходов — они должны быть чистыми.



Засорен сетчатый фильтр карбюратора или топливного фильтра тонкой очистки … Отверните гайку сетчатого фильтра, промойте, при необходимости замените на новую. Заменить топливный фильтр тонкой очистки.

Нижняя поверхность корпуса карбюратора изогнута на из-за тугой затяжки гаек впускного коллектора.Фланец, который прикреплен к впускному коллектору четырьмя штифтами, к сожалению, является слабым местом карбюратора. Со временем он изгибается, в результате чего образуется щель, в которую поступает дополнительный воздух, обедняя смесь. Решить эту проблему можно, выровняв нижнюю поверхность карбюратора. Исправьте небольшое перекос, удерживая карбюратор в тисках. Если фланец сильно погнут, то деформацию исправляем сначала напильником, а затем наждачной бумагой. Не забудьте после этого промыть карбюратор от опилок и продуть сжатым воздухом.

Определить, с чем именно связана неисправность, можно по поведению двигателя на разных режимах.
Глубокое провисание, иногда до остановки двигателя, может быть вызвано засорением главного топливного жиклера.

Незначительные подергивания при движении и вялый разгон — низкий уровень топлива в поплавковой камере.

Покачивания, провалы и рывки при повышенных нагрузках — нарушения подачи топлива, связанные с бензонасосом, засорением сетчатого фильтра, снижением пропускной способности фильтра тонкой очистки.

Провал, который появляется и исчезает через 2-5 секунд, указывает на проблему с ускорительным насосом.

.

Схема охлаждения двигателя ваз 2106: как залить тосол и вывести вентилятор на кнопку, инструкции с фото и видео

Ремонт ВАЗ 2106 (Жигули) : Система охлаждения двигателя
  1. Руководства по ремонту
  2. Руководство по ремонту ВАЗ 2106 (Жигули) 1976-2005 г.в.
  3. Система охлаждения двигателя

></a></td></tr><tr><td align=

Положение клапанов термостата при различной температуре охлаждающей жидкости

></a></td></tr><tr><td align=

Система охлаждения двигателя – жидкостная, закрытого типа с принудительной циркуляцией. На холодном двигателе жидкость циркулирует по «малому кругу». В него входят рубашки охлаждения блока и головки цилиндров двигателя, насос охлаждающей жидкости, термостат, а также радиатор отопителя, когда его кран открыт. При достижении температуры жидкости 80–85° приходят в действие два клапана термостата, перекрывая малый круг и открывая жидкости путь через радиатор двигателя, который интенсивно обдувается встречным потоком воздуха при движении, а также при помощи электровентилятора.

Радиатор состоит из двух горизонтальных бачков, соединенных между собой трубками. Для лучшего теплоотвода на них напрессованы пластины. Жидкость подается в радиатор через верхний патрубок, а отводится через нижний.

Проходя через радиатор, жидкость охлаждается, после чего снова поступает в двигатель. Изменение объема охлаждающей жидкости при ее нагреве или охлаждении компенсирует расширительный бачок. Для визуального контроля уровня охлаждающей жидкости бачок изготовлен из полупрозрачного полиэтилена.

Герметичность системы обеспечивается впускным и выпускным клапанами пробки заливной горловины радиатора. На горячем двигателе выпускной клапан поддерживает повышенное давление в системе. За счет этого повышается температура кипения жидкости. При ее остывании открывается впускной клапан, пропуская часть жидкости из расширительного бачка в радиатор и тем самым компенсируя уменьшение объема жидкости.

В пробке расширительного бачка имеется отверстие, поэтому в его внутренней полости давление всегда атмосферное.

Насос охлаждающей жидкости центробежного типа. Корпус насоса – алюминиевый, разборный, состоит из двух частей. Валик насоса вращается в двухрядном подшипнике закрытого типа, не требующем обслуживания. На передний конец вала напрессован фланец шкива привода насоса – клиновым ремнем от шкива коленчатого вала двигателя.

В последнее время автомобили комплектуются радиаторами с пластмассовыми бачками и алюминиевой сердцевиной.

Не рекомендуется заливать в систему охлаждения двигателя воду. Это приводит к образованию накипи на стенках системы, коррозии деталей, ухудшению теплообмена и сокращению ресурса уплотнения насоса.

Скачать информацию со страницы
↓ Комментарии ↓

 



1. Общие сведения
1.0 Общие сведения 1.1 Техника безопасности

2. Диагностика неисправностей
2.0 Диагностика неисправностей 2.1 агностика неисправностей двигателя и его систем 2.2 Диагностика неисправностей сцепления 2.3 агностика неисправностей коробки передач 2.4 Диагностика неисправностей карданной передачи, заднего моста, ходовой части, рулевого управления и тормозной системы 2.5 Диагностика неисправностей кузова 2.6. Диагностика неисправностей электрооборудования

3. Двигатель
3.0 Двигатель 3.1 Головка цилиндров и механизм газораспределения 3.2 Система смазки 3.3 Замена масла 3.4 Замена успокоителя цепи привода распределительного вала 3.5 Замена распределительного вала и рычагов клапанов 3.6 Замена маслоотражательных колпачков механизма газораспределения 3.7 Замена прокладок впускного и выпускного коллекторов 3.8 Замена прокладки головки блока цилиндров 3.9 Разборка головки блока цилиндров, притирка клапанов

4. Система питания двигателя
4.0 Система питания двигателя 4.1 Замена фильтрующего элемента воздушного фильтра 4.2 Замена топливного насоса 4.3 Ремонт топливного насоса 4.4 Замена топливного бака и крышки его лючка

5. Карбюратор
5.0 Общие сведения про карбюратор 5.1 Очистка топливного фильтра 5.2 Замена электромагнитного клапана системы холостого хода 5.3. Регулировка карбюратора 5.4 Замена карбюратора 5.5. Ремонт карбюратора

6. Система охлаждения двигателя
6.0 Система охлаждения двигателя 6.1 Замена охлаждающей жидкости 6.2 Замена насоса охлаждающей жидкости 6.3. Замена термостата 6.4 Замена радиатора двигателя

