Что такое инжекторная машина: что надежнее — Российская газета

Содержание

Что такое инжектор — от чего едет автомобиль?

Двигатель автомобиля – сложная система, которая работает слаженно в любых условиях. Еще несколько десятилетий назад автомобили были оснащены карбюраторами, со временем данная технология устарела, а ей на смену пришел инжектор. Инжекторный двигатель – это двигатель с инжекторной подачей топлива. Данная технология подачи топлива имеет некоторые весомые преимущества перед карбюраторной и устанавливается на современных автомобилях, которые работают на бензине.

Принцип работы инжектора в системе подачи топлива

Сегодня инжектор полностью заменил карбюратор. Его эффективность на порядок выше, чем у его предшественника. Именно инжекторным двигателям приписывают улучшенные параметры разгона, снижение потребления топлива, особенные экологические показатели. Все эти возможности достигаются без ручной регулировки или других манипуляций. Такой прорыв стал возможен благодаря самонастройке и работе кислородного датчика.

Принцип работы инжектора в системе подачи топлива заключается в подаче топлива и воздуха через специальные форсунки.

Они могут располагаться во впускном коллекторе. Такая система называется моновпрыск. Она уже отошла в прошлое, так как имеет существенные недостатки. Также форсунки могут располагаться в области впускного клапана каждого цилиндра. Такая система называется распределенный впрыск топливно-воздушной смеси. Еще одно место расположения форсунок – головки цилиндров. Такая система называется прямым впрыском и используется повсеместно. Впрыск топливно-воздушной смеси осуществляется прямо в камеру сгорания. Система распределенного впрыска классифицируется по следующим типам:

одновременный – когда все форсунки одновременно подают топливо;

парно-параллельный – происходит парное открытие форсунок. Одна открывается перед впрыском, а другая открывается перед выпуском. Этот метод применяется во время запуска двигателя;

фазированный тип – это режим, когда форсунка открывается перед тактом впрыска;

прямой тип – когда впуск происходит прямо в камеру сгорания.

Для того чтобы состоялся впрыск смеси, к форсункам подводится топливо под давлением с помощью электрического насоса. Электрические импульсы поступают с бортового компьютера автомобиля. Продолжительность импульсов и количество топлива в каждом впрыске рассчитывается на основании данных, полученных с датчиков, которые считывают информацию о работе двигателя.

Современные автомобили оснащаются большим количеством разнообразных датчиков, которые считывают информацию, синхронизируют и оптимизируют работу двигателя и других систем. Это позволяет использовать оптимальное количество топлива и энергии для работы и движения автомобиля.

Схема работы инжектора

Работа современного автомобиля – это не только двигатель и крутящий момент, это еще и электронное управление с помощью бортового компьютера. Работа инжектора также зависит от программ установленных в главном «мозге» автомобиля. Схема работы инжектора выглядит следующим образом. На множество датчиков расположенных в двигателе поступает информация о количестве потребляемого топлива, о скоростном режиме, о напряжении в сети автомобиля и другие данные.

Контроллер в свою очередь получает эти данные и обрабатывает их и осуществляет управление системами и приборами. В частности он осуществляет подачу топлива, а точнее регулирует количество впрысков и их величину. Изменения параметров в инжекторной системе осуществляется в соответствии с полученными данными.

Устройство простейшего инжектора

Для того чтобы лучше понять, как работает инжектор необходимо рассмотреть его устройство. Так данная система включает следующие детали:

• электрический бензонасос;

• ЭБУ или контроллер;

• регулятор давления;

• датчики;

• форсунки или непосредственно инжектор.

Электрический бензонасос подает топливо, регулятор давления поддерживает разницу давления между давлением в инжекторах и давлением воздуха в впускном коллекторе. Контроллер воспринимает информацию от различных датчиков и обрабатывает ее. В соответствии с показателями датчиков температуры двигателя, детонации, распределительного и коленчатого вала принимаются решения о количестве топлива для впрыска в каждый цилиндр или другие решения, которые позволяют системе слаженно работать.

Неисправности инжектора и методы их исправления

Эффективная работа двигателя, оптимальное потребление топлива, гарантия чистоты выхлопных газов – это результат работы множество устройств и датчиков, в том числе и инжектора. Они должны быть чистыми, только в этом случае параметры, означенные выше будут стабильными. Также важно быстро определить и устранить неисправность инжекторов. Даже незначительное засорение форсунок может сказаться на снижении оборотов двигателя, может привести к затрудненным зажиганию и разгону до определенной скорости, увеличить потребление топлива или даже сказаться на уровне вредных веществ в выхлопах.

Современные автомобили оснащены электронными датчиками, которые выводят информацию на монитор, расположенный на приборной панели и водитель видит, что появилась неисправность, которую нужно исправить.

Засоряется инжектор самим топливом, которое состоит из сложных химических соединений, тяжелых парафинов. В момент, когда двигатель выключается часть топлива остается в форсунках. Под воздействием температуры оно испаряется, а парафины застывают. Они и являются главным препятствием для работы инжекторной системы.

Для того чтобы вернуть нормальную работу системы необходимо очистить инжекторы. Этот процесс может осуществлять двумя способами: непосредственно в двигателе или же на снятом инжекторе. Первый способ является наиболее простым и доступным. Он не требует особых знаний и навыков. Сама процедура занимает немного времени. Для того чтобы почистить инжектор требуется компрессор и специальная жидкость. Компрессор нужно установить на место топливного насоса. Он будет направлять растворитель в топливную систему. Время промывки зависит от степени загрязненности инжекторов. Если после этой процедуры работа двигателя не восстановилась, то форсунки следует очищать более радикальными методами.

Для того чтобы узнать результат промывки инжекторов одного запуска двигателя и последующего тест-драйва недостаточно.

Необходимо провести анализ выхлопных газов, проверить баланс мощности двигателя, а также проверить стпень падения давления инжекторов. Если все эти показатели в норме, то можно делать вывод, что процедура прошла успешно.

Более радикальный метод очистки форсунок заключается в их демонтаже и промывке с использованием специального оборудования. Данный метод очень трудоемкий. Он требует особых навыков и знаний, которые есть у специалистов автосервиса, так как в данном случае разборке подвергается двигатель и другие прилегающие узлы. Поэтому лучше всего промыть инжекторы, не дожидаясь пока снизятся показатели двигателя.

Таким образом, инжектор – это система, которая отвечает за плавность, скорость и легкость движения, за экономичность автомобиля и его маневренность. Именно поэтому необходимо регулярно проводить профилактические очистки и следить за чистотой данной системы.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Устройство автомобиля: инжектор

Споры о преимуществах инжекторного двигателя над карбюраторным, давно не актуальны – инжекторные системы воцарились на рынке, а новый автомобиль с карбюратором теперь попросту не найти. И все же не лишним будет разобраться, что же такое «инжектор», и чем обеспечено его тотальное господство на рынке легкового автотранспорта?

История инжектора

Впервые о замене карбюратора принципиально новой системой задумались ещё в самом начале 20-го века авиационные инженеры. Перепробовав все известные типы карбюраторов, они уже к сороковым годам прошлого века пришли с готовой к серийному производству системой инжектора, под давлением подающей топливо в камеру сгорания независимо от гравитации (что важно для самолётов) и точно в требуемом количестве (что позволяет получать меньший расход топлива, большую мощность и снижение уровня вибраций).

К концу второй мировой войны инжекторный двигатель с механическим впрыском можно было встретить на истребителях и бомбардировщиках Германии, Японии, Великобритании, СССР и США.

Кстати, тогда же появилась и столь знакомая многим современным автолюбителям процедура, как промывка инжектора — легендарный японский истребитель А6М «Зеро» требовал чистки форсунок после каждого вылета.

Затем автопроизводители оценили возможности применения впрыска для увеличения мощности двигателя при сохранении его экономичности: в 1940 году итальянцы из Alfa Romeo на своём купе 6C тестируют экспериментальную систему электронного впрыска, а Mercedes-Benz в 1954 году запускает в серию своё легендарное купе 300SL «Крыло Чайки», где была установлена механическая система прямого впрыска топлива.

Впрочем, никто из них не был пионером в создании «инжектора» – те или иные технические решения, примененные в этих автомобилях, отрабатывались на множестве экспериментальных конструкций, начиная с французских двигателей Леона Левассера с механическим впрыском образца 1902 года.

В России же системами инжекторного впрыска на автомобильной технике занимались и в Центральном научно-исследовательском автомобильном и автомоторном институте «НАМИ» и на Горьковском автомобильном заводе. Впрочем, некоторое отставание в области электронных компонентов не позволило удачно развернуть производство электронных систем впрыска в шестидесятых годах. Механический же впрыск в СССР, к сожалению, массово не вышел за рамки авиационных и дизельных двигателей.

Схема работы инжектора

Схема инжектора и закономерности его работы, пожалуй, даже проще для понимания, чем принципы работы карбюратора. Если карбюратор – это изящное техническое воплощение целого ряда физических законов в металле, то даже самая современная система инжектора таит в себе всего-лишь насос, подающий топливо сначала в находящуюся под небольшим давлением систему топливных каналов (топливную рампу), а потом (через электрический клапан) в сопло форсунки. Сопло, в свою очередь, распыляет топливо, которое смешивается с воздухом внутри впускного коллектора и через впускной клапан попадает в цилиндр уже в виде топливо-воздушной смеси. Собственно, терминами «инжектор» и «форсунка» сейчас чаще всего обозначают устройство, совмещающее в одном корпусе сопло-распылитель и электрический клапан.

Для понимания принципов работы инжекторного двигателя можно представить себе обычный цикл работы цилиндра четырёхтактного двигателя. При установке на нём карбюратора можно вполне налить топлива в сам карбюратор и отключить его от топливной системы вовсе – двигатель сможет завестись сам, так как топливно-воздушная смесь формируется в карбюраторе под действием втягивающего потока воздуха, который «засасывает» с собой смесь, и она уже готовой попадает во впускной коллектор. Не нужно ни давления, ни особого управления – схема проста и характеризуется тем, что топливная смесь формируется ещё до попадания к впуску в цилиндр.

В схеме с применением инжекторных форсунок смесь «готовится» непосредственно во впускном коллекторе (а в случае прямого впрыска – вообще в самой камере сгорания). В точно заданный системой управления момент открывается электроклапан, разделяющий топливную систему и впускной коллектор. Под давлением, созданным бензонасосом, инжектор распыляет топливную смесь в количестве, строго необходимом для поддержания близкого к стехиометрическому (читай-оптимальному) составу смеси. При этом воздух в коллектор на большей части нетурбированных автомобилей попадает под воздействием разряжения, созданного цилиндром – что позволяет, зная текущую его температуру, точно понимать, сколько топлива можно сжечь, имея данный объем воздуха.

Минус схемы инжектора в том, что смесь получается не настолько гомогенной (однородной и хорошо перемешанной), как на дорогих спортивных карбюраторах, а система управления форсунками требует точной настройки для оптимальной синхронизации работы топливных форсунок, впускных клапанов и цилиндров. Но плюсов системы всё же оказывается больше:

  • растёт экономичность и одновременно мощность за счёт точной дозировки топлива в зависимости от текущей потребности и ситуации.
  • равномернее распределяется топливо и между цилиндрами (мы не берем сейчас многокарбюраторные системы и ранние инжекторы с одной форсункой на несколько цилиндров),
  • автоматизируются процессы настройки двигателя в зависимости от условий эксплуатации,
  • понижается уровень вредных выбросов в атмосферу,
  • расширяются возможности для тюнинга двигателя
  • облегчается диагностика двигателя (с учетом использования электронных технических средств)
  • сборка и настройка инжекторных двигателей в производстве обходится дешевле, чем сборка и настройка карбюраторных систем

С точки зрения водителя, автомобиль с инжекторной системой впрыска, как правило, быстрее реагирует на изменение положения педали газа, легче заводится в условиях, отличных от идеальных, потребляет меньше топлива и обладает более высокой мощностью по сравнению с аналогичным двигателем с карбюраторной системой питания.

Кстати, возможность выбирать – карбюратор или инжектор, когда-то была: на раннем этапе развития систем впрыска применялся в основном центральный (моно, одноточечный, Single-Point injection, SPi) впрыск, форсунка легко ставилась на место карбюратора как опция и работала одновременно на все цилиндры двигателя. Система была проста, надёжна и предполагала расположение форсунки вне зоны высоких температур.

При такой схеме не требовалось сложной электроники или механики для синхронизации работы форсунок на нескольких цилиндрах, но за это приходилось платить отсутствием той универсальности, которую дают более современные системы с распределенным, или многоточечным (Multi-Point Injection, MPi), впрыском.

В итоге именно распределенный впрыск получил наибольшее распространение и сейчас эволюционировал во множество подвидов, как то непосредственный впрыск в камеру сгорания (Direct Fuel injection, DFI) и несколько подвидов обычного распределенного впрыска в зависимости от времени открытия форсунок:

  • при параллельном, или одновременном, впрыске (SMPI) все форсунки в двигателе срабатывают одновременно и независимо от тактов цилиндров, дважды за цикл впрыскивая топливо во впуск соответствующего цилиндра. При данном способе впрыска, часто встречавшемся на автомобилях 90-х годов, форсунки нужны в основном для более точной – по сравнению с центральным впрыском — дозировки топлива. Тем не менее, время между впрыском и попаданием топлива в цилиндр для разных цилиндров оказывается разным (пусть мы и говорим о миллисекундах), что сказывается на неравномерности смеси от цилиндра к цилиндру.
  • при попарно-параллельном – форсунки делятся на группы, срабатывающие в разное время. Таким образом, точка срабатывания форсунки приближается к оптимальному времени впрыска топлива для подготовки смеси – что позволяет сократить разницу в качестве смеси в цилиндрах. За цикл работы двигателя топливо впрыскивается дважды, как и при одновременном впрыске – более того, на время пуска двигатель с попарно-параллельной схемой впрыска переходит в режим одновременного впрыска.
  • при фазированном впрыске или (CIFI) – каждая форсунка управляется независимо от остальных и открывается точно перед тактом впуска. Именно эта система в данный момент является наиболее распространенной, так как позволяет обеспечить точное управление каждой форсункой и использовать оптимальное для каждого цилиндра время впрыска.