7. Система выпуска отработавших газов
7.0 Система выпуска отработавших газов 7.1 Замена деталей системы выпуска

8. Сцепление
8.0 Сцепление 8.1 Замена жидкости и прокачка гидропривода сцепления 8.2 Регулировка привода 8.3 Замена главного цилиндра сцепления 8.4 Ремонт главного цилиндра сцепления 8.5 Замена рабочего цилиндра сцепления 8.6 Замена нажимного диска в сборе и подшипника выключения сцепления

9. Коробка передач
9.0 Коробка передач 9.1 Проверка уровня и замена масла в коробке передач 9.2 Замена выключателя света заднего хода 9.3 Замена манжеты вторичного вала 9.4 Замена коробки передач 9.5 Ремонт коробки передач 9.6 Замена привода спидометра 9.7 Особенности ремонта пятиступенчатой коробки передач

10. Карданная передача
10.0 Карданная передача 10.1. Техническое обслуживание 10.2. Замена карданной передачи

11. Задний мост
11.0 Задний мост 11.1 Проверка исправности заднего моста 11.2 Замена масла 11.3 Замена полуоси и ее манжеты 11.4 Снятие и установка заднего моста 11.5 Замена манжеты ведущей шестерни 11.6 Замена редуктора 11.7 Ремонт редуктора

12. Передняя подвеска
12.0 Передняя подвеска 12.1. Техническое обслуживание 12.2 Замена подшипников и манжеты ступицы 12.3 Замена подушек и штанги стабилизатора 12.4 Замена шаровых опор 12.5 Замена амортизаторов 12.6 Замена пружин 12.7 Замена верхних рычагов и их резинометаллических шарниров 12.8 Замена резинометаллических шарниров нижних рычагов на автомобиле 12.9 Замена нижних рычагов 12.12. Регулировка углов установки колес

13. Задняя подвеска
13.0 Задняя подвеска 13.1 Проверка технического состояния 13.2. Замена деталей задней подвески

14. Рулевое управление
14.0 Рулевое управление 14.1 Доливка масла 14.2 Проверка состояния рулевого управления 14.3 Регулировка зацепления редуктора 14.4 Замена рулевых тяг 14.5 Замена и ремонт маятникового рычага 14.6 Снятие и установка рулевого колеса 14.7 Снятие и установка рулевого вала 14.8 Снятие и установка рулевого механизма 14.9 Снятие сошки

15. Тормозная система
15.0 Тормозная система 15.1 Проверка состояния гидропривода 15.2 Проверка вакуумного усилителя тормозов 15.3 Проверка работоспособности регулятора давления 15.4 Замена тормозной жидкости и прокачка тормозной системы 15.5 Замена тормозных колодок передних колес 15.6 Замена тормозных колодок задних колес 15.7 Замена суппорта тормоза переднего колеса 15.8 Замена тормозных цилиндров передних колес 15.9 Ремонт тормозных цилиндров передних колес

16. Общие сведения
16.0 Общие сведения 16.1. Проверка электрических цепей 16.2 Блоки предохранителей 16.3 Замена предохранителей 16.4 Замена основного и дополнительного блоков предохранителей 16.5. Замена реле 16.6 Замена выключателя зажигания 16.7 Замена контактной части выключателя зажигания 16.8 Аккумуляторная батарея 16.9. Генератор 16.10. Стартер 16.11. Система зажигания 16.12. Освещение, световая и звуковая сигнализации 16.13. Очиститель и омыватель ветрового стекла 16.14. Ремонт электродвигателя отопителя 16.15. Контрольные приборы

17. Кузов
17.0 Кузов 17.1 Замена переднего бампера 17.2 Замена решетки радиатора 17.3 Замена замка капота 17.4 Замена капота 17.5 Замена ветрового стекла 17.6 Замена внутреннего зеркала заднего вида 17.7 Замена солнцезащитного козырька 17.8 Замена накладки потолка 17.9 Замена потолочного поручня

18. Система отопления и вентиляции
18.0 Система отопления и вентиляции 18.1 Замена электровентилятора отопителя 18.2 Замена радиатора отопителя 18.3 Замена кожуха радиатора 18.4 Замена крана отопителя

19. Уход за кузовом автомобиля
19.0 Уход за кузовом автомобиля 19.1 Мойка автомобиля 19.2 Сохранение и защита лакокрасочного покрытия

20. Приложения
20.0 Приложения 20.1 Инструмент, применяемый помимо штатного набора 20.2 Схема электрооборудования автомобилей ВАЗ–2106, ВАЗ-21061, ВАЗ-21063 выпуска 1976–1987 гг. 20.4 Моменты затяжки резьбовых соединений 20.5 Основные данные для регулировок и контроля 20.6 Характеристики свечей зажигания 20.7 Применяемые топливо, смазочные материалы и эксплуатационные жидкости 20.8 Лампы, применяемые на автомобиле 20.9 Манжетные уплотнения (сальники)

Система охлаждения Ваз 2106

Схема системы охлаждения двигателя Ваз 2106: 1 – шланг подвода охлаждающей жидкости в радиатор отопителя; 2 – шланг отвода охлаждающей жидкости из радиатора отопителя; 3 – кран отопителя; 4 – радиатор отопителя; 5 – трубка отвода жидкости; 6 – шланг отвода охлаждающей жидкости от впускной трубы; 7 – расширительный бачок; 8 – подводящий шланг радиатора; 9 – пробка радиатора; 10 – верхний бачок радиатора; 11 – трубка радиатора; 12 – электровентилятор; 13 – нижний бачок радиатора; 14 – отводящий шланг радиатора; 15 – насос охлаждающей жидкости; 16 – шланг подачи охлаждающей жидкости в насос; 17 – термостат; 18 – перепускной шланг термостата.

Положение клапанов термостата Ваз 2106 при различной температуре охлаждающей жидкости: I – из головки блока цилиндров; II – к насосу охлаждающей жидкости; III – от нижнего патрубка радиатора; 1 – основной клапан, 2 – перепускной клапан.