Отдельно следует отметить, что система инжекторного впрыска сама по себе универсальна и используется не только для бензиновых автомобилей. Механический впрыск на дизельных двигателях появился едва ли не раньше, чем на бензиновых – с двадцатых годов двадцатого века и поныне только на модельных дизелях и некоторых тракторных моторах используется схема, отличная от инжекторного впрыска.

Например, для дизельных силовых агрегатов крайне распространена прогрессивная система прямого впрыска Common Rail (она же известна как TDI, VCDi, CDI, TCDi, i-DTEC, CRDi – в зависимости от производителя), фактически превращающая топливную рампу в замкнутый аккумулятор для хранения топлива под более высоким, по сравнению с другими системами впрыска, давлением. В результате форсунки подают топливо с ещё большим давлением, что положительно сказывается, в частности, на расходе топлива. Но между прочим, впервые эта «современная» система была применена на британских двигателях для подводных лодок Vickers в 1916 году и в дальнейшем развивалась в основном по пути повышения давления в топливном аккумуляторе.

Система управления инжектора

Системы, координирующие действия каждой отдельной форсунки- инжектора двигателя, бывают как механическими, так и электронными. Собственно, первые массовые системы впрыска на легковых автомобилях появились в пятидесятых годах двадцатого века и довольно долгое время были исключительно механическими (как, например, целое семейство систем Bosch D-Jetronic).

Но по-настоящему эпоха инжекторного впрыска началась только с распространением микроконтроллеров — стоимость их разработки, производства и настройки гораздо ниже в сравнении с аналогичными процессами для механических систем с теми же функциональными возможностями.

Сегодня система управления инжекторным двигателем далеко ушла от алгоритмов работы первых механических систем. Соблазн относительно недорого использовать возможность оперативного изменения дозировки и времени подачи топлива на каждый отдельный инжектор двигателя (форсунку – ведь именно так переводится слово «инжектор») сделал своё – микроконтроллер сейчас собирает данные со множества дополнительных датчиков (от температурных и ДМРВ(Датчик Массового Расхода Воздуха) до датчиков включения кондиционера и отслеживания неровностей дороги). В зависимости от результата анализа этих данных контроллер выдаёт указания целому ряду устройств помимо, собственно, связки «бензонасос-инжектор» — системе зажигания, регулятору холостого хода, системе охлаждения и тому же кондиционеру.

Промывка инжектора

Есть целый ряд проблем, характерных именно для инжекторных двигателей. Это могут быть проблемы, общие для всех типов двигателей, а могут появляться и проблемы с электронными датчиками, вышедшими из строя по разным причинам.
Но главная проблема даже самого надежного инжекторного двигателя в России — сбои из-за засорения системы топливоподачи.

Троение, не связанное с состоянием свечей зажигания, катушек и высоковольтных проводов, трудности запуска зимой, заметное ухудшение приемистости двигателя, разница в нагаре на свечах зажигания из разных цилиндров, повышенный расход топлива и неполное сгорание смеси – всё это действительно может указывать в том числе и на закоксовывание форсунок.

Большая часть операций с системой впрыска инжекторного двигателя, с точки зрения многих официальных производителей, сводится к замене неразборных форсунок новыми, но существуют и методики чистки, охотно предлагаемые различными автосервисами.

Их условно можно разделить на два типа – промывку инжектора и ультразвуковую чистку форсунок. И та, и другая операция выполняется как со снятием топливных форсунок, так и прямо на двигателе.

У каждого способа свои нюансы, но следует помнить, что при промывке форсунок жидкостью без снятия их с двигателя после завершения процедуры рекомендуется заменить свечи и масло (и соответствующий фильтр) в двигателе, предварительно промыв его — что делает операцию весьма накладной. Кроме того, следует учитывать, что ввиду наличия в форсунках сеточки-уловителя, промывка некоторых форсунок может быть возможна только в направлении, обратном обычному распылению.

При снятии форсунок с двигателя замене подлежат уплотнительные резиновые прокладки этих форсунок. При этом для самой чистки потребуется специальный промывочный стенд либо самодельные приспособления, которые заставят форсунку открыть клапан для промывки.

В любом случае есть серьёзный риск повреждения двигателя в результате неверных действий. А в случае обслуживания дизельных двигателей следует учитывать еще и возможность наличия в системе серьёзного остаточного давления.

И все же нельзя сказать, что диагностика и обслуживание инжекторного двигателя существенно сложнее диагностики и обслуживания карбюраторного.

Конечно, для обслуживания карбюраторного двигателя не нужен сканер ошибок или бортовой компьютер. В нем не присутствует того количества датчиков и подсистем, которое мы встречаем в системе управления инжекторным двигателем.

С другой стороны – при наличии нужного оборудования компьютер инжекторного двигателя тут же объясняет, где искать неисправность – и для этого не надо вызывать опытного специалиста-диагноста, а достаточно подключить бортовой компьютер или OBD-сканер.

На ряд же неисправностей, не улавливаемых сканером, существует управа в виде внимательного отношения к собственному авто – изменение поведения автомобиля на дороге, смена звучания двигателя, сбои в работе отдельных систем или внезапно проснувшийся аппетит – всё это указывает на возникшие проблемы и необходимость диагностики. А еще, самый страшный враг «инжектора» — некачественное топливо. Так что внимательно стоит отнестись и к выбору заправочной станции.

Автор
Дмитрий Лонь, корреспондент MotorPage.ru
Издание
MotorPage.Ru

плюсы и минусы непосредственного впрыска

Инжекторные установки уже давно заменили карбюраторные варианты впрыска топлива на бензиновых двигателях. В Японии эту технологию используют с конца 80-х годов прошлого столетия, а вот на отечественных машинах стали устанавливать только в нынешнем веке. Многие владельцы русских автомобилей с инжекторами считают, что лучше бы заводы продолжили использовать карбюраторные типы двигателей, ведь непосредственный впрыск удается нашим конструкторам из рук вон плохо. Поломки инжектора, засорение форсунок и выход из строя важных модулей системы подачи топлива — это вполне привычное дело для большинства автомобилистов с отечественным транспортом. Плюсы и минусы инжектора лучше рассматривать, выбирая для сравнения хороший и надежный иностранный транспорт.

Эталоном качества и надежности считают японские инжекторы, но и в них кроется ряд проблем. Сегодня мы поговорим о положительных и негативных сторонах этого варианта подачи топлива, а также разберемся с конструкцией инжектора. Это поможет лучше понять свой автомобиль и получить больше важных сведений о том, как его следует эксплуатировать. Информация о работе инжектора позволит ощущать автомобиль, знать, когда можно придавить на педаль газа, а в каких ситуациях отказаться от резкого ускорения. В любом случае, изучение тонкостей своего авто явно не помешает в будущей эксплуатации.

Система инжектора — составляющие части и принцип деятельности

Для работы инжектора необходимо давление от 4 атмосфер, в некоторых моделях давление превышает этот и без того не малый показатель. Давление топлива создается с помощью мощного насоса, располагающегося зачастую в бензобаке. Система подачи топлива содержит также необычный топливный фильтр в металлическом корпусе, ведь простой фильтр не выдержал бы давления в трубках. Еще один фильтр расположен на бензонасосе. Эта система очистки крайне важна, ведь при ее выходе из строя работоспособность инжектора снижается. Наиболее важные части системы инжектора следующие:

  • рампа форсунок, на которой крепятся подающие топливо элементы, расположена над дроссельным узлом;
  • непосредственно форсунки — на каждый цилиндр подача топлива выполняется отдельным механизмом, который распыляет бензин для смешивания с воздухом;
  • мозги — бортовой компьютер, управляющий всей системой работы автомобильной топливной системы и других узлов;
  • дроссельный узел реализован не так, как в карбюраторных автомобилях, но этот элемент имеет много общего со старыми двигателями;
  • различные фильтры и предохранители защищают достаточно нежную систему от воздействия засорений в топливе;
  • прошивка на компьютере определяет все особенности поведения двигателя, потому ее смена сильно влияет на потенциал автомобиля.

Инжекторные двигатели нравятся многим автовладельцам по той причине, что ими можно управлять с помощью предустановленной на компьютер программы. Можно поменять сам компьютер или выполнить перепрошивку, чтобы полностью реализовать потенциал или даже заметно увеличить мощность двигателя. Но такие махинации с прошивкой и бортовым компьютером могут заканчиваться не слишком приятно. На заводе выставляют оптимальные режимы работы двигателя, от чего зависит и устанавливаемая прошивка. Когда происходит смена заводских параметров, машина полностью меняет поведение. Выбранный режим может оказаться не самым лучшим для эксплуатации двигателя.

Явные преимущества инжектора — рассматриваем выгоды

Если бы в этой системе не было никаких преимуществ, все автомобильные компании не стали бы активно использовать технологию в производстве двигателей. Сегодня фактически все бензиновые силовые агрегаты обладают непосредственным впрыском, что является оптимальной технологией по всем статьям. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы инжектора. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке. Среди важных преимуществ, которые важно вспомнить, стоит заметить следующие особенности:

  • реальное понижение расхода топлива — инжектор может экономить, благодаря интеллектуальному управлению подачей топлива;
  • полное сгорание бензина — при правильных настройках инжектор обеспечивает полное сгорание топлива и определенную интенсивность поездки;
  • более выразительная динамика двигателя — водителю не приходится долгое время ожидать реакции при нажатии педали газа;
  • возможность смены прошивки — с помощью простой процедуры чип-тюнинга можно полностью изменить параметры авто;
  • технологичность и современность — машина с инжектором зачастую выбрасывает в атмосферу значительно меньше вредных веществ;
  • устойчивая работа в любых условиях — для хорошей работы инжектора не требуется ручное управление заслонкой воздуха, двигатель хорошо заводится в мороз.

Карбюраторные автомобили обладают ненавистным для многих автовладельцев подсосом, которым необходимо правильно управлять. В ином случае придется справляться с последствиями неправильного использования этого узла. В инжекторых автомобилях подачей воздуха руководит компьютер, что целесообразно только при высоком качестве самого компьютера. Если же «мозги» не управляют всеми функциями подачи топлива и воздуха правильно, возникает повышенный расход, чрезмерная непредсказуемость машины и прочие неприятные моменты. Но их можно избежать, настроив работу компьютера в соответствии с требованиями двигателя.

Недостатки и неприятные моменты в работе инжектора

Некоторые недостатки мы уже описали выше, сравнивая достоинства этого типа подачи топлива с определенными плюсами старого карбюратора. Некоторые водители задаются вопросом, можно ли переделать машину с карбюратора на инжектор или с инжектора на карбюратор. Теоретически это возможно, но вложения в этот процесс не оправдают себя. Вопрос переделки возникает в том случае, когда владелец инжекторной машины находит слишком много недостатков в своем авто. Повышается расход, меняется поведение транспорта, двигатель глохнет или работает на слишком высоких оборотах. Все недостатки инжектора можно исправить достаточно простыми, но часто недешевыми процедурами:

  • чистка форсунок — если вы заливаете не слишком качественный бензин или не меняете вовремя фильтры топлива, форсунки будут забиваться и перестанут распылять бензин;
  • прошивка «мозгов» в нужных режимах — на старых машинах иногда получается достичь невероятных результатов от перепрошивки, ведь технологии движутся вперед;
  • замена бортового компьютера на более функциональный вариант ЭБУ для вашей модели автомобиля с подходящими настройками;
  • регулярная смена фильтров, как воздушного, так и топливного, с целью обеспечения нормальной работы инжектора;
  • использование качественного топлива в соответствии с предписанными производителем нормами и подходящим октановым числом;
  • регулярный сервис, своевременное обращение внимания на определенные недостатки работы автомобиля.

Если у вас инжекторная машины, будьте внимательны к различным мелочам. Небольшое изменение работы двигателя может стать первым сигналом серьезных проблем. Зачастую небольшие неполадки можно вылечить за очень скромные деньги, но если не принять неполадку всерьез, затраты будут очень внушительными. Ремонт инжекторного двигателя чаще всего оказывается довольно дорогим занятием. Потому лучше сразу определить все проблемы на регулярном сервисном осмотре и исправить все возможные неполадки автомобиля. Так вы сможете значительно продлить жизни дорогостоящих узлов и сэкономить ощутимые суммы на возможном дальнейшем ремонте. Вот так выглядит работа инжекторного двигателя в замедленном темпе на видео:

Подводим итоги

Следует идти в ногу со временем и принимать новинки, которые предлагают производители. Прямая подача топлива на самом деле экономичнее, она делает машину несколько мощнее и динамичнее, дает водителю больше свободы. Тем не менее, машина оказывается требовательной к обслуживанию и качеству заливаемых жидкостей, в том числе и топлива. Если автомобиль ведет себя непонятно, стоит сразу обратиться на станцию и устранить проблему.

Впрочем, такие же советы будут актуальными и для владельцев автомобиля с карбюраторным двигателем. Чем раньше вы обратите внимание на неполадку и устраните ее, тем дешевле вам обойдется обслуживание и ремонт машины. Если у вас появилась идея переделать авто с инжектора на карбюратор или наоборот, откажитесь от таких конструктивных изменений. Это не сможет повлиять на автомобиль положительно, а лишь добавит проблем в обслуживании и эксплуатации. Как вы относитесь к современным инжекторам на авто?

У вас инжекторная машина? Не забывайте проверять эти детали

С приходом инжекторных автомобилей, жизнь водителей несколько изменилась. Система полностью управляется компьютером, что дает некие преимущества. Вот только теперь за машиной нужно следить в два раза больше. А как это делать, расскажем ниже.

Чтобы ваш автомобиль всегда был на ходу, необходимо периодически менять так называемые «расходники». Какие именно, рассмотрим ниже.