Ваз 2106 устройство системы охлаждения

Система охлаждения двигателя Ваз 2106 – жидкостная, закрытого типа с принудительной циркуляцией. На холодном двигателе жидкость циркулирует по «малому кругу». В него входят рубашки охлаждения блока и головки цилиндров двигателя, насос охлаждающей жидкости, термостат, а также радиатор отопителя, когда его кран открыт. При достижении температуры жидкости 80–85° приходят в действие два клапана термостата, перекрывая малый круг и открывая жидкости путь через радиатор двигателя, который интенсивно обдувается встречным потоком воздуха при движении, а также при помощи электровентилятора.

Радиатор Ваз 2106 состоит из двух горизонтальных бачков, соединенных между собой трубками. Для лучшего теплоотвода на них напрессованы пластины. Жидкость подается в радиатор через верхний патрубок, а отводится через нижний.

Проходя через радиатор, жидкость охлаждается, после чего снова поступает в двигатель. Изменение объема охлаждающей жидкости Ваз 2106 при ее нагреве или охлаждении компенсирует расширительный бачок. Для визуального контроля уровня охлаждающей жидкости бачок изготовлен из полупрозрачного полиэтилена.

Герметичность системы обеспечивается впускным и выпускным клапанами пробки заливной горловины радиатора. На горячем двигателе выпускной клапан поддерживает повышенное давление в системе. За счет этого повышается температура кипения жидкости. При ее остывании открывается впускной клапан, пропуская часть жидкости из расширительного бачка в радиатор и тем самым компенсируя уменьшение объема жидкости. В пробке расширительного бачка имеется отверстие, поэтому в его внутренней полости давление всегда атмосферное.

Насос охлаждающей жидкости (помпа Ваз 2106) центробежного типа. Корпус насоса – алюминиевый, разборный, состоит из двух частей. Валик насоса вращается в двухрядном подшипнике закрытого типа, не требующем обслуживания. На передний конец вала напрессован фланец шкива привода насоса – клиновым ремнем от шкива коленчатого вала двигателя.

В последнее время автомобили комплектуются радиаторами с пластмассовыми бачками и алюминиевой сердцевиной. Не рекомендуется заливать в систему охлаждения двигателя Ваз 2106 воду. Это приводит к образованию накипи на стенках системы, коррозии деталей, ухудшению теплообмена и сокращению ресурса уплотнения водяного насоса, а в зимний периуд времени неработоспособности двигателя в целом.

Схема, Сколько тосола, Неисправности, Как развоздушить

Сегодня мы рассмотрим все элементы, из которых состоит схема охлаждения ВАЗ 2106, а самое главное – узнаем, как провести замену охлаждающей жидкости, термостата, водяной помпы. На самом первом фото вы можете увидеть все элементы системы, именно по ней сейчас и будет строиться все повествование. Также будет рассмотрено, как провести замену охлаждающей жидкости в системе, а также как избавиться от воздушных пробок.

Оглавление

Схема
Сколько тосола в системе
Воздушная пробка
Неисправности
Как промыть
Как развоздушить
Замена патрубков

Схема

Сколько тосола

Что касается количества, то здесь все просто – по инструкции необходимо 9.85 литра, значит, покупаем 10 литров охлаждающей жидкости. Когда ездил всегда брал с собой запас, что бы можно было в пути добавить. Кстати, если система охлаждения загрязнена, то ее следует промыть водой или специальными средствами. Порядок промывки такой же, как и при замене жидкости – сливаем, заливаем и разводушиваем, заводим двигатель на несколько минут и сливаем. И так несколько раз, пока не увидите, что с радиатора и блока двигателя вытекает чистая вода.

Воздушная пробка

Переходим непосредственно к основной сути статьи. Существует три способа как удалить воздушную пробку. Я их считаю основными и наиболее доступными. Они основаны на том, что воздух легче воды и поэтому собирается в самой верхней точке. Оттуда мы и будем его удалять. Предварительно оговорюсь, что при выполнении работ кран отопителя должен быть открыт полностью (на самый горячий воздух). Итак, описание первого способа. Он подходит для автомобилей, у которых имеется возможность отсоединить шлаг подогрева дроссельного узла или карбюратора (на большинстве автомобилей ВАЗ). Так как дроссельный узел (карбюратор) является самой верхней точкой в системе охлаждения двигателя, то это место является наиболее подходящим для того, чтобы удалить воздух из системы. Порядок действий следующий. Для начала снимаем все защитные кожухи и остальные элементы, препятствующие доступу. Затем откручиваем хомут шланга подогрева, снимаем со штуцера шланг. Откручиваем пробку на расширительном бачке и дуем в него ртом, пока антифриз не польется из дроссельного узла или патрубка. Как только из штуцера или шланга пойдет жидкость, быстро надеваем шланг на место и закручиваем все обратно. Данные действия позволяют удалить воздушную пробку практически на 100%. Переходим ко второму методу.

Второй способ похож на предыдущий, только не требует того, чтобы дуть в бачок. Как и в предыдущем варианте снимаем все защиты, прогреваем двигатель до рабочей температуры, глушим. Не откручивая пробку расширительного бачка, снимаем шланг со штуцера подогрева дроссельного узла. Как только потечет охлаждающая жидкость, ставим на место шланг и собираем все обратно.

Если с первого раза не получилось – ставим шланг на место, откручиваем пробку бачка, закручиваем и повторяем операцию. Как правило, удалить воздушную пробку данным способом получается с первого раза. Не забывайте о мерах безопасности. Охлаждающая жидкость имеет температуру, близкую к 90 градусам и находится под давлением, поэтому будьте осторожны и каким-либо способом защитите руки от ожога (я надеваю двое перчаток: сначала ХБ, а сверху резиновые). Переходим к третьему методу.

Теперь расскажу вам как удалить воздушную пробку не разбирая системы. Сразу оговорюсь, что данный метод менее эффективен, чем два предыдущих, зато является более простым. Суть его заключается в следующем. Необходимо загнать автомобиль на крутую горку, чтобы верхняя крышка радиатора стала самой высокой точкой в системе охлаждения. Снимаем пробку расширительного бачка (если есть, то и радиатора), заводим двигатель и прогреваем его до рабочей температуры. Антифриз из бачка должен начать уходить в систему, его необходимо подливать до требуемого уровня. Чтобы усилился поток жидкости, нужно увеличить обороты двигателя. При этом антифриз может резко уйти и нужно сразу его долить. Операцию продолжаем до тех пор, пока не перестанут идти пузырьки из обратки.