Свечи зажигания

Вообще, свечи желательно менять каждые 25-30 тыс. км. пробега. Вот только изнашиваются они по-разному. Все зависит от качества свечей и состояния двигателя. На одном силовом агрегате зазоров может и не быть, в то время как на другом, зазоры практически критичные. Ко всему прочему, на износ деталей влияет  качество топлива, моторное масло, ну и, конечно же, стиль езды. Состояние деталей определяется по зазору между электродами. Чем дольше их не менять, тем больше будет расстояние.

Во время зажигания топливовоздушной смеси, между электродами возникает искра, которая имеет достаточно высокую энергию и температуру. Из-за этого, материал и выгорает.

Оптимальным зазором для инжекторных двигателей, считается 1.2 мм. Очень важно периодически проверять его,  и при необходимости регулировать.

Что будет если не следить за зазором?

Если вовремя не обратить внимания на свечи, у вас может сгореть катушка зажигания. Дело в том, что на свечах с большим зазором отмечается высокое пробивное напряжение. А это вредит катушке.

Высоковольтные провода

Провода, по которым к свечам приходит напряжение, также подлежат замене. Рекомендуемый пробег – 40 тыс. км. А вот почему их нужно менять, знают не многие. Все из-за сопротивления, которое постепенно увеличивается в процессе эксплуатации авто. А если растет сопротивление, то увеличивается и напряжение вторичной обмотки. И снова страдает катушка. Но если сопротивления в норме, то менять провода не обязательно. Проверяются они проще простого, достаточно приобрести мультиметр и научится пользоваться им.

Топливный фильтр

Топливный фильтр тонкой очистки меняют каждые 30 тыс. км. Со временем, на фильтре остаются частички мусора, попавшего через бензин. И если его долго не менять, то в какой-то момент он может лопнуть. Весь застоявшийся мусор попадет в форсунки, а затем и в сам двигатель. Но и это не все, забитый фильтр вреден для бензонасоса. Ему приходится работать на повышенных нагрузках. Соответственно прослужит он намного меньше. Не забывайте и о том фильтре, что в бачке бензобака. Хоть изредка прочищайте эту сетку.

Ремень ГРМ

На всех машинах, ремень меняют каждые 60000-120000 км. Но осматривать его на предмет износа нужно намного чаще. При несоответствиях, его сразу же меняют на новый. А через 120 тыс. км. меняют шестерни на валах. Пускай они из железа, но оно тоже стирается.

Тепловой зазор на клапаном приводе

Тепловой зазор может как увеличиваться, так и уменьшаться. В первом случае, это износ тарелки канала, а во втором – износ клапанного привода. Сами клапана регулируются каждые 20-30 тыс. км.

Система вентиляции картера

Во время работы двигателя, часть выхлопных газов попадает в картер через систему вентиляции, тем самым забивая ее. И когда система забивается достаточно сильно, начинает увеличиваться давление в картере. В следствии, моторное масло начинает просачиваться через сальники. Из-за этого, ваше подкапотное пространство может быть постоянно покрыто маслом.

Разъёмы датчиков

Не удивляйтесь, что вдруг на вашем автомобиле начали отказывать разные датчики. Скорее всего, это барахлит разъем. Покупаете в любом автомагазине новую деталь и меняете. Ничего сложного.

Пробка заливной горловины

Опытные механики знают, как с помощью пробок узнать о проблемах в силовом агрегате. Белая эмульсия на крышке появляется при прогорании прокладки. Сама прокладка еще не прогорела, но процесс уже начат.

А еще обратите свое внимание на распределительный вал. Если увидите отложения, значит двигатель «ест» масло. Что тоже не очень хорошо.

В целом инжектор не такая уж и сложная система. Достаточно следить за ним, и тогда компьютер вас не подведет.

Остались вопросы или есть, что добавить по статье? Пишите в комментариях, возможно это очень поможет читателям в будущем. Так же подписывайтесь на наш канал в ДЗЕНЕ.

Первые инжекторные легковушки 1950-х годов: mexanizm — LiveJournal

Принято считать, что  первый автомобиль с бензиновым двигателем, оборудованным топливной  системой непосредственного впрыска, был Mercedes-Benz 300SL, более  известном как «Gullwing». Но это верно лишь отчасти. Действительно,  «Крыло чайки» был первой машиной, на которую серийно в процессе  производства устанавливался инжекторный двигатель, но впервые впрыск  появился совсем на другом автомобиле, тоже германской компании, название  которой в наши дни мало кому известно. 

Goliath GP700 Sport  компании Goliath стал первым легковым автомобилем с непосредственным  впрыском топлива, появился он в 1951 году.  Его крохотный  двухцилиндровый мотор объемом чуть менее 700 см3 был оборудован  механическим топливным насосом, подающим бензин на форсунки под  давлением 45 бар.  

Тогдашний инжектор был  очень похож на систему питания старых дизелей, до — common rail-овой  эпохи, с механическим плунжерным топливным насосом. По сути, это была  адаптированная для бензинового двигателя топливная система Bosch для  дизелей. 

Как видите, помимо  впрыска на двигателе присутствует карбюратор, это действительно так,  система механического впрыска не могла поддерживать работу двигателя на  холостом ходу, в этом режиме мотор работал благодаря простенькому  карбюратору. 

Применение инжектора  повысило мощность двигателя  Goliath GP700 до 29 л.с., у карбюраторной  модификации было 25, а вот стоимость машины выросла куда значительней – в  1.5 раза, до 9700 марок.  

Покупателей на такой  «спорткар» естественно, не было, поэтому выпустив 25 машин, компания  Goliath стала устанавливать впрысковый мотор на более востребованную  машину – седан Goliath GP700, но и там без особого успеха. 

Годом позже установить  инжектор на двигатель легковой машины пробовала еще одна немецкая  автомобильная компания Gutbrod, ныне позабытая.  

Устанавливая инжектор на  скромный и скучный Gutbrod Superior с двухцилиндровым двухтактным  мотором, компания прежде всего преследовала цель достичь большей  экономичности, что бы часть топлива не улетала, в прямом смысле, в трубу  – через выпускной канал. У двухтактных моторов клапанов нет.  

Впрыск топлива  происходил в момент, когда поршень уже перекрыл выпускной канал, таким  образом расход бензина у Gutbrod Superior действительно снизился, почти  на полтора литра, на 5 л.с. выросла мощность, достигнув 27 л.с.  

Дороговизна конструкции в  те времена не позволила непосредственному впрыску получить массовое  распространение на легковых автомобилях, и даже очень состоятельные  люди, которые могли себе позволить Mercedes-Benz 300SL, предпочитали всё  же классические карбюраторные решения, поэтому Mercedes впоследствии  тоже отказался от непосредственного впрыска на бензиновых двигателях, на  некоторое время.  

Почему вместо карбюратора на современных автомобилях применяется инжектор?

На чтение 4 мин. Просмотров 891

Инжектор сегодня полностью вытеснил карбюраторы из современного автомобилестроения. Он более эффективно справляется со своими задачами, однако гораздо сложнее устроен.

В настоящее время уже невозможно приобрести новый автомобиль с карбюраторным двигателем. Их сейчас попросту не производят. Место карбюратора в машинах занял инжектор, который гораздо лучше и эффективнее справляется с возложенными на него задачами. Благодаря этому, автомобили стали более мощными, менее прожорливыми и не такими вредными для экологии. Не обошел стороной инжектор спорт. Гоночные автомобили уже долгое время комплектуются только инжекторными моторами. Рассмотрим подробнее принцип работы инжектора, а также историю его появления.

Инжекторные двигатели

Возникновение

На самом деле, инжекторный двигатель изобрели еще в первой половине прошлого века. А экспериментальные конструкции появились и вовсе в первом десятилетии тысяча девятисотых годов. Над созданием и запуском в серийное производство надежной системы питания для самолетов трудились авиационные инженеры, которые еще тогда поняли, что устройство карбюраторных систем далеко не совершенно. К завершению Второй мировой войны на истребителях и бомбардировщиках устанавливался инжекторный двигатель с механическим впрыском топлива.

Вскоре и автопроизводители стали обращать внимание на инжектор. Одними из первых стали применять системы впрыска в производстве своих автомобилей инженеры немецкой компании Мерседес Бенц и итальянской Альфа Ромео. Потом обратил внимание на инжектор спорт, поскольку инжекторный двигатель имел значительно более высокую мощность, чем аналогичного объема карбюраторный мотор.

Устройство

Инжектор представляет собой устройство для непосредственного впрыска топлива в цилиндры двигателя внутреннего сгорания. Инжекторные системы подразделяются на два типа:

  • Центральный впрыск или моновпрыск;
  • Распределенный впрыск.

Моновпрыск предусматривает подачу топлива во все цилиндры силового агрегата посредством одной форсунки. На сегодняшний день такое устройство не пользуется популярностью у автопроизводителей. Оно является менее эффективным, чем система распределенного впрыска.

Двигатель инжекторного типа

Распределенный впрыск, в свою очередь, бывает:

  • Одновременный. Когда все форсунки впрыскивают топливо в цилиндры двигателя одномоментно;
  • Фазированный. В этом случае каждая отдельная форсунка впрыскивает топливо непосредственно перед тактом впуска.
  • Попарно-параллельный. Он имеет место исключительно в момент запуска двигателя.
  • Прямой или непосредственный. В этом случае впрыск происходит непосредственно в камеры сгорания.

Как работает инжектор? Принцип работы инжектора основан на считывании сигналов микропроцессора, который получает сигналы с различных датчиков. Этот микропроцессор и определяет необходимое количество топлива, которое необходимо подать в цилиндры в каждый конкретный момент времени.

Устройство любого инжектора предполагает наличие:

  • Электронного блока управления;
  • Электрического бензонасоса;
  • Форсунок;
  • Датчиков;
  • Регуляторов давления.

Инжектор работает по следующей схеме. Датчик массового расхода воздуха анализирует количество воздуха, которое поступает в двигатель. Эти данные мгновенно передаются в блок управления. Кроме того, туда же поступают такие показатели, как температура мотора, скорость вращения коленчатого вала, степень открытия дроссельной заслонки, а также другие параметры. Микропроцессор проводит анализ полученной информации и рассчитывает необходимое количество топлива, которое должно быть направлено в цилиндры. После этого на форсунки подается электрический разряд определенной длительности. Они открываются и впрыскивают топливо во впускной коллектор.

Наиболее сложное устройство системы имеет электронный блок управления, который выполняет все вычисления. В него заложена специальная программа, анализирующая все аспекты работы двигателя, а также внешние условия. Эта программа пишется специально под конкретный двигатель. В процессе эксплуатации автомобиля ее можно обновлять или даже изменять для достижения большей мощности в определенном диапазоне оборотов двигателя. Если настроить программное обеспечение определенным образом, то можно получить так называемый инжектор спорт. Мотор станет более мощным на высоких оборотах двигателя, однако тяга на низах существенно снизится. Кроме того, существенно возрастет расход топлива. Однако для тех, кто участвует в гонках, это не играет большой роли.

Для работы инжектора крайне важно такое устройство, как каталитический нейтрализатор. Не менее важен и датчик кислорода или лямбда-зонд. Каталитический нейтрализатор предназначен для дожигания несгоревшего топлива, которое вылетает из камер сгорания вместе с выхлопными газами.

После нескольких заправок некачественным бензином это устройство может выйти из строя. Кроме того, нейтрализатор может прийти в негодность после длительной езды на обогащенной смеси. Это может произойти в результате неисправности датчика кислорода, а также из-за неисправной системы зажигания.

Датчик кислорода предназначен для передачи информации о составе выхлопных газов электронному блоку управления. Из этой информации блок управления делает вывод о состоянии смеси и корректирует количество подаваемого в цилиндры двигателя топлива.

Для диагностики и ремонта инжектора требуется специальное оборудование, поэтому самостоятельно найти причину неисправности и устранить ее практически невозможно. Необходимо обращаться на хорошо оборудованные станции технического обслуживания.

Инъекция молодости: история разработки впрыска ВАЗ

Не хвастовства ради, а пользы для

Да и дело тут было отнюдь не в амбициях или желании пустить пыль в глаза потребителю: классическая система питания никак не соответствовала двум важнейшим критериям – стабильности настроек и нормам токсичности. Даже вполне современный по тем временам Солекс нельзя было сравнить с так называемым «инжектором», ведь он не «умел» готовить одинаково сбалансированную по составу топливно-воздушную смесь при разных условиях работы мотора, да и не отличался особой надежностью, требуя регулярной чистки и настройки. В то время как на Западе негласной нормой считалось хотя бы пять лет и 80 000 км без вмешательства в систему питания, не считая регламентной замены фильтров.

Даже беглый анализ показал, что наивысшей стабильностью характеристик и «чистотой выхлопа» обладает именно система питания с электронным блоком управления двигателем, а не механический или электромеханический инжектор. В мире на тот момент существовало немало разновидностей впрыска, и без должного опыта инженерам было непросто принять решение – на каком же именно варианте остановиться? Однако склонялись они именно к электронному управлению, как наиболее прогрессивному и эффективному.

Перспективную систему питания планировали не только (и не столько) для модернизации еще нестарых автомобилей восьмого семейства, сколько для будущей «десятки». Её выпуск планировали начать на стыке восьмидесятых и девяностых годов, и оставаться с устаревшим карбюратором было просто нельзя – особенно если учитывать планы нацеливаться на западный рынок, где «инжектор» давно перестал быть диковинкой, а стал обычным явлением на товарных автомобилях.

Вдобавок на ВАЗе уже тогда в качестве оптимального решения для ВАЗ-2110 рассматривали многоклапанную головку с четырьмя клапанами на каждый цилиндр, а оптимизировать процессы сгорания в таком моторе при наличии обычной системы питания было практически невозможно. В общем, все сводилось к тому, что внедрение впрыска топлива с электронным управлением при запуске следующей модели является одной из основных задач. Причем было решено не только перевести на «инжектор» версии с 16-клапанной головкой, но и оснастить впрыском обычный восьмиклапанный двигатель объемом 1,5 л, известный под индексом ВАЗ-21083.

Не стоит забывать, что в те «золотые» годы экспорт вазовских автомобилей иногда достигал 40% от общего объема выпуска – а это, как известно, доход в виде такой желанной для завода валюты, и грядущее ужесточение экологических норм в Европе для ВАЗа стало бы просто губительным. Не зря ведь экспортные модификации еще с середины восьмидесятых оборудовались системами снижения токсичности отработавших газов – в том числе и с каталитическим нейтрализатором. Впрочем, «кат» был сам по себе не очень эффективен, ведь даже с учетом дополнительной электроники обычный карбюратор получался «слабым звеном» системы по простой причине – он готовил смесь менее точно и стабильно, чем это требовалось.

Совместная работа

Ведущими игроками на рынке разработки систем впрыска в то время были три компании – Bosch, Siemens и General Motors. Предварительные переговоры закончились заключением контракта с GM по простой причине – «джиэм» имел больше опыта и мог предложить максимальный спектр услуг «под ключ».

Первой впрысковый двигатель 2111 «примерила» Lada Baltic. Компоненты GM выдаёт характерный дизайн ДМРВ между корпусом воздухофильтра и патрубком впуска.

Что же должны были сделать специалисты General Motors в рамках контракта? Во-первых, разработать и адаптировать под вазовские моторы впрыск топлива, который бы отвечал нормам Евро-1 и США-93. Во-вторых, для экспортных автомобилей «джиэмовцы» должны были поставить более полумиллиона (!) комплектов систем питания. И, наконец, итогом работы предполагалось приобретение соответствующих лицензий с последующим выпуском компонентов на советских (а в новых реалиях – российских) заводах.

Тип системы питания на Lada Baltic подчеркивал оригинальный шильдик «injection», расположенный на задней двери слева под надписью «LADA»

Уже в 1993 году GM начал поставки комплектов центрального впрыска (так называемого моноинжектора) для Жигулей и Нивы, а впоследствии – и систем распределённого впрыска для Лады Самары. Увы, по объективным экономическим причинам в непростое для новой страны время за шесть лет удалось поставить на конвейер лишь 115 тысяч комплектов вместо запланированных изначально 540 тысяч.

В тот момент на ВАЗе поняли, что нельзя опираться лишь на одного зарубежного партнера и решили подписать в 1995-м контракт и с фирмой Bosch. Это позволило освоить как разработку, так и производство еще одной системы питания, известной впоследствии, как «бошевская». Разумеется, работы по принципиально новой системе питания потребовали длительного пребывания в зарубежных командировках ведущих по проекту специалистов ВАЗа, некоторые из которых занимались этой темой в США по три-четыре года подряд.

На ранних «инжекторах» стояли контроллеры GM импортного производства

В ходе работы над «инжектором» на новую систему питания пытались перевести и такие экзотичные модификации, как 1,1-литровый двигатель ВАЗ-21081. Однако впоследствии было принято решение о том, что малокубатурные модификации «трогать» не стоит, и вазовские конструкторы вместе с зарубежными специалистами сосредоточились на моторах объемом 1,5-1,6 л – как жигулевских, так и «зубильных». А 16-клапанный мотор 2112 должен был стать первым в истории ВАЗа, конструкция которая изначально была «заточена» лишь под электронную систему питания с распределенным впрыском.

Еще в ходе ранних экспериментов над классическими моторами оказалось, что установка каталитического нейтрализатора сильно ухудшает показатели двигателя по мощности и крутящему моменту, поэтому система питания должна была обеспечивать максимальный КПД, чтобы минимизировать «экологические» потери энерговооруженности, неизбежные в любом случае.

На Самаре с так называемой низкой панелью контроллер впрыска разместили на полке под «бардачком»

Система впрыска топлива с электронным управлением была вполне распространенной (но при этом современной) концепцией. Электронный блок управления получал информацию от пары десятков датчиков, на основании которых и строилась коррекция топливно-воздушной смеси, а также остальные параметры – время открытия форсунок, угол опережения зажигания, количество подаваемого в цилиндры воздуха, топлива и так далее. Основную «работу» при этом проделывали несколько важнейших датчиков – например, датчик положения коленчатого вала (без него двигатель вообще не заведется!) и датчик массового расхода воздуха.

Важнейшее преимущество вазовского впрыска, как и большинства подобных систем – «живучесть». Если не отказал электрический бензонасос или «стратегический» датчик ДПКВ и не сгорел контроллер ЭБУ или модуль зажигания, то система худо-бедно, но будет работать даже при отказе нескольких датчиков, перейдя в аварийный режим и работая по альтернативным алгоритмам управления с использованием неких «усредненных» показателей, зашитых в программу.

Сложности

Но гладко было только на бумаге. Освоить столь сложную систему, когда промышленный гигант СССР уже почил в бозе, стало для ВАЗа непростой задачей. Впрочем, при интеллектуальной поддержке зарубежных партнеров с ней вполне справились – по крайней мере, «инжектор» уже к концу девяностых годов стал не просто работоспособной, но и вполне серийной системой питания для ВАЗов.

Датчик массового расхода воздуха – один из самых дорогих компонентов системы питания с распределённым впрыском

Конечно, многое пошло «не так и не туда». Попытки привлечь к производству «оборонку» так и закончились ничем, да и работа в Штатах была закончена еще в 1994 году – до постановки впрыска на конвейер. Кроме впрысковой версии мотора объемом 1,1 л, в итоге так и не удалось освоить 16-клапанную версию Самары, хотя адаптация агрегата 2112 к кузову 21093 была проведена еще на ранних стадиях работы по впрыску. Лишь намного позднее многоклапанный мотор все же встал под капот Самары в заводском исполнении – точнее, «околозаводском», от компании «Супер-Авто».

Для поглощения топливных паров предусмотрено специальное устройство – адсорбер

Некоторые компоненты пришлось оставить импортными – например, датчик кислорода, форсунки и ДМРВ. Блоки под заказ выпускали на Bosch, а со временем были освоены и контроллеры отечественного производства. Остальные же компоненты (датчики, впуск, выпуск и система подачи топлива из бака) были освоены почти самостоятельно.

При наличии некоторых версий БК, считывать ошибки и обнулять их на впрысковом двигателе ВАЗ можно прямо с «бортовика»! Разъем OBD-2 так называемой К-линии: именно сюда нужно подключаться для диганостики «вазоинжектора»

Еще в процессе работы в США вазовские конструкторы поняли, что американский подход к настройке некоторых компонентов (в частности, датчика системы детонации) на малолитражном двигателе ВАЗ, да еще в российских реалиях, не совсем оптимален. Именно поэтому вместо «защитной» функции на него возложили активную борьбу с детонацией путём индивидуального управления углами зажигания на основании показателей датчика.

Первая товарная партия из нескольких тысяч ВАЗ-21082 с российским контроллером Январь-4 и сборной солянкой из компонентов GM и Bosch была выпущена в 1996 году. Она соответствовала действовавшим на тот момент в РФ нормам токсичности, поэтому не имела катализатора и лямбда-зонда.

При практических испытаниях выяснилось, что ресурс отдельных элементов (тех же форсунок, бензонасоса и свечей зажигания) сильно зависит от качества бензина, а хлебнув «этила», можно было гарантированно угробить каталитический нейтрализатор или «нежный» лямбда-зонд. Именно поэтому в конце девяностых – начале двухтысячных годов новомодной системы питания многие российские автомобилисты боялись, как огня. Усугубляло ситуацию то, что на коленке впрыск не продиагностируешь, а загоревшийся на ВАЗе индикатор «проверь двигатель» (check engine) в то время вгонял в ступор даже опытных механиков.

Еще один «бонус» от электронного управления системой питания – заводская «противоугонка», так называемый иммобилайзер

Благодаря и вопреки

Однако остановить прогресс невозможно. Поскольку концептуально вазовский впрыск на моторах 2111/2112 получился весьма удачным (сказывалось участие таких грандов, как Porsche, Bosch и GM), заводчанам требовалось лишь подтянуть качество изготовления отдельных компонентов у смежников, а потребителям – адаптироваться к новой системе питания, лишенной привычного «подсоса» и прочих «ручных подкачек».

Двигатель 2111 – не самый экономичный, но тяговитый и практичный

Пример из жизни: в начале двухтысячных на завод обратился владелец Нивы с моновпрыском, у которого износилась центральная форсунка. Как оказалось, к тому моменту он без каких-либо проблем с системой питания проехал на своей машине свыше 200 тысяч километров!

Распределённый впрыск «сдружили» и с двигателем классики, который ведёт свою родословную еще от ВАЗ-2101 1970 года

Сравнивать 16-клапанный мотор с обычным «восьмерочным» не имело смысла – увеличение числа клапанов в два раза поднимало максимальную мощность при прочих равных условиях как минимум на 10-15%, да и по характеру многоклапанный мотор с высокой степенью сжатия был более «крутильным» и «верховым», то есть приветствовал работу на оборотах в зоне максимальной мощности, а не крутящего момента. Однако оказалось, что с новой системой питания и проверенный временем «восемьдесят третий» мотор стал гораздо тяговитее и эластичнее – ведь максимальный крутящий момент не только вырос со 106 до 116 Нм, но и стал достижим на более низких оборотах (3 000 об/мин против 3 500 об/мин у мотора 21083). Вдобавок оказалось, что с новой системой питания мотор избавился от «температурной зависимости» и «поехал» даже в непрогретом состоянии. Если «зубило» и раньше славилось боевым характером, то с впрысковым мотором оно стало куда более «покладистым», избавившись от непонятной нервозности Солекса.

На ВАЗах с Евро-2 стоял один катализатор – под днищем. На машинах с Евро-3 и выше к нему прибавился так называемый катколлектор

«Инжектор» открывал ворота в мир «чипованного волшебства» : «поколдовав» с настройками ЭБУ, можно было привить двигателю требуемый характер – сделать его еще более тяговитым на низах или, напротив, ценой «экологии» поддать лошадиных сил. Действительно, всесильная электроника позволила реализовать потенциал всего «железа», заложенный десятилетием ранее еще инженерами Porsche. Но, в отличие от брутально-спортивных вариантов на сдвоенных горизонтальных «веберах», впрысковый мотор Самары при этом оставался «паинькой» по экономичности и экологичности. Для производителя было также очень важно, что разработанные совместно с иностранцами и выпущенные серийно компоненты впрыска после сборки системы на двигателе не требовали тщательной настройки и калибровки «по месту».

Победоносной поступью

Нет ничего удивительного в том, что впрыск стремительно набирал обороты как на переднем приводе, так и на классике. Разумеется, первым архаичный карбюратор исчез из-под капотов «десятки» и Самары, ну а к середине двухтысячных стало ясно, что новые экологические требования (минимум Евро-2) можно выполнить, только полностью отказавшись от прежней системы питания. Свои последние конвейерные дни вазовский карбюратор доживал уже на чужбине – в соседней Украине, где нормы токсичности Евро-2 вступили в силу лишь в 2006 году. Именно в то время выпуск новых автомобилей ВАЗ с «карбом» был полностью прекращен, а уже в следующем, 2007-м, АВТОВАЗ перешел на нормы Евро-3, что, в свою очередь, привело к прекращению выпуска полуторалитрового мотора ВАЗ-2111, соответствующего нормам токсичности Евро-2.

Двигатель 2111 объемом 1,5 л легко отличить от более поздних модификаций по легкосплавному впускному коллектору. У 1,6-литрового восьмиклапанника модуль впуска выполнен из пластика

Появившиеся весной 2007 года Самары украинского производства даже с новым двигателем 11183-20 соответствовали старым нормам Евро-2

Изначально у дроссельной заслонки был обычный механический привод – с помощью тросика

С января 2007 года под капотом российских Самар появился двигатель объемом 1,6 л, соответствовавший более жестким нормам Евро-3, который впоследствии получил такой девайс, как электронную педаль газа без жесткой механической связи с дроссельной заслонкой. Тем не менее концепция системы питания двигателей ВАЗ по сегодняшний день остаётся неизменной – это распределённый впрыск топлива с электронным управлением.

Все, что вам нужно знать о литье под давлением

Что такое литье под давлением:

Литье под давлением — это производственный процесс для изготовления деталей в больших объемах. Чаще всего он используется в процессах массового производства, когда одна и та же деталь создается тысячи или даже миллионы раз подряд.

Зачем использовать литье под давлением:

Основным преимуществом литья под давлением является возможность масштабного производства. После оплаты первоначальных затрат цена за единицу продукции при литье под давлением становится чрезвычайно низкой.Цена также имеет тенденцию резко падать по мере производства большего количества деталей. К другим преимуществам можно отнести следующие:

  • Литье под давлением обеспечивает низкий процент брака. по сравнению с традиционными производственными процессами, такими как обработка с ЧПУ, при которой отрезается значительная часть исходного пластикового блока или листа. Однако это может быть отрицательным по сравнению с процессами аддитивного производства, такими как 3D-печать, которые имеют еще более низкий процент брака. Примечание. Пластиковые отходы производства литья под давлением обычно поступают из четырех областей: литниковый канал, направляющие, места расположения затворов и любой переливной материал, который просачивается из самой полости детали (состояние, называемое «вспышкой»).

Изображение с сайта Ferris.edu

Литниковый канал — это просто канал, который направляет расплавленный пластик от сопла литьевой машины к точке входа всего инструмента для литья под давлением. Это отдельная часть от самого пресс-формы. Бегунок — это система каналов, которые встречаются с литником, обычно внутри или как часть пресс-формы, которые направляют расплавленный пластик в полости детали внутри пресс-формы. Есть две основные категории бегунов (горячие и холодные), о которых вы можете прочитать здесь.Наконец, затвор — это часть канала после бегунка, которая ведет непосредственно в полость детали. После цикла литьевой формы (обычно длится всего несколько секунд) весь расплавленный пластик охлаждается, оставляя твердый пластик в литнике, направляющих, затворах, самих полостях деталей, а также возможно небольшое перетекание по краям деталей ( если печать не на 100% правильная).