Неисправности


Неисправность

Причина

Способ устранения

Утечка жидкости из системы охлаждения.

Подтекание жидкости из крана отопителя.

Заменить кран.

Плохо затянуты хомуты шлангов

Затянуть хомуты.

Утечка жидкости через помпу.

Заменить помпу.

Повреждён радиатор.

Заменить радиатор.

Повреждена прокладка в головке цилиндров.(Охлаждающая жидкость попадает в двигатель,иногда при работе двигателя виден густой белый дым).

Заменить прокладку

Перегрев двигателя.

Утечка жидкости из системы охлаждения.

Устранить неисправность и восстановить уровень жидкости в системе.

Воздушная пробка в системе охлаждения двигателя(может образоваться при замене охлаждающей жидкости или при подсасывании воздуха в местах крепления шлангов).

Если есть подсасывание воздуха, то устранить его, затем при открыткой крышке расширительного бачка завести двигатель и ждать пока не перестанут выходить пузырьки воздуха из расширительного бачка, при необходимости доливать охлаждающую жидкость.

Загрязнена поверхность радиатора.

Очистить радиатор.

Неисправен радиатор.

Заменить радиатор.

Неисправен термостат.

Заменить термостат.

Неисправна помпа.

Заменить помпу.

Как промыть

Чем промыть СОД?

Вода.
Вода с уксусом и кислотой.
Специальная жидкость для промывки системы охлаждения.

Промывка системы охлаждения водой

Хоть водой и можно промывать систему, я бы настоятельно не рекомендовал этого делать. Как я уже говорил, в ней содержится большое количество примесей и солей, которые образуют накипь. Если нет другого варианта, то используйте хотя бы дистиллированную воду. Промывка системы охлаждения при помощи дистиллированной воды производится следующим образом:

Залейте воду в СОД.

Запустите мотор и дайте ему поработать примерно полчаса.

Затем глушите двигатель и слейте воду из системы. Повторяйте процедуру до тех пор пока ваша промывочная жидкость не станет такой же как до промывки. К недостаткам этого способа можно отнести: образование накипи, низкая эффективность (кипяток не способен растворить и отмыть накипь и другие отложения).

Промывка системы охлаждения водой с кислотой и уксусом

Вода с уксусом и кислотой, это чуть лучше чем просто вода, поскольку благодаря кислотам можно отмыть накипь и произвести частичную очистку системы охлаждения. Для того чтобы промыть систему этим способом подготовьте: каустическую соду, молочную кислоту и уксус. Кислота добавляется аккуратно и по чуть-чуть, если переборщить можно попрощаться с пластиковыми и резиновыми деталями системы охлаждения. Чтобы полностью удалить накипь и грязь нужно 5-10 часов, на протяжении которых необходимо периодически прогревать мотор до рабочей температуры. По окончанию вся жидкость сливается и заливается дистиллят, которым производится финишная промывка системы охлаждения.

Промывка СОД при помощи специальной химии

Спец. средства – наиболее эффективный и дорогостоящий вариант. Однако эффективность проведения такой процедуры стоит того чтобы переплачивать. В составе чистящих средств есть специальные чистящие вещества активно удаляющие накипь, жир, органику, и т. д.

Промывочные спец. средства делятся на четыре типа: кислотные, щелочные, двухкомпонентные, нейтрального типа.

Наименее популярными считаются кислотные и щелочные, к тому же неразбавленными их практически невозможно найти. Это объясняется их агрессивное воздействие на всю систему охлаждения, в сущности пластиковые и резиновые изделия.

Двухкомпонентные средства – очень популярны и очень востребованы. Их 2-компонентыный раствор состоящий из щелочи и кислоты хорошо справляется с поставленной задачей. Каждый из компонентов поочередно вливается в радиатор.

В составе нейтральных средств очистки системы охлаждения нет агрессивных веществ, например кислот или щелочей, а применяются они исключительно в профилактических целях.

Как развоздушить

Давайте же рассмотрим основные и наиболее эффективные способы решения проблемы.

Способ №1. Действуйте в следующей последовательности:

Снимайте пластиковый кожух, который установлен на двигателе. Для этого необходимо будет открутить крышку на отверстие для доливки масла. После этого снимайте накладку (как только кожух удалось снять, крышку можно вернуть на место во избежание попадания грязи и пыли внутрь силового узла).

Найдите патрубки, которые отвечают за прогрев дроссельного узла. (см. Чистка дроссельной заслонки).Выберите любой и стяните его. Скручивайте крышку с отверстия расширительного бачка, в котором находится антифриз, и накрывайте отверстие чистой тряпкой.

Дуйте внутрь бачка. Таким способом создается давление, которое выдавливает воздух. Как только из патрубка пошла охлаждающая жидкость, вы успешно избавились от воздух.

Возвращайте трубку на место (чем быстрее вы это сделаете, тем лучше). В противном случае можно снова поймать порцию воздуха.

Способ №2. Данный вариант намного проще и дуть никуда не нужно. Выгоняйте воздух следующим образом:

Прогревайте двигатель минут 10-15 и после этого заглушите его;

крышка на расширительном бачке остается закрученной;

также (как и в прошлом методе) снимайте один из патрубков на дроссельном узле;

дождитесь, пока из него не пойдет охлаждающая жидкость.

Как только это произошло, сразу же возвращайте трубку на место и плотно ее зафиксируйте с помощью хомута.

При выполнении данной операции будьте очень осторожны, ведь температура тосола (антифриза) может достигать 80-90 градусов Цельсия.

Способ №3. Нельзя упомянуть еще один простой, но весьма эффективный метод избавления от завоздушенности в системе охлаждения.

Действуйте так:

Найдите крутую горку и станьте на ней таким образом, чтобы передок машины был наивысшей точкой;

поставьте машину на ручной тормоз и подложите подставки под колеса, чтобы исключить случайное скатывание;

скручивайте пробки с радиатора и расширительного бачка;

заведите автомобиль и дайте ему прогреться 10-15 минут;

периодически нажимайте на педаль акселератора и доливайте охлаждающую жидкость в бачок по мере необходимости.