Термореактивный материал, такой как эпоксидная смола, которая затвердевает при контакте с воздухом, представляет собой материал, который затвердевает и будет гореть после затвердевания, если предпринять одну попытку расплавить его.Напротив, термопластический материал — это пластик, который можно расплавить, охладить и затвердеть, а затем снова расплавить без горения. С термопластическими материалами материал может быть повторно использован повторно. Иногда это происходит прямо в заводском цехе. Они измельчают литники / направляющие и любые бракованные детали. Затем они добавляют этот материал обратно в сырье, которое попадает в литьевой пресс. Этот материал называют «переточить». Как правило, отделы контроля качества ограничивают количество измельченного материала, которое может быть возвращено в пресс.(Некоторые эксплуатационные свойства пластика могут ухудшаться при многократном формовании). Или, если у них его много, фабрика может продать эту повторную помолу какой-нибудь другой фабрике, которая сможет ее использовать. Обычно измельченный материал используется для некачественных деталей, не требующих высоких эксплуатационных свойств.

  • Литье под давлением очень воспроизводимо. То есть вторая часть, которую вы производите, будет практически идентична первой и т. Д. Это замечательная характеристика, когда вы пытаетесь добиться согласованности бренда и надежности детали при крупносерийном производстве.

Каковы недостатки литья под давлением:

Первоначальные затраты, как правило, очень высоки из-за требований к конструкции, испытаниям и инструментам. Если вы собираетесь производить детали в больших объемах, вы должны убедиться, что с первого раза получите правильный дизайн. Это сложнее, чем вы думаете. Правильный дизайн включает:

  • Проектирование и создание прототипа самой детали в соответствии со спецификацией
    • Первоначальная разработка прототипа обычно завершается на 3D-принтере и часто из другого материала (например, АБС-пластика), чем окончательная часть будет построена в
  • Проектирование пресс-формы для первого производственного цикла
    • Обычно создание 300-1000 прототипов, полученных литьем под давлением, в производственном материале требует разработки инструмента для литья под давлением.
  • Доработка любых деталей в инструменте для литья под давлением перед массовым производством на заводе по производству литьевых форм.
Потенциально отрицательные аспекты литья под давлением включают следующее:
  • Двумя основными недостатками литья под давлением являются высокая стоимость инструмента, и большие требуемые сроки выполнения заказа. Инструментальная оснастка — это почти отдельный проект и только одна фаза всего процесса литья под давлением.Прежде чем вы сможете изготавливать отлитую под давлением деталь, вам сначала нужно спроектировать и создать прототип детали (возможно, с помощью ЧПУ или 3D-печати), затем вы должны спроектировать и создать прототип инструмента для литья под давлением, который может производить реплики детали в объеме. Наконец, как правило, после обширных испытаний на обоих вышеупомянутых этапах вы получаете деталь для литья под давлением. Как вы понимаете, вся итерация, необходимая для исправления инструмента перед массовым производством, требует как времени, так и денег. Редко можно создать прототип инструмента для литья под давлением.Однако такое случается, особенно с деталями, которые будут изготавливаться в многогнездном инструменте. Например, предположим, что мы собирались отлить под давлением новую крышку от бутылки шампуня. Эта крышка, вероятно, будет иметь резьбу, чтобы прикрепить ее к бутылке, подвижный шарнир, защелкивающееся закрытие и, возможно, некоторое формование. Компания может сделать инструмент с одной полостью для этой детали, чтобы убедиться, что все элементы будут отливаться по желанию. После утверждения они изготовят новый инструмент, способный отливать, например, 16 крышек за раз.Сначала они делают инструмент с одной полостью, поэтому, если есть какие-либо проблемы, им не нужно платить и ждать, пока он будет исправлен 16 раз для каждой полости.
  • Поскольку инструменты обычно изготавливаются из стали (очень твердый материал) или алюминия, может быть сложно внести изменения . Если вы хотите добавить в деталь пластик, вы всегда можете увеличить полость для инструмента, отрезав сталь или алюминий. Но если вы пытаетесь убрать пластик, вам нужно уменьшить размер полости инструмента, добавив в нее алюминий или металл.Это чрезвычайно сложно и во многих случаях может означать необходимость полностью выбросить инструмент (или его часть) и начать все сначала. В других случаях вы можете приварить металл в нежелательную полость.
  • Для литья под давлением необходима равномерная толщина стенок. Если бы вы вырезали поперечное сечение формы Panasonic, показанной выше, вы бы заметили, что толщина стенок составляет примерно 2-3 мм. Чтобы стены не были слишком толстыми, важно предотвратить несоответствия в процессе охлаждения, приводящие к дефектам, например, вмятинам.Хорошее практическое правило — толщина стен должна быть не более 4 мм. Чем толще стены, тем больше материала вы будете использовать, тем больше будет время цикла и тем выше будет стоимость детали. И наоборот, если толщина стенки меньше 1 мм или около того, у вас могут возникнуть проблемы с заполнением пресс-формы (что приведет к зазорам или коротким выстрелам). Дизайнеры могут компенсировать эту возможность, используя материал с более высоким индексом текучести, например нейлон, который часто подходит для стен толщиной до 0.5мм. Различные производственные технологии, такие как ЧПУ, вообще не требуют одинаковой толщины стенок.
  • Часто крупные детали невозможно изготовить методом литья под давлением как единое целое. Это связано с ограничениями размеров машин для литья под давлением и самих инструментов для форм. В качестве примера большой детали, изготовленной методом литья под давлением, рассмотрим тележки для покупок в компании Target. Хотя существует оборудование для формования очень больших деталей (например, 1000-тонные прессы размером примерно с вагончик поезда), его использование очень дорогое.По этой причине объекты, которые больше, чем возможности типичной машины для литья под давлением, чаще всего создаются из нескольких частей. Станки с ЧПУ имеют аналогичные ограничения в отношении размера продукта, в то время как 3D-печать имеет еще больше ограничений. ЧПУ ограничено перемещением и размером станины фрезерного станка, в то время как большие 3D-печатные детали часто необходимо распечатать в виде нескольких частей, а затем склеить вместе.
  • Большие поднутрения требуют опытного проектирования, чтобы избежать их, и они часто могут увеличить стоимость проекта.

Что нужно учитывать при литье под давлением:

Прежде чем приступить к изготовлению детали методом литья под давлением, рассмотрите несколько из следующих вещей:

  1. Финансовые аспекты
    1. Начальная стоимость: Подготовка продукта для литья под давлением требует больших начальных вложений. Убедитесь, что вы понимаете этот важный момент заранее.
    2. Количество в производстве
      1. Определите количество произведенных деталей, при котором литье под давлением становится наиболее экономически эффективным методом производства.
      2. Определите количество произведенных деталей, при котором вы ожидаете окупить свои инвестиции (учитывайте затраты на проектирование, тестирование, производство, сборку, маркетинг и распространение, а также ожидаемую цену продаж).Используйте консервативную маржу.
  1. Рекомендации по проектированию
    1. Дизайн детали: вы хотите разработать деталь с первого дня с учетом литья под давлением. Упрощение геометрии и минимизация количества деталей на раннем этапе принесут дивиденды в будущем.
    2. Конструкция инструмента: Обязательно спроектируйте инструмент для пресс-формы, чтобы предотвратить дефекты во время производства. Список 10 распространенных дефектов литья под давлением и способы их устранения или предотвращения читайте здесь. Рассмотрите расположение ворот и запустите моделирование с помощью программного обеспечения для литья под давлением, такого как Solidworks Plastics.
  1. Производственные аспекты
    1. Время цикла: Минимизируйте время цикла насколько это возможно. Поможет использование машин с технологией горячеканальной системы, а также продуманная оснастка. Небольшие изменения могут иметь большое значение, а сокращение времени цикла на несколько секунд может привести к большой экономии, когда вы производите миллионы деталей.
    2. Сборка: спроектируйте свою деталь так, чтобы минимизировать сборку. Большая часть причин, по которым литье под давлением осуществляется в Юго-Восточной Азии, — это стоимость сборки простых деталей во время цикла литья под давлением.Если вы можете спроектировать сборку вне процесса, вы значительно сэкономите деньги на оплате труда.

Пример (проектирование для литья под давлением)

Разработка детали, подходящей для литья под давлением, по сравнению с деталью, подходящей для механической обработки, термического формования или 3D-печати, означает учет некоторых различий между различными технологиями изготовления и определение того, когда ваш проект лучше подходит для одного или другого.Типичные детали, которые вы можете захотеть отлить в форму для литья под давлением, включают соединения, кронштейны или корпуса. Например, большинство бытовых электронных инструментов изготавливаются с пластиковой оболочкой (корпусом), отлитой под давлением и используемой в качестве корпуса инструмента.

Рассмотрим корпус электродрели производства Panasonic (см. Ниже):

Изображение предоставлено Panasonic

Одним из наиболее очевидных преимуществ литья под давлением является то, что корпус служит нескольким целям.Во-первых, он служит средством взаимодействия с конечным пользователем. Он также служит гнездом для аккумулятора и двигателя, а также местом расположения различных винтовых втулок, которые будут использоваться для скрепления устройства вместе после сборки внутренних частей. Другими словами, литье под давлением чрезвычайно эффективно, когда вам нужно организовать множество внутренних деталей внутри корпуса. Как следствие, это фантастический способ сократить общее количество деталей на («количество штук»). Следует отметить, что эта деталь также является формованной частью.Подробнее об этом процессе читайте здесь.

Некоторые из других причин, по которым литье под давлением хорошо подходит для этого примера, включают тот факт, что сверло производится в больших объемах. То есть Panasonic создает большое количество копий одной и той же ручки дрели. Литье под давлением отлично подходит для такого крупносерийного производства , потому что высокие начальные затраты окупают производителя с низкими затратами на единицу продукции. По этой же причине литье под давлением может быть плохим выбором для мелкосерийного производства.Кроме того, следует отметить, что при использовании литья под давлением существуют некоторые конструктивные ограничения. Например, деталь имеет почти одинаковую толщину стенок (что важно для предотвращения дефектов), а деталь изготовлена ​​из термопластического материала (что позволяет многократно расплавлять твердую пластмассовую массу для данной процедуры). Если бы вы разрабатывали деталь из термореактивного материала, то литье под давлением было бы более тонким. Термореактивный материал можно формовать под давлением, но сделать это можно только один раз. Попытка расплавить термореактивный пластик второй раз приведет к возгоранию материала.Точно так же деталь с различной толщиной стенок потребовала бы большего внимания при проектировании пресс-формы, чтобы обеспечить равномерное охлаждение и избежать дефектов во время производства.

Заключение

Литье под давлением — отличная технология для массового производства готовой продукции. Это также полезно для доработанных прототипов, которые используются для тестирования потребителя и / или продукта. Однако до этой поздней стадии производства 3D-печать является гораздо более доступной и гибкой для продуктов на ранних стадиях проектирования.

Литье под давлением: что это такое, как это работает, кто это для

Литье под давлением — самый популярный метод производства пластмассовых деталей на планете, поэтому неудивительно, что мировой рынок этого процесса был оценен почти как 260 миллионов долларов США с прогнозом дальнейшего роста в обозримом будущем.

Эта технология используется в самых разных отраслях промышленности, включая аэрокосмическую, медицинское оборудование и автомобилестроение, где передовые методы, такие как формование поверх и вставка, используются для создания даже самых сложных деталей с безупречной точностью.

И когда вы рассматриваете только широкий спектр преимуществ литья под давлением, понимаете, почему миллионы компаний в некоторых из самых требовательных отраслей в мире используют его для воплощения в жизнь своих конструкций деталей.

Но почему производство машин для литья под давлением так эффективно? А как это работает?

Чтобы выяснить это, давайте углубимся в тему и ответим на все важные вопросы, в том числе, что это такое, каков процесс, его основные преимущества и как выбрать подходящего поставщика услуг.

Что такое литье под давлением?

Литье под давлением — это процесс использования пластика для производства широкого спектра деталей и изделий. Несмотря на то, что этот процесс был изобретен еще в 19 веке, он по-прежнему остается одним из лучших способов производства сложных деталей, сохраняя при этом расходы под контролем.

Термопластавтомат использует изготовленные на заказ формы для их заполнения в соответствии со спецификациями, создавая идентичные копии, которые можно настраивать различными способами.

Более того, литье под давлением — это очень универсальный процесс, позволяющий использовать широкий спектр различных материалов и отделок, что делает его популярным вариантом в бесчисленных отраслях промышленности с совершенно разными целями и требованиями.

Благодаря такой гибкости, производство машин для литья под давлением используется даже для некоторых из самых сложных производственных проектов в мире, где производятся детали в аэрокосмической, медицинской и автомобильной промышленности.

Если вы хотите произвести небольшое количество деталей для испытаний или вам нужен надежный метод для производства большого количества деталей в спешке, литье под давлением может быть идеальным выбором, особенно при работе с пластмассами.

Более того, уникальный процесс изготовления детали с помощью термопластавтомата также означает, что вы можете изготавливать сложные детали сложной конструкции, чего нельзя сказать обо всех существующих вариантах производства.

Способность производить большое количество деталей по доступной цене также делает его идеально подходящим для производства различных товаров. На самом деле, вполне вероятно, что довольно много предметов домашнего обихода, которые вы имели, можно было изготовить с помощью литья под давлением.

Как работает литье под давлением?

Несмотря на то, что процесс литья под давлением сложен, его можно разбить на несколько основных этапов, которые помогут понять, как он работает и почему так эффективен.

Термопластавтомат состоит из трех основных компонентов: загрузочного бункера, шнека и нагретого цилиндра. Эта машина работает, беря пластиковый порошок или гранулы и манипулируя им, чтобы сформировать деталь в соответствии с требованиями и размерами.