Выполняйте доливку до тех пор, пока пузырьков не будет появляется вообще. Только в этом случае работу можно считать выполненной.

Замена патрубков

ПОРЯДОК ВЫПОЛНЕНИЯ

Если в результате проверки, проведённой в соответствии с рекомендациями, приведёнными в Главе Текущий уход и обслуживание, Вы обнаружили повреждения на каком-либо шланге, его необходимо заменить.

Слейте жидкость из системы охлаждения (обратитесь к Главе Текущий уход и обслуживание). Если Вы не собираетесь заливать новую жидкость в систему, сохраните слитую для последующего использования.

Плоскогубцами сожмите усики штатных хомутов (или отвёрткой ослабьте винты хомутов винтового типа — если установлены). Отведите хомуты в сторону. Аккуратно снимите шланг с патрубков. Новые шланги снимать значительно проще старых.

Если шланг не снимается с патрубка, попробуйте повращать его. Не повредите патрубки, пытаясь снять шланг. Поломка может привести к дорогостоящему ремонту. Имейте в виду, что патрубки радиатора довольно хрупкие, поэтому при снятии с них шлангов не прикладывайте больших усилий. Если шланг все равно не снимается, обрежьте его, затем разрежьте оставшийся на патрубке кусок вдоль и снимите. Стоимость нового шланга несопоставима со стоимостью нового радиатора. Прежде чем резать шланг, убедитесь в том, что сможете купить новый.

При установке нового шланга сначала наденьте на него хомуты, после чего установите шланг на патрубки. Если изначально устанавливались хомуты стяжного типа, замените их на винтовые. Для облегчения установки жёстких шлангов смочите внутренние поверхности их концов мыльной водой или нагрейте в горячей воде (не опускайте шланг в кипящую воду — он может расслоиться).

После установки шланга на патрубки проверьте правильность его прокладки в двигательном отсеке. Установите хомуты на концы шланга, заведя их за развальцовку патрубков, и затяните их.

Заправьте систему охлаждения (обратитесь к Главе Текущий уход и обслуживание).

Заведите двигатель и удостоверьтесь в отсутствии утечек охлаждающей жидкости из обслуженного узла.

Система охлаждения ВАЗ 2106: схема и неисправности

В процессе езды, любой двигатель имеет свойство нагреваться. Не исключение и мотор ВАЗ 2106. При нормальной работе всех систем, рабочая температура двигателя должна быть не более 85 – 90 %. Узнать температуру можно с помощью специального датчика, расположенного на щитке приборов.

Для того, чтоб двигатель не перегревался, предусматривается система охлаждения. Она заполняется тосолом или антифризом, который циркулирует внутри блока цилиндров, остуживая его. Более детально рассмотреть систему охлаждения можно в данной статье.

Предназначение

Охлаждение двигателя служит для того, чтоб принудительно отбирать температуру от нагретых деталей. Во время рабочего хода, в цилиндре создается температура в 700 – 800 градусов. Если ее принудительно не понизить, то трущиеся детали могут сильно расшириться, и коленчатый вал заклинит.

Схема работы

Помимо того, что жидкость циркулирует внутри блока цилиндров, она также дополнительно охлаждается, попадая в радиатор. Таким образом, работа двигателя может быть беспрерывной.

Устройство

Первое, откуда жидкость начинает свой ход – радиатор. На моделях ВАЗ 2106, устанавливались радиаторы двух типов – медные и алюминиевые. Первый – более качественный, и при появлении трещин на его поверхности, их запросто можно заварить. В отличии него, любая трещина на алюминиевой детали – верная ее смерть.

Радиатор образно состоит из трех частей: верхний бочок, охладительные соты и нижний бочок. В верхнем бачке имеется заливная горловина, для добавки охлаждающей жидкости. В процессе работы, в данном бачке собирается горячая жидкость, прошедшая один цикл. Далее, она спускается в нижний бочок, через соты, попутно охлаждаясь вентилятором. И в нижнем бачке, жидкость уже полностью охлажденная, и готова к эксплуатации.

Устройство радиатора

Сверху и снизу, к радиатору подводятся трубки: две широкие и одна узкая. Узкая трубка, соединяет радиатор с расширительным бочком, предназначенным для попадания в него лишней жидкости при нагревании и расширении. Верхняя широкая трубка, соединяет деталь с термостатом, который, в свою очередь, с помощью клапана регулирует поток охлаждающей жидкости. От термостата жидкость может идти, как обратно в блок цилиндров двигателя, так и в радиатор.

Для принудительного циркулирования, в системе предусматривается насос, который качает антифриз, создавая давление внутри блока. Между цилиндрами, предусматривается специально изготовленная пустота, куда и попадает данная жидкость.

Неисправности

Довольно часто, на автомобилях ВАЗ 2106, система охлаждения двигателя выходит из строя, и требует ремонта. Главные элементы, которые наиболее подвергаются износу – радиатор и термостат. Более редко, причина поломки в патрубках. Для того, чтоб определить, что неисправность именно в данной системе, достаточно знать ее характерные симптомы.

Первое, что сразу стает заметным – перегрев двигателя. При этом, в области ног пассажира и водителя, будет чувствоваться высокая температура, и потоки горячего воздуха. Причиной данной неисправности, может быть, как выход из строя термостата или радиатора, так и износ патрубков.

Разница в том, при появлении трещин на патрубках, визуально будет заметна утечка тосола или антифриза. Он будет сочиться, либо из трещин, либо в местах соединений. При открытии капота, на деталях двигателя будут заметны места, которые значительно отличаются от основного состояния, в особенности своим блеском. Такой эффект получается из-за постоянного воздействия охлаждающей жидкости на одну и ту же часть покрытия.

Если же сломан радиатор или термостат, потеков может и не быть, а в таком случае, антифриз просто не поступает в радиатор, а постоянно циркулирует в системе, не успевая охлаждаться, и как следствие – выкипая.

Наиболее частой причиной утечки тосола из двигателя ВАЗ 2106, является износ клапана крышки радиатора. Определить его поломку можно не сразу. Если после каждой поездки, уровень антифриза стает меньше, то проведите следующую процедуру. Сразу после прогревания двигателя, откройте капот, и вытащите подсос на сантиметр, чтоб обороты коленчатого вала достигли 2000 – 2500 об/мин. Внимательно следите за крышкой. Если из-под нее, со временем, начинает выступать жидкость, то причина явно в ней.

Ремонт

При обнаружении неисправности в системе охлаждения двигателя, ее нужно немедленно устранить. Иначе, это может пагубно сказаться на работе мотора, и вовсе привести к его заклиниванию.

Если причина поломки в термостате, то его, скорее всего, требуется заменить. Или же, если у вас есть некий опыт в ремонте подобных деталей, вы можете приобрести рем-комплект, состоящий из нового поршня, уплотнительных прокладок, и заслонок.

С радиатором всё гораздо сложнее. При появлении трещин на его поверхности, деталь необходимо полностью демонтировать, и проводить сварочные работы. Но, этот метод действует только на медном образце. Если же алюминиевый радиатор придет в негодность, то ему поможет только замена на новый.

Самое простое, что можно без проблем и потерь поменять – патрубки. При их износе, достаточно просто поставить новую деталь. Но, при замене, следует обязательно слить жидкость с системы. Также, приобретите новые хомуты крепления, так как старые могут не обеспечить должного давления на патрубки.

Также, очень простая деталь при замене – крышка радиатора. Меняется она очень просто, и стоит относительно не дорого. Более серьезная поломка – когда тосол подтекает из самого блока двигателя. Это свидетельствует о появлении трещин в блоке, и ремонт его будет очень тяжелый.

Вывод

Система охлаждения ВАЗ 2106 довольно проста. Она практически не имеет никаких механизмов, которые могут серьезно износиться. Поэтому, большая часть ремонтных работ, запросто проводится своими руками, и за небольшие деньги.

 Загрузка …

Система охлаждения двигателя | ВАЗ 2106

Система охлаждения двигателя ВАЗ 2106

Система охлаждения двигателя ВАЗ 2106

1 – шланг подвода охлаждающей жидкости в радиатор отопителя;
2 – шланг отвода охлаждающей жидкости из радиатора отопителя;
3 – кран отопителя;
4 – радиатор отопителя;
5 – трубка отвода жидкости;
6 – шланг отвода охлаждающей жидкости от впускной трубы;
7 – расширительный бачок;
8 – подводящий шланг радиатора;
9 – пробка радиатора;

10 – верхний бачок радиатора;
11 – трубка радиатора;
12 – электровентилятор;
13 – нижний бачок радиатора;
14 – отводящий шланг радиатора;
15 – насос охлаждающей жидкости;
16 – шланг подачи охлаждающей жидкости в насос;
17 – термостат;
18 – перепускной шланг термостата.

Положение клапанов термостата при различной температуре охлаждающей жидкости

Система охлаждения двигателя ВАЗ 2106

I – из головки блока цилиндров;
II – к насосу охлаждающей жидкости;
III – от нижнего патрубка радиатора;

1 – основной клапан,
2 – перепускной клапан.

Система охлаждения двигателя – жидкостная, закрытого типа с принудительной циркуляцией. На холодном двигателе жидкость циркулирует по «малому кругу». В него входят рубашки охлаждения блока и головки цилиндров двигателя, насос охлаждающей жидкости, термостат, а также радиатор отопителя, когда его кран открыт. При достижении температуры жидкости 80–85° приходят в действие два клапана термостата, перекрывая малый круг и открывая жидкости путь через радиатор двигателя, который интенсивно обдувается встречным потоком воздуха при движении, а также при помощи электровентилятора.
Радиатор состоит из двух горизонтальных бачков, соединенных между собой трубками. Для лучшего теплоотвода на них напрессованы пластины. Жидкость подается в радиатор через верхний патрубок, а отводится через нижний.
Проходя через радиатор, жидкость охлаждается, после чего снова поступает в двигатель. Изменение объема охлаждающей жидкости при ее нагреве или охлаждении компенсирует расширительный бачок. Для визуального контроля уровня охлаждающей жидкости бачок изготовлен из полупрозрачного полиэтилена.
Герметичность системы обеспечивается впускным и выпускным клапанами пробки заливной горловины радиатора. На горячем двигателе выпускной клапан поддерживает повышенное давление в системе. За счет этого повышается температура кипения жидкости. При ее остывании открывается впускной клапан, пропуская часть жидкости из расширительного бачка в радиатор и тем самым компенсируя уменьшение объема жидкости.
В пробке расширительного бачка имеется отверстие, поэтому в его внутренней полости давление всегда атмосферное.
Насос охлаждающей жидкости центробежного типа. Корпус насоса – алюминиевый, разборный, состоит из двух частей. Валик насоса вращается в двухрядном подшипнике закрытого типа, не требующем обслуживания. На передний конец вала напрессован фланец шкива привода насоса – клиновым ремнем от шкива коленчатого вала двигателя.
В последнее время автомобили комплектуются радиаторами с пластмассовыми бачками и алюминиевой сердцевиной.
Не рекомендуется заливать в систему охлаждения двигателя воду. Это приводит к образованию накипи на стенках системы, коррозии деталей, ухудшению теплообмена и сокращению ресурса уплотнения насоса.

Видео про «Система охлаждения двигателя» для ВАЗ 2106

Система охлаждения двигателя. Устройство и принцип работы

Как не завоздушить систему охлаждения при заполнении тосолом.

Закипание авто ,один из способов улучшения системы охлаждения двигателя ваз 2101-2107.

Система охлаждения ВАЗ-2106. Система охлаждения двигателя ВАЗ-2106

Состоит система охлаждения ВАЗ-2106 из нескольких элементов. Причем каждый выполняет свои функции, о них более подробно будет рассказано ниже. Система на «шестерках» отличается от той, которая применена на автомобилях поздних моделей (начиная с 2108). Способ заправки охлаждения несколько отличается: жидкость заливается сначала в радиатор, затем — в бачок для поддержания необходимого уровня. Да и еще есть несколько мелких деталей, которые отличают систему от более новых. Но это не говорит о том, что система охлаждения «шестерок» несовершенна и плохо работает.