Когда в загрузочный бункер поступают пластиковые гранулы, он использует фрикционное действие шнека для создания тепла. Как только пластик достигает нужной температуры, он вводится в полость формы, где в конечном итоге охлаждается и принимает форму в соответствии с конструкцией формы.

При необходимости можно использовать передовые методы литья под давлением, такие как повторный впрыск, для создания деталей из нескольких материалов. Также можно использовать вставное формование для добавления пластиковых деталей к существующим деталям, сделанным из других материалов.

Основные принципы процесса литья под давлением могут показаться простыми, но на самом деле это очень сложный процесс, требующий правильного оборудования и соответствующих знаний. Однако при правильном выполнении литье под давлением может стабильно давать отличные результаты даже для самых сложных производственных проектов.

Плюсы и минусы литья под давлением

Несмотря на то, что литье под давлением является одним из наиболее эффективных методов производства, который имеет множество преимуществ, есть вещи, которые необходимо учитывать, прежде чем решить, подходит ли этот подход для вас.

Как и у любого производственного подхода, есть преимущества и недостатки, которые могут применяться в различных ситуациях, и только поняв их, вы сможете принять обоснованное решение.

Имея это в виду, давайте рассмотрим некоторые из наиболее значительных плюсов и минусов, которые может предложить литье под давлением.

Плюсы

Во-первых, давайте рассмотрим преимущества выбора производства с использованием термопластавтомата.

Безупречная точность

Благодаря тому, как материал впрыскивается в пресс-форму, а затем формируется ею, количество дефектов может быть сведено к минимуму.Это означает, что при каждом запуске вы можете производить деталь, идентичную предыдущей, снова и снова.

Как вы понимаете, этот тип точности важен почти во всех отраслях, особенно в тех, которые не могут идти на компромисс по качеству, поэтому литье под давлением популярно в таких сложных областях, как аэрокосмическая и автомобильная.

Сложные детали

Как упоминалось ранее, литье под давлением позволяет компаниям изготавливать даже самые сложные конструкции пресс-форм, с легкостью выполняя даже мельчайшие детали.

Вы можете добавить несколько деталей к своей конструкции пресс-формы и будьте уверены, что каждая из них станет реальностью с помощью пресс-формы.

Долговечность

В отличие от большинства других методов производства, литье под давлением предоставляет расширенные возможности с точки зрения долговечности и надежности изготавливаемых пластиковых деталей.

Например, вы можете добавлять наполнители в созданные формы для литья под давлением, которые могут помочь снизить плотность пластика и сделать каждую деталь более прочной.

Автоматизация

Одна из основных причин, по которой литье под давлением дает стабильные результаты, заключается в том, что большая часть фактического производственного процесса может быть автоматизирована.

Это означает, что вы можете не только свести к минимуму вероятность ошибки, связанной с человеческим фактором, но и обеспечить производство деталей с постоянной скоростью и высокой скоростью выполнения.

Экономическая эффективность

По большей части литье под давлением является одним из наиболее экономически эффективных решений для производства деталей, которые вы можете найти.

Даже несмотря на то, что чистая прибыль вашего проекта будет зависеть от материалов, которые вы используете, и сложности конструкций, сравнивая ее с другими методами производства, вы обычно обнаружите, что литье под давлением дает больше для бюджета, который вы можете выделить. .

Широкий выбор материалов

Если есть одна вещь, в которой литье под давлением действительно выделяется, так это способность настраивать материалы и отделку в соответствии практически с любыми требованиями.Вы можете выбрать пластик, термопластичный каучук, химически стойкий пластик, биоразлагаемый и многие другие, так что просто убедитесь, что вы выяснили, что вам нужно, и у вас будет множество вариантов.

Вы также можете выбрать практически любой цвет, который только можно вообразить, а также можете выбирать из большого количества вариантов отделки, как для эстетических, так и для функциональных целей.

Экологичность

Наконец, в мире, где забота об окружающей среде важнее, чем когда-либо, литье под давлением может быть полезным, потому что оно почти не производит отходов.

Каждый кусок материала, который не использовался в пресс-форме, можно перепрофилировать и использовать в будущих проектах.

Минусы

Теперь, когда мы рассмотрели, почему литье под давлением так эффективно, давайте рассмотрим некоторые из его недостатков, чтобы представить вам более полную картину.

Высокая начальная стоимость

Как мы упоминали ранее, литье под давлением может быть очень рентабельным, особенно при больших производственных циклах, поскольку стоимость одной детали относительно невысока.

Однако, прежде чем вы сможете начать производство, вам нужно будет спроектировать и создать саму пресс-форму, а для правильного выполнения этого может потребоваться много часов и много рабочей силы.

Тем не менее, несмотря на то, что этот процесс может быть сложным, как только он будет завершен, вы сможете использовать пресс-форму для быстрого производства тысяч деталей.

Для начала работы требуется больше времени

Из-за того, что пресс-форму необходимо спроектировать и создать, понятно, что этот процесс займет время, а иногда и месяцы, в зависимости от сложности вашего проекта.

Но даже несмотря на то, что проект по разработке пресс-формы может занять время, как только он будет завершен, процесс станет чрезвычайно быстрым и надежным.А если вы знаете, что ищете, и имеете предыдущий опыт, вы можете значительно сократить время.

Ограничения по размеру

Хотя термопластавтомат может производить довольно большие детали размером до 60 кубических дюймов, если вам нужно что-то побольше, вам, возможно, придется выбрать другой метод производства, например изготовление пластика.

Тем не менее, в большинстве случаев вполне вероятно, что ваша часть будет соответствовать параметрам, так что все будет в порядке.

Применение литья под давлением

При производстве деталей точность и рентабельность являются двумя наиболее важными факторами, к которым стремятся большинство компаний.

Вот почему неудивительно, что такой процесс, как литье под давлением, стал настолько популярным и использовался как для небольших тиражей, так и для крупномасштабного производства деталей с жесткими допусками.

Мы уже говорили о некоторых высокотехнологичных отраслях, которые извлекают выгоду из этой производственной технологии, но давайте рассмотрим еще несколько общих приложений, которые очень распространены, чтобы увидеть, какие типы товаров вы можете производить.

Продукты питания и напитки

Как мы упоминали ранее, литье под давлением дает компаниям возможность производить детали из широкого диапазона материалов.И это очень важно в такой отрасли, как производство продуктов питания и напитков, поскольку она должна соответствовать широкому спектру нормативных требований, касающихся безопасности пищевых контейнеров. При литье под давлением вы можете использовать нетоксичные пластмассы, не содержащие бисфенола А, которые не только безопасны при контакте с пищевыми продуктами, но также могут выдерживать перепады температур.

Это, в сочетании с относительно низкой стоимостью производства, делает литье под давлением идеальным для изготовления таких деталей, как контейнеры для пищевых продуктов, крышки для напитков, фильтрующие компоненты и многое другое.

Строительные детали

Другой отраслью, где используется технология литья под давлением, является строительство, где изготовленные на заказ сложные пластмассовые детали играют жизненно важную роль в процессе строительства домов и сооружений.

Зачастую эти детали также должны соответствовать строгим требованиям с точки зрения качества и соответствия.

Например, при создании пластиковых деталей для окон и дверей, детали должны не только иметь идеальный вид, но также должны быть долговечными и обладать уникальными качествами, позволяющими противостоять факторам окружающей среды.

Сегодня литье под давлением используется даже для производства деталей, которые могут заменять металлические компоненты, обеспечивая отличные характеристики по гораздо более доступной цене.

Медицина

Благодаря литью под давлением медицинские компании могут производить жизненно важные инструменты и детали дешевле, что помогает сделать здравоохранение более доступным для людей во всем мире.

Многие встроенные медицинские устройства, такие как сердечные насосы, различные мониторы, а также ряд медицинских инструментов, зависят от точности литья под давлением, что делает эту технологию незаменимой в этой области.

Как выбрать услуги литья под давлением

Несмотря на то, что литье под давлением может быть невероятно полезным в широком спектре отраслей, для того, чтобы что-либо из этого имело значение, вы должны выбрать авторитетного и опытного поставщика услуг, который сможет реализовать ваше видение и повернуть это в реальность.

Но что вам следует искать?

Ну, во-первых, компания, с которой вы решите работать, должна иметь необходимый опыт работы с рядом проектов литья под давлением.Как вы теперь понимаете, процесс проектирования и создания пресс-формы может быть сложным, поэтому вам нужны опытные специалисты, которые помогут вам преодолеть любые препятствия, с которыми вы столкнетесь.

В дополнение к опытному персоналу поставщик также должен иметь самые передовые технологии литья под давлением, потому что это играет жизненно важную роль в том, насколько точными могут быть детали, как быстро они могут быть изготовлены и сколько времени потребуется на начать производственный процесс.

Наконец, вам следует искать бизнес по литью под давлением, который может справиться с большими проектами.Когда вам нужно масштабировать производство, вам не нужно искать нового поставщика просто потому, что компания оказалась неспособной выполнять более крупные тиражи.

Что такое литье под давлением? — Определение, типы и материалы

Литье под давлением — это производственный процесс, который позволяет производить детали в больших объемах. Он работает путем впрыскивания расплавленных материалов в форму (или «форму» в Соединенных Штатах). Обычно он используется как процесс массового производства для производства тысяч идентичных предметов.Материалы для литья под давлением включают металлы, стекло, эластомеры и кондитерские изделия, хотя чаще всего они используются с термопластичными и термореактивными полимерами.

Как это работает?

Первым этапом литья под давлением является создание самой формы. Большинство форм изготавливаются из металла, обычно алюминия или стали, и подвергаются прецизионной механической обработке, чтобы соответствовать характеристикам продукта, который они должны производить.

После того, как пресс-форма была создана изготовителем пресс-формы, материал для детали подается в нагретый цилиндр и перемешивается с помощью винтового винта.Нагревательные ленты расплавляют материал в цилиндре, а затем расплавленный металл или расплавленный пластик подают в полость формы, где он охлаждается и затвердевает, принимая форму формы. Время охлаждения можно сократить за счет использования охлаждающих линий, по которым циркулирует вода или масло от внешнего регулятора температуры. Инструменты для литейных форм устанавливаются на пластинчатых формах (или «плитах»), которые открываются после затвердевания материала, так что выталкивающие штифты могут вытолкнуть деталь из формы.

Отдельные материалы могут быть объединены в одну деталь с помощью метода литья под давлением, который называется двухэтапной пресс-формой.Этот метод можно использовать для придания мягкости пластиковым изделиям, добавления цвета к деталям или изготовления изделий с различными эксплуатационными характеристиками.

Формы могут быть выполнены с одной или несколькими полостями. Формы с несколькими полостями могут иметь идентичные детали в каждой полости или могут быть уникальными для создания деталей различной геометрии. Алюминиевые формы не лучше всего подходят для крупносерийного производства или деталей с узкими допусками по размерам, поскольку они имеют худшие механические свойства и могут быть подвержены износу, деформации и повреждению из-за усилий впрыска и зажима.Хотя стальные формы более долговечны, они также дороже алюминиевых.

Процесс литья под давлением требует тщательного проектирования, включая форму и характеристики детали, материалы для детали и формы, а также свойства формовочной машины. В результате существуют различные соображения, которые необходимо учитывать при литье под давлением.

Рекомендации по литью под давлением

Перед тем, как приступить к литью под давлением, необходимо принять во внимание ряд факторов:

1.Финансовый

Начальные затраты на производство литья под давлением могут быть высокими с учетом стоимости оборудования и самих форм.

2. Объем производства

Важно определить, сколько деталей вы хотите изготовить, чтобы решить, является ли литье под давлением наиболее экономичным методом производства.

3. Расчетные факторы

Сведение к минимуму количества деталей и упрощение геометрии ваших изделий упростит литье под давлением.Кроме того, конструкция пресс-формы важна для предотвращения дефектов во время производства.

4. Производственные соображения

Сведение к минимуму времени цикла поможет производству, так же как и использование машин с горячеканальными пресс-формами и хорошо продуманной оснасткой. Такие небольшие изменения и использование горячеканальных систем могут обеспечить экономию на производстве ваших деталей. Также будет экономия затрат за счет минимизации требований к сборке, особенно если вы производите многие тысячи и даже миллионы деталей.

Как я могу снизить затраты на пресс-форму?

Литье под давлением может быть дорогостоящим процессом, но есть несколько способов снизить затраты на пресс-форму, в том числе:

  • Устранить поднутрения
  • Удалить ненужные элементы
  • Использовать подход с полостью сердцевины
  • Уменьшить косметический финиш
  • Самовосполняющиеся детали конструкции
  • Модифицировать и повторно использовать существующие формы
  • Монитор DFM анализ
  • Используйте многогнездную или семейную пресс-форму
  • Учитывайте размеры ваших деталей

Когда используется литье под давлением?

Литье под давлением используется для изготовления ряда широко используемых продуктов, включая обычные пластмассовые изделия, такие как крышки для бутылок, а также корпуса для пультов дистанционного управления, шприцы и многое другое.Он также обычно используется для изготовления более крупных предметов, таких как панели кузова автомобилей.

Литье под давлением в основном используется там, где необходимо изготовить тысячи или миллионы идентичных деталей из пресс-формы.

Типы

Существует множество различных вариантов процесса литья под давлением, в том числе:

  • Кубический багет
  • Литье под давлением
  • Литье под давлением с газом
  • Литье под давлением жидкого силиконового каучука
  • Металлическое литье под давлением
  • Микро литье под давлением
  • Реакционное литье под давлением
  • Тонкостенное литье под давлением

Используемые материалы

Литье под давлением может выполняться с множеством различных материалов, включая металлы, стекло, эластомеры, кондитерские изделия и, чаще всего, термопластические и термореактивные полимеры.

Материалы можно комбинировать для придания готовым деталям различных свойств и эффектов.

Преимущества

Основным преимуществом литья под давлением является возможность увеличения производства для производства большого количества деталей. После того, как первоначальные затраты на конструкцию и пресс-формы были покрыты, цена изготовления становится очень низкой. Стоимость производства снижается по мере производства большего количества деталей.