Малый круг циркуляции жидкости

Допустим, вы запускаете холодный двигатель. Процесс циркуляции жидкости в нем начинается моментально, с первых оборотов коленчатого вала. Жидкость начинает свое движение сначала по малому кругу. В него входят все элементы, за исключением радиатора. Система охлаждения двигателя ВАЗ-2106 функционирует таким образом, что при циркуляции жидкости по малому кругу происходит прогрев радиатора печки. Кроме того, из-за быстрого движения жидкости, которая не успевает остыть, времени на прогрев двигателя затрачивается меньше.

Большой круг

Когда температура антифриза достигает значения 85 градусов, происходит подключение радиатора охлаждения. С его помощью намного эффективнее снижается температура, за счет этого происходит поддержка ее значения на оптимальном уровне. Система охлаждения включает в себя механический или электрический вентилятор. О них будет рассказано ниже, а также рассмотрены все преимущества и недостатки каждого типа вентиляторов.

Расширительный бачок

система охлаждения двигателя ваз 2106

Казалось бы, что можно рассказать о таком простом и незамысловатом элементе, как расширительный бачок. С одной стороны, в качестве него можно использовать любую емкость, которая удовлетворяет некоторым условиям. Но без этого узла не сможет работать нормально система охлаждения ВАЗ-2106. Объем жидкости всегда меняется, он непостоянен. А вот места для нее больше не становится в патрубках, рубашке двигателя и радиаторе. А причина того, что объем жидкости изменяется, – это постоянное колебание ее температуры.

Когда происходит повышение температуры (нагрев), то расстояние между молекулами вещества увеличивается. Это все знают из курса физики. А теперь представьте, если произошло повышение температуры антифриза с нуля до 80 градусов. Конечно же, его объем тоже станет больше. И куда-то должны деваться излишки жидкости. Они уходят через патрубок в расширительный бачок. Когда же происходит падение температуры, то объем неуклонно уменьшается. И все излишки, которые ушли в бак, возвращаются в радиатор и патрубки.

Патрубки системы

система охлаждения ваз 2106 схема

Это именно те элементы, которые необходимы для того, чтобы система охлаждения двигателя ВАЗ-2106 нормально функционировала. С их помощью произведено соединение всех узлов и агрегатов, участвующих в работе системы. Циркуляция жидкости происходит только лишь при помощи этих элементов. Патрубки изготовлены из толстой резины, внутри нее имеется корд, который дополнительно усиливает конструкцию. Следовательно, патрубкам не страшны изгибы, мелкие удары и серьезные деформации.

Для каждой модели автомобилей патрубки имеют различную форму. Все напрямую зависит от того, какое расстояние между соединяемыми узлами. Также играет немалую роль и то, в какой точке происходит подключение патрубков к системе. За счет того что внутренняя часть патрубка идеально гладкая, она максимально плотно прилегает к металлическим трубкам, с которыми производится соединение. Для максимальной эффективности можно использовать при монтаже герметики на основе силикона. С внешней стороны каждый патрубок обжимается металлическим хомутом. Чем последний шире, тем качественнее будет соединение.

Жидкостный насос

система охлаждения ваз 2106 неисправности

Данный элемент системы позволяет улучшить циркуляцию жидкости по патрубкам и радиаторам. Конечно, за счет того что горячий антифриз движется, вытесняя холодный, система кое-как, но будет работать. Однако крайне важно придать дополнительное ускорение, чтобы обеспечить два условия. Во-первых, жидкость не должна нагреваться до критических температур. Во-вторых, она должна как можно быстрее охлаждаться. Кратковременный нагрев и охлаждение позволяют удержать температуру на заданном уровне.

система охлаждения ваз 2106

Жидкостный насос – это ротор в алюминиевом корпусе, у которого с внутренней стороны находится крыльчатка, а с внешней — шкив привода. Именно с помощью крыльчатки нормально работает система охлаждения ВАЗ-2106 (схема движения потоков жидкости приведена на рисунке выше). Крыльчатка изготавливается из пластика. Но встречаются и алюминиевые образцы, только использовать их неразумно по той причине, что они могут быстро разрушиться в случае применения воды, а не антифриза. Наиболее частая неисправность в помпе – это поломка подшипника. Она может разбиваться постепенно при чрезмерном натяжении ремня привода.

Кран печки

система охлаждения ваз 2106 объем

Пожалуй, в «шестерках», да и во всей классике, это самый ненадежный элемент. К сожалению, качество данного узла хорошее, но конструкция у него такая, что невозможно долго эксплуатировать этот кран. Его функция – перекрывать поток горячей жидкости, который поступает в радиатор печки. Во многом только из-за этого крана ломается система охлаждения ВАЗ-2106. Неисправности данного узла можно увидеть по нескольким признакам. Самый первый – это наличие антифриза на коврике возле сиденья пассажира.

Выход из строя крана сопровождается тем, что он либо не открывает подачу горячего антифриза, либо не перекрывает ее. При этом, кстати, будет двигаться металлический флажок, расположенный на корпусе краника. Причина такого поведения – разрушение керамических пластин, с помощью которых производится регулировка подачи. На какие только ухищрения не идут владельцы – и глушат патрубок подачи жидкости на лето, и устанавливают водопроводные полуоборотные краны, которые можно приобрести за копейки. Правда, необходимо делать переходники для их подключения.

Радиаторы системы

Когда выполняется на автомобиле ВАЗ-2106 ремонт, система охлаждения редко отключается. Исключение – снятие двигателя. В этом случае потребуется сливать жидкость и отсоединять патрубки, идущие на радиаторы печки и охлаждения. Что такое радиатор? Это две небольшие емкости, которые располагаются в горизонтальной плоскости. По вертикали между ними проложены металлические трубки – ячейки. Горячая жидкость подается в верхнюю емкость, поступает в десятки тонких ячеек, что позволяет ей быстрее остыть.

Материал для изготовления радиаторов – медь, бронза, латунь, пластик. Из последнего делают только верхнюю и нижнюю емкости. Для увеличения эффективности отдачи тепла между ячейками находится несколько сотен тончайших пластин. За счет того что площадь увеличивается, улучшается и теплоотдача радиатора. Устройство основного радиатора и того, который находится в печке, одинаково. Но есть мелкая особенность первого – к нему произведено подключение расширительного бачка. Вся лишняя жидкость вытесняется из радиатора и поступает в бак.

Вентилятор обдува радиатора

система охлаждения радиатора ваз 2106

Он служит для увеличения эффективности системы охлаждения. С его помощью создается мощный поток воздуха. Система охлаждения радиатора ВАЗ-2106 может быть построена с использованием вентилятора либо с механическим приводом, либо с электрическим. Последний устанавливается на более ранние модели. Его преимущество в том, что он работает только в тех случаях, когда температура жидкости достигает критического значения. А вот вентилятор с механическим приводом (он просто монтируется на ротор помпы) производит обдув постоянно, независимо от того, какая температура в системе охлаждения. Это делает его использование в холодную погоду весьма неудобным.

Термостат

ваз 2106 ремонт система охлаждения

Это небольшой прибор, с помощью которого производится переключение потоков жидкости между кругами охлаждения. Его состав весьма простой – обычная биметаллическая пластина, а также небольшая конструкция из пружин. При достижении определенной температуры происходит медленная деформация пластинки, которая двигает клапан. Положение последнего по умолчанию производит циркуляцию жидкости по малому кругу. Следовательно, при поломке неизбежно закипание антифриза. Ранее была рассмотрена детально система охлаждения ВАЗ-2106, схема циркуляции антифриза по ней. В случае поломки термостата можно его и вовсе исключить из системы. Правда, жидкость будет двигаться только по большому кругу, зимой прогрев двигателя окажется очень долгим. Результат – неправильная работа мотора и холодный салон автомобиля.

ВАЗ 2106 | Система охлаждения двигателя

Положение клапанов термостата при различной температуре охлаждающей жидкости

Система охлаждения двигателя – жидкостная, закрытого типа с принудительной циркуляцией. На холодном двигателе жидкость циркулирует по «малому кругу». В него входят рубашки охлаждения блока и головки цилиндров двигателя, насос охлаждающей жидкости, термостат, а также радиатор отопителя, когда его кран открыт. При достижении температуры жидкости 80–85° приходят в действие два клапана термостата, перекрывая малый круг и открывая жидкости путь через радиатор двигателя, который интенсивно обдувается встречным потоком воздуха при движении, а также при помощи электровентилятора.

Радиатор состоит из двух горизонтальных бачков, соединенных между собой трубками. Для лучшего теплоотвода на них напрессованы пластины. Жидкость подается в радиатор через верхний патрубок, а отводится через нижний.

Проходя через радиатор, жидкость охлаждается, после чего снова поступает в двигатель. Изменение объема охлаждающей жидкости при ее нагреве или охлаждении компенсирует расширительный бачок. Для визуального контроля уровня охлаждающей жидкости бачок изготовлен из полупрозрачного полиэтилена.

Герметичность системы обеспечивается впускным и выпускным клапанами пробки заливной горловины радиатора. На горячем двигателе выпускной клапан поддерживает повышенное давление в системе. За счет этого повышается температура кипения жидкости. При ее остывании открывается впускной клапан, пропуская часть жидкости из расширительного бачка в радиатор и тем самым компенсируя уменьшение объема жидкости.

В пробке расширительного бачка имеется отверстие, поэтому в его внутренней полости давление всегда атмосферное.

Насос охлаждающей жидкости центробежного типа. Корпус насоса – алюминиевый, разборный, состоит из двух частей. Валик насоса вращается в двухрядном подшипнике закрытого типа, не требующем обслуживания. На передний конец вала напрессован фланец шкива привода насоса – клиновым ремнем от шкива коленчатого вала двигателя.

В последнее время автомобили комплектуются радиаторами с пластмассовыми бачками и алюминиевой сердцевиной.

Не рекомендуется заливать в систему охлаждения двигателя воду. Это приводит к образованию накипи на стенках системы, коррозии деталей, ухудшению теплообмена и сокращению ресурса уплотнения насоса.

2106

2106




2106

2106, 2106.2106. ,. 2106,,,,, ..


2106
2106
1; 2; 3; 4; 5; 2106; 7 2106; 8; 9 2106; 10 2106; 11 2106; 12; 13; 14; 15; 16 2106; 17; 18; 19; 20; 21 2106; 22 2106; 23 2106; 24; 25; 26; 27 2106; 28; 29; 30; 31; 32; 33; 34 -; 35; 36 -; 37 *; 38; 39; 40; 41 *; 42; 43 -; 44; 45; 46; 47; 48 (); 49; 50; 51; 52; 53; 54; 55; 56; 57 2106; 58; 59 2106; 60; 61; 62; 63 2106; 64; 65; 66; 67 -; 68; 69; 70; 71; 72 *; 73; 74; 75; 76

* 2106




car-exotic.com! ,

2106, 21061, 21065

2106, 21061, 21065






: —
,
2106

2106, 21061, 21065



-2106, -21061, -21065:
1 -; 2 -; 3 -; 4 -; 5 -; 6 -; 7 -; 8 -; 9 -; 10 -; 11 -; 12 -; 13 -; 14 -; 15 -; 16 -; 17 -; 18 -; 19 -; 20 -; 21 -; 22 -; 23 -; 24 -; 25 -; 26 — -; 27 -; 28 -; 29 -; 30 — -; 31 -; 32 — -; 33 -; 34 -; 35 -; 36 -; 37 -; 38 -; 39 -; 40 -; 41 -; 42 -; 43 -; 44 -; 45 -; 46 -; 47 -,; 48 -,; 49 -; 50 -; 51 -; 52 -; 53 -; 54 -; 55 -; 56 -; 57 -; 58 -; 59 -; 60 -; 61 -; 62 -; 63 -; 64 -; 65 -; 66 -; 67 -; 68 -; 69 -; -; — — 32; — 39


Автомобиль

-экзотика.ком!


2106, 21061, 21065