Литье под давлением также приводит к минимальным потерям по сравнению с традиционными производственными процессами, такими как обработка с ЧПУ, при которой удаляются лишние материалы.Несмотря на это, при литье под давлением образуются некоторые отходы, в основном из литников, направляющих, мест расположения затворов и любого материала перелива, который просачивается из полости детали (также называемый «вспышкой»).

Последним преимуществом литья под давлением является то, что оно позволяет изготавливать множество идентичных деталей, что обеспечивает надежность и стабильность деталей при крупносерийном производстве.

Недостатки

Хотя литье под давлением имеет свои преимущества, этот процесс также имеет ряд недостатков.

Первоначальные затраты на литье под давлением могут быть высокими, особенно в отношении оснастки. Прежде чем вы сможете производить какие-либо детали, необходимо создать прототип детали. Как только это будет завершено, необходимо создать и протестировать прототип пресс-формы. Все это требует времени и денег и может быть дорогостоящим процессом.

Литье под давлением также не идеально подходит для изготовления крупных деталей как единое целое. Это связано с ограничениями размеров машин для литья под давлением и инструментов для форм.Предметы, которые слишком велики для возможностей машины для литья под давлением, должны быть созданы как несколько частей и позже соединены вместе.

Последний недостаток заключается в том, что большие поднутрения требуют опытного проектирования, чтобы избежать их, и они могут еще больше увеличить расходы на ваш проект.

Приложения

Литье под давлением используется для ряда приложений, где требуется повторяемый производственный процесс. Сюда входят такие производственные изделия, как катушки с проволокой, упаковка, крышки для бутылок, игрушки, расчески, музыкальные инструменты (и компоненты), стулья, небольшие столики, контейнеры для хранения, механические детали, а также автомобильные детали и компоненты.

Литье под давлением — наиболее распространенный метод производства пластмассовых деталей, особенно в больших объемах.

Часто задаваемые вопросы:

Экологически ли литье под давлением?

Литье под давлением становится более экологически чистым, поскольку оборудование становится более эффективным, а такие материалы, как термореактивные полимеры, способны выдерживать экстремальные температуры и условия.

Хотя при литье под давлением возникают некоторые отходы материала, они меньше, чем при многих других производственных процессах.Разумеется, конкретные используемые материалы также влияют на окружающую среду в зависимости от того, как долго они служат, могут ли они быть получены из переработанных материалов и как они утилизируются. Есть также соображения относительно углеродного следа срока службы создаваемых продуктов, в том числе во время производства.

Достижения в области современного оборудования для литья под давлением означают, что теперь они потребляют на 20-50% меньше энергии по сравнению с тем, что было десять лет назад.

Насколько дешево литье под давлением?

Стоимость формования зависит от количества полостей в форме.Меньшее количество полостей требует меньше инструментов, что снижает производственные затраты на создание литьевой формы. Сложность конструкции детали также влияет на стоимость, включая такие факторы, как чистовая обработка поверхности, допуск, резьба, детализация и количество подрезов. Дополнительные детали, подобные этим, увеличивают стоимость, так как требуют большего количества инструментов.

Самый экономичный тип литья под давлением — это литье резины под давлением, которое дает высокий выход долговечных изделий. Кроме того, последовательные процессы вулканизации с точным контролем температуры могут снизить затраты за счет уменьшения количества отходов.

Сколько стоит литье под давлением?

Расчет точной стоимости литья под давлением можно произвести по следующей формуле:

Цена пресс-формы = затраты на материалы + дизайн + процесс и прибыль + НДС + затраты на испытания + затраты на упаковку и доставку.

Из этих затрат материалы и детали составляют около 15-30% от общей суммы, а процесс и прибыль — 30-50%.

С учетом этих факторов, небольшая форма для литья под давлением с одной полостью стоит от 1000 до 5000 долларов.Более крупные или более сложные формы могут стоить 80 000 долларов и более. Однако в среднем типичная пресс-форма стоит около 12000 долларов.

Хотя инструменты для формования имеют высокую стоимость, фактическое производство литья под давлением имеет относительно низкую стоимость.

Какие пластмассы используются при литье под давлением?

Имея более 85 000 доступных коммерческих вариантов пластиковых материалов и 45 семейств полимеров, существует множество различных пластмасс, которые можно использовать для литья под давлением. Из них полимеры можно в общих чертах разделить на две группы; реактопласты и термопласты.

Наиболее распространенными типами используемых пластиков являются полиэтилен высокой плотности (HDPE) и полиэтилен низкой плотности (LDPE). Полиэтилен обладает рядом преимуществ, включая высокий уровень пластичности, хорошую прочность на разрыв, высокую ударопрочность, устойчивость к влагопоглощению и возможность вторичной переработки.

К другим широко используемым пластмассам, полученным литьем под давлением, относятся:

1. Акрилонитрилбутадиенстирол (ABS)

Этот прочный, ударопрочный пластик широко используется в промышленности.Обладая хорошей устойчивостью к кислотам и щелочам, АБС также обеспечивает низкую усадку и высокую стабильность размеров.

2. Поликарбонат (ПК)

Этот прочный, ударопрочный пластик имеет низкую усадку и хорошую стабильность размеров. Прозрачный пластик, доступный в различных оптически прозрачных сортах, ПК может обеспечить высокий косметический эффект и хорошую термостойкость.

3. Алифатические полиамиды (PPA)

Существует много разных типов нейлоновых нейлонов (или нейлоновых нейлонов), каждый из которых имеет свои преимущества.Вообще говоря, нейлоны обладают высокой прочностью и термостойкостью, а также обладают химической стойкостью, не считая сильных кислот и оснований. Некоторые нейлоны устойчивы к истиранию и обладают хорошей твердостью и жесткостью с хорошей ударной вязкостью.

4. Полиоксиметилен (ПОМ)

Этот пластик, широко известный как ацеталь, обладает высокой твердостью, жесткостью, прочностью и ударной вязкостью. Он также обладает хорошей смазывающей способностью и устойчив к углеводородам и органическим растворителям. Хорошая эластичность и скользкость также обеспечивают преимущества для некоторых применений.

5. Полиметилметакрилат (ПММА)

PMMA, также известный как акрил, обеспечивает хорошие оптические свойства, высокий блеск и устойчивость к царапинам. Он также обеспечивает низкую усадку и меньшее погружение для геометрий с тонкими и продуманными профилями.

6. Полипропилен (ПП)

Этот недорогой полимерный материал некоторых марок обладает высокой ударопрочностью, но может быть хрупким при низких температурах (в случае пропиленового гомополимера). Сополимеры обладают большей устойчивостью к ударам, в то время как полипропилен также является износостойким, гибким и может обеспечивать очень высокое удлинение, а также быть устойчивым к кислотам и щелочам.

7. Полибутилентерефталат (PBT)

Хорошие электрические свойства делают PBT идеальным для силовых компонентов, а также для автомобильной промышленности. Прочность варьируется от умеренной до высокой в ​​зависимости от наполнения стекла, при этом сорта без наполнителя являются жесткими и гибкими. PBT также показывает топливо, масла, жиры и многие растворители, а также не впитывает ароматизаторы.

8. Полифенилсульфон (PPSU)

PPSU — это стабильный по размеру материал с высокой прочностью, термостойкостью и термостойкостью, он также устойчив к радиационной стерилизации, щелочам и слабым кислотам.

9. Полиэфирэфиркетон (PEEK)

Эта высокотемпературная смола с высокими эксплуатационными характеристиками обеспечивает термостойкость и огнестойкость, превосходную прочность и стабильность размеров, а также хорошую химическую стойкость.

10. Полиэфиримид (PEI)

PEI (или Ultem) обеспечивает высокую термостойкость и огнестойкость, а также превосходную прочность, стабильность размеров и химическую стойкость.

Заключение

Литье под давлением находит широкое применение в производстве, особенно при производстве деталей большого объема.Хотя оснастка и формование могут быть дорогими, стоимость производства после его завершения невысока. Литье под давлением позволяет изготавливать почти идентичные детали из различных материалов.

Вы можете узнать больше об услугах TWI по поддержке производства здесь.

Связанные часто задаваемые вопросы (FAQ)

Что такое литье под давлением? | Литье под давлением | Введение в обработку

Литье под давлением — это процесс формования с использованием пресс-форм.Такие материалы, как синтетические смолы (пластмассы), нагреваются и плавятся, а затем отправляются в форму, где они охлаждаются для придания заданной формы. Из-за сходства с процессом впрыска жидкости с помощью шприца этот процесс называется литьем под давлением. Последовательность процесса выглядит следующим образом: материалы расплавляются и заливаются в форму, где они затвердевают, а затем изделия вынимаются и обрабатываются.
При литье под давлением детали различной формы, в том числе сложной формы, можно непрерывно и быстро производить в больших объемах.Таким образом, литье под давлением используется для производства товаров и продуктов в широком спектре отраслей.

Машины для литья под давлением

бывают разных типов, такие как моторизованные машины, приводимые в действие серводвигателями, гидравлические машины, приводимые в действие гидравлическими двигателями, и гибридные машины, приводимые в действие комбинацией серводвигателя и гидравлического двигателя. Конструкцию машины для литья под давлением можно кратко описать как состоящую из узла впрыска, который отправляет расплавленные материалы в форму, и узла зажима, который управляет формой.
В последние годы использование ЧПУ все чаще используется в термопластавтоматах, что привело к популярности моделей, которые позволяют осуществлять высокоскоростной впрыск под программным управлением. С другой стороны, также используется ряд специализированных машин, таких как модели, которые образуют световодные пластины для ЖК-мониторов.

Базовая конструкция термопластавтоматов

A
Цилиндр (нагревает материал)

B
Сопло (впрыскивает расплавленный материал)

С
Бункер (питатель материала)

D
Форма (материал заливается в полость формы между двумя плитами)

Литье под давлением начинается с заливки гранул смолы в бункер, точку входа материала.Затем гранулы нагревают и расплавляют внутри цилиндра для подготовки к инъекции. Затем материал проталкивается через сопло узла впрыска перед подачей через канал в форме, называемый литником, а затем через разветвленные направляющие в полость формы. После того, как материал остынет и затвердеет, форма открывается, и отформованная деталь выталкивается из формы. Для отделки формованной детали из детали вырезают литник и бегунок.

Важно, чтобы расплавленный материал равномерно подавался по всей форме, поскольку часто внутри формы имеется более одной полости, что позволяет производить более одной детали за раз.Следовательно, форма пресс-формы должна быть спроектирована таким образом, чтобы обеспечить это, например, с помощью направляющих одинаковых размеров.
Хотя литье под давлением подходит для массового производства, важно хорошо понимать различные условия, необходимые для производства высокоточных продуктов, в том числе выбор полимерного материала, точность обработки формы, а также температуру и скорость. впрыска расплава.

Сопло для впрыска расплавленного материала

После формования направляющие обрезаются от формованной детали для завершения процесса.

A
Бегун

B
литник

С
Форма

Дом

Литье пластмасс под давлением 101 — Основы литьевого пресса

Наш веб-сайт часто посещают дизайнеры продукции, инженеры и агенты по закупкам, которые ищут информацию о литье пластмасс под давлением.Имея это в виду, мы создали новую серию статей, которые призваны дать нашим читателям лучшее представление о печатных машинах, процессах и подводных камнях в нашей отрасли.

Мы начинаем нашу серию с информации об основах пресса для литья пластмасс под давлением. Мы надеемся, что эта информация окажется для вас полезной. Если у вас есть конкретные вопросы, не стесняйтесь обращаться к нам.

Основы инъекционного пресса

В то время как машины для литья пластмасс под давлением помогут вам определить размер машины, необходимой для получения наилучшего результата, проектировщик или инженер может получить хорошую оценку на основе некоторой базовой информации.Зная примерно, какого размера вам потребуется машина, вы сможете лучше подобрать машину для литья пластмасс под давлением, которая будет соответствовать вашим потребностям.

Во-первых, давайте кратко рассмотрим, как классифицируются или классифицируются прессы для литья пластмасс под давлением:

Часто компании, производящие литье пластмасс, размещают на своих веб-сайтах перечень оборудования для литья под давлением. Это может выглядеть примерно так:

Литье под давлением 3-68 тонн

Литье под давлением 5–123 тонн

Литье под давлением 5–154 тонны

Литье под давлением 5-202 тонн

Литьевые прессы на 5–233 тонны

Литьевые прессы емкостью 4–400 тонн

Итак, что это значит?

Прессы для литья пластмасс под давлением классифицируются или оцениваются в зависимости от тоннажа, или, более конкретно, давления или силы зажима.Прессы могут работать с давлением зажима от менее 5 тонн до более 4000. Чем выше номинальная тонна пресса, тем больше машина.

Станок грузоподъемностью 68 тонн может обеспечить давление зажима 68 тонн. Это давление удерживает форму закрытой во время процесса впрыска. Слишком большое или слишком маленькое давление может вызвать проблемы с качеством. Слишком большое или слишком маленькое давление также может привести к появлению заусенцев, когда излишки материала появляются на краю детали. Давление также влияет на вязкость пластика, используемого в проекте.Индекс текучести расплава или MFI является мерой легкости текучести расплава термопластичного полимера. Пластиковые компаунды по-разному реагируют на давление в зависимости от их MFI. Чем выше MFI, тем выше необходимое давление.

Во-вторых, давайте выясним, какое усилие зажима или давление требуется.

Есть много факторов, которые принимаются во внимание при определении размера пресса. Размер детали, используемый полимер и фактор безопасности. Коэффициент безопасности — это дополнительный числовой процентный буфер, который добавляется к расчету, чтобы избежать дефектов в конечной детали.Некоторые рекомендуют добавить 10%, чтобы учесть запас прочности. Как упоминалось ранее, MFI (индекс текучести расплава) пластмассы также влияет на давление, необходимое для изготовления детали. Многие расчеты включают размер плиты, а также размер пресс-формы и детали, однако, чтобы оценить размер пресса, который потребуется вашему проекту, мы еще больше упростили его.

Многие профессионалы в области литья пластмасс используют общее правило: в 2,5 раза больше площади поверхности в квадратных дюймах изготавливаемой детали.Итак, если у вас есть деталь площадью 42 квадратных дюйма, вам понадобится пресс с давлением 105 тонн. Если вы добавите 10% для коэффициента запаса прочности, вам понадобится пресс с минимальным усилием зажима 115 тонн. Пресс размером 120 тонн сможет вместить ваш пластиковый продукт, полученный литьем под давлением.

Наконец, давайте посмотрим, как вы можете определить машину для литья пластмасс под давлением, которая подходит для вашего проекта.

После того, как вы оцените размер пресса, который вам понадобится, вы сможете определить компании, занимающиеся литьем пластмасс под давлением, которые будут соответствовать вашим требованиям.Как правило, формовщики с большим количеством и более широким выбором размеров пресса смогут удовлетворить потребности вашего проекта. Если вы не работаете с готовой пресс-формой, поищите компанию по литью пластика, которая может спроектировать и изготовить пресс-форму. Они будут лучше понимать, как максимизировать производственный процесс, и часто будут предлагать припуски на инструменты. Это, в свою очередь, минимизирует общую стоимость вашего проекта.

В конце концов, ваша машина для литья пластмасс под давлением определит, какая машина лучше всего подходит для вашего проекта.Прессы большего размера могут использоваться для пресс-форм большего размера, а также для пресс-форм с несколькими полостями, что часто снижает стоимость детали. Однако формы большего размера дороже. Выбор правильного размера пресса может сбалансировать первоначальные затраты на инструмент с долгосрочными производственными затратами.

Введение в литье пластмасс под давлением, электронная книга

Откройте для себя мир литья пластмасс под давлением с уверенностью

Загрузите нашу электронную книгу «Введение в литье пластмасс под давлением». Внутри мы покрываем:

  • Виды литья пластмасс, их преимущества и применение
  • Типы прессов, их возможности и преимущества
  • Как определить стоимость литья пластмасс под давлением
  • Распространенные ошибки, которых следует избегать

Как работает литье под давлением

Текст на этой странице является образцом из нашей полной Белой книги «Литье под давлением для покупателей» —


* Образец текста * — для получения полного руководства нажмите кнопку загрузки выше!

Введение

Это руководство предназначено для людей, которые ищут пластиковые формованные изделия.Он дает столь необходимое понимание всего, что связано с созданием пластмассовых деталей, от инструмента для литья под давлением до самого процесса формования. Он также исследует, на что обращать внимание при получении котировок и их сравнении. Если вы хотите продолжить изучение, руководство охватывает типы инструментов для форм, а также специальные процессы отделки, такие как окраска и покрытие. Подчеркнутые слова можно найти в глоссарии в приложении …

Часть I: Формование: основы

Преимущества литья под давлением

Литье пластмасс под давлением — это очень точный процесс, который имеет ряд преимуществ по сравнению с другими методами обработки пластика.Вот всего 5 преимуществ:
1. Precision
Литье пластмасс под давлением идеально подходит для очень сложных деталей. По сравнению с другими методами литье позволяет включить больше элементов при очень малых допусках. Посмотрите на изображение справа. Вы можете держать этот молдинг в ладони, и он имеет выступы, ребра, металлические вставки, боковые стержни и отверстия, выполненные с помощью функции скользящего отключения в инструменте для формования. Ужасно много возможностей для маленькой части!
2. Выбор материала
Для литья пластмасс под давлением доступно огромное количество материалов.Широкий спектр стандартных материалов, а также такие вещи, как антистатический пластик, термопластическая резина, химически стойкие пластмассы, инфракрасное излучение, биокомпостируемые … а также с цветовым составом или окрашиванием маточной смеси у вас также есть бесконечный выбор цветов. Вышеупомянутый молдинг просто черный, но он сделан из PPO, который является чрезвычайно жестким и огнестойким материалом …

Процесс литья под давлением

Процесс литья под давлением включает нагрев и впрыскивание пластика под давлением в закрытую металлическую форму.Расплавленный пластик охлаждается и затвердевает, принимая форму внутри пресс-формы, которая затем открывается, позволяя выталкивать или извлекать отливки для проверки, доставки или вторичных операций.
Этап 1
Гранулы материала из бункера подаются в нагретый цилиндр и вращающийся шнек.
Материал, расплавленный под действием тепла, трения и сдвига, выталкивается через обратный клапан вперед вращающимся винтом ….

Взгляд изнутри пресс-формы

Конструкция стержня и полости инструмента для литья пластмасс под давлением — это то, что придает конечному продукту его форму, но есть несколько других функций инструмента, которые имеют решающее значение для правильного формирования конечного продукта…

Часть III — Помимо основ — Варианты оснастки

Производство в Китае может сэкономить вам много средств, но при этом могут возникнуть такие проблемы, как задержки доставки, недопонимание, низкое качество и оформление документов, связанных с импортом. Использование формовочного станка из Великобритании с существующими связями с Китаем может устранить риск и по-прежнему привести к экономии затрат ….

Часть IV — Помимо основ — Молдинги

Приложение

Босс — На литой детали, вертикальной колонне, в которую можно вставить, например, металлическую вставку или винт.

Полость — Часть инструмента для литья под давлением, которая придает пластиковому изделию форму, которая выполняет фактическое формование пластика. Также см. Главу «Инструмент для пресс-форм» на страницах 5 и 6, где описаны все термины, относящиеся к инструменту для пресс-форм.

Время цикла — Время, необходимое для завершения цикла пресс-формы, т.е. от подачи материала и плавления; впрыск материала; время охлаждения и выброса до повторного закрытия пресс-формы, готовой к следующему циклу.

Углы уклона — Стенки формованной детали должны быть слегка сужены в направлении, в котором деталь выталкивается из пресс-формы, чтобы деталь могла легко выталкиваться.Этот угол, под которым они сужаются, называется углом уклона.

Ход выталкивателя — Выталкивание выталкивающих штифтов для выталкивания отформованной детали из пресс-формы. Необходимо тщательно контролировать скорость, длину и синхронизацию хода выталкивателя, чтобы предотвратить повреждение выталкивателей и пресс-формы, но в то же время сделать цикл формования как можно короче.

Полироль — Специальная обработка полости пресс-формы, обеспечивающая сверхгладкость пластиковой детали.

Заблокированные функции — Особенности конструкции пластиковой детали, из-за которых пластмассовую деталь невозможно удалить из пресс-формы или которые потребуют от пресс-формы дорогостоящих механизмов для удаления детали.

Разгон — Когда инструмент для литья под давлением был неправильно установлен в формовочную машину, в результате чего инструмент слишком сильно закрывался и, как следствие, повреждается инструмент для литья под давлением.

Повторяемость детали — Возможность раз за разом создавать идентичные пластиковые детали.

Радиусов — Идеально прямые углы невозможно извлечь из пресс-формы. К любым прямым углам следует добавить небольшой радиус. Ребра — Когда пластиковая деталь имеет тонкие стенки, в конструкцию добавляют ребра, чтобы сделать тонкие стенки более прочными.

Боковые жилы — Боковое действие, которое создает элемент на литой детали под углом, противоположным нормальному направлению открытия пресс-формы.Боковой сердечник должен иметь возможность втягиваться, поскольку в противном случае пластмассовая часть не может быть выброшена.

Искровое покрытие — Специальная отделка полости пресс-формы, которая обеспечивает слегка шероховатую текстуру пластиковой детали — вспомните некоторые автомобильные приборные панели, клавиатуры, компьютерные рамы, например

Допуск — Допускается отклонение литой детали от размеров, указанных на чертеже.

Подставка для инструментов — Практически укомплектованный стандартный инструмент для литья под давлением, в который можно вставлять стержень и полость.

Стены — Борта лепной детали

Текст на этой странице является образцом из нашей полной Белой книги «Литье под давлением для покупателей»

Процесс литья под давлением, дефекты, пластик

Калибр
Название материала Аббревиатура Торговые наименования Описание Приложения
Ацеталь ПОМ Celcon, Delrin, Hostaform, Lucel Прочный, жесткий, отличное сопротивление усталости, отличное сопротивление ползучести, химическая стойкость, влагостойкость, естественно непрозрачный белый цвет, низкая / средняя стоимость Подшипники, кулачки, шестерни, ручки, детали сантехники, ролики, роторы, направляющие скольжения, клапаны
Акрил PMMA Диакон, Ороглас, Люцит, Оргстекло Жесткий, хрупкий, устойчивый к царапинам, прозрачный, оптическая прозрачность, низкая / средняя стоимость Витрины, ручки, линзы, кожухи, панели, отражатели, вывески, полки, подносы
Акрилонитрил-бутадиен-стирол АБС Cycolac, Magnum, Novodur, Terluran Прочный, гибкий, низкая усадка в форме (жесткие допуски), химическая стойкость, способность к нанесению гальванических покрытий, естественная непрозрачность, низкая / средняя стоимость Автомобили (консоли, панели, обшивка, вентиляционные отверстия), ящики, датчики, корпуса, ингаляторы, игрушки
Ацетат целлюлозы CA Dexel, Cellidor, Setilithe Прочный, прозрачный, высокая стоимость Ручки, оправы для очков
Полиамид 6 (нейлон) PA6 Акулон, Ультрамид, Грилон Высокая прочность, сопротивление усталости, химическая стойкость, низкая ползучесть, низкое трение, почти непрозрачный / белый, средняя / высокая стоимость Подшипники, втулки, шестерни, ролики, колеса
Полиамид 6/6 (нейлон) PA6 / 6 Копа, Зител, Радилон Высокая прочность, сопротивление усталости, химическая стойкость, низкая ползучесть, низкое трение, почти непрозрачный / белый, средняя / высокая стоимость Ручки, рычаги, корпуса, стяжки-молнии
Полиамид 11 + 12 (нейлон) PA11 + 12 Рилсан, Гриламид Высокая прочность, сопротивление усталости, химическая стойкость, низкая ползучесть, низкое трение, почти непрозрачный до прозрачного, очень высокая стоимость Воздушные фильтры, оправы для очков, защитные маски
Поликарбонат ПК , Lexan, Makrolon Очень прочный, термостойкий, стабильность размеров, прозрачный, высокая стоимость Автомобильная промышленность (панели, линзы, консоли), бутылки, контейнеры, кожухи, световые крышки, отражатели, защитные каски и щиты
Полиэстер — термопласт ПБТ, ПЭТ Celanex, Crastin, Lupox, Rynite, Valox Жесткий, термостойкий, химический, средняя / высокая стоимость Автомобильная промышленность (фильтры, ручки, насосы), подшипники, кулачки, электрические компоненты (разъемы, датчики), шестерни, корпуса, ролики, переключатели, клапаны
Полиэфирный сульфон PES Victrex, Udel Прочный, очень высокая химическая стойкость, прозрачный, очень высокая стоимость Клапаны
Полиэфирэфиркетон PEEKEEK Прочность, термостойкость, химическая стойкость, стойкость к истиранию, низкое влагопоглощение Детали самолетов, электрические разъемы, рабочие колеса насосов, уплотнения
Полиэфиримид PEI Ultem Термостойкость, огнестойкость, прозрачный (янтарный цвет) Электрокомпоненты (разъемы, платы, переключатели), крышки, кожухи, хирургические инструменты
Полиэтилен низкой плотности ПВД Алкатена, Escorene, Novex Легкий, прочный и гибкий, отличная химическая стойкость, естественный восковой внешний вид, низкая стоимость Кухонные принадлежности, корпуса, крышки и контейнеры
Полиэтилен высокой плотности ПНД Eraclene, Hostalen, Stamylan Прочный и жесткий, отличная химическая стойкость, естественный восковой внешний вид, низкая стоимость Сиденья, кожухи, чехлы и контейнеры стульев
Оксид полифенилена ППО Норил, Термокомп, Вампоран Прочность, термостойкость, огнестойкость, стабильность размеров, низкое водопоглощение, возможность нанесения гальванических покрытий, высокая стоимость Автомобильная промышленность (корпуса, панели), электрические компоненты, корпуса, сантехнические компоненты
Полифениленсульфид ППС Райтон, Фортрон Очень высокая прочность, жаростойкость, коричневый цвет, очень высокая стоимость Подшипники, крышки, компоненты топливной системы, направляющие, переключатели и щитки
Полипропилен PP Новолен, Appryl, Escorene Легкость, термостойкость, высокая химическая стойкость, устойчивость к царапинам, естественный восковой внешний вид, жесткость и жесткость, низкая стоимость. Автомобили (бамперы, крышки, обшивка), бутылки, колпачки, ящики, ручки, кожухи
Полистирол общего назначения GPPS лак, стирон, соларен Хрупкий, прозрачный, недорогой Упаковка для косметики, ручки
Полистирол — ударопрочный БЕДРА Полистирол, Костил, Полистар Ударная вязкость, жесткость, ударная вязкость, стабильность размеров, естественно полупрозрачный, низкая стоимость Корпуса для электроники, пищевые контейнеры, игрушки
Поливинилхлорид — пластифицированный ПВХ Велвич, Варлан Прочный, гибкий, огнестойкий, прозрачный или непрозрачный, низкая стоимость Электроизоляция, посуда, медицинские трубки, подошвы для обуви, игрушки
Поливинилхлорид — жесткий UPVC Поликоль, Тросипласт Прочный, гибкий, огнестойкий, прозрачный или непрозрачный, низкая стоимость Наружные применения (водостоки, арматура, водостоки)
Стиролакрилонитрил SAN Луран, Арпилен, Starex Жесткий, хрупкий, химическая стойкость, термостойкость, гидролитически стабильный, прозрачный, низкая стоимость Посуда, ручки, шприцы
Термопластичный эластомер / резина TPE / R Hytrel, Santoprene, Sarlink Надежность, гибкость, высокая стоимость Втулки, электрические компоненты, уплотнения, шайбы
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *